
Push-2-F is PSPACE-Complete

Erik D. Demaine∗ Robert A. Hearn† Michael Hoffmann‡

Abstract

We prove PSPACE-completeness of a class of pushing-
block puzzles similar to the classic Sokoban, extending
several previous results [1, 5, 12]. The puzzles con-
sist of unit square blocks on an integer lattice; some of
the blocks are movable. The robot may move horizon-
tally and vertically in order to reach a specified goal
position. The puzzle variants differ in the number of
blocks that the robot can push at once, ranging from
just one (Push-1-F) up to arbitrarily many (Push-*-F).
We prove that Push-k-F and Push-*-F are PSPACE-
complete for k ≥ 2 using a reduction from Nondeter-
ministic Constraint Logic (NCL) [8].

1 Introduction

Algorithmic motion planning is a large area of computa-
tional geometry with applications in robotics, assembly
planning, and computer animation; see, e.g., [11] for a
survey. The standard type of problem involves mov-
ing a robot from one configuration to another while
avoiding fixed obstacles. A recent direction introduced
by Wilfong [12] is a class of problems in which robots
are permitted to move some of the obstacles in or-
der to increase maneuverability. As robots become
more powerful at manipulation, an understanding of
such models becomes increasingly important. Current-
day applications include automated warehouse control
and warehouse navigation; see, e.g., [7]. A represen-
tative abstraction of such applications is the popular
Sokoban puzzle [2, 6], which is known to be PSPACE-
complete [2].

Problems. Our hardness results are particularly sur-
prising given the simplicity of the model of motion and
obstacle manipulation. Consider a rectangular n × m

grid in which each square is marked either free or
blocked. A robot can move horizontally and vertically
in the grid, and thereby push up to k blocks in front
of it, for some constant k. See Figure 1, in which the
blocked positions are shaded and the robot is shown as
a circle, pushing two blocks.

∗MIT Laboratory for Computer Science, 200 Technology
Square, Cambridge, MA 02139, USA, edemaine@mit.edu.

†MIT Artificial Intelligence Laboratory, 200 Technology
Square, Cambridge, MA 02139, USA, rah@ai.mit.edu.

‡Institute for Theoretical Computer Science, ETH Zurich,
CH-8092 Zurich, Switzerland, hoffmann@inf.ethz.ch.

Figure 1: Example of pushing blocks.

The Push-k problem [3, 4] is to decide whether there
is a sequence of moves starting at a specified free po-
sition and ending at a specified goal position. If we
omit the restriction on how many blocks the robot can
push at once (i.e., k = ∞), we obtain the problem
Push-* [1, 5, 9]. In this paper, we study the Push-F
model where some of the blocks are fixed to the board,
making them unpushable.

Related Work. Out of these many problem varia-
tions, several individual cases have been studied. The
original paper by Wilfong [12] studies a more flex-
ible model in which the blocks can be more gen-
eral than squares, and the robot can both push and
pull blocks. Dhagat and O’Rourke [5] initiated the
Push- line of models, and proved that Push-*-F is NP-
hard. This result was later strengthened to PSPACE-
completeness [1].
The Push-Push model [3] requires that, once a block

is pushed, it slides the maximal extent in that direction.
This model can be thought of representing either sliding
blocks on a frictionless surface, or the situation in which
blocks cannot be pushed by precise amounts but can be
consistently pushed against other blocks.
Over the past few years, there have been several

results regarding the restricted model in which all
blocks are movable. NP-hardness was established for
Push-Push-1 [3], Push-1 [3], Push-k [4], and Push-*
[9]. The latter two constructions even extend to the
so-called Push-X model in which the robot is not al-
lowed to cross its own path, which immediately places
the corresponding problems in NP.

Overview. This paper reproves and strengthens the
results of [1] to robots with possibly limited strength,
establishing PSPACE-completeness of Push-*-F and
Push-k-F for k ≥ 2. More generally, we prove that any
model of pushing-block puzzles is PSPACE-complete
if one can build a set of three gadgets with a certain
functionality. In particular, we describe such gadgets
for Push-3-F in Section 2. These gadgets also cover
Push-k-F for k > 3 and Push-*-F. The gadgets for
Push-2-F are more complicated, and briefly sketched



I O

Symbol

I O

(a) Diode.

I1

O

Symbol

I2

I1

I2

O

(b) Join.

IO

LIU

LO

x

x*

Symbol

LI LO

U I
O

(c) Lock. Triangles denote diodes.

Figure 2: Push-3-F gadgets.

in Section 4. Our reduction is from Nondeterministic
Constraint Logic (NCL) [8], described in Section 3.

2 Push-3-F

Observation 1 The diode shown in Figure 2(a) can
be traversed arbitrarily often from I to O, but never the
other way round.

Observation 2 The join shown in Figure 2(b) can be
traversed from both I1 and I2 to O arbitrarily often,
but never from I1 to I2 or vice versa. Furthermore, the
robot can always go from O to the most recently entered
input (I1 or I2).

Lemma 1 Any sequence of traversals for the lock gad-
get in Figure 2(c) consists of only the following three
“atomic” traversals: LI → LO, I → O, and U → U .
Moreover, LI → LO and I → O cannot occur next to
each other in such a sequence, i.e. are always separated
by an U → U traversal.

Proof. During both, LI → LO and I → O, position *

is blocked, rendering the respective other traversal im-
possible. Similar to the diode, the positions marked
with x must be reblocked in order to exit. The only
way to free * is from U ; because both x positions are
blocked, the three blocks can be pushed back only one
step, leading again to the initial configuration. ¤

We refer to the LI → LO traversal as “locking
the gadget”, while I → O is called “passage”, and
U → U “unlock”. Remember that, somewhat coun-
terintuitively, the gadget must be unlocked before it
can be relocked after passage. Similarly, the state of
a lock gadget is called unlocked if I → O traversal is
possible, and locked otherwise.
From six copies of the lock gadget, some of which are

reflected, we can build a unidirectional crossing.

I1 I2

O1O2 O

I

U

U I
O

I U
O

O
I

U

I U
O

U I
O

L1 L2

L3 L4

L5 L6

I1

I2

O2

O1

Symbol

Figure 3: A unidirectional crossing.

Lemma 2 The gadget shown in Figure 3 can be tra-
versed from I1 to O1 and from I2 to O2 arbitrarily of-
ten. Moreover, these are the only traversals possible.

Proof. Consider that the robot enters from I1; the
other case is symmetric. First, it has to lock L1, so
it can then only pass L2. Next, both L3 and L4 can
be unlocked (if they are not already), but then L4 has
to be locked again. Then the robot is on the right
corridor from where it can unlock L2. Because L4 is
locked, there are only two ways to proceed: pass L6
to reach O1 or pass the diode to unlock both L5 and
L6, lock L5 (at this point, locking L6 is another option,
but just leads the robot where it was before passing the
diode), unlock L1, pass L3, go back to the right wire
and finally reach O1 after passing L6. Because L4 is
locked, the only way to reach the left wire is by locking
L5; hence, the robot cannot reach O2. ¤

A fully bidirectional crossing can be built from
four unidirectional crossings, as indicated in Figure 4
(Fig. 12 of [3]).

Figure 4: Bidirectional crossing.

3 Nondeterministic Constraint

Logic

We show that Push-k-F is PSPACE-hard by a reduc-
tion from Nondeterministic Constraint Logic (NCL) [8].
This reduction involves constructing “NCL vertex gad-
gets” out of our previously constructed gadgets.
An NCL “machine” is specified by a constraint graph:

an undirected graph together with an assignment of
weights from {1, 2} to each edge. A configuration of



IU
O

I

LI

E

U LO

O

I

LI

E

U LO

O

Symbol

Figure 5: Buffered lock.

BL3

BL2 BL1I

LI

E

U LO

O

I

LI

E

U LO

O

E

LO

I

O LI

U

Figure 6: NCL And vertex.

BL3

BL2 BL1

E

LO

I

O LI

U

I

LI

E

U LO

O

I

LI

E

U LO

O

Figure 7: NCL Or vertex.
Unattached terminals are connected to free space,
which can lead to any other unattached terminal.

this machine is an orientation (direction) of the edges
such that the sum of incoming edge weights at each
vertex is at least 2. A move is made by reversing a
single edge such that the configuration remains valid.
The standard decision question from a particular NCL
machine and configuration is whether a specified edge
can be eventually reversed by a sequence of moves. This
problem is PSPACE-complete [8].

In fact, only two types of vertices are necessary for
PSPACE-completeness to hold: those with incident
edge weights of 1-1-2 (And) and 2-2-2 (Or). These
vertex types have properties similar to the logical oper-
ations of the same name. For example, for the weight-2
edge to be directed away from an And vertex, both of
the weight-1 edges must be directed inward.

We build NCL vertex gadgets out of buffered locks.
A buffered lock (Figure 5) has the same properties as a
lock, except that it may be unlocked during an I → O

traversal, it may be unlocked by a U → E traversal,
and the arrangement of terminals is different.

Each vertex gadget (Figures 6 and 7) is made of three
buffered locks, plus associated circuitry to enforce the
necessary constraints. Each buffered lock acts as half
of an edge: locked corresponds to “directed outward,”
and unlocked corresponds to “directed inward.” The
unattached buffered-lock terminals (E, some I’s) are
open to free space, which can reach any other such ter-
minal, via appropriately placed crossing gadgets.

In each vertex, we assume that the lock states ini-
tially satisfy the vertex constraints. Then any possible
robot traversal maintains those constraints.

Lemma 3 The gadget shown in Figure 6 satisfies the
same constraints as an NCL And vertex.

Proof. To lock BL3, both BL1 and BL2 must be
unlocked: the robot may then traverse I(BL1) →

LO(BL3), passing through BL2. To lock either BL1
or BL2, BL3 must be unlocked: the robot may then
traverse either I(BL3) → LO(BL1) or I(BL3) →
LO(BL2). ¤

Lemma 4 The gadget shown in Figure 7 satisfies the
same constraints as an NCL Or vertex.

Proof. Any buffered lock may be locked if and only
if any other lock is unlocked. For example, if BL1 is
unlocked, the robot may traverse I(BL1)→ LO(BL3);
the other cases are symmetric. The join gadgets ensure
that only the appropriate paths may be taken. ¤

Constraint Graphs. Vertices are connected to-
gether into arbitrary NCL constraint graphs by con-
necting the buffered locks in pairs, matching LO ter-
minals to U terminals. Then any buffered lock can be
unlocked precisely when its connecting buffered lock is
locked. This property represents that a half-edge can
be directed inwards precisely when the other half is di-
rected outwards.
For example, suppose that BL1 and BL2 in an

And vertex are unlocked. Then the robot may tra-
verse I(BL1)→ LO(BL3), and continue on to traverse
U → E in the adjoining buffered lock.

Theorem 5 Push-k-F and Push-*-F are PSPACE-
complete for k ≥ 2.

Proof. Reduction from NCL, by the construction de-
scribed. A given NCL constraint graph may be repre-
sented as a Push-k-F configuration. The target edge
in the NCL graph may be eventually reversed if and
only if the robot may reach the unlock terminal of a
corresponding buffered lock.

Push-2-F is in PSPACE: a simple nondeterminis-
tic algorithm traverses the state space, maintaining



I

O

U

3

3 2

2

1 1

12

13

1

2

3

4

5

6

7

8

9

10

11

14

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 1 1 1 1 1 1

(a)

Symbol

I

U

O

0x

I

O

U

3

3 2

2

1 1

12

13

1

2

3

4

5

6

7

8

9

10

11

14

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 1 1 1 1 1 1

(c)

Symbol

I

U

O

1x

I

O

U

3

3 2

2

1 1

12

13

1

2

3

4

5

6

7

8

9

10

11

14

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 1 1 1 1 1 1

(e)

Figure 8: Traversals of the one-time passage gadget: (a) initial state with no traversals remaining, (b) unlock to
enable one travel, and (c) passage.

only the current state, so Push-2-F is in NPSPACE,
and Savitch’s Theorem [10] says that NPSPACE =
PSPACE. ¤

4 A Lock for Push-2-F

While the diode and join gadget from Section 2 work
for Push-2-F as well, the lock in Figure 2(c) relies on
the robot pushing three blocks at once. Because our
lock gadget for Push-2-F is pretty involved, we can-
not fully describe it within the scope of this abstract.
Instead, we just show the canonical traversal sequence
(Figure 9) to give an impression on how it looks. Note
that the figures are a mixture of actual block puzzle and
symbolic notation (e.g., diodes). Also, the “One-time-
passage” gadget shown in Figure 8 is a subcomponent
of the lock. It allows the robot to pass once from I to
O and back to I; after such a traversal, it must be reset
during a U → U traversal.

Lemma 6 Consider the gadget shown in Figure 8 and
assume that port O is a “dead end”, i.e. there is no
way to reach I or U (nor the overall goal position) from
there except for re-traversing the gadget.

Then the only possible traversals of the gadget are
I → O → I and U → U (without reaching O in be-
tween). The robot can traverse the gadget in these ways
arbitrarily often, with the following restriction: there
cannot be two consecutive I → O → I traversals; i.e.
between any two I → O → I traversals, there has to be
a U → U traversal.

Proof. First note that none of the three pushing block
pairs can be separated, nor can any of these blocks
pushed out of its initial row (pair 1) or column (pair
2 and 3). Hence, for example, pair 1 always blocks
either field (8/3) or field (10/3), effectively preventing
traversal between I and U .

Consider the robot entering at U . If it leaves the cy-
cle of pair 2 (13–15/7–11) through row 8, field (13/10)
is blocked. Thus, after passing the diodes and reaching
O, there is no way back to U (nor to I). Since traversal

from O is not possible by assumption, the only possible
traversals remaining are I(→ O) → I and U → U , as
claimed.

While I → O traversal is not possible initially, the
robot can unlock both block pair 2 and 3 by pushing
them up during a U → U traversal as shown in Fig-
ure 8(c). Thereafter, a single I → O → I traversal
(see Figure 8(e)) is possible, necessarily restoring both
block pairs to their original position. ¤

The basic idea for the lock gadget is the same is in
the Push-3-F-lock described in Section 2: there is a
central position (here (11/11)) that is needed to push
a sequence of blocks into during two different traver-
sals, I → O and LI → LO. But now these sequences
of blocks consist of only two blocks instead of three,
such that separating both traversal corridors becomes
pretty tricky. If we would just have a gadget simi-
lar to the Push-3-F-lock, consisting of only blocks one
through six, the robot could, e.g., push up block 3 and
4 twice during a LI → LO traversal, and in a subse-
quent unlock traversal from U block 3 could be pushed
right, and suddenly LO would become reachable from
U . Block 7 and 8 have been thrown in to avoid this,
and block pairs 9 and 0 in turn are there to keep these
blocks in place. The proof that this gadget is indeed
a lock as required for the crossing gadget described in
Section 2 consists of a pretty tedious case analysis that
is contained in the full paper.

References

[1] Bremner, D., O’Rourke, J., and Shermer, T.

Motion planning amidst movable square blocks is
PSPACE complete. Draft, 1994.

[2] Culberson, J. Sokoban is PSPACE-complete. In
Proc. Internat. Conf. Fun with Algorithms (Elba, Italy,
June 1998), Carelton Scientific, pp. 65–76.

[3] Demaine, E. D., Demaine, M. L., and O’Rourke,

J. PushPush and Push-1 are NP-hard in 2D. In Proc.

12th Canad. Conf. Comput. Geom. (2000), 211–219.



U1

LI

LO

I

O

654

3

9

9

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1 1

2

27 8

00

AA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

U2

I

O1

U

0x

O2

U

I

1x

U1

LI

LO

I

O

65

4

3

9

9

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1 1

2

27 8

00

AA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

U2

I

O1

U

0x

O2

U

I

0x

U1

LI

LO

I

O

65

4

3

9

9

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1 1

2

27 8

00

AA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

U2

I

O1

U

1x

O2

U

I

0x

U1

LI

LO

I

O

65

4

3

9

9

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

1 1

2

27 8

00

AA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

U2

O2

U

I

0x

I

O1

U

0x

Figure 9: Traversals of the lock gadget.

[4] Demaine, E. D., and Hoffmann, M. Pushing blocks
is NP-complete for noncrossing solution paths. In Proc.

13th Canad. Conf. Comput. Geom. (2001), pp. 65–68.

[5] Dhagat, A., and O’Rourke, J. Motion planning
amidst movable square blocks. In Proc. 4th Canad.

Conf. Comput. Geom. (1992), pp. 188–191.

[6] Dor, D., and Zwick, U. Sokoban and other motion
planning problems. Computational Geometry: Theory

and Applications 13, 4 (1999), 215–228.

[7] Everett, H. R., and Gage, D. W. From laboratory
to warehouse: Security robots meet the real world. In-

ternat. J. Robotics Research 18, 7 (July 1999), 760–768.

[8] Hearn, R. A., and Demaine, E. D. The Nondeter-
ministic Constraint Logic model of computation: Re-
ductions and applications. In Proc. 29th Int. Colloq.

Automata, Languages, and Programming (2002).

[9] Hoffmann, M. Push-* is NP-hard. In Proc. 12th

Canad. Conf. Comput. Geom. (2000), pp. 205–210.

[10] Savitch, W. J. Relationships between nondetermin-
istic and deterministic tape complexities. J. Comput.

System Sci. 4, 2 (1970), 177–192.

[11] Sharir, M. Algorithmic motion planning. In Hand-

book of Discrete and Computational Geometry, J. E.
Goodman and J. O’Rourke, Eds. CRC Press LLC,
Boca Raton, FL, 1997, ch. 40, pp. 733–754.

[12] Wilfong, G. Motion planning in the presence of mov-
able obstacles. Ann. Math. Artif. Intell. 3 (1991), 131–
150.


