
 MASSACHVSETTS INSTITVTE OF TECHNOLOGY
 Classical Mechanics, A Computational Approach

 GETTING STARTED

The purpose of this document is to introduce a beginner to the use of
the Scheme Mechanics system. This is not intended to be an
introduction to the language Scheme or the notation used in the
mechanics, or a catalog of the capabilities of the mechanics system.

The following instructions assume that you are using an X window
system on a Unix/GNU-Linux substrate.

 To Start The System

To start up the system, get an xterm shell and type

mechanics&<cr>

at the Xterm prompt. The "<cr>" appearing in the displayed line above
stands for the carriage return (or enter key) on your keyboard. The
ampersand "&" allows the shell to accept further commands even as the
mechanics system is in use.

This will pop up two windows. One of these (the edwin-xterm window)
may be minimized and you should not interact with it. The other
window (Edwin) will be opened and you will interact with that window.

 Edwin

Edwin is the Emacs-compatible editor, written in Scheme, that provides
the primary user interface to the mechanics system.

Edwin commands use control and meta characters. Control and meta are
modifiers like case shift. They are invoked by holding a modifier key
depressed while typing the key to be modified. For example, the
character described as C-x is typed by holding down the "control" (or
"ctrl") key while typing the "x" key. While almost all keyboards have
a control key, the meta key is not standard, and how it is placed
depends on your xmodmap (this is magic -- ask your system wizard). It
is usually mapped to the key or keys labeled "alt". Characters using
the meta modifier are denoted with "M-" as in "M-f". It is common to
use several modifiers simultaneously. For example, you might have a
C-M-f command that is invoked by holding down both the control and the
meta modifiers while typing an "f".

This document will not attempt to teach you Emacs -- you should use
the Emacs tutorial that is supplied with the system to learn to use
the editor effectively. It takes about 1 hour and is well worth the
effort. The tutorial also explains how to evaluate scheme
expressions. In the following we will assume you have gone through
the tutorial. To enter the tutorial type
C-h t
at the edwin window. (That’s the character "C-h" followed by the
character "t".)

 To Exit The System

To exit the mechanics system, and close the editor window, type
C-x C-c
at the Edwin window. (That’s "C-x" followed by "C-c".) Edwin may ask
you if you want to write out any files that you may have modified, and
then it will exit, closing the Scheme system.

 File Naming Conventions

Edwin buffers (you will learn about them in the tutorial) have modes
that determine the meanings of commands executed in them. For
example, it is convenient when editing Scheme programs to have a
variety of commands for balancing parentheses and for preparing
programs with nice indentation. These commands would not make sense
for the language C, and C editing conventions would not be very good
for Scheme or text. If we follow certain conventions for naming files
then the appropriate command set will be used when we edit the
contents of those files. The file extension used for Scheme files is
".scm", for C it is ".c" and for text it is ".txt". For instance, the
file "homework-1.scm" will be edited in scheme mode. Some commands in
Scheme mode allow you to evaluate expressions, with the results
appearing in the *scheme* buffer.

 Working Conventions

We find it useful to construct code for a particular problem in an
appropriately named file. For example, if we are writing code to
study the driven pendulum we might put the code in a file called
"driven-pendulum.scm". As the code is developed, expressions can be
evaluated and the results appear in the *scheme* buffer. We often
find it convenient to divide the edwin window and display both the
code file buffer and the *scheme* buffer at the same time.

Be sure to save any changes you have made before exiting the system.
To save your changes to a file put the cursor in the buffer associated
with the file and type C-x C-s.

There are several ways of putting comments into a scheme file. A
region can be commented by putting "#|" at the beginning of the region
to be commented and "|#" at the end of the commented region. For
example,
#|
this is a commented region,
that can extend over multiple lines
|#
Comments within a line are started with a semicolon ";". For example,
(+ 2 2) ; same as 4
Comments at the begining of a line conventionally begin with ";;;".
For example,
;;; this is code for the driven pendulum

An advantage of constructing the code in a separate file is that it
can be reloaded (reevaluating each of the expressions in the file) in
another session. To load the scheme file "double-pendulum.scm"
evaluate the scheme expression: (load "double-pendulum.scm")

One can also evaluate all the expressions in a file by loading the
file into an edwin buffer and typing M-o at the buffer.

It is important to comment out all regions of a file that you do not
want evaluated if the file is to be loaded or if you want to be able
to execute a M-o command in the associated buffer. So for example, we
often write code, consisting of definitions of procedures and data.
We annotate the code with the results of evaluating expressions, to
help us remember how the procedures are to be called or how they
work. The regions of the file that are the annotations are set off as
comments. Thus the definitions can be loaded, and we can execute the
demonstration examples only if we want to. For example, the following
might appear in a file named "fibonacci.scm"

;;;--
;;; Fibonacci numbers

(define (fib n)
 (if (< n 2)
 n
 (+ (fib (- n 1))
 (fib (- n 2)))))

#|
;;; Examples of use

(fib 20)
;Value: 6765

(iota 5)
;Value 150: (0 1 2 3 4)

(for-each (compose write-line fib)
 (iota 10))
0
1
1
2
3
5
8
13
21
34
;Unspecified return value
|#

;;; end of fibonacci.scm
;;;--

 Handling Errors

You will often evaluate an improperly formed expression or an
expression which has no sensible value such as "(/ 1 0)". This will
cause the system to enter an error state and ask you if you want to
start the debugger. If you do not want to enter the debugger answer
"n".

After examining an error, whether or not you choose to enter the
debugger, you should type "C-c C-c" to get back to the top level.
This is important because if you don’t the evaluations you
subsequently perform may refer to the error state rather than to the
state you intended.

 Documentation

There are important sources of documentation that you should know
about. The Scheme system is extensively documented using the Emacs
info system. To get to the info system, type C-h i.

If at any time in a Scheme-mode buffer you want to know the possible
completions of a symbol, just type C-M-i (or M-<tab>). This will pop
up an Edwin window that shows all symbols known by the system
beginning with your initial segment.

You may also want to know the arguments to a procedure. If the cursor
is after the procedure name in an expression, you can type M-A
(meta-shift-a) and a description of the arguments will appear in the
Edwin command-line minibuffer (at the bottom of your Edwin window).

If you want to see the definition of any procedure (including any
non-primitive system procedure) you may use the pretty printer (the pp
procedure). For example:

 (pp fib)
 (named-lambda (fib n)
 (if (< n 2)
 n
 (+ (fib (- n 1)) (fib (- n 2)))))

 (pp Lagrangian->Hamiltonian)
 (named-lambda (Lagrangian->Hamiltonian-procedure the-Lagrangian)
 (lambda (H-state)
 (let ((t (time H-state))
 (q (coordinate H-state))
 (p (momentum H-state)))
 (define (L qdot)
 (the-Lagrangian (up t q qdot)))
 ((Legendre-transform-procedure L) p))))

The prinout from pp may not be exactly what you typed in, because the
internal representation of your procedure may be "compiled".

You should not confuse the pretty printer (pp) with the
print-expression (pe) and show-expression (se) procedures used to
display the results of algebraic manipulation. These procedures do
much more than print in a nicely-formatted way. They do algebraic
simplification and pp or TeX the result.

You may want to recover the TeX produced by show-expression to
include in a TeX document describing your results. To get this
evaluate (display last-tex-string-generated).

You should not be afraid to try the debugging system. All parts of
the system are self documenting. So if you enter the debugger you
will see that the first line in the debugging window tells how to get
out of the debugger and how to get more information about how to use
it. Indeed, the *scheme* buffer itself can give you information about
the Edwin commands that are relevant to it, using the command C-h m.

