MASSACHVSETTS | NSTI TVTE OF TECHNOLOGY
Ol assi cal Mechanics, A Conputational Approach

GETTI NG STARTED

The purpose of this docunent is to introduce a beginner to the use of
t he Schenme Mechanics system This is not intended to be an

i ntroduction to the | anguage Schene or the notation used in the
mechani cs, or a catalog of the capabilities of the nmechanics system

The follow ng instructions assume that you are using an X wi ndow
system on a Uni x/ GNU- Li nux substrate.

To Start The System
To start up the system get an xtermshell and type
mechani cs&<cr >

at the Xterm pronpt. The "<cr>" appearing in the displayed |line above
stands for the carriage return (or enter key) on your keyboard. The
anpersand "&" allows the shell to accept further conmands even as the
mechani cs systemis in use.

This will pop up two wi ndows. One of these (the edw n-xterm w ndow)
may be mninized and you should not interact with it. The other
wi ndow (Edwi n) will be opened and you will interact with that w ndow.

Edw n

Edwin is the Enmacs-conpatible editor, witten in Schene, that provides
the primary user interface to the nechanics system

Edwi n conmmands use control and neta characters. Control and neta are
nmodi fiers |ike case shift. They are invoked by holding a nodifier key
depressed while typing the key to be nodified. For exanple, the
character described as C-x is typed by holding down the "control" (or
"ctrl") key while typing the "x" key. Wiile alnost all keyboards have
a control key, the meta key is not standard, and how it is placed

depends on your xnodmap (this is nmagic -- ask your systemw zard). It
is usually mapped to the key or keys |labeled "alt". Characters using
the neta nodifier are denoted with "M" as in "Mf". It is comon to

use several nodifiers sinultaneously. For exanple, you might have a
C-Mf command that is invoked by hol di ng down both the control and the
neta nodifiers while typing an "f".

This docunent will not attenpt to teach you Enmacs -- you shoul d use
the Emacs tutorial that is supplied with the systemto |learn to use
the editor effectively. It takes about 1 hour and is well worth the
effort. The tutorial also explains howto eval uate schene
expressions. In the following we will assunme you have gone through
the tutorial. To enter the tutorial type

Cht

at the edwin window. (That's the character "C-h" followed by the
character "t".)

To Exit The System

To exit the mechanics system and close the editor w ndow, type

Cx CGc

at the Edwin wi ndow. (That's "C-x" followed by "C-c".) Edwi n may ask
you if you want to wite out any files that you may have nodified, and
then it will exit, closing the Schene system

Fi | e Nami ng Conventi ons

Edwi n buffers (you will learn about themin the tutorial) have nodes
that determi ne the neani ngs of commands executed in them For

exanple, it is convenient when editing Schene prograns to have a

vari ety of commands for bal anci ng parentheses and for preparing
programs with nice indentation. These commands woul d not make sense
for the |language C, and C editing conventions would not be very good
for Schenme or text. |If we follow certain conventions for naming files
then the appropriate command set will be used when we edit the
contents of those files. The file extension used for Schene files is
".scnf, for Cit is ".c" and for text it is ".txt". For instance, the
file "homework-1.scm will be edited in scheme node. Some conmands in
Schene node allow you to eval uate expressions, with the results
appearing in the *schene* buffer

Wor ki ng Conventi ons

W find it useful to construct code for a particular problemin an
appropriately naned file. For exanple, if we are witing code to
study the driven pendulumwe mght put the code in a file called
"driven-pendulumscm'. As the code is devel oped, expressions can be
eval uated and the results appear in the *scheme* buffer. W often
find it convenient to divide the edwin wi ndow and di splay both the
code file buffer and the *schene* buffer at the sane tine.

Be sure to save any changes you have nade before exiting the system
To save your changes to a file put the cursor in the buffer associated
with the file and type C-x Cs.

There are several ways of putting comments into a scheme file. A
regi on can be commented by putting "#|" at the beginning of the region
to be commented and "|#" at the end of the commented region. For
exanpl e,

#|

this is a commented region,

that can extend over nultiple lines

| #
Comments within a line are started with a semcolon ";". For exanple,
(+ 2 2) ; same as 4

Comments at the begining of a line conventionally begin with ";;;
For exanpl e,
77, this is code for the driven pendul um

An advantage of constructing the code in a separate file is that it
can be rel oaded (reeval uating each of the expressions in the file) in
anot her session. To load the schene file "doubl e-pendul um scni

eval uate the schenme expression: (load "doubl e-pendul um scni')

One can al so evaluate all the expressions in a file by |oading the
file into an edwin buffer and typing Mo at the buffer

It is inmportant to conment out all regions of a file that you do not
want evaluated if the file is to be |loaded or if you want to be able
to execute a Mo conmand in the associated buffer. So for exanmple, we
often wite code, consisting of definitions of procedures and data.

We annotate the code with the results of evaluating expressions, to
hel p us renenber how the procedures are to be called or how they

work. The regions of the file that are the annotations are set off as
comments. Thus the definitions can be | oaded, and we can execute the
denonstrati on exanples only if we want to. For exanple, the follow ng
m ght appear in a file named "fibonacci.scnf

;. Fibonacci nunbers

(define (fib n)
(if (<n2
n
(+ (fib (- n 1))
(fib (- n 2)))))

#
;;; Exanpl es of use

(fib 20)

; Val ue: 6765

(iota 5)

;Value 150: (0 1 2 3 4)

(for-each (conpose wite-line fib)

(iota 10))

0

1

1

2

3

5

8

13

21

34

; Unspecified return val ue
| #

;;; end of fibonacci.scm

Handling Errors

You will often evaluate an inproperly fornmed expression or an

expression which has no sensible value such as "(/ 1 0)". This wll
cause the systemto enter an error state and ask you if you want to
start the debugger. |If you do not want to enter the debugger answer
"

After exam ning an error, whether or not you choose to enter the
debugger, you should type "C-c C-c" to get back to the top | evel
This is inportant because if you don't the eval uations you
subsequently performmay refer to the error state rather than to the
state you i ntended.

Docunent ati on

There are inportant sources of docunentation that you should know
about. The Schene systemis extensively docunented using the Emacs
info system To get to the info system type Ch i.

If at any tinme in a Schene-node buffer you want to know the possible
conpl etions of a synbol, just type CGMi (or M<tab>). This will pop
up an Edwi n wi ndow that shows all synbols known by the system
beginning with your initial segnent.

You may al so want to know the argunents to a procedure. |f the cursor
is after the procedure name in an expression, you can type MA
(meta-shift-a) and a description of the argunents will appear in the
Edwi n conmand-1ine mnibuffer (at the bottom of your Edwi n w ndow).

If you want to see the definition of any procedure (including any
non-primtive system procedure) you nay use the pretty printer (the pp
procedure). For exanpl e:

(pp fib) _
(named- | anbda (fib n)
(if (<n 2

n
(+ (fib (- n1)) (fib (- n2)))))

(pp Lagrangi an->Hani | t oni an)
(named- | anbda (Lagrangi an->Hami | t oni an- procedur e t he-Lagrangi an)
(lanbda (Hstate)
(let ((t (tinme Hstate))
(g (coordinate Hstate))
(p (momentum H-state)))
(define (L gdot)
(the-Lagrangian (up t q qgdot)))
((Legendre-transformprocedure L) p))))

The prinout frompp may not be exactly what you typed in, because the
i nternal representation of your procedure may be "conpil ed"

You shoul d not confuse the pretty printer (pp) with the
print-expression (pe) and show expression (se) procedures used to
di splay the results of al gebraic manipulation. These procedures do
much nmore than print in a nicely-formatted way. They do al gebraic
sinmplification and pp or TeX the result.

You may want to recover the TeX produced by show expression to
include in a TeX docunent describing your results. To get this
eval uate (display |ast-tex-string-generated).

You should not be afraid to try the debugging system Al parts of
the systemare self docunenting. So if you enter the debugger you
will see that the first Iine in the debuggi ng window tells how to get
out of the debugger and how to get nore information about how to use
it. Indeed, the *scheme* buffer itself can give you information about
the Edwi n commands that are relevant to it, using the command C-h m

