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Abstract

There is a fundamental connection between the notions of game and of computation.
At its most basic level, this is implied by any game complexity result, but the connec-
tion is deeper than this. One example is the concept of alternating nondeterminism,
which is intimately connected with two-player games.

In the first half of this thesis, I develop the idea of game as computation to a
greater degree than has been done previously. I present a general family of games,
called Constraint Logic, which is both mathematically simple and ideally suited for
reductions to many actual board games. A deterministic version of Constraint Logic
corresponds to a novel kind of logic circuit which is monotone and reversible. At
the other end of the spectrum, I show that a multiplayer version of Constraint Logic
is undecidable. That there are undecidable games using finite physical resources is
philosophically important, and raises issues related to the Church-Turing thesis.

In the second half of this thesis, I apply the Constraint Logic formalism to many
actual games and puzzles, providing new hardness proofs. These applications include
sliding-block puzzles, sliding-coin puzzles, plank puzzles, hinged polygon dissections,
Amazons, Konane, Cross Purposes, TipOver, and others. Some of these have been
well-known open problems for some time. For other games, including Minesweeper,
the Warehouseman’s Problem, Sokoban, and Rush Hour, I either strengthen existing
results, or provide new, simpler hardness proofs than the original proofs.

Thesis Supervisor: Erik D. Demaine
Title: Esther and Harold E. Edgerton Professor of Electrical Engineering and Com-
puter Science

Thesis Supervisor: Gerald J. Sussman
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Chapter 1

Introduction

In this thesis I argue that there are deep connections between the idea of game and
the idea of computation, and indeed that games should be thought of as a valid and
important model of computation, just as Turing machines are.

It is trivially true that any problem shown to be NP-hard, PSPACE-hard, etc. has
an inherent computational flavor, merely by virtue of the (often indirect) reduction
from some kind of resource-bounded Turing machine. Given this, the fact that many
games (such as Chess, Checkers, and Go) have been shown to be hard would not seem
to argue for a special connection between games as such and computation. One might
as well, it seems, argue that graphs are inherently computational, because there are
many hard graph problems.

However, it is a curious fact that various kinds of games seem to be in especially
direct correspondence with particular models of computation. For example, the notion
of nondeterminism inherent in NP-completeness nicely matches the feature of puzzles
that a player must choose a sequence of moves or piece placements to satisfy some
global property. Even more striking is the correspondence between alternation, the
natural extension to nondeterminism, and two-player games [8].

These connections have been pointed out before. Reif [64], and Peterson, Reif,
and Azhar [60], suggest that games should be considered as a model of computation,
and they explicitly list a taxonomy of games types and corresponding models of
computation, culminating in team games of private information, which correspond to
unbounded deterministic Turing machines.

My primary contribution, developed in Part I, is to present an explicit, uniform
model of abstract game, called Constraint Logic, which has as natural specializations
zero-player games (deterministic simulations), one-player games (puzzles), two-player
games, et cetera. In each case I show that my game is complete for the appropriate
complexity class, or, in the case of team games of private information, undecidable.
In fact, this last game is arguably the first game, in a particular, reasonable sense,1

1Specifically, the game must have a finite number of positions, and players must alternate turns.
No previously known undecidable problem, to my knowledge, has both these properties. Peterson
and Reif’s game Team-Peek [60] is described to have those properties, but there is an implicit
assumption in the construction that players do not take turns in sequence. (Also there is a mistake
in the definition; as defined, the game is trivially decidable.) See Chapter 7.
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to be shown undecidable. The fact that there are such undecidable games using finite
resources highlights the difference between games and Turing machines, and is the
linchpin in the argument for viewing games as a model of computation.

In addition to filling a natural slot in the game complexity hierarchy, the deter-
ministic version of Constraint Logic also turns out to be a new, interesting model of
computation in its own right. It is reversible and monotone, and may potentially have
practical application for building real computers with very low power consumption.

Constraint Logic is also naturally suited for reductions to actual board games, and
an additional contribution of this thesis, in Part II, is a large collection of new game
hardness proofs based on the various flavors of Constraint Logic. Constraint Logic is
a game played on a directed graph; a move is to reverse the direction of an edge. One
especially useful property of these graphs is that in all cases but one, the completeness
results hold even for planar graphs. This greatly simplifies many game reductions, in
some cases making trivial what was previously intricately complex.

Another curious property of games (or perhaps of their players), which becomes
evident in Part II, is that a given game will tend to be as hard as possible given
its general characteristics. For example, if a game is a one-player puzzle with a
bounded length, odds are it is NP-complete. If it is a two-player game with an
unbounded length, it will generally be EXPTIME-complete. And so on. This is
perhaps a reflection on human psychology as much as anything; a game would not be
interesting if it were not hard.

Hardness results are called “negative” results, as opposed to “positive” results
showing how to efficiently solve problems; one feeling in the mathematical games
community is that once a game has been shown hard, there is no point studying
it further. But from the computational perspective of this thesis, and taking the
preceding paragraph into consideration, showing a game to be hard validates it as an
object worthy of interest and further study.
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Part I

Games in General
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Part I of this thesis develops the Constraint Logic model of computation in its var-
ious flavors. These comprise instances in a two-dimensional space of game categories,
shown in Figure 1-1. The first dimension ranges across zero-player games (determinis-
tic simulations), one-player games (puzzles), two-player games, and team games with
private information. The second dimension is whether the game has (polynomially)
bounded length. In all cases, the games use bounded space; the basic idea is that a
game involves pieces moving around, being placed, or being captured, on a board or
other space of fixed size.

One player
(puzzle)

Two player Team,
imperfect

information

Zero player
(simulation)

PSPACE EXPTIME UndecidablePSPACEUnbounded

NP PSPACE NEXPTIMEPBounded

Figure 1-1: Table of Constraint Logic game categories and complexities. Each game
type is complete for the indicated class. (After [61].)

Chapter 2 considers various notions of games, and describes the kinds of games,
generalized combinatorial games, that will be studied here. Chapter 3 defines the
general Constraint Logic model of computation. Chapters 4–7 develop notions of
game ranging from deterministic simulations to team games of private information,
and provide corresponding complexity results for appropriate versions of Constraint
Logic.2

Chapter 8 summarizes the results in Part I, and explores some of their implications.

2One result, NEXPTIME-completeness for Bounded Team Private Constraint Logic, is merely
conjectured.
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Chapter 2

What is a Game?

The goal of this thesis is to investigate the computational characteristics of games
and puzzles such as Chess, Checkers, Go, Hex, Bridge, sliding-block puzzles, Conway’s
Game of Life, . . . but what exactly is a game?

Game Theory. There are innumerable kinds of activities and situations that might
be described as games. A large portion of these may be studied within the context
of classical game theory. However, the games I wish to consider are both more
specialized and more general than what is traditionally addressed by game theory.
More specialized, because I shall only be concerned with determining the winner of a
game, and not with other issues of interest in game theory such as maximizing payoff,
studying cooperative strategies, etc. More general, because game theory is concerned
only with the interactions of two or more players, whereas I will consider games
with only one player (puzzles) and even with no players at all (simulations). Other
differences are that game theory generally formulates games in either “strategic”
form (by exhaustively listing the strategies for each player) or “extensive” form (by
analyzing the explicit game tree). But for the games I consider both forms would be
exponentially large, or even infinite.

Combinatorial Games. Instead, in order to explore the connection between games
and computation, I will study games from a computational complexity standpoint.
Naturally, then, these games will have a combinatorial aspect. Indeed, we might
simply call them “combinatorial games”, except for the fact that there is already an
established field called Combinatorial Game Theory [4, 9], and many of the kinds of
games I will consider fall outside the domain of this field. A combinatorial game is
defined to be a two-player, perfect-information game with no chance elements [25].
By so restricting the notion of game, Combinatorial Game Theory is able to draw
out beautiful and unexpected relationships between games and numbers—indeed, in
that framework a number is simply a special kind of game. But other “games” with
a combinatorial flavor, such as sliding-block puzzles, or Conway’s Game of Life, or
Bridge, violate these restrictions, yet are interesting to study from a computational
perspective.
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Notion of a Game. At the risk of being insufficiently specific, I will avoid formally
defining a notion of game. The reason is that it is difficult, if not impossible, to be
sure there is not some further reasonable generalization of the concept of game that
could not be studied by further generalization of the techniques presented in this
thesis.

For example, in a seminal paper on game complexity [81], Stockmeyer and Chan-
dra define a notion of “reasonable game”, and demonstrate formula games that are
“universal” for such games. These formula games provably require exponential time
to determine the winner.

However, shortly afterward Reif [64] generalized the notion of game to include
imperfect information,1 relabeled Stockmeyer and Chandra’s “reasonable games” as
“reasonable games of perfect information”, and demonstrated formula games that
are “universal for all reasonable games”, where the notion of imperfect information
has been added. Reif’s formula games are complete in doubly-exponential time—
exponentially harder to decide than even the provably intractable games that previ-
ously were all that was “reasonable”.

And then again, shortly afterwards, Peterson and Reif [61] noted that “the gener-
alization to more than two players is to have two teams, A and B”, and showed that
such games can in general be undecidable.2 This is, in my view, a very deep result,
and one I will explore in detail in Chapters 7 and 8.

But the point is that there always seems to be another generalization of what
constitutes a “reasonable” game. The limit may seem to have been reached with
Peterson and Reif’s undecidable games, but perhaps there are other ways to generalize
games to get undecidability, or perhaps there is a kind of game with a higher degree
of undecidability.

Requirements for Games. Notwithstanding the above, I must give some general
criteria for what constitutes a game for this thesis to have any meaning. Otherwise,
one could potentially argue that anything could be viewed as a game. Informally, the
characteristics listed below correspond to what I will call a generalized combinatorial
game.

The most important criterion is that there be a finite number of positions. This is
what fundamentally distinguishes games from conventional models of computation,
such as Turing machines. A Turing machine has an infinite tape; in principle, such
a machine cannot exist in any finite physical space. The computers that sit on our
desktops correspond more closely to space-bounded Turing machines. However, games
with finitely many positions can actually exist in our world.

This requirement already rules out one undecidable problem that has a puzzle-like
flavor: the Post Correspondence Problem (PCP) [62]. An instance of PCP consists

1Reif’s paper is called “Universal Games of Incomplete Information”, but technically in game
theory incomplete information refers to games where the payoffs or possible strategies are not known
to all players. In contrast, imperfect information refers to games where players do not know all
actions taken by the other players. Reif’s games are actually games of imperfect information.

2However, there appear to be several technical problems with this result, which I will explain and
correct in Chapter 7.
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of a set of dominos, each with two character strings, one on each side. The question
is, is there a sequence of dominos from that set, allowing repetitions, such that the
concatenated sequence of strings on each side is the same? This is a well-known
undecidable problem, which is indeed framed as a kind of puzzle. But allowing a
given domino to be reused any number of times in a sequence makes it unphysical,
and violates the spirit of what I will consider to be a game. There is no finite bound
on the number of possible sequences of dominos.3

Next, clearly there should be some number of players. The players take turns in
some fashion, mapping one position into another (by making moves). In the interest
of including simulations such as the game of Life, and because such games fit naturally
into the framework I will develop, zero is an acceptable number of players. (A zero-
player game can be thought of as a one-player game where all the moves are forced.)
Generally, adding players adds more nondeterminism to the corresponding model of
computation.

For each game, the standard decision question will be along the lines of, “from
this position, does player X have a forced win?”. The meaning of “forced win” is
often not stated explicitly in game problem statements (see e.g. [34]). However, the
meaning may be taken to be, does player X have a strategy—a rule dictating play
in all circumstances—such that for all possible ways the other players play, player
X wins? What specifically constitutes a strategy will depend on the kind of game.
(Also, we assume that when one player wins, the game ends, so no other player may
then win as well.)

Finally, we would like it to be possible, and easy, to determine the legal moves
from a given position.

Some actual games skirt the boundaries informally laid out above. For example,
Go as played in China and in the USA has a superko rule, which stipulates that no
former board position may be recreated. This rule ensures that games will not loop,
and will eventually finish. Thus, it has practical utility. But it does mean that it is
not possible to determine the legal moves from the current position. Of course, the
entire history of the game could be taken to be the current position, but this violates
our intuition of what normally constitutes a position. Also, complexity results would
then have to be taken relative to an exponentially larger space of possible histories,
versus possible board configurations, and thus would not be particularly interesting.
Or, perhaps, we could consider an equivalent game, where moves that recreate former
positions are legal, but losing. Does this solve the problem, and is Go with superko
thus a valid game in the above sense? It is not so clear. It is worth noting that the
complexity of Go with superko is an interesting open problem [69]; there is reason to
believe it could be harder than Go with the traditional Japanese ko rule.

Formal Problem Statements. Each category of game considered will be formally
defined. But the notion of generalized combinatorial game sketched here is intended to
be more heuristic, and potentially suggestive of kinds of games not treated explicitly.

3Of course, a bounded version of PCP, for example with some given bound on the sequence
length, is a perfectly good puzzle.
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Other Kinds of Games. There are other kinds of games one could consider than
the generalized combinatorial games addressed in this thesis. In addition to un-
bounded games, such as PCP, or Life on an infinite grid, there are games with random
elements. Papadimitriou [58] has shown that in some cases a source of random moves
is equivalent to another player. There are also continuous games. The techniques
presented in this thesis have been used to show that many questions about the ma-
nipulations of hinged dissections of polygons are PSPACE-complete [42], regardless of
the fact that those are continuous problems. In the domain of classical game theory,
there are also complexity results: it was recently shown [14] that computing Nash
equilibria is PPAD-complete. (All finite games have Nash equilibria for mixed strate-
gies [57]; PPAD-completeness refers not to a decision problem, but to computing a
function efficiently.)

I choose to focus on generalized combinatorial games, because it is there that
the computational character of games is expressed most plainly, and that the key
differences from traditional models of computation are most apparent.
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Chapter 3

The Constraint Logic Formalism

The general model of games I will develop is based on the idea of a constraint graph;
the rules defining legal moves on such graphs are called Constraint Logic. In later
chapters the graphs and the rules will be specialized to produce zero-player, one-
player, two-player, etc. games. A game played on a constraint graph is a computation
of a sort, and simultaneously serves as a useful problem to reduce to other games to
show their hardness.

In the game complexity literature, the standard problem used to show games
hard is some kind of game played with a Boolean formula. The Satisfiability problem
(SAT), for example, can be interpreted as a puzzle: the player must existentially make
a series of variable selections, so that the formula is true. The corresponding model of
computation is nondeterminism, and the natural complexity class is NP. Adding al-
ternating existential and universal quantifiers creates the Quantified Boolean Formula
problem (QBF), which has a natural interpretation as a two-player game [80, 79]. The
corresponding model of computation is alternation, and the natural complexity class
is PSPACE. Allowing the players to continue to switch the variable states indefinitely
creates a formula game of unbounded length, raising the complexity to EXPTIME.
And so on. Most game hardness results (e.g., Instant Insanity [67], Hex [65, 22],
Generalized Geography [72], Chess [26], Checkers [70], Go [53, 68]) are direct reduc-
tions from such formula games or their simple variants, or else even more explicit
reductions directly from the appropriate type of Turing machine (e.g., Sokoban [13]).

One problem with such reductions is that the geometric constraints typically found
in board games do not naturally correspond to any properties of the formula games.
By contrast, the constraint graph games I will present are all, with one exception,
games played on planar graphs, so that there is a natural correspondence with typical
board game topology. Furthermore, the required constraints often correspond very
directly to existing constraints in many actual games. As a result, the various flavors
of Constraint Logic are often much more amenable to reductions to actual games than
are the underlying formula games. As evidence of this, I present a large number of
new games reductions in Part II. The prototypical example is sliding-block puzzles,
where the physical constraints of the blocks—that two blocks cannot occupy the same
space at the same time—are used to implement the appropriate kind of Constraint
Logic.
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Constraint Logic also seems to have an advantage in conceptual economy over
formula games. Formula games require the concepts of variables and formulas, but
Constraint Logic games require the single concept of a constraint graph. In the vari-
ous reductions I will give from formula games of various types to equivalent constraint
graph games, the variables and the formulas are represented uniformly as graph ele-
ments. This conceptual economy translates to simpler game reductions; often fewer
gadgets must be built to show a given game hard using Constraint Logic.

Appendix A reviews Boolean formulas and the Satisfiability and Quantified Boolean
Formulas problems; other formula games are defined in the text as they are needed.

3.1 Constraint Graphs

The material in this section is joint work with Erik Demaine [46, 47].
A constraint graph is a directed graph, with edge weights ∈ {1, 2}. An edge is

then called red or blue, respectively. The inflow at each vertex is the sum of the
weights on inward-directed edges. Each vertex has a nonnegative minimum inflow. A
legal configuration of a constraint graph has an inflow of at least the minimum inflow
at each vertex; these are the constraints. A legal move on a constraint graph is the
reversal of a single edge, resulting in a legal configuration. Generally, in any game, the
goal will be to reverse a given edge, by executing a sequence of moves. In multiplayer
games, each edge is controlled by an individual player, and each player has his own
goal edge. In deterministic games, a unique sequence of reversals is forced. For the
bounded games, each edge may only reverse once.

It is natural to view a game played on a constraint graph as a computation.
Depending on the nature of the game, it can be a deterministic computation, or a
nondeterministic computation, or an alternating computation, etc. The constraint
graph then accepts the computation just when the game can be won.

AND/OR Constraint Graphs. Certain vertex configurations in constraint graphs
are of particular interest. A vertex with minimum inflow constraint 2 and incident
edge weights of 1, 1, and 2 behaves as a logical AND, in the following sense: the
weight-2 (blue) edge may be directed outward if and only if both weight-1 (red) edges
are directed inward. Otherwise, the minimum inflow constraint of 2 would not be
met. I will call such a vertex an AND vertex.

Similarly, a vertex with incident edge weights of 2, 2, and 2 behaves as a logical
OR: a given edge may be directed outward if and only if at least one of the other two
edges is directed inward. I will call such a vertex an OR vertex. AND and OR vertices
are shown in Figure 3-1. Blue edges are drawn thicker than red ones as a mnemonic
for their increased weight.

It turns out that for all the game categories, it will suffice to consider constraint
graphs containing only AND and OR vertices. Such graphs are called AND/OR con-
straint graphs.

For some of the game categories, there can be many sub-types of AND and OR
vertex, because each edge may have a distinguishing initial orientation (in the case
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A B

C

(a) AND vertex. Edge C may be directed
outward if and only if edges A and B are
both directed inward.

A B

C

(b) OR vertex. Edge C may be directed out-
ward if and only if either edge A or edge B
is directed inward.

Figure 3-1: AND and OR vertices. Red (light gray) edges have weight 1, blue (dark
gray) edges have weight 2, and vertices have a minimum in-flow constraint of 2.

of bounded games), and a distinct controlling player (when there is more than one
player). In some of these cases I will present alternate sets of basis vertices, which
are not strictly AND and OR vertices, but which can lead to simpler game reductions.

Directionality; Fanout. As implied above, although it is natural to think of AND
and OR vertices as having inputs and outputs, there is nothing enforcing this inter-
pretation. A sequence of edge reversals could first direct both red edges into an AND
vertex, and then direct its blue edge outward; in this case, I will sometimes say that
its inputs have activated, enabling its output to activate. But the reverse sequence
could equally well occur. In this case we could view the AND vertex as a splitter, or
FANOUT gate: directing the blue edge inward allows both red edges to be directed
outward, effectively splitting a signal.

In the case of OR vertices, again, we can speak of an active input enabling an
output to activate. However, here the choice of input and output is entirely arbitrary,
because OR vertices are symmetric.

Circuit Interpretation. With these AND, OR, and FANOUT vertex interpretations,
it is natural to view an AND/OR graph as a kind of digital logic network, or circuit.
(See Figure 4-6 for examples of such graphs.) One can imagine signals flowing through
the graph, as outputs activate when their input conditions are satisfied. This is the
picture that motivates my description of Constraint Logic as a model of computation,
rather than simply as a set of decision problems. Indeed, it is natural to expect that
a finite assemblage of such logic gadgets could be used to build a sort of computer.

However, several differences between AND/OR constraint graphs and ordinary dig-
ital logic circuits are noteworthy. First, digital logic circuits are deterministic. With
the exception of zero-player Constraint Logic, a Constraint Logic computation ex-
hibits some degree of nondeterminism. Second, with the above AND and OR vertex
interpretations, there is nothing to prohibit “wiring” a vertex’s “output” (e.g. the
blue edge of an AND vertex) to another “output”, or an “input” to an “input”. In
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A

B C

(a) CHOICE vertex

A

B C

D E

F

(b) Equivalent AND/OR subgraph

Figure 3-2: CHOICE vertex conversion.

digital logic circuitry, such connections would be illegal, and meaningless, whereas
they are essential in Constraint Logic. Finally, although we have AND- and OR-like
devices, there is nothing like an inverter (or NOT gate) in Constraint Logic; inverters
are essential in ordinary digital logic.

This last point deserves some elaboration. The logic that is manifested in con-
straint graphs is a monotone logic. By analogy with ordinary numerical functions, a
Boolean formula is called monotone if it contains only literals, ANDs, and ORs, with
no negations. The reason is that when a variable changes from false to true, the value
of the formula can never change from true to false. Likewise, Constraint Logic is
monotone, because inflow is a monotone function of incident edge orientations. Re-
versing an edge incident at a given vertex from in to out can never enable reversal of
another edge at that vertex from in to out. That is what would be required by a NOT
vertex. One of the more surprising results about Constraint Logic is that monotone
logic is sufficient to produce computation, even in the deterministic case.

Flake and Baum [24] require the use of inverters in a similar computational con-
text. They define gadgets (“both” and “either”) that are essentially the same as our
AND and OR vertices, but rather than use them as primitive logical elements, they
use their gadgets to construct a kind of dual-rail logic. With this dual-rail logic, they
can represent inverters, at a higher level of abstraction. We do not need inverters for
our reductions, so we may omit this step.

3.2 Constraint Graph Conversion Techniques

Often it will be convenient to work with constraint graphs that are not strictly
AND/OR graphs, but that can be easily converted to equivalent AND/OR graphs.
The three such “shorthands” that will occur most frequently are the use of CHOICE
(red-red-red) vertices, degree-2 vertices, and loose edges.
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(a) Pair of red-blue vertices (b) Equivalent AND/OR subgraph

Figure 3-3: Red-blue vertex conversion. Red-blue vertices, which have an inflow
constraint of 1 instead of 2, are drawn smaller than other vertices.

CHOICE Vertices. A CHOICE vertex, shown in Figure 3-2(a), is a vertex with three
incident red edges and an inflow constraint of 2. The constraint is thus that at least
two edges must be directed inward. If we view A as in input edge, then when the input
is inactivated, i.e., A points down, then the outputs B and C are also inactivated, and
must also point down. If A is then directed up, either B or C, but not both, may also
be directed up. In the context of a game, a player would have a choice of which path
to activate.

The AND/OR subgraph shown in Figure 3-3(b) has the same constraints on its A,
B, and C edges as the CHOICE vertex does. Suppose A points down. Then D and E
must also point down, which forces B and C to point down. If A points up, D and E
may as well (using vertex A-D-E as a FANOUT). F may then be directed either left or
right, to enable either B or C, but not both, to point up.

The replacement subgraph still may not be substituted directly for a CHOICE
vertex, however, because its terminal edges are blue, instead of red. This brings us
to the next conversion technique.

Degree-2 Vertices. Viewing AND/OR graphs as circuits, we might want to connect
the output of an OR, say, to an input of an AND. We can’t do this directly by joining
the loose ends of the two edges, because one edge is blue and the other is red. However,
we can get the desired effect by joining the edges at a red-blue vertex with an inflow
constraint of 1. This allows each incident edge to point outward just when the other
points inward—either edge is sufficient to satisfy the inflow constraint.

We would like to find a translation from such red-blue vertices to AND/OR sub-
graphs. However, there is a problem: in AND/OR graphs, red edges always come
in pairs. The solution is to provide a conversion from two red-blue vertices to an
equivalent AND/OR subgraph. This will always suffice, because a red edge incident at
a red-blue vertex must be one end of a chain of red edges ending at another red-blue
vertex. The conversion is shown in Figure 3-3. Clearly, the orientations shown for the
edges in the middle satisfy all the constraints except for the left and right vertices;
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A

(a) Free edge terminator

A

(b) Constrained edge terminator

Figure 3-4: How to terminate loose edges.

for these, an inflow of 1 is supplied, and either the red or the blue edge is necessary
and sufficient to satisfy the constraints.

Note that the degree-2 vertices are drawn smaller than the AND/OR vertices, as
an aid to remembering that their inflow constraint is 1 instead of 2.

It will occasionally be useful to use blue-blue and red-red vertices, as well as red-
blue. Again, these vertices have an inflow constraint of 1, which forces one edge to
be directed in. A blue-blue vertex is easily implemented as an OR vertex with one
loose edge which is constrained to always point away from the vertex (see below).
Red-red edges will only occur in zero-player games. However, in that case special
timing considerations also arise, so I will defer discussion of red-red vertices for now.

Loose Edges. Often only one end of an edge matters; the other need not be con-
strained. To embed such an edge in an AND/OR graph, the subgraph shown in
Figure 3-4(a) suffices. If we assume that edge A is connected to some other vertex
at the top, then the remainder of the figure serves to embed A in an AND/OR graph
while not constraining it.

Similarly, sometimes an edge needs to have a permanently constrained orienta-
tion. The subgraph shown in Figure 3-4(b) forces A to point down; there is no legal
orientation of the other edges that would allow it to point up.

23



Chapter 4

Zero-Player Games (Simulations)

We begin our study of specific abstract games with deterministic, or zero-player,
games. We may think of such games as simulations: each move is determined from
the preceding configuration. Examples that are often thought of as games include
cellular automata, such as Conway’s Game of Life [33].

More generally, the class of zero-player games corresponds naturally to ordinary
computers, or deterministic space-bounded Turing machines—the kinds of compu-
tation tools we have available in the real world, at least until quantum computers
develop further.

Constraint Logic. The Constraint Logic formalism does not restrict the set of
moves available on a constraint graph to a unique next move from any given position.
To consider a deterministic version, we must further constrain the legal moves. Rather
than propose a rule which selects a unique next edge to reverse from each position,
we apply determinism independently at each vertex, so that multiple edge reversals
may occur on each deterministic “turn”.

The basic idea is that each vertex should allow “signals” to “flow” through it if
possible. So if both red edges reverse inward at an AND vertex, then on the next
move the blue edge will reverse outward. For the bounded version, this idea is all we
need. For the unbounded version, the rule is modified to allow inputs that can’t flow
through to “bounce” back. (They cannot do so in the bounded version, because each
edge can only reverse once.) This allows the construction of arbitrary space-bounded
computers—unbounded Deterministic Constraint Logic is PSPACE-complete. Fur-
thermore, it turns out to represent a new style of reversible, monotone computation
that could potentially be physically built, and could have significant advantages over
conventional digital logic.

4.1 Bounded Games

A bounded zero-player game is essentially a simulation that can only run for a linear
time. Admittedly it seems a stretch to call such simulations “games”, but they do fit
naturally into the overall framework sketched in Figure 1-1, and all the other slots
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in that table are more arguably game-like. Bounded Deterministic Constraint Logic
is included in this thesis merely for completeness. Conceivably there could be some
solitaire games where the player has no actual choice, and the game is of bounded
length, but such games would not seem to be very interesting.

This style of computation is captured by the notion of Boolean circuits, and more
specifically, monotone Boolean circuits. A monotone Boolean circuit is a directed
acyclic graph where the nodes are gates (AND or OR) or inputs, and the connections
and edge orientations are as expected for the gate types. The gates are allowed to
have multiple outputs (= outward directed edges); that is, there is fanout. One gate
is the output gate. Each gate computes the appropriate Boolean function of its input.
The value of the circuit, for a given assignment of Boolean input values, is the value
computed by the output gate. An ordinary (non-monotone) Boolean circuit is also
allowed NOT gates; these turn out not to add any computational power.

Essentially, then, a monotone Boolean circuit is just a representation of a mono-
tone Boolean formula, that potentially allows some space savings by reusing subex-
pressions via fanout. The problem of determining the value of a monotone Boolean
circuit, called MONOTONE-CIRCUIT-VALUE, is P-complete [36].

Bounded Deterministic Constraint Logic corresponds directly to MONOTONE-
CIRCUIT-VALUE. To formally define the problem, first I define a constraint graph
successor operation:

Ri+1 = {e | e is a legal move in Gi and e /∈ R0 ∪ . . . ∪Ri},
Gi+1 = Gi with edges in Ri+1 reversed.

Recall that a legal move is the reversal of a single edge such that all constraints
remain satisfied. Thus, this process effectively propagates signals through a graph
until they can no longer propagate. It might appear that this definition could cause
a legal constraint graph to have an illegal successor, since moves that are individually
legal might not be simultaneously legal, but this will turn out not to be a problem.

BOUNDED DETERMINISTIC CONSTRAINT LOGIC (BOUNDED DCL)
INSTANCE: AND/OR constraint graph G0; edge set R0; edge e in G0.
QUESTION: Is there an i such that e is reversed in Gi?

4.1.1 P-completeness

Theorem 1 Bounded DCL is P-complete.

Proof: Given a Boolean Circuit C, we construct a corresponding Bounded DCL
problem, such that the edge in the DCL problem is reversed just when the circuit value
is true. This process is straightforward: for every gate in C we create a corresponding
vertex, either an AND or an OR. When a gate has more than one output, we use
AND vertices in the FANOUT configuration. The difference here between AND and
FANOUT is merely in the initial edge orientation. Where necessary, we use the red-blue
conversion technique shown in Section 3.2. For the input nodes, we use terminators
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as in Figures 3-4(a) and 3-4(b). The target edge e will be the output edge of the
vertex corresponding to the circuit’s output gate.

We must still address the issue of potential illegal graph successors. However, in
the initial configuration the only edges that are free to reverse are those in the edge
terminators and in the red-blue conversion subgraphs; all other vertices are effectively
waiting for input. We add the edges in the red-blue conversion graphs to the initial
edge set R0, and we similarly add all edges in the edge terminators, except for the
initial free edges that correspond to the Boolean circuit inputs. Then, no edges can
ever reverse until the inputs have propagated through to them, and in each case the
signals flow through appropriately. The only way to have an illegal graph successor
would be to start in a configuration with all edges directed into an AND vertex, or
with two edges directed into an OR, but these situations do not arise in the reduction.

Then, the Bounded DCL dynamics exactly mirror the operation of the Boolean
circuit, and e will eventually reverse if and only if the circuit value is true. This shows
that Bounded DCL is P-hard. Clearly it is also in P: we may compute Gi+1 from Gi

in linear time (keeping track of which edges have already reversed), and after a linear
time no more edges can ever reverse. �

4.1.2 Planar Graphs

For all of the other kinds of games, it turns out that restricting the constraint graphs
to planar configurations does not change their computational power. However, planar
Bounded DCL seems to be weaker than unrestricted Bounded DCL. The reason is
that, while MONOTONE-CIRCUIT-VALUE is P-complete, the planar monotone
circuit value problem has been shown to lie in NC3 [87], and it is believed that
NC3 ( P. Planarity is a useful property to have in Constraint Logic, because it
greatly simplifies reductions to other games. In this case, however, there are no
obvious games one would be interested in showing P-complete anyway, or if there are
they have escaped my notice.

4.2 Unbounded Games

Unbounded zero-player games are simulations that have no a priori bound on how
long they may run. Cellular automata, such as Conway’s game of Life, are a good
example. Since there is no longer a linear bound on the number of moves, it’s not
generally possible to determine the outcome in polynomial time. Indeed, Life has been
shown to be “computation universal” [4, 85, 66] on an infinite grid; that is, it can
simulate an arbitrary Turing machine. That means that there are decision questions
about a Life game (for example “will this cell ever be born”) that are undecidable.
On a finite grid, the corresponding property is PSPACE-completeness. This result is
not mentioned explicitly in the cited works, but it does follow directly, at least from
[66].

Deterministic Constraint Logic (DCL) is the form of Constraint Logic that corre-
sponds to these kinds of simulation. The definition is slightly more complicated than
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for Bounded Deterministic Constraint Logic. Removing the restriction that each edge
may reverse at most once means that signals would no longer naturally flow through
vertices with the existing rule—when an edge reverses into a vertex, the rule would
have it reverse out again on the next step, as well as whatever other edges it enabled
to reverse. This would lead to illegal configurations.

Therefore, we add the restriction that an edge which just reversed may not reverse
again on the next step, unless on that step there are no other reversals away from
vertex that edge points to. Formally, we define a vertex v as firing relative to an edge
set R if its incident edges which are in R satisfy its minimum inflow, and F (G,R) as
the set of vertices in G that are firing relative to R. Then, if we begin with graph G0

and edge set R0,

Ri+1 = {e = (u, v) | e /∈ Ri and v ∈ F (Gi, Ri), or e ∈ Ri and v /∈ F (Gi, Ri)},
Gi+1 = Gi with edges in Ri+1 reversed.

(Note that the R’s are undirected edge sets here; if (u, v) ∈ R then (v, u) ∈ R.)
The effect of this rule is that signals will flow through constraint graphs as desired,

but when a signal reaches a vertex that it can’t “activate”, or “flow through”, it will
instead “bounce”. (See Figure B-1 in Appendix B for an example.) For AND/OR
graphs, this can only happen when a single red edge reverses into an AND vertex, and
the other red edge is directed away. In DCL figures, edges that have just reversed are
highlighted; they are a relevant part of the state.

This seems to be the most natural form of Constraint Logic that is unbounded
and deterministic. It has the additional nice property that it is reversible. That is, if
we start computing with Gi−1 and Ri, instead of G0 and R0, we eventually get back
to G0. I omit the proof, but it is easy to verify by considering the small number of
possible cases at a vertex. Each vertex may be considered independently here, since
whether an edge reverses is a property only of the vertex it is directed towards.

The proof I present that DCL is PSPACE-complete, which is a reduction from
Quantified Boolean Formulas, is not intended as a suggestion for how to actually
perform computations with such circuits, were they to be physically realized. This is
because that reduction entails an exponential slowdown from the computation per-
formed on the corresponding space-bounded Turing machine. Instead, I later show
how a practical reversible computer could be built using either dual-rail logic or Fred-
kin gates made with DCL components. Those constructions require the addition of
a few (non-reversible, entropy-generating) elements that do not strictly fit within the
DCL model, however, so they are not sufficient for showing PSPACE-completeness.

DETERMINISTIC CONSTRAINT LOGIC (DCL)
INSTANCE: AND/OR constraint graph G0; edge set R0; edge e in G0.
QUESTION: Is there an i such that e is reversed in Gi?
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Figure 4-1: Schematic of reduction from QBF.

4.2.1 PSPACE-completeness

I show that DCL is PSPACE-complete via a reduction from Quantified Boolean For-
mulas (QBF; see Section A.5.3). Given an instance of QBF (a quantified Boolean
formula F in CNF), we construct a corresponding constraint graph G such that it-
eration of the above deterministic rule will eventually reverse a target edge e if and
only if F is true. The reduction is shown schematically in Figure 4-1.

This reduction is rather elaborate, even though many details are relegated to Ap-
pendix B. While this chapter is logically the first to deal with specific forms of Con-
straint Logic, the corresponding reduction in Chapter 5 is similar but more straight-
forward, and I recommend that the reader skip this reduction until after reading that
one.

Reduction. One way to determine the truth of a quantified Boolean formula is as
follows: Consider the initial quantifier in the formula. Assign its variable first to false
and then to true, and for each assignment, recursively ask whether the remaining
formula is true under that assignment. For an existential quantifier, return true
if either assignment succeeds; for a universal quantifier, return true only if both
assignments succeed. For the base case, all variables are assigned, and we only need
to test whether the CNF formula is true under the current assignment.

The constructed constraint graph G operates in a similar fashion. Initially, the
try in edge reverses into the left quantifier gadget, activating it. When a quantifier
gadget is activated, it tries both possible truth values for the corresponding variable.
For each, it send the appropriate truth value into the CNF logic circuitry. The CNF
circuitry then sends a signal back to the quantifier gadget, having stored the value.
The quantifier then activates the next quantifier’s try in edge.

Eventually the last quantifier will set an assignment. Then, if the formula is
satisfied by this total assignment, the last quantifier’s satisfied in edge will activate.
When a quantifier receives a satisfied in signal, if it is an existential quantifier, then
it simply passes it back to the previous quantifier: the assignment has succeeded.
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For a universal quantifier, when the first assignment succeeds, an internal memory
bit is set. When the second assignment succeeds, if the memory bit is set, then the
quantifier activates the previous quantifier’s satisfied in input.

The leftmost satisfied out edge will eventually reverse if and only if the formula is
true.

Timing. Since multiple signals can be bouncing around simultaneously in a DCL
graph, and signals must arrive “in phase” to activate an AND vertex, timing issues
are critical when designing DCL gadgets. To simplify analysis, all gadget inputs and
outputs will be assumed to occur at times 0 mod 4. By this I mean that after an
input has arrived, the first propagating edge reversal inside the gadget will be at time
1 mod 4, and the last edge reversal inside the gadget before the signal propagates out
will be at time 0 mod 4.

Graph Shorthand. It will be most convenient to present the needed gadgets as
subgraphs that are not strict AND/OR graphs. In particular, I will use red-blue ver-
tices, blue-blue vertices (both already discussed in Section 3.2), and red-red vertices.
As mentioned in Section 3.2, such degree-2 vertices are assigned an inflow constraint
of 1, instead of the 2 used for ordinary degree-3 vertices, and the vertices are drawn
smaller to reflect this. Essentially, such vertices are simply wires allowing a signal to
flow from one edge to the other; we need these delay wires to create the correct signal
phases. The following lemma shows that using these additional vertex types entails
no loss of generality.

Lemma 2 Every constraint graph G composed of AND, OR, red-blue, blue-blue, and
red-red vertices has an equivalent (with respect to the DCL deterministic rule) AND/OR
graph G′.

Proof: We convert G to G′ as follows. First, replace every edge with a sequence of
four new edges: each blue edge is replaced by a chain of four blue edges; each red
edge is replaced with a chain of four edges colored red, blue, blue, and red. However,
wherever there is a red-red vertex in G, use a blue edge at those endpoints of the
new chains, rather than red. That is, red-red becomes a chain red, blue, blue, blue,
blue, blue, blue, red. The new graph has blue-blue and red-blue vertices, but no
red-red vertices. For the blue-blue vertices, use the technique of Section 3.2: attach a
constrained loose blue edge. This edge will permanently point away from the vertex,
and thus the behavior will be identical to that at an actual blue-blue vertex. For
the red-blue vertices, again use the subgraph given in Section 3.2. Here, we must be
careful with timing. The two red edges which provide the extra inputs to the red-blue
vertices (see Figure 3-3) will “bounce” each turn, as long as the blue edge is directed
inward. However, we can easily arrange for the phase of the bounce to be such that
whenever a signal arrives on the incoming red edge, the extra edge will also point into
the vertex. This is because such reversals must always occur on a global odd time
step. �
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Figure 4-2: DCL quantifier gadgets.

Quantifier Gadgets. The existential and universal quantifier gadgets are shown
in Figure 4-2. Their properties will be stated here; the simplest proof that they
operate as described is simply a series of snapshots of states, each of which clearly
follows from the previous by application of the deterministic rule. These snapshots
are given in Appendix B. (All circuits were designed and tested with a DCL circuit
simulator.) Note that edges that might appear to be extraneous serve to synchronize
output phases, as described above. Each quantifier’s try out edge is connected via
a blue-blue vertex to the next quantifier’s try in edge (except for the last quantifier,
described later); similarly for satisfied in and satisfied out. The x and x edges likewise
connect to the CNF logic circuitry, described later.

An existential quantifier assigns its variable to be first false, and then true. If
either assignment succeeds, the quantifier activates its satisfied out edge. The simplest
switching circuit that performs this task also assigns its variable to false again one
more time, but this does not alter the result.

The gadget is activated when its try in edge reverses inward (at some time 0 mod
4). The internal red edges cause the signal to propagate to edge A three steps later.
The signal then proceeds into CNF logic circuitry, described later, and returns via
edge B. It then propagates to try out three steps later. Now, it is possible that satisfied
in will later reverse inward; if so, satisfied out then reverses three steps later. Then,
later, satisfied out may reverse inward, and satisfied in will then reverse outward three
steps later. Here the sense of input and output is being reversed—the performed
operation is being “undone”.

Regardless of whether satisfied in was activated, later try out will reverse back
inwards, continuing to unwind the computation. Then B will reverse again three steps
later, and eventually A will reverse inward. Then, the switching circuit composed of
the red edges will send the signal to C three steps later, effectively setting the variable
to be true. Then, the same sequence as before happens, except that edges C and D
are used instead of A and B. Finally, the switching circuit tries A and B again, and
then at last try in is directed back outwards. The switching operates based on stored
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internal state in the red edges; see Appendix B for details.
The universal quantifier gadget is similar, but more complicated. It uses the same

switching circuit to assign its variable first to false and then to true, and then to false
once more. However, if the false assignment succeeds—that is, if satisfied in is directed
inward when the variable is set to false—then instead of propagating the signal back
to the previous quantifier, the success is remembered by reversing some internal edges
so that edge M is set to reversing every step. Then, if satisfied in is later directed
in while M is in this state, and the variable is set to true, these conditions cause
satisfied out to direct outward. Finally, in this case setting the variable to false again
is useful; this causes M and the other internal edges to be restored to their original
state, erasing the memory of the success when setting the variable false. Then, again,
try in is directed back outward; the gadget has cleaned up and deactivated, waiting
for the next assignment of the leftward variables.

CNF Logic. We already have AND and OR vertices, so it might seem that we could
simply feed the variable outputs from the quantifiers into a network of these that
corresponds to the Boolean formula, and its output would activate only when the
formula was satisfied by that assignment. However, the variable signals would all
have to arrive simultaneously for that approach to work. Furthermore, ANDs that
had only one active input would bounce that signal back, potentially confusing the
timing in the gadget that sent the signal.

Rather than try to solve all such timing issues globally, I follow a strategy of
keeping a single path of activation, that threads its way through the entire graph.
Each gadget need merely follow the phase timing constraints described above.

I build abstract logic gates, AND′, OR′, and FANOUT′, that operate differently
from their single-vertex counterparts. These gates receive inputs, remember them,
and acknowledge receipt by sending a return signal. If appropriate, they also send an
output signal, in a similar paired fashion, prior to sending the return signal. Later,
the input signals are turned off in the reverse order they were turned on, by sending
a signal back along the original return signal line; the gadgets then complete the
deactivation by sending the signal back along the original input activation line.

This description will be made clearer by seeing some examples. As with the quan-
tifier gadgets, correct operation of the CNF gadgets is demonstrated in the snapshots
in Appendix B. These gadgets are connected together to correspond to the structure
of the CNF formula: variable outputs feed OR′ inputs; OR′ outputs feed other OR′

inputs or AND′ inputs; AND′ outputs feed other AND′ inputs, except for the final
formula output, which is combined with the final quantifier output as described later.

The AND′ gadget is shown in Figure 4-3(a). I assume that, if both inputs will
arrive and the gate will activate, input 1 will arrive first; later I justify this assumption.
Suppose a signal arrives at input 1, on edge A. Then, as in the universal quantifier
gadget, edge M will be set bouncing to remember that this input has been asserted.
If input 2 later activates, along edge C, then the same switching circuit as used in the
quantifiers will send a signal so that it will arrive in phase with M, and activate the
output on edge E. Later, when acknowledgment of this signal is received on edge F,
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Figure 4-3: DCL AND′ and OR′ gadgets.
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the return signal is propagated back to the second input via D.
Suppose, instead, that a signal arrives at C when one has not first arrived at A. By

assumption, the variable feeding into A is then false, so the AND′ should not activate.
In this case the internal switch gadget sends a signal towards E, but because M is not
in the right state it bounces back, and is then switched to the exit at D. Thus, the
gate has acknowledged the second input, without activating the output. The reverse
process occurs when D is redirected in.

The OR′ gadget, shown in Figure 4-3(b), is significantly more complicated. This is
because the gate must robustly handle the case where one input arrives and activates
the output, and later the other input arrives. The gate needs to know that it has
already been activated, and simply reply to the second activation gracefully. (Note
the highlighted edge in Figure 4-3(b); this is an edge which has just reversed, and
thus would be in the input edge set R0.)

If an input arrives on edge A, the left switch gadget directs it up to the central OR
vertex O, and then on to the output edge E. When the return signal arrives via F, the
upper switch gadget S tries first one side and then the other. The edge left bouncing
at M is in phase with this signal, which then propagates to B. The corresponding edge
N is not bouncing, so when the signal from S arrives there it bounces back. Switch S
has extra edges relative to the other switches; these create the proper signal phases.
The entire process reverses when the signal is returned through B, first turning off
the output, then returning via A. Since the gate is symmetric, a single input arriving
at C first also behaves just as described, sending its return signal along D.

Suppose an input arrives at C after one has arrived at A and left at B, that is, when
the gate is “on”. Then when the signal reaches the OR vertex O it will propagate on
towards M, and not towards E (because the path to E is already directed outward).
But M will be directed away at this point, and the signal will bounce back, finally
exiting at D with the right phase. Again, when the signal returns via D the reverse
process sends it back to C. All of these sequences are shown explicitly in Appendix B.

The FANOUT′ gadget, shown in Figure 4-4(a), is straightforward. An input arriving
on edge A is sent to outputs 1 and 2 in turn; then the return signal is sent back on
edge B. The reverse sequence inactivates the gadget.

Remaining Connections. To start the computation, we attach a free edge termi-
nator, as shown in Figure 3-4(a), to the leftmost quantifier’s try in edge, and set that
edge to reversing from G0 to G1. Similarly, we attach another free edge terminator to
the leftmost quantifier’s satisfied out edge; this is the target edge e which will reverse
just when the QBF formula is true.

Finally, we must have a way to connect the rightmost quantifier and CNF outputs
together, and feed the result into the rightmost quantifier’s satisfied in input. This is
done with the graph shown in Figure 4-4(b). The rightmost quantifier’s try out edge
connects to the try in edge here, and its satisfied in edge connects to the satisfied out
edge here. The output of the CNF formula’s final AND′ gadget connects to formula in,
and its return output edge connects to formula return.

If the formula is ever satisfied by the currently-activated variable assignment from
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Figure 4-4: Additional CNF gadgets.

all the quantifiers, then a signal will arrive at formula in and exit at formula return,
leaving edge M bouncing every step. Then, when the last quantifier activates its try
out, the signal arriving at try in will be in phase with M, propagating the signal on to
the last quantifier’s satisfied in input, where it will be processed as described above.
If the formula is not satisfied, M will still be pointing up, and the try in signal will
just bounce back into the last quantifier.

AND′ Ordering. As mentioned above, I assume that input 1 of an AND′ will always
activate, if at all, before input 2. However, in a general quantified CNF formula it
is not the case that the clauses need be satisfied in any predetermined order, if the
variables are assigned in the order quantified. To solve this problem, we modify the
circuit described above as follows. We protect input 2 of every AND′ a1 in the original
circuit with an additional AND′ a2, so that the original input 2 signal now connects
to a2’s input 1, and a2’s output connects to a1’s input 2.

Then, the rightmost quantifier’s try out edge, instead of connecting directly to the
merge gadget shown in Figure 4-4(b), first threads through every newly introduced
AND′ input 2 pathway, and then from there connects to the merge gadget. (We make
sure that the introduced pathways are the right length to satisfy the timing rule.)
Thus, as the variable values are set, when an AND′ would have its second input
arrive before the first in the original circuit, in the modified circuit the second input’s
activation is deferred until its first input has had a chance to arrive. This way, we
can ensure that the inputs arrive in the right order, by threading the path from the
final try out appropriately.

Theorem 3 DCL is PSPACE-complete.

Proof: Given a quantified Boolean formula F , we construct DCL graph G0 and edge
set R0 as described above. The individual gadgets’ correct operation is explicitly
shown in Appendix B. The leftmost quantifier’s satisfied out edge will eventually
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reverse if and only if F is true. We convert the constructed graph to an equivalent
AND/OR graph, via Lemma 2. This shows that DCL is PSPACE-hard.

DCL is also clearly in PSPACE: a simple, constant-space deterministic algorithm
executes each deterministic step of the graph, and detects when the target edge
reverses. �

4.2.2 Planar Graphs

The gadgets used above are non-planar, and additional edge crossings are necessary
within the CNF network. For purposes of reductions to actual games, and also for
physical implementation of DCL, it would be desirable to use only planar circuits.

The gadget shown in Figure 4-5 shows how to cross signals in DCL. (The gadget
must be padded with extra edges to satisfy the timing constraints.) As shown in
Appendix B, a signal arriving at edge A will exit via B, and likewise for C and D. The
sequence A to B, C to D also works, as do reverses of all these sequences. However,
one sequence which does not work as desired is the following: C to D, A to B. After
a C to D traversal, a signal arriving at A exits at C instead of B.

This limitation will not matter for our application, however; all crossings in the
above construction are of the form that one edge will always be activated first, and
the second, if activated, will deactivate before the first. This may be verified for the
crossings within the gadgets by examining the activation sequences in Appendix B.
For the other crossings, within the CNF logic, the global pattern of activation ensures
that a pathway is never deactivated until any pathways it has activated are first
deactivated.

To see that a particular crossover input always arrives first when two eventually
arrive within the CNF logic, note that there are two types of such crossings: variable
outputs crossing on their way to OR′ inputs, and extra crossings created by the AND′-
ordering pathway discussed above. (The OR′ outputs don’t need to cross on their way
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to the AND′ inputs, because in CNF this part of the network is just a tree.) In the
first case, whenever both crossover inputs are active, the one from the earlier variable
in the quantification sequence clearly must have arrived first. In the second case, the
crossover input from the AND′-ordering pathway must always arrive after the input
from the path it is crossing.

Theorem 4 DCL is PSPACE-complete, even for planar graphs.

Proof: Everywhere edges cross in the original construction, we replace that crossing
pair by a crossover gadget, suitably padded with extra edges to satisfy the timing
requirements. We can easily ensure that it takes time 1 mod 4 to traverse a crossover
in either direction; this guarantees that the gadget timing will be insensitive to the
replacement. �

4.2.3 Efficient Reversible Computation

Ordinary computers are not reversible. As a result, the information losses that are
constantly occurring in an ordinary computer result in an increase in entropy, mani-
fested as heat. This is known as Landauer’s Principle: every bit of lost information
results in a dissipation of kT ln 2 joules of energy [51] (where k is Boltzmann’s con-
stant). Thus, as computers perform more operations per second, they require more
power, and dissipate more heat. This seems obvious. However, it is theoretically
possible to build a reversible computer, in which all of the atomic steps, except for
recording desired output, are reversible [2], and dissipate arbitrarily little heat. Re-
versible computing is an active area of research (see e.g. [27]), with many engineering
challenges, and potential for dramatic increases in effective computing power over
conventional computers.

Deterministic Constraint Logic represents a new style of reversible computation,
which could potentially have practical application. It could be that the DCL de-
terministic edge-reversal rule is possible to implement effectively on a microscopic,
perhaps molecular, level; certainly, the basic mechanism of switching edges between
two states is suggestive of a simple physical system with two energy states.

As mentioned earlier, the construction showing DCL PSPACE-complete is not
useful from a practical standpoint, because it involves an exponential slowdown in
the reduction from Turing machine to QBF formula to DCL process. However, it
is possible to build conventional kinds of reversible computing elements from DCL
components. Figure 4-6(a) shows a Fredkin gate [29]. This gate has the property that
a signal arriving on edge A, B, or C will be propagated to D, E, or F, respectively, but A
and B in combination will activate D and F, and A and C in combination will activate
D and E. Effectively, it is a “controlled switch” gate. It is also possible to directly
implement a reversible dual-rail logic, as shown in Figure 4-6(b). Real computers built
from such DCL gadgets would still require some localized non-reversible components,
as would any usable reversible computer, which is why these gadgets were not the
basis for the PSPACE-completeness proof.
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Chapter 5

One-Player Games (Puzzles)

A one-player game is a puzzle: one player makes a series of moves, trying to accomplish
some goal. For example, in a sliding-block puzzle, the goal could be to get a particular
block to a particular location. I will used the terms “puzzle” and “one-player game”
interchangeably. For puzzles, the generic forced-win decision question—“does player
X have a forced win?”—becomes “is this puzzle solvable?”.

Constraint Logic. The one-player version of Constraint Logic is called Nonde-
terministic Constraint Logic (NCL). The rules are simply that on a turn the player
may reverse any edge resulting in a legal configuration, and the decision question is
whether a given edge may ever be reversed.

The unbounded version of NCL was inspired by Flake and Baum’s “Generalized
Rush Hour Logic” (GRL) [24], and in fact GRL incorporates gadgets with the same
properties as my AND and OR vertices. GRL also requires a crossover gadget, however,
which NCL does not—in the approach I take for showing PSPACE-completeness, it
is possible to cross signals using merely AND and OR vertices. GRL uses a different
notion of signal (dual-rail logic), for which this approach is not possible. The inherent
flavor of GRL is also quite different from that of NCL; at a conceptual level, GRL
requires inverters, and so is not monotone. However, formally it is the case that NCL
is merely GRL reformulated as a graph problem, without a crossover gadget, and
Flake and Baum deserve the credit for the original PSPACE-completeness proof. I
take a different, simpler approach for showing PSPACE-completeness, reducing from
QBF. Flake and Baum explicitly build a space-bounded, reversible computer.

Due to the simplicity of NCL, and the abundance of puzzles with reversible moves,
it is often straightforward to find reductions showing various puzzles PSPACE-hard.
This is the largest class of reductions presented in Part II.

Bounded NCL reverts essentially to Satisfiability (SAT), which is NP-complete.
However, the NCL crossover gadget still works, which makes reductions from Bounded
NCL to bounded puzzles much more straightforward than direct reductions from
SAT. Planar SAT is also NP-complete [52], but that result is not generally useful
for puzzle reductions. For Planar SAT, the graph corresponding to the formula is a
planar bipartite graph, with vertex nodes and clause nodes, plus a loop connecting the
vertex nodes. The clause nodes are not connected, however. In contrast, a Bounded
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NCL graph corresponding to a Boolean formula feeds all the AND outputs into one
final AND; reversing that final AND’s output edge is possible just when the formula
is satisfiable. Typically, this is a critical structure for puzzle reductions, because the
victory condition is usually a local property (such as moving a black to a particular
place) rather than a distributed property of the entire configuration. Thus, puzzle
reductions typically require the construction of a crossover gadget, even though Planar
SAT is NP-complete, and the Planarity result for NCL is thus stronger in a sense than
that for SAT.

5.1 Bounded Games

Bounded one-player games are puzzles in which there is a polynomial bound (typically
linear) on the number of moves that can be made. Usually there is some resource
that is used up. For example, in a game of Sudoku, the grid eventually fills up
with numbers, and then either the puzzle is solved or it is not. In Peg Solitaire,
each jump removes one peg, until eventually no more jumps can be made. The
nondeterminism of these games, plus the polynomial bound, means that they are in
NP—a nondeterministically guessed solution can be checked for validity in polynomial
time.

Bounded Nondeterministic Constraint Logic (Bounded NCL) is the form of Con-
straint Logic that corresponds to this type of puzzle. It is NP-complete. It is formally
defined as follows:

BOUNDED NONDETERMINISTIC CONSTRAINT LOGIC (BOUNDED
NCL)
INSTANCE: AND/OR constraint graph G, edge e in G.
QUESTION: Is there a sequence of moves on G that eventually reverses e, such that
each edge is reversed at most once?

A Bounded NCL graph abstracts the essence of a bounded puzzle; it also serves as
a concise model of polynomial-time-bounded nondeterministic computation.

5.1.1 NP-completeness

We reduce 3SAT (Section A.5.2) to Bounded NCL to show NP-hardness. Given an
instance of 3SAT (a Boolean formula F in 3CNF), we construct an AND/OR constraint
graph G with an edge e that can be eventually reversed just when F is satisfiable.

First we construct a general constraint graph G′ corresponding to F , then we
apply the conversion techniques described in Chapter 3 to transform G′ into a strict
AND/OR graph G. Constructing G′ is straightforward. For each variable in F we
have one CHOICE (red-red-red) vertex; for each OR in F we have an OR vertex; for
each AND in F we have an AND vertex. At each CHOICE, one output corresponds to
the negated form of the corresponding variable; the other corresponds to the negated
form. The CHOICE outputs are connected to the OR inputs, using FANOUTs (which
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Figure 5-1: A constraint graph corresponding to the formula
(w ∨ x ∨ y) ∧ (w ∨ x ∨ z) ∧ (x ∨ y ∨ z). Edges corresponding to
literals, clauses, and the entire formula are labeled.

are the same as AND vertices) as needed. The outputs of the ORs are connected to
the inputs of the ANDs. Finally, there will be one AND whose output corresponds to
the truth of F . A sample graph representing a formula is shown in Figure 5-1.

Theorem 5 Bounded NCL is NP-complete.

Proof: Given an instance of 3SAT (a Boolean formula F in 3CNF), we construct
graph G′ as described above.

It is clear that if F is satisfiable, the CHOICE vertex edges may be reversed in
correspondence with a satisfying assignment, such that the output edge may even-
tually be reversed. Similarly, if the output edge may be reversed, then a satisfying
assignment may be read directly off the CHOICE vertex outputs.

Using the techniques described in Section 3.2, we can replace the CHOICE ver-
tices, the terminal edges, and the red-blue vertices in G′ with equivalent AND/OR
constructions, so that we have an AND/OR graph G that can be solved just when F
is satisfiable. Therefore, Bounded NCL is NP-hard.
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(a) Unusual vertex (b) AND (c) FANOUT (d) OR

Figure 5-2: Distinct types of AND/OR vertex used in the Bounded NCL reduction.

(a) CHOICE (b) AND (c) FANOUT (d) OR

Figure 5-3: An equivalent set of vertices, better suited for reductions.

Bounded NCL is also clearly in NP. Since each edge can reverse at most once,
there can only be polynomially many moves in any valid solution; therefore, we can
guess a solution and verify it in polynomial time. �

5.1.2 Planar Graphs

For reductions to actual games, it is desirable to start from planar constraint graphs,
instead of having to build a complicated crossover gadget for each new application.
As mentioned above, the result that planar SAT is NP-complete is not useful to us
for either constraint graphs or actual games. But it is possible to build a crossover
gadget within NCL.

Theorem 6 Bounded NCL is NP-complete, even for planar graphs.

Proof: The crossover gadget is shown in Figure 5-8(a) (page 48). Rather than give
an explicit proof of correctness here and then a more general proof for the unbounded
case, we merely point out that the proof for the unbounded case, of Lemma 13, also
applies to the bounded case; in the described sequences, no edge need ever reverse
more than once. �

5.1.3 An Alternate Vertex Set

For reductions from (unbounded) NCL to actual puzzles, we only need consider two
vertex types, AND and OR. However, for bounded NCL, there is effectively a symmetry
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breaking. As mentioned, AND is effectively no longer the same type of vertex as
FANOUT, even though it has the same constraints, because once either type of vertex
has been used it cannot then be reversed for the other type of behavior. Effectively,
there are now four types of vertex we must emulate for puzzle reductions, shown in
Figure 5-2. In addition to AND, OR, and FANOUT, there is the unusual vertex in
Figure 5-2(a). This has the property that initially, edge B may reverse, but if instead
A reverses and then C reverses, A may no longer reverse. This set of constraints is
not particularly natural, and an alternative vertex will do just as well, namely, the
CHOICE vertex actually used in the reduction from 3SAT. The vertex in Figure 5-2(a)
is only used inside the CHOICE conversion from Section 3.2, and inside the crossover
construction in Figure 5-8(a). Figure 5-8(a) may be easily redrawn to use CHOICE
vertices instead. Therefore, the set of vertices shown in Figure 5-3 is sufficient for
reductions.

It will also turn out to be useful to reduce from graphs that have the property that
only a single edge can initially reverse. For this, we will have to explicitly add loose
edges and red-blue vertices to the gadget set to reduce from. Then, we simply take a
single loose edge, and split it enough times to reach all the free CHOICE inputs in the
reduction. Red-blue vertices generally add nothing to the difficulty of a reduction,
because typically the difference between red and blue edges is manifested in reductions
only inasmuch as AND and OR are different.

Theorem 7 Theorem 6 remains true when the input graph uses the vertex types in
Figure 5-3, as well as red-blue vertices, and a single loose edge, rather than a complete
set of directional AND/OR vertices.

Proof: As above. �

5.2 Unbounded Games

The material in this section is joint work with Erik Demaine [46, 47].
Unbounded one-player games are puzzles in which there is no restriction on the

number of moves that can be made. Typically the moves are reversible. For exam-
ple, in a sliding-block puzzle, the pieces may be slid around in the box indefinitely,
and a block once slid can always be immediately slid back to its previous position.
Since there is no polynomial bound on the number of moves required to solve the
puzzle, it is no longer possible to verify a proposed solution in polynomial time – the
solution could have exponentially many moves. Indeed, unbounded puzzles are often
PSPACE-complete. It is clear that such puzzles can be solved in nondeterministic
polynomial space (NPSPACE), by nondeterministically guessing a satisfying sequence
of moves; the only state required is the current configuration and the current move.
But Savitch’s Theorem [71] says that PSPACE = NPSPACE, so these puzzles can
also be solved using deterministic polynomial space.

Nondeterministic Constraint Logic (NCL) is the form of Constraint Logic that
corresponds to this type of puzzle. It is PSPACE-complete. It is formally defined as
follows:
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satisfied in

try out

satisfied out

try in

CNF logic

Figure 5-4: Schematic of the reduction from Quantified Boolean Formulas to NCL.

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)
INSTANCE: AND/OR constraint graph G, edge e in G.
QUESTION: Is there a sequence of moves on G that eventually reverses e?

5.2.1 PSPACE-completeness

I show that NCL is PSPACE-hard by giving a reduction from Quantified Boolean
Formulas (QBF). A simple argument then shows that configuration-to-edge is in
PSPACE, and therefore PSPACE-complete. The PSPACE-completeness of the other
two decision problems also follows simply.

Reduction. First I give an overview of the reduction and the necessary gadgets;
then I analyze the gadgets’ properties. The reduction is illustrated schematically
in Figure 5-4. We translate a given quantified Boolean formula F into an AND/OR
constraint graph, so that a particular edge in the graph may be reversed if and only
if F is true. The reduction is similar to the one for Deterministic Constraint Logic,
in Chapter 4, but a bit simpler. Note that the constructed graph uses some red-blue
vertices and some free edges, which can be converted to explicit AND/OR form using
the techniques of Section 3.2.

One way to determine the truth of a quantified Boolean formula is as follows:
Consider the initial quantifier in the formula. Assign its variable first to false and
then to true, and for each assignment, recursively ask whether the remaining formula
is true under that assignment. For an existential quantifier, return true if either
assignment succeeds; for a universal quantifier, return true only if both assignments
succeed. For the base case, all variables are assigned, and we only need to test whether
the CNF formula is true under the current assignment.

This is essentially the approach used in the reduction. I define quantifier gadgets,
which are connected together into a string, one per quantifier in the formula, as in
Figure 5-5(a). The rightmost edges of one quantifier are identified with the leftmost
edges of the next. (This is different from the corresponding reduction in Chapter 4,
where the edges are distinct and join at a blue-blue vertex.) Each quantifier gadget
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satisfied in

x out

satisfied out

x out

try out

satisfied in

try in

satisfied out

(a) Quantifier gadget connections

(b) Part of a CNF formula graph

Figure 5-5: QBF wiring.

outputs a pair of edges corresponding to a variable assignment. These edges feed
into the CNF network, which corresponds to the unquantified formula. The output
from the CNF network connects to the rightmost quantifier gadget; the output of the
overall graph is the satisfied out edge from the leftmost quantifier gadget.

Quantifier Gadgets. When a quantifier gadget is activated, all quantifier gadgets
to its left have fixed particular variable assignments, and only this quantifier gadget
and those to the right are free to change their variable assignments. The activated
quantifier gadget can declare itself satisfied if and only if the Boolean formula read
from here to the right is true given the variable assignments on the left.

A quantifier gadget is activated by directing its try in edge inward. Its try out edge
is enabled to be directed outward only if try in is directed inward, and its variable
state is locked. A quantifier gadget may nondeterministically “choose” a variable
assignment, and recursively “try” the rest of the formula under that assignment and
those that are locked by quantifiers to its left. The variable assignment is represented
by two output edges (x and x), only one of which may be directed outward. For
satisfied out to be directed outward, indicating that the formula from this quantifier
on is currently satisfied, satisfied in must be directed inward.

I construct both existential and universal quantifier gadgets, described below,
satisfying the above requirements.

Lemma 8 A quantifier gadget’s satisfied in edge may not be directed inward unless
its try out edge is directed outward.

Proof: By induction. The condition is explicitly satisfied in the construction for the
rightmost quantifier gadget, and each quantifier gadget requires try in to be directed
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Figure 5-6: Latch gadget, transitioning from state A to state B.

inward before try out is directed outward, and requires satisfied in to be directed
inward before satisfied out is directed outward. �

CNF Formula. In order to evaluate the formula for a particular variable assign-
ment, we construct an AND/OR subgraph corresponding to the unquantified part of
the formula, fed inputs from the variable gadgets, and feeding into the satisfied in edge
of the rightmost quantifier gadget, as in Figure 5-4. The satisfied in edge of the right-
most quantifier gadget is further protected by an AND vertex, so it may be directed
inward only if try out is directed outward and the formula is currently satisfied.

Because the formula is in conjunctive normal form, and we have edges representing
both literal forms of each variable (true and false), we don’t need an inverter for this
construction. Part of such a graph is shown in Figure 5-5(b). (Also see Figure 5-1.)

Lemma 9 The satisfied out edge of a CNF subgraph may be directed outward if and
only if its corresponding formula is satisfied by the variable assignments on its input
edge orientations.

Proof: Definition of AND and OR vertices, and the CNF construction described. �

Latch Gadget. Internally, the quantifier gadgets use latch gadgets, shown in Fig-
ure 5-6. This subgraph effectively stores a bit of information, whose state can be
locked or unlocked. With edge L directed left, one of the other two OR edges must be
directed inward, preventing its output red edge from pointing out. The orientation
of edge C is fixed in this state. When L is directed inward, the other OR edges may
be directed outward, and the red edges are free to reverse. Then when the latch is
locked again, by directing L left, the state has been switched.

Existential Quantifier. An existential quantifier gadget (Figure 5-7(a)) uses a
latch subgraph to represent its variable, and beyond this latch has the minimum
structure needed to meet the definition of a quantifier gadget. If the formula is true
under some assignment of an existentially quantified variable, then its quantifier gad-
get may lock the latch in the corresponding state, enabling try out to activate, and
recursively receive the satisfied in signal. Receiving the satisfied in signal simultane-
ously passes on the satisfied out signal to the quantifier on the left.

Here we exploit the nondeterminism in the model to choose the correct variable
assignment.
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Figure 5-7: Quantifier gadgets.

Universal Quantifier. A universal quantifier gadget is more complicated (Fig-
ure 5-7(b)). It may only direct satisfied out leftward if the formula is true under both
variable assignments. Again we use a latch for the variable state; this time we split
the variable outputs, so they can be used internally. In addition, we use a latch inter-
nally, as a memory bit to record that one variable assignment has been successfully
tried. With this bit set, if the other assignment is then successfully tried, satisfied out
is allowed to point out.

Lemma 10 A universal quantifier gadget may direct its satisfied out edge outward if
and only if at one time its satisfied in edge is directed inward while its variable state is
locked in the false (x) assignment, and at a later time the satisfied in edge is directed
inward while its variable state is locked in the true (x) assignment, with try in directed
inward throughout.

Proof: First I argue that, with try in directed outward, edge E must point right. The
try out edge must be directed inward in this case, so by Lemma 8, satisfied in must
be directed outward. As a consequence, F and thus L must point right. On the other
hand, C must point up and thus D must point left. Therefore, E is forced to point
right in order to satisfy its OR vertex.

Suppose that try in is directed inward, the variable is locked in the false state
(edge A points right), and satisfied in is directed inward. These conditions allow the
internal latch to be unlocked, by directing edge L left. With the latch unlocked, edge
E is free to point left. The latch may then lock again, leaving E pointing left (because
C may now point down, allowing D to point right). Now, the entire edge reversal
sequence that occurred between directing try out outward and unlocking the internal
latch may be reversed. After try out has deactivated, the variable may be unlocked,
and change state. Then, suppose that satisfied in activates with the variable locked
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in the true state (edge B points right). This condition, along with edge E pointing
left, is both necessary and sufficient to direct satisfied out outward. �

The behavior of both types of quantifiers is captured with the following property:

Lemma 11 A quantifier gadget may direct its satisfied out edge out if and only if its
try in edge is directed in, and the formula read from the corresponding quantifier to
the right is true given the variable assignments that are fixed by the quantifier gadgets
to the left.

Proof: By induction. By Lemmas 8 and 10, if a quantifier gadget’s satisfied in edge is
directed inward and the above condition is inductively assumed, then its satisfied out
edge may be directed outward only if the condition is true for this quantifier gadget
as well. For the rightmost quantifier gadget, the precondition is explicitly satisfied
by Lemma 9 and the construction in Figure 5-4. �

Theorem 12 NCL is PSPACE-complete.

Proof: The graph is easily seen to have a legal configuration with the quantifier try
in edges all directed leftward; this is the input graph G. The leftmost quantifier’s try
in edge may freely be directed rightward to activate the quantifier. By Lemma 11,
the satisfied out edge of the leftmost quantifier gadget may be directed leftward if and
only if F is true. Therefore, deciding whether that edge may reverse also decides the
QBF problem, so NCL is PSPACE-hard.

NCL is in PSPACE because the state of the constraint graph can be described in
a linear number of bits, specifying the direction of each edge, and the list of possible
moves from any state can be computed in polynomial time. Thus we can nonde-
terministically traverse the state space, at each step nondeterministically choosing
a move to make, and maintaining the current state but not the previously visited
states. Savitch’s Theorem [71] says that this NPSPACE algorithm can be converted
into a PSPACE algorithm. �

5.2.2 Planar Graphs

The result obtained in the previous section used particular constraint graphs, which
turn out to be nonplanar. Thus, reductions from NCL to other problems must provide
a way to encode arbitrary graph connections into their particular structure. For 2D
motion-planning kinds of problems, such a reduction would typically require some
kind of crossover gadget. Crossover gadgets are a common requirement in complexity
results for these kinds of problems, and can be among the most difficult gadgets to
design. For example, the crossover gadget used in the proof that Sokoban is PSPACE-
complete [13] is quite intricate. A crossover gadget is also among those used in the
Rush Hour proof [24].

In this section I show that any AND/OR constraint graph can be translated into an
equivalent planar AND/OR constraint graph, obviating the need for crossover gadgets
in reductions from NCL.
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Figure 5-8: Planar crossover gadgets.

Figure 5-8(a) illustrates the reduction. In addition to AND and OR vertices, this
subgraph contains red-red-red-red vertices; these need any two edges to be directed
inward to satisfy the inflow constraint of 2. (Next I will show how to substitute
AND/OR subgraphs for these vertices.)

Lemma 13 In a crossover subgraph, each of the edges A and B may face outward if
and only if the other faces inward, and each of the edges C and D may face outward
if and only if the other faces inward.

Proof: I show that edge B can face down if and only if A does, and D can face right
if and only if C does. Then by symmetry, the reverse relationships also hold.

Suppose A faces up, and assume without loss of generality that E faces left. Then
so do F, G, and H. Because H and F face left, I faces up. Because G and I face up, K
faces right, so B must face up. Next, suppose D faces right, and assume without loss
of generality that I faces down. Then J and F must face right, and therefore so must
E. An identical argument shows that if E faces right, then so does C.

Suppose A faces down. Then H may face right, I may face down, and K may
face left (because E and D may not face away from each other). Symmetrically, M
may face right; therefore B may face down. Next, suppose D faces left, and assume
without loss of generality that B faces up. Then J and L may face left, and K may
face right. Therefore G and I may face up. Because I and J may face up, F may face
left; therefore, E may face left. An identical argument shows that C may also face
left. �

Next, I show how to represent the degree-4 vertices in Figure 5-8(a) with equivalent
AND/OR subgraphs. The necessary subgraph is shown in Figure 5-8(b). This is the
same subgraph as Deterministic Constraint Logic crossover gadget (Figure 4-5), but
the different rules mean that a more complex crossover is necessary for NCL. Note that
red-blue vertices are necessary when substituting this subgraph into the previous one;
the terminal edges in Figure 5-8(b) are blue, but it replaces red-red-red-red vertices.
We must be careful to keep the graph planar when performing the red-blue reduction
shown in Figure 3-3. But this is easy; we pair up edges A and D, and edges B and C.
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Lemma 14 In a half-crossover gadget, at least two of the edges A, B, C, and D must
face inward; any two may face outward.

Proof: Suppose that three edges face outward. Without loss of generality, assume
that they include A and C. Then E and F must face left. This forces H to face left
and I and J to face up; then D must face left and K must face right. But then B must
face up, contradicting the assumption.

Next we must show that any two edges may face outward. We already showed
how to face A and C outward. A and B may face outward if C and D face inward:
we may face G and L down, F and K right, I and J up, and H and E left, satisfying
all vertex constraints. Also, C and D may face outward if A and B face inward; the
obvious orientations satisfy all the constraints. By symmetry, all of the other cases
are also possible. �

The crossover subgraph has blue free edges; what if we need to cross red edges,
or a red and a blue edge? For crossing red edges, we may attach red-blue conversion
subgraphs to the crossover subgraph in two pairs, as we did for the half-crossover.
We may avoid having to cross a red edge and a blue edge, as follows: replace one of
the blue edges with a blue-red-blue edge sequence, using a dual red-blue conversion
subgraph. Then the original blue edge may be effectively crossed by crossing two red
edges instead.

Theorem 15 NCL is PSPACE-complete, even for planar graphs.

Proof: Lemmas 13 and 14. Any crossing edge pairs may be replaced by the above
constructions; a crossing edge may be reversed if and only if a corresponding crossover
edge (e.g., A or C) may be reversed. We must also specify configurations in the
replacement graph corresponding to source configurations, but this is easy: pick any
legal configuration of the crossover subgraphs with matching crossover edges. �

5.2.3 Protected OR Graphs

So far I have shown that NCL is PSPACE-complete for planar AND/OR constraint
graphs. It is useful to make the conditions required for PSPACE-completeness still
weaker; this will make the puzzle reductions in Chapter 9 simpler.

I call an OR vertex protected if there are two of its edges that, due to global
constraints, cannot simultaneously be directed inward. Intuitively, graphs with only
protected ORs are easier to reduce to another problem domain, since the corresponding
OR gadgets need not function correctly in all the cases that a true OR must. We can
simulate an OR vertex with a subgraph all of whose OR vertices are protected, as
shown in Figure 5-9.

Lemma 16 Edges A, B, and C in Figure 5-9 satisfy the same constraints as an OR
vertex; all ORs in this subgraph are protected.
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Figure 5-9: OR vertex made with protected OR vertices.

Proof: Suppose that edges A and B are directed outward. Then D and F must be
directed away from E. Assume without loss of generality that E points left. Then so
must G; this forces H right and C down, as required. Then, by pointing A, D, and E
right, we can direct G right, H left, and C up. Symmetrically, we can direct A and C
out, and B in.

The two OR vertices shown in the subgraph are protected: edges I and D cannot
both be directed inward, due to the red edge they both touch; similarly, G and F
cannot both be directed inward. The red-blue conversion subgraph (Figure 3-3) we
need for the two red-blue vertices also contains an OR vertex, but this is also protected.

�

Theorem 17 Theorem 15 remains valid even when all of the OR vertices in the input
graph are protected.

Proof: Lemma 16. Any OR vertex may be replaced by the above construction; an
OR edge may be reversed if and only if a corresponding subgraph edge (A, B, or
C) may be reversed. We must also specify configurations in the replacement graph
corresponding to source configurations: pick any legal configuration of the subgraphs
with matching edges. �

5.2.4 Configuration-to-Configuration Problem

Occasionally it will be desirable to reduce NCL to a problem in which the goal is to
achieve some particular total state, rather than an isolated partial state. For example,
in many sliding-block puzzles the goal is to move a particular piece to a particular
place, but in others it is to reach some given complete configuration. One version of
such a problem is the Warehouseman’s Problem (Section 9.3).

For such problems, I show that an additional variant of NCL is hard.

Theorem 18 Theorem 17 remains valid when the decision question is whether there
is a sequence of moves on G that reaches a new state G′, rather than reverses an edge
e.
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Proof: Instead of terminating satisfied out in Figure 5-4 with a free-edge terminator,
instead attach a latch gadget (Figure 5-6), with free-edge terminators on its loose red
edges. Then, it’s possible to reach the initial state modified so that only the latch
state is reversed just when it’s possible to reverse satisfied out: first reverse satisfied
out (by solving the QBF problem), unlocking the latch; then reverse the latch state;
then undo all the moves that reversed satisfied out. �
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Chapter 6

Two-Player Games

With two-player games, we are finally in territory familiar to classical game theory
and Combinatorial Game Theory. Two-player, perfect-information games are also
the richest source of existing hardness results for games. In a two-player game, play-
ers alternate making moves, each trying to achieve some particular objective. The
standard decision question is “does player X have a forced win from this position?”.

The earliest hardness results for two-player games were PSPACE-completeness
results for bounded games, beginning with Generalized Hex [22], and continuing with
several two-player versions of known NP-complete problems [72]. Later, when the
notion of alternating computation was developed [8], there were tools to show un-
bounded two-player games EXPTIME-complete. Chess [26], Go [68], and Checkers
[70] then fell in quick succession to these techniques.

The connection between two-player games and computation is quite manifest. Just
as adding the concept of nondeterminism to deterministic computation creates a new
useful model of computation, adding an extra degree of nondeterminism leads to the
concept of alternating nondeterminism, or alternation, [8] discussed in Appendix A.
Indeed, up to this point it is clear that adding an extra degree of nondeterminism is
like adding an extra player in a game, and seems to raise the computational complexity
of the game, or the computational power of the model of computation. Unfortunately
this process does not generalize in the obvious way: simply adding extra players
beyond two does not alter the situation in any fundamental way, from a computational
complexity standpoint. In later chapters we will find other ways to add computational
power to games.

Alternation raises the complexity of bounded games from the one-player com-
plexity of NP-complete to PSPACE-complete, and of unbounded games from the
one-player complexity of PSPACE-complete to EXPTIME-complete [81]. Since it
is not known whether P = NP or even PSPACE, with two-player games we finally
reach games that are provably intractable: P 6= EXPTIME [40]. In each case there
is a natural game played on a Boolean formula which is complete for the appropriate
class. For bounded games the game is equivalent to the Quantified Boolean Formulas
problem: the “existential” and “universal” players take turns choosing assignments
of successive variables. The unbounded games are similar, except that variable as-
signments can be changed back and forth multiple times.
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Constraint Logic. The two-player version of Constraint Logic, Two-Player Con-
straint Logic (2CL), is defined as might be expected. To create different moves for the
two players, Black and White, we label each constraint graph edge as either Black or
White. (This is independent of the red/blue coloration, which is simply a shorthand
for edge weight.) Black (White) is allowed to reverse only Black (White) edges on his
move. Each player has a target edge he is trying to reverse.

6.1 Bounded Games

Bounded two-player games are games in which there is a polynomial bound (typically
linear) on the number of moves that can be made. As with bounded puzzles, usually
there is some resource that is used up. In Hex, for example, each move fills a space
on the board, and when all the spaces are full, the game must be over. Similarly, in
Amazons, on each move an amazon must remove one of the spaces from the board.
In Konane, each move removes at least one stone. Et cetera. When the resource is
exhausted, the game cannot continue.

Deciding such games can be no harder than PSPACE, because a Turing machine
using space polynomial in the board size can perform a depth-first search of the
entire game tree, determining the winner. In general these games are also PSPACE-
hard. The canonical PSPACE-complete game is simply Quantified Boolean Formulas
(QBF). The question “does there exist an x, such that for all y, there exists a z, such
that . . . formula F is true” is equivalent to the question of whether the first player
can win the following formula game: “Players take turn assigning truth values to a
sequence of variables. When they are finished, player one wins if formula F is true;
otherwise, player two wins.”

Bounded Two-Player Constraint Logic is the natural form of Constraint Logic
that corresponds to this type of game. It is formally defined as follows:

BOUNDED TWO-PLAYER CONSTRAINT LOGIC (BOUNDED 2CL)
INSTANCE: AND/OR constraint graph G, partition of the edges of G into sets B and
W , and edges eB ∈ B, eW ∈ W .
QUESTION: Does White have a forced win in the following game? Players White
and Black alternately make moves on G, or pass. White (Black) may only reverse
edges in W (B). Each edge may be reversed at most once. White (Black) wins (and
the game ends) if he ever reverses eW (eB).

One remark about this definition is in order. In Combinatorial Game Theory, it is
normal to define the loser as the first player unable to move. Games are thus about
maximizing one’s number of available moves. This definition would work perfectly
well for 2CL, rather than using target edges to determine the winner; the hardness
reduction would not be substantially altered, and the definition would seem to be a
bit more concise. However, the definition above is more consistent with the other
varieties of Constraint Logic. Always, the goal is to reverse a given edge.
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6.1.1 PSPACE-completeness

Schaefer [72] showed that many variants of the basic QBF problem are also PSPACE-
complete. It will be most convenient to reduce one of these variants to Bounded 2CL
to show PSPACE-hardness, rather than reducing directly from the standard form of
QBF:

Gpos(POS CNF)
INSTANCE: Monotone CNF formula A (that is, a CNF formula in which there are
no negated variables).
QUESTION: Does Player I have a forced win in the following game? Players I and
II alternate choosing some variable of A which has not yet been chosen. The game
ends after all variables of A have been chosen. Player I wins in and only if A is true
when all variables chosen by Player I are set to true and all variables chosen by II are
set to false.

The reduction from Gpos(POS CNF) to Bounded 2CL is similar to the reduction
from SAT to Bounded NCL in Section 5.1. There, the single player is allowed to
choose a variable assignment via a set of CHOICE vertices. All we need do to adapt
this reduction is replace the CHOICE vertices with variable vertices, such that if White
plays first in a variable vertex the variable is true, and if Black plays first the variable
is false. Then, we attach White’s variable vertex outputs to the CNF formula inputs
as before; Black’s variable outputs are unused. The CNF formula consists entirely
of White edges. Black is given enough extra edges to ensure that he will not run
out of moves before White. White’s target edge is the formula output, and Black’s
is an arbitrary edge that is arranged to never be reversible. A sample game graph
corresponding to a formula game is shown in Figure 6-1; compare to Figure 5-1. (The
extra Black edges are not shown.) Note that the edges are shown filled with the color
that controls them.

The game breaks down into two phases. In the first phase, players alternate
playing in variable vertices, until all have been played in. Then, White will win if he
has chosen a set of variables satisfying the formula. Since the formula is monotone,
it is exactly the variables assigned to be true, that is, the ones White chose, that
determine whether the formula is satisfied. Black’s play is irrelevant after this.

Theorem 19 Bounded 2CL is PSPACE-complete.

Proof: Reduction from Gpos(POS CNF), as described above. If Player I can win
the formula game, then White can win the corresponding Bounded 2CL game, by
playing the formula game on the edges, and then reversing the necessary remaining
edges to reach the target edge. If Player I can’t win the formula game, then White
can’t play so as to make a set of variables true which will satisfy the formula, and
thus he can’t reverse the target edge. Neither player can benefit from playing outside
the variable vertices until all variables have been selected, because this can only allow
the opponent to select an extra variable.
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x y zw

(w ∨ x ∨ y)

(w ∨ x ∨ y) ∧ (w ∨ z) ∧ (x ∨ z)

(w ∨ z)

(x ∨ z)

White win

Black win

Figure 6-1: A constraint graph corresponding to the Gpos(POS CNF) formula game
(w ∨ x ∨ y) ∧ (w ∨ z) ∧ (x ∨ z). Edges corresponding to variables, clauses, and the
entire formula are labeled.
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(a) CHOICE (b) AND (c) FANOUT (d) OR (e) Variable

Figure 6-2: A sufficient set of vertex types for reductions from Bounded 2CL.

The construction shown in Figure 6-1 is not an AND/OR graph; we must still
convert it to an equivalent one. The standard conversion techniques from Section 3.2
work here to handle the red-blue vertices, blue-blue vertices, and free edges. The
color of the newly-introduced edges is irrelevant.

This shows that Bounded 2CL is PSPACE-hard. It is also clearly in PSPACE:
since the game can only last as many moves as there are edges, a simple depth-first
traversal of the game tree suffices to determine the winner from any position. �

6.1.2 Planar Graphs

As was the case with one-player games, strengthening Theorem 19 to apply to planar
graphs will make reductions from Bounded 2CL to actual games much more conve-
nient. Indeed, the above reduction is almost trivial, and the true benefit of using
Bounded 2CL for game reductions, rather than simply using one of the many QBF
variants, is that when reducing from planar Bounded 2CL one does not have to build a
crossover gadget. The bounded two-player games addressed in Part II have relatively
straightforward reductions for this reason. The complexity of Amazons remained
open for several years, despite some effort by the game complexity community.

Theorem 20 Bounded 2CL is PSPACE-complete, even for planar graphs.

Proof: The crossover gadget presented in Section 5.2.2 is again sufficient. Note that
no Black edges ever cross; therefore, all crossovers are monochrome, and essentially
one-player crossovers. Thus, Theorem 15 is directly applicable. �

6.1.3 An Alternate Vertex Set

As was the case for Bounded Nondeterministic Constraint Logic, allowing each edge
to reverse only once breaks the symmetry of the AND vertex, and there are effectively
three types of AND vertex that must be implemented when reducing from Bounded
NCL to a target game. Additionally, there are several more possible kinds of vertex
to consider, when differing color possibilities are taken into account. Again, it is more
convenient to use a slightly different, smaller vertex set than all of the possibilities
allowed in two-color, bounded AND/OR graphs. In addition to the vertex types used
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in Section 5.1.3, we only need one vertex allowing player interaction, the variable
vertex used in Section 6.1.1.

These are the vertex types I will use to reduce to bounded two-player games in
Chapter 10.

Theorem 21 Theorem 20 remains true when the input graph uses the vertex types
in Figure 6-2, rather than a complete set of directional AND/OR vertices.

Proof: Apart from variable vertices, the reduction in Section 6.1.1 uses the same
types of vertex as that in Section 5.1.1. �

6.2 Unbounded Games

Unbounded two-player games are games in which there is no restriction on the number
of moves that can be made. Typically (but not always) the moves are reversible.
Examples include the classic games Chess, Checkers, and Go. Some moves in each of
these games are not reversible: pawn movement, castling, capturing, and promoting,
in Chess; normal piece movement, capturing, and kinging in Checkers; and, actually,
every move in Go. Go is an interesting case, because at first sight it appears to be
a bounded game: every move places a stone, and when the board is full the game
is over. However, capturing removes stones from the board, and reopens the spaces
they occupied. Each of these games is EXPTIME-complete [26, 70, 68].1

Indeed, there are “proofs” that Go is PSPACE-complete, including one by Pa-
padimitriou [59, pages 462–469]. Papadimitriou does not make the mistake of think-
ing Go is a bounded game, however; instead, he considers a modified version which
is bounded. In fact, Go’s peculiarities, combined with the extreme simplicity of the
rules, make it worthy of extra study from a complexity standpoint.

The removal of a polynomial bound on the length of the game means that it is
no longer possible to perform a complete search of the game tree using polynomial
space, so the PSPACE upper bound no longer applies. In general, two-player games
of perfect information are EXPTIME-complete [81].

Two-Player Constraint Logic (2CL) is the form of Constraint Logic that corre-
sponds to this type of game. It is formally defined as follows:

TWO-PLAYER CONSTRAINT LOGIC (2CL)
INSTANCE: AND/OR constraint graph G, partition of the edges of G into sets B and
W , and edges eB ∈ B, eW ∈ W .
QUESTION: Does White have a forced win in the following game? Players White
and Black alternately make moves on G. White (Black) may only reverse edges in W
(B). White (Black) wins if he ever reverses eW (eB).

1For Go, the result is only for Japanese rules. See Section 6.3.
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Figure 6-3: Reduction from G6 to 2CL.

6.2.1 EXPTIME-completeness

To show that 2CL is EXPTIME-hard, we reduce from one of the several Boolean
formula games shown EXPTIME-complete by Stockmeyer and Chandra [81]:

G6

INSTANCE: CNF Boolean formula F in variables X ∪ Y , (X ∪ Y ) assignment α.
QUESTION: Does Player I have a forced win in the following game? Players I and II
take turns. Player I (II) moves by changing at most one variable in X (Y ); passing
is allowed. Player I wins if F ever becomes true.

Note that there is no provision for Player II to ever win; the most he can hope to
accomplish is a draw, by preventing Player I from ever winning. But this will not
matter to us, because the relevant decision question for 2CL is simply whether White
can force a win.

Reduction. The essential elements of the reduction from G6 to 2CL are shown in
Figure 6-3. This figure shows a White variable gadget and associated circuitry; a
Black variable gadget is identical except that the edge marked variable is then black
instead of white. The left side of the gadget is omitted; it is the same as the right
side. The state of the variable depends on whether the variable edge is directed left
or right, enabling White to reverse either the false or the true edge (and thus lock the
variable edge into place).
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Figure 6-4: Path-length-equalizer gadget.

The basic idea of the reduction is the same as for Bounded 2CL: the players
should play a formula game on the variables, and then if White can win the formula
game, he can then reverse a sequence of edges leading into the formula, ending in his
target edge. In this case, however, the reduction is not so straightforward, because
the variables are not fixed once chosen; there is no natural mechanism in 2CL for
transitioning from the variable-selection phase to the formula-satisfying phase. That
is what the rest of the circuitry is for. (Also note that unlike the bounded case, the
formula need not be monotone.)

White has the option, whenever he wishes, of locking any variable in its current
state, without having to give up a turn, as follows. First, he moves on some true or
false edge. This threatens to reach an edge F in four more moves, enabling White
to reach a fast win pathway leading quickly to his target edge. Black’s only way
to prevent F from reversing is to first reverse D. But this would just enable White
to immediately reverse G, reaching the target edge even sooner. First, Black must
reverse A, then B, then C, and finally D; otherwise, White will be able to reverse one
of the blue edges leading to the fast win. This sequence takes four moves. Therefore,
Black must respond to White’s true or false move with the corresponding A move,
and then it is White’s turn again.

The lengths of the pathways slow win, slower win, and fast win are detailed below in
the proof. The pathways labeled formula feed into the formula vertices, culminating in
White’s target edge. It will be necessary to ensure that regardless of how the formula
is satisfied, it always requires exactly the same number of edge reversals beginning
with the formula input edges. The first step to achieving this is to note that the
formula may be in CNF. Thus, every clause must have one variable satisfied, so it
seems we are well on our way. However, there is a problem. Generally, a variable must
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pass through an arbitrary number of FANOUTs on its way into the clauses. This means
that if it takes x reversals from a given variable gadget to a usage of that variable in
a clause, it will take less than 2x reversals to reach two uses of the variable, and we
cannot know in advance how many variables will be re-used in different clauses. The
solution to this problem is to use a path-length-equalizer gadget, shown in Figure 6-4.
This gadget has the property that if it takes x reversals from some arbitrary starting
point before entering the gadget, then it takes x+ 6 reversals to reverse either of the
topmost output edges, or 2x+ 12 reversals to reverse both of them. By using a chain
of n such gadgets whenever a variable is used n times in the formula, we can ensure
that it always takes the same number of moves to activate any variable instance in
a clause, and thus that it always takes the same number of moves to activate the
formula output.

Theorem 22 2CL is EXPTIME-complete.

Proof: Given an instance of G6, we construct a corresponding constraint graph as
described above.

Suppose White can win the formula game. Then, also suppose White plays to
mimic the formula game, by reversing the corresponding variable edges up until re-
versing the last one that lets him win the formula game. Then Black must also play
to mimic the formula game: his only other option is to reverse one of the edges A to
D, but any of these lead to a White win.

Now, then, assume it is White’s turn, and either he has already won the formula
game, or he will win it with one more variable move. He proceeds to lock all the
variables except possibly for the one remaining he needs to change, one by one. As
described above, Black has no choice but to respond to each such move. Finally,
White changes the remaining variable, if needed. Then, on succeeding turns, he
proceeds to activate the needed pathways through the formula and on to the target
edge. With all the variables locked, Black cannot interfere. Instead, Black can try
to activate one of the slow win pathways enabled during variable locking. However,
the path lengths are arranged such that it will take Black one move longer to win on
such a pathway than it will take White to win by satisfying the formula.

Suppose instead that White cannot win the formula game. He can accomplish
nothing by playing on variables forever; eventually, he must lock one. Black must
reply to each lock. If White locks all the variables, then Black will win, because he
can follow a slow win pathway to victory, but White cannot reach his target edge at
the end of the formula, and Black’s slow win pathway is faster than White’s slower
win pathway. However, White may try to cheat by locking all the Black variables,
and then continuing to change his own variables. But in this case Black can still win,
because if White takes the time to change more than one variable after locking any
variable, Black’s slow win pathway will be faster than White’s formula activation.

Thus, White can win the 2CL game if and only if he can win the corresponding
G6 game, and 2CL is EXPTIME-hard. Also, 2CL is easily seen to be in EXPTIME:
the complete game tree has exponentially many positions, and thus can be searched
in exponential time, labeling each position as a win, loss, or draw depending on the
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labels of its children. (A draw is possible when optimal play loops.) Therefore, 2CL
is EXPTIME-complete. �

6.2.2 Planar Graphs

As before, 2CL remains EXPTIME-complete when the graph is planar. In principle,
this should enable much simpler reductions to actual games. The existing Chess,
Checkers, and Go hardness results are all quite complicated, and I had hoped to
re-derive some of them more simply using 2CL. I have not done so yet, however.
Enforcing the necessary constraints in a two-player game gadget is much more difficult
than in a one-player game.

Theorem 23 2CL is EXPTIME-complete, even for planar graphs.

Proof: The crossover gadget presented in Section 5.2.2 is again sufficient. Note that
no Black edges ever cross; therefore, all crossovers are monochrome, and essentially
one-player crossovers. Thus, Theorem 15 is directly applicable. It is possible that
introduction of crossover gadgets can change some path lengths from variables through
the formula; however, it is easy to pad all the variable pathways to correct for this,
because it takes a fixed number of reversals to traverse a crossover gadget in each
direction. �

6.3 No-Repeat Games

One interesting result deserves to be mentioned here. Robson [69] shows that if the
condition that no previous position may ever be recreated is added to two-player
games, then the general complexity rises from EXPTIME-complete to EXPSPACE-
complete. The intuition is that it requires an exponential amount of space even to
determine the legal moves from a position, because the game history leading up to a
position could be exponentially long.

In fact, some of the EXPTIME-complete formula games in [81] automatically
become EXPSPACE-complete when this modification is made, and as a result, no-
repeat versions of Chess and Checkers are EXPSPACE-complete. However, the result
does not apply to the game G6, which was used to show 2CL EXPTIME-complete;
nor does it apply to Go, which was shown EXPTIME-hard by a reduction from
G6. In fact, Go is actually played with this rule in many places; in Go it is called
the “superko” rule. The complexity of Go with superko is an interesting problem
which is still unresolved. Actually, both the lower and the upper bounds of Robson’s
EXPTIME-completeness proof [68] break when the superko rule is added. Superko
is not used in Japan; it is used in the U.S., China, and other places.

It is arguably a bit unnatural in a game for the set of legal moves to not be
determinable from the current position. Of course, if the position is defined to include
the game history then this is not a problem, but then the position grows over time,
which is also against the spirit of generalized combinatorial games.
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There is a tantalizing connection here to a kind of imperfect information, which
is also connected to the idea of an additional player. A useful perspective is that
in a two-person game, there is an “existential” player and a “universal” player. No-
repeat games are almost like two-person games with an extra, “super-universal” player
added. This player can remember, secretly, one game position. Then, if that position
is ever recreated, whoever recreated it loses. In principle, this approach seems capable
of resolving the above problems. All ordinary moves are legal, whether they are
repeating or not, but in actual play repeating moves are losing because the super-
universal player can nondeterministically guess in advance which position will be
repeated. However, this idea seems difficult to formalize usefully; in particular, it
is not clear how to formulate an appropriate decision question so that the super-
universal player doesn’t effectively team up with the universal player and against the
existential one. But this seems an interesting path for further exploration.

Notwithstanding the above concerns, a no-repeat version of two-player Constraint
Logic ought to be EXPSPACE-complete. A reduction from game G3 from [81], for
example, would do the trick, but I do not have one yet.

62



Chapter 7

Team Games

It turns out that adding players beyond two to a game does not increase the com-
plexity of the standard decision question, “does player X have a forced win?”. We
might as well assume that all the other players team up to beat X, in which case we
effectively have a two-player game again. If we generalize the notion of the decision
question somewhat, we do obtain new kinds of games. In a team game, there are
still two “sides”, but each side can have multiple players, and the decision question
is whether team X has a forced win. A team wins if any of its players wins.

Team games with perfect information are still just two-player games in disguise,
however, because again all the players on a team can cooperate and play as if they
were a single player. However, when there is not perfect information, then team
games turn out to be different from two-player games.1 We could think of a team in
this case as a player with a peculiar kind of mental limitation—on alternate turns he
forgets some aspects of his situation, and remembers others.

Therefore, we will only consider team games of imperfect information in this chap-
ter, and I will sometimes simply refer to them simply as “team games”. Such games,
as with two-player imperfect-information games, were first studied from a complexity
standpoint by Peterson and Reif [61]. The general result is that bounded team games
are NEXPTIME-complete, and unbounded games are undecidable. However, there
are several technical problems with the original undecidability result; in fact, the
game claimed undecidable, called TEAM-PEEK, is trivially decidable in at least one
instance implicitly claimed undecidable. I show how to fix the problems, confirming
that indeed team games of imperfect information are undecidable.

The fact that there are undecidable games using bounded space—when actually
played, finite physical resources—at first seems counterintuitive and bizarre. There
are only finitely many configurations in such a game. Eventually, the position must

1Adding imperfect information to a two-player, unbounded game does create a new kind of
game, intermediate in complexity between two-player perfect-information games and team games
with imperfect information [64]; such games can be 2EXPTIME-complete (complete in doubly-
exponential time) to decide. There was not time to develop the natural version of Constraint Logic
for this class of games in this thesis, but I have every expectation that it will be 2EXPTIME-
complete. [64], [61], and [60] also introduce “blindfold” and “hierarchical” games, which correspond
to yet more complexity classes.
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repeat. Yet, somehow the state of the game must effectively encode the contents of an
unboundedly long Turing-machine tape! How can this be? These issues are discussed
in Chapter 8.

Constraint Logic. The natural team, private-information version of Constraint
Logic assigns to each player a set of edges he can control, and a set of edges whose
orientation he can see. As always, each player has a target edge he must reverse to
win. To enable a simpler reduction to the unbounded form of team Constraint Logic,
I allow each player to reverse up to some given constant k edges on his turn, rather
than just one, and leave the case of k = 1 as an open problem.

7.1 Bounded Games

Bounded team games of imperfect information include card games such as Bridge.
Here we can consider one hand to be a game, with the goal being to either make the
bid, or, if on defense, to set the other team. Focusing on a given hand also removes
the random element from the game, making it potentially suitable for study within
the present framework. However, it might still be difficult to formulate appropriately.
Bounded Team Private Constraint Logic (Bounded TPCL) starts from a configuration
known to all players; the private information arises as a result of some moves not being
visible to all players. These attributes do not apply to Bridge directly, but some sort
of reduction may be possible.

Peterson and Reif [61] showed that bounded team games of private information
are NEXPTIME-complete in general, by a reduction from Dependency Quantified
Boolean Formulas (DQBF).

BOUNDED TEAM PRIVATE CONSTRAINT LOGIC (BOUNDED TPCL)

INSTANCE: AND/OR constraint graph G; integer N ; for i ∈ {1 . . . N}: sets Ei ⊂
Vi ⊂ G; edges ei ∈ Ei; partition of {1 . . . N} into nonempty sets W and B.
QUESTION: Does White have a forced win in the following game? Players 1 . . . N
take turns in that order. Player i only sees the orientation of the edges in Vi, and
moves by reversing an edge in Ei which has not previously reversed; a move must be
known legal based on Vi. White (Black) wins if Player i ∈ W (B) ever reverses edge
ei.

Conjecture 1 Bounded TPCL is NEXPTIME-complete.

7.2 Unbounded Games

In general, team games of private information are undecidable. This result was
claimed by Peterson and Reif in 1979 [61]. However, as mentioned above, there
are several problems with the proof, which I address in Section 7.2.1. Strangely, the
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result also seems to be not very well known. I worked in the area of game complexity
for several years, in collaboration with experts in the field, before stumbling across
it. Part of the problem may be that the authors seem to consider the result of sec-
ondary importance to the other results in [61]. Indeed, immediately after showing
their particular game undecidable, the authors remark

In order to eliminate, by restriction, the over-generality of MPAk-TMs,
we considered several interesting variants. [61, page 355]

The rest of the paper then considers those variants. From my perspective, how-
ever, the fact that there are undecidable space-bounded games is fundamental to the
viewpoint that games are an interesting model of computation. It both shows that
games are as powerful as general Turing machines, and highlights the essential dif-
ference from the Turing-machine foundation of theoretical computer science, namely
that a game computation is a manipulation of finite resources. Thus, this seems to
be a result of some significance.

It might seem that the concept of an unbounded-length team game of private infor-
mation is getting rather far from the intuitive notion of game. However, individually
each of these attributes is common in games. There is at least one actual game that
fits this category, called Rengo Kriegspiel. This is a team, blindfold version of Go.
(See Chapter 11 for details.) I have personally played this game on a few occasions,
and it is intriguing to think that it’s possible I have played the hardest game in the
world, which cannot even in principle be played perfectly by any algorithm. Again,
the important difference here from other undecidable problems, such as the Post Cor-
respondence Problem (PCP), is that Rengo Kriegspiel is a game with bounded space;
there are a fixed number of positions in any given game. Thus, the game can actually
be played; PCP, though a puzzle of a sort, cannot be played in the real world without
infinite resources. This theme will be developed further in Chapter 8.

Team, private Constraint Logic is defined as follows. Note the addition of the
parameter k relative to the bounded case. This is, an admittedly, an extra general-
ization to make a reduction easier; nonetheless, it is a reasonable generalization, and
all other Constraint Logic games in this thesis are naturally restricted versions of this
game.

TEAM PRIVATE CONSTRAINT LOGIC (TPCL)
INSTANCE: AND/OR constraint graph G; integer N ; for i ∈ {1 . . . N}: sets Ei ⊂
Vi ⊂ G; edges ei ∈ Ei; partition of 1 . . . N into nonempty sets W and B; integer k.
QUESTION: Does White have a forced win in the following game? Players 1 . . . N
take turns in that order. Player i only sees the orientation of the edges in Vi, and
moves by reversing up to k edges in Ei; a move must be known legal based on Vi.
White (Black) wins if Player i ∈ W (B) ever reverses edge ei.
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Before showing this game undecidable, I discuss the earlier results of Peterson and
Reif [61].

7.2.1 Incorrectness of Existing Results

Peterson and Reif [61] claim that a particular space-bounded game with alternating
turns, TEAM-PEEK, is undecidable. There are several problems with this claim.
First, the game as defined is trivially decidable in at least one case implicitly claimed
undecidable.

TEAM-PEEK. TEAM-PEEK [61] is a generalization of Stockmeyer and Chan-
dra’s game Peek, which is EXPTIME-complete [81]. Peek is played with a box
containing horizontal plates which slide in and out. Each plate has holes drilled
in particular locations, as do the top and bottom of the box. The two players stand
on opposite sides of the box. Each player controls a subset of the plates; his plates
have handles attached on his side. On a player’s turn he may slide one plate to one of
two positions, either fully in or partially out. The game ends when a hole is opened
up from the top of the box to the bottom, through the stack of plates, and the winner
is the last player to move. This is a physical description of what is actually a game
played on variables of a Boolean formula in DNF (in [81], called G4). The connection
is that the variables are represented by plates, and the disjunctive clauses by holes in
the top and bottom of the box.

TEAM-PEEK adds the concepts of teams and private information. There are two
teams, one on each side of the box. Each player controls a subset of the plates with
handles on his team’s side. Some plates’ positions are private to their controlling
player; no other player can tell which position those plates are in. Another change
from Peek—a critical one, as it turns out—is that on his turn a player may move any
subset of his plates in or out, and not just one. Again, this is merely a physical way
of describing a game played on variables of a Boolean formula in DNF.

No proof is offered that TEAM-PEEK is undecidable. Instead, what is said is the
following [61, page 356]:

We now cite the obvious complexities of the outcome problem for these
versions of PEEK. (All are based on the plates representing clauses of
formulas, and so on. Our results follow simply from [8].) . . .TEAM-
PEEK is undecidable with two or more players on team A.

In a later version of the paper [60], a proof is given for the complexities of a
variety of PEEK games. This version of TEAM-PEEK is not specifically among
them. However, the original paper is referred to [60, page 982]:

Peterson and Reif [61] use a TEAM-PRIVATE-PEEK game which is
not hierarchical to prove the following undecidability result.

THEOREM 4.3.3. (See [61].) In general, a TEAM-PRIVATE-PEEK
[game] can be undecidable with two or more players on Team T1.
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Note that in [60], the original TEAM-PEEK is called “non-hierarchical TEAM-
PRIVATE-PEEK”. A game is considered hierarchical if the team of preference (the
team the decision question refers to) is structured so that all information visible to
Player i on that team is also visible to Player i− 1.

The best indication of what the “obvious” reduction should look like for the orig-
inal TEAM-PEEK is the reduction used here for hierarchical versions of TEAM-
PRIVATE-PEEK. In fact, the structure of the proof is such that merely removing
the restriction that the game be hierarchical yields, formally, a “proof” that TEAM-
PEEK is undecidable. In that proof, the assumption is made that all players on the
team of preference (the “existential” team) play first, and the single player on the the
other (“universal”) team plays next.

So in that case, following the logic of [60], TEAM-PEEK ought to be undecidable.
But at least in that particular case, TEAM-PEEK is not only decidable; it is in NP.
The initial state of the plates is known to all players. Suppose that the existential
team can win on their first set of turns, before the universal player moves. This is
easily determinable in nondeterministic polynomial time. Then, of course, they would
do so. Suppose instead they cannot win on their first set of turns. But then they can
never win, because the universal player will simply leave his plates where they are,
declining to move any of them, and the existential players will be faced with the same
situation on their next set of turns. Therefore, whether the existential team can win
can be decided in NP.

So where is the problem? There are multiple problems. The immediate problem
here is actually a simple mismatch between what was proven and what was claimed,
not only for TEAM-PEEK, but for all the varieties of PEEK considered in [60]. In
the original, two-player, perfect-information version of Peek, the players may move
up to one plate on their turn. Peterson and Reif changed this rule to allow moving
an arbitrary subset of the plates, and this is what leads to the trivial solution above;
note that it would no longer work if at most one plate could be moved per turn. And,
in fact, the formula games that [60] derive results for actually allow each player to
change at most one variable per turn! Then the statement is made that these formula
games are in direct correspondence with the previously-defined TEAM-PEEK games.
But all those games allow players to move an arbitrary subset of plates.

Round-Robin Play. If this were the only mistake, it would be a trivial, if un-
fortunate, error in definition; perhaps the games suitably modified have the claimed
complexities? However, there are other problems. In particular, in the formula game
reduction, which is from multiplayer alternating Turing machines of various types to
corresponding formula games, the assumption is made that that the players take turns
in a given order every round. This assumption is not supported. And in fact, the
corresponding property does not hold of the multiplayer alternating Turing machines,
so there is a missing reduction which is not obvious.

Such machines are set up in correspondence with a general notion of multiplayer
game. Part of their description of such games is as follows: [61, pages 349–350]
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We take a very general view of games of incomplete information so as
to include as many variants as possible. Some important facts about these
games are listed below.

1. Players need not take turns in a round-robin fashion. The rules will
dictate whose turn is next.

. . .

5. A player may not know how many turns were taken by other players
between its turns.

These properties are reflected in the behavior of the “MPAk” Turing machines
used to support the claim in [61] that TEAM-PEEK is undecidable, and used in the
formula game reduction in [60]. In those machines, each state includes information
about which “player” is to play next; the other players are not aware of what happens
between their turns.

Reif has confirmed in a personal communication regarding round-robin play in
TEAM-PEEK [63] that “it looks like therefore the players do not play round robin”.
In fact it is not even clear how to define a version of TEAM-PEEK without round-
robin play.

Indeed, the intention to include as many variants as possible in the notion of
game is laudable, but by so broadening the notion of game the actual results are
correspondingly weakened. In “normal” games, players do take turns in order, and
are aware of what goes on between their turns. Such games are excluded from, rather
than included in, the domain of applicability of Peterson and Reif’s team game results.

Let us examine the undecidable game used to show MPAk machines undecidable
for bounded space. (It is the fact that these machines are undecidable for bounded
space which is the origin of the “obvious” result that TEAM-PEEK is undecidable.)

The version of this game given in [60] is as follows:

Given a D-TM M . . .The game will be based on having each of the
∃-players find a sequence of configurations of the D-TM M which on an
input ω lead to acceptance. Accordingly, upon request each ∃-player will
give the ∀-player the next character of its sequence of configurations. Each
∃-player does this secretly from the other ∃-player. The configuration will
be of the form #C0#C1# . . .#Cm#, where C0 is the initial configuration
of M on the input, and Cm is an accepting configuration of M .

The ∀-player will choose to verify the sequences in one of the following
ways.

1. Check one of the first configurations against the input, and ensure
that it is in the correct form. Check the last configuration for accept-
ing state. This implies that the input tape is private to the ∀-player.

2. Check the last configuration for accepting state.

3. Check that the ∃-players are giving the same sequence by alternating
turns between them.
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4. Run one of the players ahead of the next #, and check its Ci against
the other ∃-player’s Ci−1 for proper head motion, state change, and
tape cells changes, in correspondence with the transition rules, etc.

The key to the game is that the universal player only needs a fixed amount of
memory to check that the computation histories are valid. With only one existential
player, the universal player would have to remember an entire M configuration to
validate the incoming characters, but with the ability to nondeterministically run one
existential player ahead, and check against the other existential player, this is not
necessary.

As the game is described, it is clear that the existential team can guarantee a
win if and only if M accepts ω. If either existential player deviates from producing
an accepting computation history, then the universal player can nondeterministically
detect the deviation, and win. It is implicit in the definition of the game, however,
that the universal player chooses, on each of his turns, which existential player is to
play next, and the other existential player cannot know how many turns have elapsed
before he gets to play again.

For suppose instead that play does go round robin. Then we must assume that
on the universal player’s turn, he announces which existential player is to make a
computation-history move this turn; the other one effectively passes on his turn. But
then each existential player knows exactly where in the computation history the other
one is, and whichever player is behind knows he cannot be checked for validity, and is
at liberty to generate a bogus computation history. It is the very information about
how many turns the other existential player has had that must be kept private for
the game to work properly.

Therefore, it seems that there is no reasonable support in either [61] or [60] for
the claim that TEAM-PEEK, or any bounded game where the players take turns in
sequence, is undecidable. And in fact the missing step in the formula game proofs in
[60], justifying the assumption that play goes round robin, calls into question all of
those results, and not merely TEAM-PEEK undecidability.

7.2.2 Undecidability

To solve the above problems, I introduce a slightly more elaborate computation game,
in which the players take successive turns, and which I show to be undecidable. I
reduce this game to a formula game, and the formula game to TPCL. I am rather
explicit with this chain of reductions, so as to avoid the subtle errors apparent in [60].

The new computation game will be similar to the above game, but each existential
player will be required to produce successive symbols from two identical, independent
computation histories, A and B; on each turn, the universal player will select which
history each player should produce a symbol from, privately from the other player.
Then, for any game history experienced by each existential player, it is always possi-
ble that his symbols are being checked for validity against the other player’s, because
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one of the other existential player’s histories could always be retarded by one config-
uration. The fact that the other player has produced the same number of symbols
as the current player does not give him any useful information, because he does not
know the relative advancement of the other player’s two histories.

TEAM COMPUTATION GAME
INSTANCE: Finite set of ∃-options O, Turing machine S with fixed tape length k,
and with tape symbols Γ ⊃ (O ∪ {A, B}).
QUESTION: Does the existential team have a forced win in the following game?
Players ∀ (universal), ∃1, and ∃2 (existential) take turns in that order, beginning
with ∀. S’s tape is initially set empty. On ∃i’s turn, he makes a move from O. On
∀’s turn, he takes the following steps:

1. If not the first turn, record ∃1’s and ∃2’s moves in particular reserved cells of
S’s tape.

2. Simulate S using its current tape state as input, either until it terminates, or
for k steps. If S accepts, ∀ wins the game. If S rejects, ∀ loses the game.
Otherwise, leave the current contents of the tape as the next turn’s input.

3. Make a move (x, y) ∈ {A, B}×{A, B}, and record this move in particular re-
served cells of S’s tape.

The state of S’s tape is always private to ∀. Also, ∃1 sees only the value of x, and
∃2 sees only the value of y. The existential players also do not see each other’s moves.
The existential team wins if either existential player wins.

Theorem 24 TEAM COMPUTATION GAME is undecidable.

Proof: We reduce from acceptance of a Turing machine on an empty input, which is
undecidable. Given a TM M , we construct TM S as above so that when it is run, it
verifies that the moves from the existential players form valid computation histories,
with each successive character following in the selected history, A or B. It needs no
nondeterminism to do this; all the necessary nondeterminism by ∀ is in the moves
(x, y). The ∃-options O are the tape alphabet of M ∪#.

S maintains several state variables on its tape that are re-used the next time it is
run. First, it detects when both existential players are simultaneously beginning new
configurations (by making move #), for each of the four history pairs {A, B}×{A, B}.
Using this information, it maintains state that keeps track of when the configurations
match. Configurations partially match for a history pair when either both are begin-
ning new configurations, or both partially matched on the previous time step, and
both histories just produced the same symbol. Configurations exactly match when
they partially matched on the previous time step and both histories just began new
configurations (with #).
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S also keeps track of whether one existential player has had one of its histories
advanced exactly one configuration relative to one of the other player’s histories.2 It
does this by remembering that two configurations exactly matched, and since then
only one history of the pair has advanced, until finally it produced a #. If one history
in a history pair is advanced exactly one configuration, then this state continues as
long as each history in the pair is advanced on the same turn. In this state, the
histories may be checked against each other, to verify proper head motion, change of
state, etc., by only remembering (on preserved tape cells) a finite number of characters
from each history. S is designed to reject whenever this check fails, or whenever two
histories exactly match and nonmatching characters are generated, and to accept
when one computation history completes a configuration which is accepting for M .
All of these computations may be performed in a constant number of steps; we use
this number for k.

For any game history of A/B requests seen by ∃1 (∃2), there is always some
possible history of requests seen by ∃2 (∃1) such that either ∃1 (∃2) is on the first
configuration (which must be empty), or ∃2 (∃1) may have one of its histories exactly
one configuration behind the currently requested history. Therefore, correct histories
must always be generated to avoid losing.3 Also, if correct accepting histories are
generated, then the existential team will win, and thus the existential team can
guarantee a win if and only if M accepts the empty string. �

Next I define a team game played on Boolean formulas, and reduce TEAM COM-
PUTATION GAME to this formula game. Traditionally one defines a formula game
in a form for which it is easy to prove a hardness result, then reduces to another
formula game with a cleaner definition and nicer properties. In this case, however,
our formula game will only serve as an intermediate step on the way to a Constraint
Logic game, so no effort is made to define the simplest possible team formula game.
On the contrary, the structure of the game is chosen to as to enable the simplest
possible reduction to a Constraint Logic game.

The reduction from TEAM COMPUTATION GAME works by creating formulas
that simulate the steps of Turing machine S.

TEAM FORMULA GAME
INSTANCE: Sets of Boolean variables X, X ′, Y1, Y2; Boolean variables h1, h2 ∈ X;
and Boolean formulas F (X,X ′, Y1, Y2), F

′(X,X ′), and G(X), where F implies F ′.

2The number of steps into the history does not have to be exactly one configuration ahead;
because M is deterministic, if the configurations exactly matched then one can be used to check the
other’s successor.

3Note that this fact depends on the nondeterminism of ∀ on each move. If instead ∀ followed a
strategy of always advancing the same history pair, until it nondeterministically decided to check
one against the other by switching histories on one side, the existential players could again gain
information enabling them to cheat. This is a further difference from the original computation game
from [61], where such a strategy is used; the key here is that ∀ is always able to detect when the
histories happen to be nondeterministically aligned, and does not have to arrange for them to be
aligned in advance by some strategy that the existential players could potentially take advantage of.
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QUESTION: Does White have a forced win in the following game? The steps taken
on each turn repeat in the following order:

1. B sets variables X to any values. If F and G are then true, Black wins.

2. If F is false, White wins. Otherwise, W1 does nothing.

3. W2 does nothing.

4. B sets variables X ′ to any values.

5. If F ′ is false, White wins. W1 sets variables Y1 to any values.

6. W2 sets variables Y2 to any values.

B sees the state of all the variables; Wi only sees the state of variables Yi and hi.

Theorem 25 TEAM FORMULA GAME is undecidable.

Proof: Given an instance of TEAM COMPUTATION GAME, we create the neces-
sary variables and formulas as follows.

F will verify that B has effectively run TM S for k steps, by setting X to corre-
spond to a valid non-rejecting computation history for it. (This can be done straight-
forwardly with O(k2) variables; see, for example, [10].) F also verifies that the values
of Yi are equal to particular variables in X, and that a set of “input” variables I ⊂ X
are equal to corresponding variables X ′. X ′ thus represents the output of the previous
run of S.

G is true when the copies of the Yi in X represent an illegal white move (see
below), or when X corresponds to an accepting computation history for S.

F ′ is true when the values X ′ equal those of a set of “output” variables O ⊂ X.
These include variables representing the output of the run of S, and also h1, h2. We
can assume without loss of generality here that S always changes its tape on a run.
(We can easily create additional tape cells and states in S to ensure this if necessary,
without affecting the simulation.) As a result, F implies F ′, as required; the values
of X ′ cannot simultaneously equal those of the input and the output variables in X.

∀’s move (x, y) ∈ {A, B}×{A, B} is represented by the assignments to history-
selecting variables h1 and h2; false represents A and true B. The ∃-options O corre-
spond to the Yi; each element of O has one variable in Yi, so that Wi must move by
setting one of the Yi to true and the rest to false.

Then, it is clear that the rules of TEAM FORMULA GAME force the players
effectively to play the given TEAM COMPUTATION GAME. �
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Figure 7-1: Reduction from TEAM FORMULA GAME to TPCL. White edges and
multiplayer edges are labeled with their controlling player(s); all other edges are black.
Thick gray lines represent bundles of black edges.
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Figure 7-2: Additional gadgets for TPCL reduction.

TPCL Reduction. Finally, we are ready to complete the undecidability reduc-
tion for TPCL. The overall reduction from TEAM FORMULA GAME is shown in
Figure 7-1. Before proving its correctness, we first examine the subcomponents rep-
resented by boxes in the figure.

The F , F ′, and G boxes represent AND/OR subgraphs that implement the corre-
sponding Boolean functions, as in earlier chapters. Their inputs come from outputs
of the variable-set boxes. All these edges are black.

The boxes X and X ′ represent the corresponding variable sets. The incoming edge
at the bottom of each box unlocks their values, by a series of latch gadgets (as in
Section 5.2.1), shown in Figure 7-2(a). When the input edge is directed upward, the
variable assignment may be freely changed; when it is directed down, the assignment
is fixed.

The boxes Y1 and Y2 represent the white variables. An individual white variable
for Player Wi is shown in Figure 7-2(b). B may activate the appropriate top output
edge at any time; however, doing so also enables the bottom output edge controlled
jointly by B and W1. If B wants to preventW1 from directing this edge down, he must
direct unlock right; but then the black output edges are forced down, allowing Wi to
freely change the central variable edge. The unlock edges are left loose (shorthand for
using a free edge terminator); the bottom edges are ORed together to form the single
output edge for each box in Figure 7-1 (still jointly controlled by B and W1). Note
that for variables controlled by W2, W1 can know whether the variable is unlocked
without knowing what its assignment is.

We will also consider some properties of the “switch” edge S before delving into
the proof. This edge is what forces the alternation of the two types of B-W1-W2 move
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sequences in TEAM FORMULA GAME. When S points left, B is free to direct the
connecting edges so as to unlock variables X. But if B leaves edge A pointing left
at the end of his turn, then W1 can immediately win, starting with edge C. (We skip
label B to avoid confusion with the B player label.) Similarly, if S points right, B can
unlock the variables in X ′, but if he leaves edge D pointing right, then W1 can win
beginning with edge E. Later we will see that W2 must reverse S each turn, forcing
distinct actions from B for each direction.

Theorem 26 TPCL is undecidable.

Proof: Given an instance of TEAM FORMULA GAME, we construct a TPCL graph
as described above. B sees the states of all edges; Wi sees only the states of the edges
he controls, those immediately adjacent (so that he knows what moves are legal), and
the edge in X corresponding to variable hi.

We will consider each step of TEAM FORMULA GAME in turn, showing that
each step must be mirrored in the TPCL game. Suppose that initially, S points left.

1. B may set variables X to any values by unlocking their controlling latches,
beginning with edge H. He may also direct the edges corresponding to the
current values of X, Y1, Y2, and X ′ into formula networks F , F ′, and G, but
he may not change the values of X ′, because their latches must be locked if S
points left. If these moves enable him to satisfy formulas F and G, then he
wins. Otherwise, if F is true, he may direct edge I upward. He must finish by
redirecting A right, thus locking the X variables; otherwise, W1 could then win
as described above. Also, B may leave the states of Y1 and Y2 locked.

B does not have time to both follow the above steps and direct edge K upward
within k moves; the pathway from H through “. . . ” to K has k − 3 edges.

Also, if F is true then M must point down at the end of B’s turn, because F
and F ′ cannot simultaneously be true.

2. If F is false, then I must point down. This will enable W1 to win, beginning
with edge J (because S still points left). Also, if H still points up, W1 may direct
it down, unlocking S; as above, A must point right. Otherwise W1 has nothing
useful to do. He may direct the bottom edges of the Y1 variables downward,
but nothing is accomplished by this, because S points left.

3. On this step W2 has nothing useful to do but direct S right, which he must do.
Otherwise...

4. If S still points left, then B can win, by activating the long series of edges
leading to K; I already points up, so unlike in step 1, he has time for this.

Otherwise, B can now set variables X ′ to any values, by unlocking their latches,
beginning with edge L. If G was not true in step 1, then it cannot be true now,
because X has not changed, so B cannot win that way. If F ′ is true, then he
may direct edge M upward. Also, at this point B should unlock Y1 and Y2, by
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directing his output edges back in and activating the unlock edges in the white
variable gadgets. This forces I down, because F depends on the Yi.

As in step 1, B cannot win by activating edge O, because he does not have time
to both follow the above steps and reach O within k moves. (Note that M must
point down at the beginning of this turn; see step 1.)

5. If any variable of Y1 or Y2 is still locked, W1 can win by activating the pathway
through N. Also, if F ′ is false then M must point down; this lets W1 win. (In
both cases, note that S points right.) Otherwise, W1 may now set Y1 to any
values.

6. W2 may now set Y2 to any values. Also, W2 must now direct S left again. If he
does not, then on B’s next turn he can win by activating O.

Thus, all players are both enabled and required to mimic the given TEAM FOR-
MULA GAME at each step, and so the White team can win the TPCL game if and
only if it can win the TEAM FORMULA GAME. �

7.2.3 Planar Graphs

As before, this result holds even when the TPCL graph is planar.

Theorem 27 TPCL is undecidable, even for planar graphs.

Proof: All crossings in Figure 7-1 involve only edges controlled by a single player;
we can replace these with crossover gadgets from Section 5.2.2 without changing the
game. �
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Chapter 8

Summary of Part I

In this chapter I step back and take a broader perspective on the results in the preced-
ing chapters. We may view the family of Constraint Logic games, taken as a whole,
as a hierarchy of complete problems ; this idea is developed in Section 8.1. I return to
the overall theme of games as computation, this time from a more philosophical and
speculative perspective, in Section 8.2. There I address the apparently nonsensical
result from Chapter 7 that play in a game of fixed physical size can emulate a Turing
machine with an infinite tape.

8.1 Hierarchies of Complete Problems

Galil [31] proposed the notion of a hierarchy of complete problems, and gave several
examples. The concept is based on the observation that there are many problems
known complete for the classes

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE,

but at the time, in 1976, there were no examples in the literature of quintuples of
complete problems, one for each class, such that each problem was a restricted version
of the next. Galil presents several such hierarchies, from domains of graph theory,
automata theory, theorem proving, and games.1

Galil’s definition of a hierarchy of complete problems is specific to those particular
complexity classes. However, it seems reasonable to apply the same concept more
broadly. In the current case, the family of Constraint Logic games forms what could be
considered to be a two-dimensional hierarchy of complete problems. The complexities
of the games, ranging from zero player to team games horizontally and bounded vs.
unbounded vertically, stand in the following relation (see Figure 1-1):

PSPACE ⊆ PSPACE ⊆ EXPTIME ⊆ r.e.

⊆ ⊆ ⊆ ⊆

P ⊆ NP ⊆ PSPACE ⊆ NEXPTIME

1These games are all zero-player games, or simulations, in our sense of “game”. They are loosely
based on Conway’s Game of Life.
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Furthermore, in each case a Constraint Logic game is a restricted version of the
game to its right or top. Starting with Team Private Constraint Logic, restricting
the number of players to be two, the set of private edges to be empty, k (number of
moves per turn) to 1, and requiring that the players control disjoint sets of edges yields
Two-Player Constraint Logic. Restricting further so that one player has no edges to
control2 yields Nondeterministic Constraint Logic. Restricting further so that the
sequence of moves is forced gives Deterministic Constraint Logic. (Technically this
last step is not a proper restriction, but we can suppose that there is a general move-
order constraint in the other games which is taken to allow any order by default.)

Similarly, adding the restriction that each edge may reverse at most once turns
each of those games into their bounded counterparts. Finally, requiring that the
graph be planar changes the complexity from P-complete to NC3-easy in the case of
Bounded Deterministic Constraint Logic.

8.2 Games, Physics, and Computation

In Section 7.2, on team games with private information, I showed that there are
space-bounded games that are undecidable. At first, this fact seems counterintuitive
and bizarre. There are only finitely many positions in the game, and yet somehow the
state of the game must effectively encode an arbitrarily long Turing machine tape.
How can this be? Eventually the state would have to repeat.

The short answer is that yes, the position must eventually repeat, but some of the
players will not know when it is repeating. The entire history of the game is relevant
to correct play, and of course the history grows with each move. So in a sense, the
infinite tape has merely been shoved under the rug. However, the important point is
that the infinite space has been taken out of the definition of the problem. Perhaps
these games can only be played perfectly by players with infinite memories; perhaps
not. That question depends on the nature of the players; perhaps they have access
to some non-algorithmic means of generating moves. In any case, the composition
and capabilities of the players are not part of the definition of the problem—of the
finite computing machine which is a game. A player is simply a black box which is
fed game state and generates moves.

Compare the situation to the notion of a nondeterministic Turing machine. The
conventional view is that a nondeterministic Turing machine is allowed to “guess” the
right choice at each step of the computation. There is no question or issue of how the
guess is made. Yet, one speaks of nondeterministic computations being “performed”
by the machine. It is allowed access to a non-algorithmic resource to perform its
computation. Nondeterministic computers may or may not be “magical” relative to
ordinary Turing machines; it is unknown whether P = NP. However, one kind of
magic they definitely cannot perform is to turn finite space into infinite space. But
a team game “computer”, on the other hand, can perform this kind of magic, using

2Technically each player must have a target edge, but it is easy to construct instances where one
player effectively can do nothing, and the question is whether the other player can win. These are
effectively Nondeterministic Constraint Logic games.
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only a slight generalization of the notion of nondeterminism.
Whether these games can be played perfectly in the real world—and thus, whether

we can actually perform arbitrary computations with finite physical resources—is a
question of physics, not of computer science. And it is not immediately obvious that
the answer must be no.

Others have explored various possibilities for squeezing unusual kinds of com-
putation out of physical reality. There have been many proposals for how to solve
NP-complete problems in polynomial time; Aaronson [1] offers a good survey. One
such idea, which works if one subscribes to Everett’s relative-state interpretation of
quantum mechanics [23] (popularly called “many worlds”), is as follows. Say you
want to solve an instance of SAT, which is NP-complete. You need to find a variable
assignment which satisfies a Boolean formula with n variables. Then you can proceed
as follows: guess a random variable assignment, and if it doesn’t happen to satisfy
the formula, kill yourself. Now, in the only realities you survive to experience you will
have “solved” the problem in polynomial time.3 Aaronson has termed this approach
“anthropic computing”.

Apart from the possibly metaphysical question of whether there would indeed al-
ways be a “you” that survived this “computation”, there is the annoying practical
problem that those around you would almost certainly experience your death, instead
of your successful efficient computation. There is a way around this problem, however.
Suppose that, instead of killing yourself, you destroy the entire universe. Then, effec-
tively, the entire universe is cooperating in your computation, and nobody will ever
experience you failing and killing yourself. A related idea was explored in the science-
fiction story “Doomsday Device”, by John Gribbin [37]. In that story a powerful
particle accelerator seemingly fails to operate, for no good reason. Then a physi-
cist realizes that if it were to work, it would effectively destroy the entire universe,
by initiating a transition from a cosmological false vacuum state to a lower-energy
vacuum state. In fact, the accelerator has worked; the only realities the characters
experience involve highly unlikely equipment failures. (Whether such a false vacuum
collapse is actually possible is an interesting question [82].) We can imagine incorpo-
rating such a particle accelerator in a computing machine. I would like to propose the
term “doomsday computation” for any kind of computation in which the existence
of the universe might depend on the output of the computation. Clearly doomsday
computation is a special case of anthropic computation.

However, neither approach seems to offer the ability to perform arbitrary com-
putations. Other approaches considered in [1] might do better: “time-travel com-
puting”, which works by sending bits along closed timelike curves (CTCs), can solve
PSPACE-complete problems in polynomial time.

3To avoid the problem with what happens when there is no satisfying assignment, Aaronson
proposes you instead kill yourself with probability 1−2−2n if you don’t guess a satisfying assignment.
Then if you survive without having guessed an assignment, it is almost certain that there is no
satisfying assignment. This step is not strictly necessary, however. There would always be some
reality in which you somehow avoided killing yourself; perhaps your suicide machine of choice failed
to operate in some highly improbable way. Of course, for the technique to work at all, such a failure
must be very improbable.
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Perhaps there is some way to generalize some such “weird physics” kind of com-
putation to enable perfect game play. The basic idea of anthropic computation seems
appropriate: filter out the realities in which you lose, post-selecting worlds in which
you win. But directly applied, as in the SAT example above, this only works for
bounded one-player puzzles. Computing with CTCs gets you to PSPACE, which is
suggestive of solving a two-player, bounded-length game, or a one-player, unbounded-
length puzzle. Perhaps just one step more is all that is needed to create a perfect team
game player, and thus a physically finite, but computationally universal, computer.
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Part II

Games in Particular
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Part II of this thesis applies the results of Part I to particular games and puzzles,
to prove them hard. The simplicity of many of the reductions strengthens the view
that Constraint Logic is a general game model of computation. Each reduction may
be viewed as the construction of a kind of computer, using the physics provided by
the game components at hand. Especially useful is the fact that the hardness results
for Constraint Logic hold even when the graphs are planar. Traditionally some sort
of crossover gadget has often been required for game and puzzle hardness proofs, and
these are often among the most difficult gadgets to design.

For all of these results, it must be borne in mind that it is the generalized version
of a game that is shown hard. For example, Amazons is typically played on a 10× 10
board. But it is meaningless to discuss the complexity of a problem for a fixed input
size; it is Amazons played on an n× n board that is shown PSPACE-complete. The
‘P’ in ‘PSPACE’ must be polynomial in something.

I give new hardness results for eight games: TipOver, sliding-block puzzles, sliding-
coin puzzles, plank puzzles, hinged polygon dissections, Amazons, Konane, and Cross
Purposes. Among these, sliding-block puzzles, Amazons, and Konane had been well-
known open problems receiving study for some time.

I strengthen the existing hardness results for two games, the Warehouseman’s
Problem and Sokoban, and I give a simpler hardness proof than the extant one for
Rush Hour, and show that a triangular version of Rush Hour is also hard. I also
mention some additional results for which I was not the primary contributor.

Part II concludes with a list of interesting open problems.
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Chapter 9

One-Player Games (Puzzles)

In this chapter I present several new results for one-player games.

9.1 TipOver

TipOverTM is a puzzle in which the goal is to navigate a layout of vertical crates,
tipping some over to reach others, so as to eventually reach a target crate. Crates
can only tip into empty space, and you can’t jump over empty space to reach other
crates. The challenge is to tip the crates in the right directions and the right order.

TipOver originated as an online puzzle created by James Stephens, called the
“The Kung Fu Packing Crate Maze” [78]. Now it also exists in physical form (shown
in Figure 9-1, produced by ThinkFun, the makers of Rush Hour and other puzzles.
Like Rush Hour, TipOver comes with a board and a set of pieces, and 40 challenge
cards, each with a different puzzle layout.

The standard TipOver puzzles are laid out on a 6×6 grid, but the puzzle naturally
generalizes to n × n layouts. This is a bounded-move puzzle—each crate can only
tip over once. Therefore, it is a candidate for a Bounded NCL reduction. I give a
reduction showing that TipOver is NP-complete. (See also [41].)

Figure 9-1: TipOver puzzle.
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Figure 9-2: A sample TipOver puzzle and its solution.

Rules. In its starting configuration, a TipOver puzzle has several vertical crates of
various heights (1×1×h) arranged on a grid, with a “tipper”—representing a person
navigating the layout—standing on a particular starting crate. There is a unique red
crate, 1 × 1 × 1, elsewhere on the grid; the goal is to move the tipper to this target
red crate.

The tipper can tip over any vertical crate that it is standing on, in any of the four
compass directions, provided that there is enough empty space within the grid for
that crate to fall unobstructed and lie flat. The tipper is nimble enough to land safely
on the newly-fallen crate. The tipper can also walk, or climb, along the tops of any
crates that are directly adjacent, even when they have different heights. However,
the tipper is not allowed to jump empty space to reach another crate. It can’t even
jump to a diagonally neighboring crate; the crates must be touching.

A sample puzzle and its solution are shown in Figure 9-2. The first layout is the
initial configuration, with the tipper’s location marked with a red square outline, and
the height of each vertical crate indicated. In each successive step, one more crate
has been tipped over.

9.1.1 NP-completeness

We reduce Bounded Planar NCL (Section 5.1.2) to TipOver to show NP-hardness.
Given an instance of Bounded Planar NCL, we construct a TipOver puzzle that
can be solved just when the target edge can be reversed. We need to build AND,
OR, FANOUT, and CHOICE gadgets, as in Section 5.1.3, and show how to wire them
together. We also need to build a single loose edge, but this just corresponds to the
tipper’s starting point.

All of our gadgets will be built with initially vertical, height-two crates. The
mapping from constraint graph properties to TipOver properties is that an edge can
be reversed just when a corresponding TipOver region is reachable by the tipper.
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Figure 9-3: A wire that must be initially traversed from left to right. All crates are
height two.
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(a) OR gadget. If the tipper can reach
either A or B, then it can reach C.

F CE
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(b) AND gadget. If the tipper can reach
both A and B, then it can reach C.

Figure 9-4: TipOver AND and OR gadgets.

One-way Gadget. We will need an auxiliary gadget that can only be traversed
by the tipper in one direction initially. The gadget, and the sequence of steps in a
left-right traversal, are shown in Figure 9-3. Once it’s been so traversed, a one-way
gadget can be used as an ordinary wire. But if it is first approached from the right,
there’s no way to bridge the gap and reach the left side.

We will attach one-way gadgets to the inputs and outputs of each of the following
gadgets.

OR / FANOUT Gadget. A simple intersection, protected with one-way gadgets,
serves as an OR, shown in Figure 9-4(a).

Lemma 28 The construction in Figure 9-4(a) satisfies the same constraints as a
Bounded NCL OR vertex, with A and B corresponding to the input edges, and C
corresponding to the output edge.

Proof: The tipper can clearly reach C if and only if it can reach either A or B. Since
the output is protected with a one-way gadget, the tipper cannot reach C by any
other means. �

Clearly, changing the direction of the one-way gadget protecting input A turns it
input an output, and turns an OR gadget into a FANOUT gadget with the input at B.

AND Gadget. AND is a bit more complicated. The construction is shown in Fig-
ure 9-4(b). This time the tipper must be able to exit to the right only if it can
independently enter from the left and from the bottom. This means that, at a mini-
mum, it will have to enter from one side, tip some crates, retrace its path, and enter
from the other side. Actually, the needed sequence will be a bit longer than that.
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Figure 9-5: How to use the AND gadget.
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Figure 9-6: TipOver CHOICE gadget. If the tipper can reach A, then it can reach B
or C, but not both.

Lemma 29 The construction in Figure 9-4(b) satisfies the same constraints as a
Bounded NCL AND vertex, with A and B corresponding to the input edges, and C
corresponding to the output edge.

Proof: We need to show that the tipper can reach C if and only if it can first reach A
and B. First, note that F is the only crate that can possibly be tipped so as to reach
C; no other crate will do. If the tipper is only able to enter from A, and not from B,
it can never reach C. The only thing that can be accomplished is to tip crate F down,
so as to reach B from the wrong direction. But this doesn’t accomplish anything,
because once F has been tipped down it can never be tipped right, and C can never
be reached. Suppose, instead, the tipper can enter from B, but not from A. Then
again, it can reach A from the wrong direction, by tipping crate D right and crate G
up. But again, nothing is accomplished by this, because now crate E can’t be gotten
out of the way without stranding the tipper.

Now suppose the tipper can reach both A and B. Then the following sequence
(shown in Figure 9-5) lets it reach C. First the tipper enters from B, and tips crate D
right. Then it retraces its steps along the bottom input, and enters this time from A.
Now it tips crate E down, connecting back to B. From here it can again exit via the
bottom, return to A, and finally tip crate F right, reaching C. The right side winds
up connected to the bottom input, so that the tipper can still return to its starting
point as needed from later in the puzzle. �

CHOICE Gadget. Finally, we need a CHOICE gadget. This is shown in Figure 9-6.
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Figure 9-7: TipOver puzzle for a simple constraint graph.

Lemma 30 The construction in Figure 9-6 satisfies the same constraints as a Bounded
NCL CHOICE vertex, with A corresponding to the input edge, and B and C correspond-
ing to the output edges.

Proof: Because of the built-in one-way gadgets, the only way the tipper can exit the
gadget is by irreversibly tipping D either left or right. It may then reconnect to A by
using the appropriate one-way pathway, but it can never reach the other side. �

Theorem 31 TipOver is NP-complete.

Proof: Given a bounded planar constraint graph made of AND, OR, FANOUT, CHOICE,
and red-blue vertices, and with a single edge which may initially reverse, we construct
a corresponding TipOver puzzle, as described above. The wiring connecting the gad-
gets together is simply a chain of vertical, height-2 crates. The tipper starts on some
gadget input corresponding to the location of the single loose edge, and can reach
the target crate just when the target edge in the constraint graph may be reversed.
Therefore, TipOver is NP-hard.

TipOver is clearly in NP: there are only a linear number of crates that may tip
over, and therefore a potential solution may be verified in polynomial time. �
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Figure 9-8: Dad’s Puzzle.

9.2 Sliding-Block Puzzles

This section is joint work with Erik Demaine [46, 43, 47].
Sliding-block puzzles have long fascinated aficionados of recreational mathematics.

From the infamous 15 puzzle [75] associated with Sam Loyd to the latest whimsical
variants such as Rush HourTM, these puzzles seem to offer a maximum of complexity
for a minimum of space.

In the usual kind of sliding-block puzzle, one is given a box containing a set of
rectangular pieces, and the goal is to slide the blocks around so that a particular
piece winds up in a particular place. A popular example is Dad’s Puzzle, shown in
Figure 9-8; it takes 59 moves to slide the large square to the bottom left.

Effectively, the complexity of determining whether a given sliding-block puzzle
is solvable was an open problem for nearly 40 years. Martin Gardner devoted his
February, 1964 Mathematical Games column to sliding-block puzzles. This is what
he had to say [32]:

These puzzles are very much in want of a theory. Short of trial and
error, no one knows how to determine if a given state is obtainable from
another given state, and if it is obtainable, no one knows how to find the
minimum chain of moves for achieving the desired state.

The computational complexity of sliding-block puzzles was considered explicitly
by Spirakis and Yap in 1983 [77]; they showed that determining whether there is a
solution to a given puzzle is NP-hard, and conjectured that it is PSPACE-complete.
However, the form of the problem they considered was somewhat different from that
framed here. In their version, the goal is to reach a given total configuration, rather
than just moving a given piece to a given place, and there was no restriction on the
sizes of blocks allowed. This problem was shown PSPACE-complete shortly after-
wards, by Hopcroft, Schwartz, and Sharir [48], and renamed the “warehouseman’s
problem”. (This problem is discussed in Section 9.3.)

This left the appropriate form of the decision question for actual sliding-block
puzzles open until Demaine and I showed it PSPACE-complete1 in 2002 [46], based
on the earlier result that the related puzzle Rush Hour is PSPACE-complete [24].

1The problem may be posed either combinatorially, as considered here, or geometrically. Here
we consider only discrete moves, as appropriate for generalized combinatorial games; if continuous
block movements are allowed, then the result is only that sliding-block puzzles are PSPACE-hard,
and the upper bound is not addressed.
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Figure 9-9: Sliding Blocks layout.

The Sliding Blocks problem is defined as follows: given a configuration of rect-
angles (blocks) of constant sizes in a rectangular 2-dimensional box, can the blocks
be translated and rotated, without intersection among the objects, so as to move a
particular block?

9.2.1 PSPACE-completeness

I give a reduction from planar Nondeterministic Constraint Logic (NCL) showing that
Sliding Blocks is PSPACE-hard even when all the blocks are 1× 2 rectangles (domi-
noes). (Somewhat simpler constructions are possible if larger blocks are allowed.)
In contrast, there is a simple polynomial-time algorithm for 1 × 1 blocks; thus, the
results are in some sense tight.

Sliding Blocks Layout. We fill the box with a regular grid of gate gadgets, within a
“cell wall” construction as shown in Figure 9-9. The internal construction of the gates
is such that none of the cell-wall blocks may move, thus providing overall integrity to
the configuration.

AND and OR Vertices. We construct NCL AND and protected OR (Section 5.2.3)
vertex gadgets out of dominoes, in Figures 9-10(a) and 9-10(b). Each figure provides
the bulk of an inductive proof of its own correctness, in the form of annotations.
A dot indicates a square that is always occupied; the arrows indicate the possible
positions a block can be in. For example, in Figure 9-10(b), block D may occupy its
initial position, the position one unit to the right, or the position one unit down (but
not, as we will see, the position one unit down and one unit right).

For each vertex gadget, if we inductively assume for each block that its surrounding
annotations are correct, its own correctness will then follow, except for a few cases
noted below. The annotations were generated by a computer search of all reachable
configurations, but are easy to verify by inspection.
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Figure 9-10: Sliding Blocks vertex gadgets.

In each diagram, we assume that the cell-wall blocks (dark colored) may not
move outward; we then need to show they may not move inward. The light-colored
(“trigger”) blocks are the ones whose motion serves to satisfy the vertex constraints;
the medium-colored blocks are fillers. Some of them may move, but none may move
in such a way as to disrupt the vertices’ correct operation.

The short lines outside the vertex ports indicate constraints due to adjoining
vertices; none of the “port” blocks may move entirely out of its vertex. For it to do
so, the adjoining vertex would have to permit a port block to move entirely inside
the vertex, but in each diagram the annotations show this is not possible. Note that
the port blocks are shared between adjoining vertices, as are the cell-wall blocks. For
example, if we were to place a protected OR above an AND, its bottom port block
would be the same as the AND’s top port block.

A protruding port block corresponds to an inward-directed edge; a retracted block
corresponds to an outward-directed edge. Signals propagate by moving “holes” for-
ward. Sliding a block out of a vertex gadget thus corresponds to directing an edge in
to a graph vertex.

Lemma 32 The construction in Figure 9-10(a) satisfies the same constraints as an
NCL AND vertex, with A and B corresponding to the AND red edges, and C to the blue
edge.

Proof: We need to show that block C may move down if and only if block A first
moves left and block B first moves down.

First, observe that this motion is possible. The trigger blocks may each shift one
unit in an appropriate direction, so as to free block C.

The annotations in this case serve as a complete proof of their own correctness,
with one exception. Block D appears as though it might be able to slide upward,
because block E may slide left, yet D has no upward arrow. However, for E to slide
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left, F must first slide down, but this requires that D be first be slid down. So when
E slides left, D is not in a position to fill the space it vacates.

Given the annotations’ correctness, it is easy to see that it is not possible for C to
move down unless A moves left and B moves down. �

Lemma 33 The construction in Figure 9-10(b) satisfies the same constraints as an
NCL protected OR vertex, with A and B corresponding to the protected edges.

Proof: We need to show that block C may move down if and only if block A first
moves right, or block B first moves down.

First, observe that these motions are possible. If A moves right, D may move
right, releasing the blocks above it. If B moves down, the entire central column may
also move down.

The annotations again provide the bulk of the proof of their own correctness. In
this case there are three exceptions. Block E looks as if it might be able to move
down, because D may move down and F may move right. However, D may only move
down if B moves down, and F may only move right if A moves right. Because this is
a protected OR, we are guaranteed that this cannot happen: the vertex will be used
only in graphs such that at most one of A and B can slide out at a time. Likewise, G
could move right if D were moved right while H were moved down, but again those
possibilities are mutually exclusive. Finally, D could move both down and right one
unit, but again this would require A and B to both slide out.

Given the annotations’ correctness, it is easy to see that it is not possible for C to
move down unless A moves right or B moves down. �

Graphs. Now that we have AND and protected OR gates made out of sliding-blocks
configurations, we must next connect them together into arbitrary planar graphs.
First, note that the box wall constrains the facing port blocks of the vertices adjacent
to it to be retracted (see Figure 9-9). This does not present a problem, however,
as I will show. The unused ports of both the AND and protected OR vertices are
unconstrained; they may be slid in or out with no effect on the vertices. Figures 9-
11(a) and 9-11(b) show how to make (2×2)-vertex and (2×3)-vertex “filler” blocks out
of ANDs. (We use conventional “and” and “or” icons to denote the vertex gadgets.)
Because none of the ANDs need ever activate, all the exterior ports of these blocks
are unconstrained. (The unused ports are drawn as semicircles.)

We may use these filler blocks to build (5 × 5)-vertex blocks corresponding to
“straight” and “turn” wiring elements (Figures 9-11(c) and 9-11(d)). Because the
filler blocks may supply the missing inputs to the ANDs, the “output” of one of these
blocks may activate (slide in) if and only if the “input” is active (slid out). Also,
we may “wrap” the AND and protected OR vertices in 5 × 5 “shells”, as shown for
protected OR in Figure 9-11(e). (Note that “left turn” is the same as “right turn”;
switching the roles of input and output results in the same constraints.)

We use these 5×5 blocks to fill the layout; we may line the edges of the layout with
unconstrained ports. The straight and turn blocks provide the necessary flexibility to
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Figure 9-11: Sliding Blocks wiring.

construct any planar graph, by letting us extend the vertex edges around the layout
as needed.

Theorem 34 Sliding Blocks is PSPACE-complete, even for 1× 2 blocks.

Proof: Reduction from planar NCL for protected-OR graphs, by the construction
described. A port block of a particular vertex gadget may move if and only if the
corresponding NCL graph edge may be reversed.

Sliding Blocks is in PSPACE: a simple nondeterministic algorithm traverses the
state space, as in Theorem 12. �

9.3 The Warehouseman’s Problem

This section is joint work with Erik Demaine [46, 47].
As mentioned in Section 9.2, The Warehouseman’s Problem is a particular formu-

lation of a kind of sliding-block problem in which the blocks are not required to have
a fixed size, and the goal is to put each block at a specified final position. Hopcroft,
Schwartz, and Sharir [48] showed the Warehouseman’s Problem PSPACE-hard in
1984.

Their construction critically requires that some blocks have dimensions that are
proportional to the box dimensions. Using Nondeterministic Constraint Logic, we
can strengthen (and greatly simplify) the result: it is PSPACE-complete to achieve
a specified total configuration, even when the blocks are all 1× 2.

9.3.1 PSPACE-completeness

Theorem 35 The Warehouseman’s Problem is PSPACE-hard, even for 1×2 blocks.

Proof: As in Section 9.2, but using Theorem 18, which shows determining whether
a given total configuration may be reached from a given AND/OR graph is PSPACE-
hard. The graph initial and desired configurations correspond to two block configu-
rations; the second is reachable from the first if and only if the NCL problem has a
solution. �
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If we restrict the block motions to unit translations (as appropriate when view-
ing the problem as a generalized combinatorial game), then the problem is also in
PSPACE, as in Theorem 12.

9.4 Sliding-Coin Puzzles

This section is joint work with Erik Demaine [47].
Sliding-block puzzles have an obvious complexity about them, so it is no surprise

that they are PSPACE-complete. What is more surprising is that there are PSPACE-
complete sliding-coin puzzles. For sliding-block puzzles, if the blocks are all 1 × 1,
as in the 15 puzzle, the puzzles become easy—it is the fact that one block can be
dependent on the positions of two other blocks for the ability to move in a particular
direction that makes it possible to build complex puzzles and gadgets. In a typical
sliding-coin puzzle, a coin is like a 1× 1 block; it only needs one other coin to move
out of the way for it to be able to move and take its place. Indeed, many forms of
sliding-coin puzzle have been shown to be efficiently solvable [17].

But it turns out that adding a simple constraint to the motion of the coins leads
to a very natural problem which is PSPACE-complete.

The Sliding Tokens problem is defined as follows. It is played on an undirected
graph with tokens placed on some of the vertices. A legal configuration of the graph
is a token placement such that no adjacent vertices both have tokens. (That is, the
tokens form an independent set of vertices.) A move is made by sliding a token from
one vertex to an adjacent one, along an edge, such that the resulting configuration is
legal. Given an initial configuration, is is possible to move a given token?

Note that this problem is essentially a dynamic, puzzle version of the Independent
Set problem, which is NP-complete [34]. Similarly, the natural two-player-game ver-
sion of Independent Set, called Kayles, is also PSPACE-complete [34]. Just as many
NP-complete problems become PSPACE-complete when turned into two-player games
[72], it is also natural to expect that they become PSPACE-complete when turned
into dynamic puzzles.

Finally, from a more computational perspective, sliding-token graphs also super-
ficially resemble Petri nets.

9.4.1 PSPACE-completeness

I give a reduction from planar Nondeterministic Constraint Logic showing that this
problem is PSPACE-complete.

AND and OR Vertices. We construct NCL AND and OR vertex gadgets out of
sliding-token subgraphs, in Figures 9-12(a) and 9-12(b). The edges that cross the
dotted-line gadget borders are “port” edges. A token on an outer port-edge vertex
represents an inward-directed NCL edge, and vice-versa. Given an AND/OR graph
and configuration, we construct a corresponding sliding-token graph, by joining to-
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(a) AND (b) OR

Figure 9-12: Sliding Tokens vertex gadgets.

gether AND and OR vertex gadgets at their shared port edges, placing the port tokens
appropriately.

Theorem 36 Sliding Tokens is PSPACE-complete..

Proof: First, observe that no port token may ever leave its port edge. Choosing
a particular port edge A, if we inductively assume that this condition holds for all
other port edges, then there is never a legal move outside A for its token another
port token would have to leave its own edge first.

The AND gadget clearly satisfies the same constraints as an NCL AND vertex; the
upper token can slide in just when both lower tokens are slid out. Likewise, the upper
token in the OR gadget can slide in when either lower token is slid out the internal
token can then slide to one side or the other to make room. It thus satisfies the same
constraints as an NCL AND vertex.

Sliding Tokens is in PSPACE: a simple nondeterministic algorithm traverses the
state space, as in Theorem 12. �

9.5 Plank Puzzles

A plank puzzle is a puzzle in which the goal is to cross a crocodile-infested swamp,
using only wooden planks supported by tree stumps.

Plank puzzles were invented by UK maze enthusiast Andrea Gilbert. Like TipOver,
they originated as a popular online puzzle applet [35]; now there is also a physical
version, sold by ThinkFun as River CrossingTM. Like Rush Hour and TipOver, the
puzzle comes with a set of challenge cards, each with a different layout. Also like
Rush Hour, and unlike TipOver, plank puzzles are unbounded games; there is no
resource that is used up as the game is played. (By contrast, in TipOver, the number
of vertical crates must decrease by one each turn.) I give a reduction from Nonde-
terministic Constraint Logic showing that plank puzzles are PSPACE-complete. (See
also [43].)
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Figure 9-13: A plank puzzle.
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Figure 9-14: Plank-puzzle AND and OR vertices.

Rules. The game board is an n × n grid, with stumps at some intersections, and
planks arranged between some pairs of stumps, along the grid lines. The goal is to
go from one given stump to another. You can pick up planks, and put them down
between other stumps separated by exactly the plank length. You are not allowed to
cross planks over each other, or over intervening stumps, and you can carry only one
plank at a time.

A sample plank puzzle is shown in Figure 9-13. The solution begins as follows:
walk across the length-1 plank; pick it up; lay it down to the south; walk across it;
pick it up again; lay it down to the east; walk across it again; pick it up again; walk
across the length-2 plank; lay the length-1 plank down to the east; ...

9.5.1 PSPACE-completeness

I give a reduction from Nondeterministic Constraint Logic. We need AND and OR
vertices, and a way to wire them together to create a plank puzzle corresponding to
any given AND/OR graph.

The constraint graph edge orientations are represented by the positions of “port
planks” at each vertex interface; moving a port plank into a vertex gadget enables it
to operate appropriately, and prevents it from being used in the paired vertex gadget.
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Figure 9-15: A plank puzzle made from an AND/OR graph.

AND vertex. The plank-puzzle AND vertex is shown in Figure 9-14(a). The length-
2 planks serve as the input and output ports. (Of course, the gate may be operated in
any direction.) Both of its input port planks (A and B) are present, and thus activated;
this enables you to move its output port plank (C) outside the gate. Suppose you are
standing at the left end of plank A. First walk across this plank, pick it up, and lay it
down in front of you, to reach plank D. With D you can reach plank B. With B and
D, you can reach C, and escape the gate. At the end of this operation A and B are
trapped inside the vertex, inaccessible to the adjoining vertex gadgets.

The operation is fully reversible, since the legal moves in plank puzzles are re-
versible.

OR vertex. The OR vertex is shown in Figure 9-14(b). In this case, starting at
either A or B will let you move the output plank C outside the vertex, by way of
internal length-1 plank(s), trapping the starting plank inside the vertex.

Constraint Graphs. To complete the construction, we must have a way to wire
these gates together into large puzzle circuits. Once you have activated an AND gate,
you’re stuck standing on its output plank—now what?

Figure 9-15 shows a puzzle made from six gates. For reference, the equivalent
constraint graph is shown in Figure 9-16. The gates are arranged on a staggered grid,
in order to make matching inputs and outputs line up. The port planks are shared
between adjoining gates. Notice that two length-3 planks have been added to the
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Figure 9-16: The equivalent constraint graph for Figure 9-15.

puzzle. These are the key to moving around between the gates. If you are standing
on one of these planks, you can walk along the edges of the gates, by repeatedly
laying the plank in front of you, walking across it, then picking it up. This will let
you get to any port of any of the gates. By using both the length-3 planks, you can
alternately place one in front of the other, until you reach the next port you want to
exit from. Then you can leave one length-3 plank there, and use the remaining one
to reach the desired port entrance.

However, you can’t get inside any of the gates using just a length-3 plank, because
there are no interior stumps exactly three grid units from a border stump.

To create arbitrary planar constraint graphs, we can use the same techniques used
in Section 9.2 to build large “straight” and “turn” blocks out of 5×5 blocks of vertex
gadgets.

Theorem 37 Plank puzzles are PSPACE-complete.

Proof: Reduction from planar NCL, by the construction described. A given stump
may be reached if and only if the corresponding NCL graph edge may be reversed.

Plank puzzles are in PSPACE: a simple nondeterministic algorithm traverses the
state space, as in Theorem 12. �
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9.6 Sokoban

This section is joint work with Erik Demaine [46, 47].
In the pushing-blocks puzzle Sokoban, one is given a configuration of 1× 1 blocks,

and a set of target positions. One of the blocks is distinguished as the pusher. A
move consists of moving the pusher a single unit either vertically or horizontally; if a
block occupies the pusher’s destination, then that block is pushed into the adjoining
space, providing it is empty. Otherwise, the move is prohibited. Some blocks are
barriers, which may not be pushed. The goal is to make a sequence of moves such
that there is a (non-pusher) block in each target position.

Culberson [13] proved that Sokoban is PSPACE-complete, by showing how to
construct a Sokoban position corresponding to a space-bounded Turing machine. Us-
ing Nondeterministic Constraint Logic, I give an alternate proof. Our result applies
even if there are no barriers allowed in the Sokoban position, thus strengthening
Culberson’s result.

9.6.1 PSPACE-completeness

Unrecoverable Configurations. The idea of an unrecoverable configuration is
central to Culberson’s proof, and it will be central to our proof as well. We construct
our Sokoban instance so that if the puzzle is solvable, then the original configuration
may be restored from any solved state by reversing all the pushes. Then any push
which may not be reversed leads to an unrecoverable configuration. For example,
in the partial configuration in Figure 9-17(a), if block A is pushed left, it will be
irretrievably stuck next to block D; there is no way to position the pusher so as to
move it again. We may speak of such a move as being prohibited, or impossible, in
the sense that no solution to the puzzle can include such a move, even though it is
technically legal.

AND and OR Vertices. We construct NCL AND and OR vertex gadgets out of
partial Sokoban positions, in Figure 9-17. (The pusher is not shown.) The dark-
colored blocks in the figures, though unmovable, are not barriers; they are simply
blocks that cannot be moved by the pusher because of their configuration. The
yellow (light-colored) “trigger” blocks are the ones whose motion serves to satisfy the
vertex constraints. In each vertex, blocks A and B represent outward-directed edges;
block C represents an inward-directed edge. A and C switch state by moving left one
unit; B switches state by moving up one unit. We assume that the pusher may freely
move to any empty space surrounding a vertex. We also assume that block D in
Figure 9-17(a) may not reversibly move left more than one unit. Later, I show how
to arrange both of these conditions.

Lemma 38 The construction in Figure 9-17(a) satisfies the same constraints as an
NCL AND vertex, with A and B corresponding to the AND red edges, and C to the blue
edge.
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Figure 9-17: Sokoban gadgets.

Proof: We need to show that C may move left if and only if A first moves left, and B
first moves up. For this to happen, D must first move left, and E must first move up;
otherwise pushing A or B would lead to an unrecoverable configuration. Having first
pushed D and E out of the way, we may then push A left, B up, and C left. However,
if we push C left without first pushing A left and B up, then we will be left in an
unrecoverable configuration; there will be no way to get the pusher into the empty
space left of C to push it right again. (Here we use the fact that D can only move
left one unit.) �

Lemma 39 The construction in Figure 9-17(b) satisfies the same constraints as an
NCL OR vertex.

Proof: We need to show that C may move left if and only if A first moves left, or B
first moves up.

As before, D or E must first move out of the way to allow A or B to move. Then,
if A moves left, C may be pushed left; the gap opened up by moving A lets the pusher
get back in to restore C later. Similarly for B.

However, if we push C left without first pushing A left or B up, then, as in Lemma
38, we will be left in an unrecoverable configuration. �

Graphs. We have shown how to make And and Or vertices, but we must still
show how to connect them up into arbitrary planar graphs. The remaining gadgets
we shall need are illustrated in Figure 9-17(c).
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The basic idea is to connect the vertices together with alternating sequences of
blocks placed against a double-thick wall, as in the left of Figure 9-17(c). Observe
that for block A to move right, first D must move right, then C, then B, then finally
A, otherwise two blocks will wind up stuck together. Then, to move block D left
again, the reverse sequence must occur. Such movement sequences serve to propagate
activation from one vertex to the next.

We may switch the “parity” of such strings, by interposing an appropriate group
of six blocks: E must move right for D to, then D must move back left for E to. We
may turn corners: for F to move right, G must first move down. Finally, we may
“flip” a string over, to match a required orientation at the next vertex, or to allow a
turn in a desired direction: for H to move right, I must move right at least two spaces;
this requires that J first move right.

We satisfy the requirement that block D in Figure 9-17(a) may not reversibly move
left more than one unit by protecting the corresponding edge of every And with a
turn; observe that in Figure 9-17(c), block F may not reversibly move right more
than one unit. The flip gadget solves our one remaining problem: how to position the
pusher freely wherever it is needed. Observe that it is always possible for the pusher
to cross a string through a flip gadget. (After moving J right, we may actually move
I three spaces right.) If we simply place at least one flip along each wire, then the
pusher can get to any side of any vertex.

Theorem 40 Sokoban is PSPACE-complete, even if no barriers are allowed.

Proof: Reduction from planar Nondeterministic Constraint Logic. Given a planar
AND/OR graph, we build a Sokoban puzzle as described above, corresponding to
the initial graph configuration. We place a target at every position that would be
occupied by a block in the Sokoban configuration corresponding to the target graph
configuration. Since NCL is inherently reversible, and our construction emulates
NCL, then the solution configuration must also be reversible, as required for the
unrecoverable configuration constraints.

Sokoban is in PSPACE: a simple nondeterministic algorithm traverses the state
space, as in Theorem 12. �

9.7 Rush Hour

This section is joint work with Erik Demaine [46, 47].
In the puzzle Rush Hour, one is given a sliding-block configuration with the addi-

tional restriction that each block is constrained to move only horizontally or vertically
on a grid. The goal is to move a particular block to a particular location at the edge
of the grid. In the commercial version of the puzzle, the grid is 6× 6, the blocks are
all 1 × 2 or 1 × 3 (“cars” and “trucks”), and each block constraint direction is the
same as its lengthwise orientation.

Flake and Baum [24] showed that the generalized problem is PSPACE-complete,
by showing how to build a kind of reversible computer from Rush Hour gadgets that
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Figure 9-18: Rush Hour layout and vertex gadgets.

work like Constraint Logic AND and OR vertices, as well as a crossover gadget. (Their
construction was the basis for the development of Constraint Logic.) Tromp [83, 84]
strengthened their result by showing that Rush Hour is PSPACE-complete even if
the blocks are all 1× 2.

Here I give a simpler construction showing that Rush Hour is PSPACE-complete,
again using the traditional 1 × 2 and 1 × 3 blocks which must slide lengthwise. We
only need an AND and a protected OR (Section 5.2.3), which turns out to be easier to
build than OR; because of the generic crossover construction (Section 5.2.2), we don’t
need a crossover gadget. (We also don’t need the miscellaneous wiring gadgets used
in [24].)

9.7.1 PSPACE-completeness

Rush Hour Layout. We tile the grid with our vertex gadgets, as shown in Figure 9-
19(a). One block (T) is the target, which must be moved to the bottom left corner;
it is released when a particular port block slides into a vertex.
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Dark-colored blocks represent the “cell walls”, which unlike in our sliding-blocks
construction are not shared. They are arranged so that they may not move at all.
Yellow (light-colored) blocks are “trigger” blocks, whose motion serves to satisfy the
vertex constraints. Medium-gray blocks are fillers; some of them may move, but they
don’t disrupt the vertices’ operation.

As in the sliding-blocks construction (Section 9.2), edges are directed inward by
sliding blocks out of the vertex gadgets; edges are directed outward by sliding blocks
in. The layout ensures that no port block may ever slide out into an adjacent vertex;
this helps keep the cell walls fixed.

Lemma 41 The construction in Figure 9-19(b) satisfies the same constraints as an
NCL AND vertex, with A and B corresponding to the And red edges, and C to the
blue edge.

Proof: We need to show that C may move down if and only if A first moves left and
B first moves down.

Moving A left and B down allows D and E to slide down, freeing F, which releases
C. The filler blocks on the right ensure that F may only move left; thus, the inputs
are required to move to release the output. �

Lemma 42 The construction in Figure 9-19(c) satisfies the same constraints as an
NCL protected Or vertex, with A and B corresponding to the protected edges.

Proof: We need to show that C may move down if either A first moves left or B first
moves right.

If either A or B slides out, this allows D to slide out of the way of C, as required.
Note that we are using the protected Or property: if A were to move right, E down,
D right, C down, and B left, we could not then slide A left, even though the Or
property should allow this; E would keep A blocked. But in a protected Or, we are
guaranteed that A and B will not simultaneously be slid out. �

Graphs. We may use the same constructions here we used for sliding-blocks layouts:
5 × 5 blocks of Rush Hour vertex gadgets serve to build all the wiring necessary to
construct arbitrary planar graphs (Figure 9-11).

In the special case of arranging for the target block to reach its destination, this
will not quite suffice; however, we may direct the relevant signal to the bottom left of
the grid, and then remove the bottom two rows of vertices from the bottommost 5×5
blocks; these can have no effect on the graph. The resulting configuration, shown in
Figure 9-19(a), allows the target block to be released properly.

Theorem 43 Rush Hour is PSPACE-complete.

Proof: Reduction from planar Nondeterministic Constraint Logic with protected OR
vertices, by the construction described. The output port block of a particular vertex
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Figure 9-19: Triagonal Slide-Out gadgets.

may move if and only if the corresponding NCL graph edge may be reversed. We
direct this signal to the lower left of the grid, where it may release the target block.

Rush Hour is in PSPACE: a simple nondeterministic algorithm traverses the state
space, as in Theorem 12. �

9.7.2 Generalized Problem Bounds

We may consider the more general Constrained Sliding Block problem, where blocks
need not be 1× 2 or 1× 3, and may have a constraint direction independent of their
dimension. In this context, the existing Rush Hour results do not yet provide a tight
bound; the complexity of the problem for 1× 1 blocks has not been addressed.

Deciding whether a block may move at all is in P: e.g, we may do a breadth-first
search for a movable block that would ultimately enable the target block to move,
beginning with the blocks obstructing the target block. Since no block need ever
move more than once to free a dependent block, it is safe to terminate the search at
already-visited blocks.

Therefore, a straightforward application of our technique cannot show this prob-
lem hard; however, the complexity of moving a given block to a given position is not
obvious.

Tromp and Cilibrasi [84] provide some empirical indications that minimum-length
solutions for 1× 1 Rush Hour may grow exponentially with puzzle size.

9.8 Triangular Rush Hour

Rush Hour has also inspired a triangular variant, called Triagonal Slide-Out, playable
as an online applet [38]. The rules are the same as for Rush Hour (Section 9.7),
except that the game is played on a triangular, rather than square, grid. 40 puzzles
are available on the website.

Nondeterministic Constraint Logic gadgets showing Triagonal Slide-Out PSPACE-
hard are shown in Figures 9-19 and 9-20. A and B cars represent inactive (outward-
directed) input edges; C represents an inactive (inward-directed) output edge. I omit
the proof of correctness.

103



Figure 9-20: How the gadgets are connected together.

One interesting feature of this triangular variant is that while it seems very difficult
to build gadgets showing 1 × 1 Rush Hour hard, it might be much easier to show
Triagonal Slide-Out with unit triangular cars hard, because for a unit triangular car
to slide one unit, two triangular spaces must be empty: the one it is moving into, and
the intervening space with the opposite parity.

9.9 Hinged Polygon Dissections

This section is joint work with Erik Demaine and Greg Frederickson [42].
Properly speaking, this section is not about a generalized combinatorial game,

because the problems are geometrical and continuous. Nonetheless, it is a further
application of Nondeterministic Constraint Logic. I will simply define the problems
and state the results here; I refer the reader to [42] for the detailed reductions.

A hinged dissection of a polygon is a dissection with a set of hinges connecting
the pieces, so that they may kinematically reach a variety of configurations in the
plane. Hinged polygon dissections have been a staple of recreational mathematics for
at least the last century. One well known dissection is shown in Figure 9-21; this is
Dudeney’s [19] hinged dissection of a triangle to a square. Recently there has been
an entire book [28] dedicated to hinged dissections.

The most basic problem is, given two configurations of a hinged polygon dissection,
is it kinematically possible to go from one to the other? This problem and others are
formalized as follows.

Terminology. We define a piece as an instance of a polygon. A dissection is a set
of pieces. A configuration is an embedding of a dissection in the plane, such that
only the boundaries of pieces may overlap. The shape of a configuration is the set of
points, including the boundaries of pieces, that it occupies.
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Figure 9-21: Dudeney’s hinged triangle-to-square dissection.

A hinge point of a piece is a given point on the boundary of the piece. A hinge for
a set of pieces is a set of hinge points, one for each piece in the set. Given a dissection
and a set of hinges, two pieces are hinge-connected if either they share a hinge or
there is another piece in the set to which both are hinge-connected. A hinging of a
dissection is a set of hinges such that all pieces in the dissection are hinge-connected.

A hinged configuration of a dissection and a hinging is a configuration that, for each
hinge, collocates all hinge points of that hinge. A kinematic solution of a dissection,
a hinging, and two hinged configurations is a continuous path from one configuration
to the other through the space of hinged configurations. A hinged dissection of two
polygons is a dissection and a hinging such that there are hinged configurations of
the same shape as the polygons and there is a kinematic solution for the dissection,
hinging, and hinged configurations. A hinged dissection of more than two polygons
is similarly defined.

Decision questions. All of the hardness results are for problems of the form “is
there a kinematic solution to...”; the difference is what we’re given in each case. We
are always given a dissection. We may or may not be given a hinging. We may be
given two configurations, one configuration and one shape, or two shapes. The shapes
may or may not be required to be convex. The pieces may or may not be required to
be convex. We will always require that the configurations form polygonal shapes.

For each question, all of the information we are not given will form the desired
answer. For example, if we are given a dissection, a hinging, and two shapes, the
question is whether there exist satisfying configurations A and B forming the shapes,
and a kinematic solution S from A to B.

The brief statement of our results is that if we are given a hinging, then all
such questions are PSPACE-hard; if we are not given a hinging, but are given two
configurations, then determining whether there is a hinging admitting a kinematic
solution is PSPACE-hard.

One obvious question we do not address is whether, given polygons A and B, there
is a hinged dissection of {A,B}. But it is an open question whether such a solution
exists for any pair of equal-area polygons [20]; thus, it is conceivable that the answer
is always yes. Therefore, we can say nothing about the complexity of this decision
question.
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9.10 Additional Results

In this section I mention some additional results, for which I was not the primary
contributor.

9.10.1 Push-2F

This section is joint work with Erik Demaine and Michael Hoffman [18].
Push-2F is a kind of pushing-block puzzle similar to the classic Sokoban. The

puzzle consists of unit square blocks on an integer lattice; some of the blocks are
movable. A mobile “pusher” block may move horizontally and vertically in order
to reach a specified goal position, and may push up to two blocks at once. Unlike
Sokoban, the goal is merely to get the pusher to a target location. This simpler goal
makes constructing gadgets more difficult; there is less relevant state to work with.

We give a reduction from Nondeterministic Constraint Logic showing Push-2F is
PSPACE-complete.

9.10.2 Dyson Telescope Game

This section is joint work with Erik Demaine, Martin Demaine, Rudolf Fleischer,
Timo von Oertzen [15]. It is included as an example of a problem which seemingly
should have yielded to an attack with Nondeterministic Constraint Logic, but did
not. It was eventually proven PSPACE-complete by a fairly complex reduction from
Quantified Boolean Formulas.

The Dyson Telescope game is a computer game, originally developed by the Dyson
company to advertise a vacuum cleaner called the “Telescope”.

The goal of the game is to maneuver a ball on a square grid from a starting
position to a goal position, by extending and retracting telescopes on the grid. In
addition to the ball, the grid contains a number of telescopes, each pointing in a given
direction (up, right, down, left), and able to extend a given number of spaces.

Each telescope can be in either an extended or a retracted state. Initially, all
telescopes are retracted. A move is made by changing the state of a telescope. If
a telescope extends, it will expand in its direction until it reaches its full length, or
until it is blocked by another telescope. If the telescope extends through a space the
ball occupies, it pushes the ball to the next space, unless this next space is occupied.
In that case, the telescope is also considered blocked and will stop. If a telescope
retracts, it retracts all the way until it occupies only its base space. If the telescope
end touches the ball when retracting, it pulls the ball with it.

We prove that it is PSPACE-complete to determine whether a given problem
instance has a series of telescope movements that moves the ball from a starting
position to a goal position.
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Chapter 10

Two-Player Games

In this chapter I present three new results for two-player games: Amazons, Konane,
and Cross Purposes. Amazons is a relatively new game, less than 20 years old, but
it has received a considerable amount of study. Konane is a very old game, hundreds
of years old at least; it has received some study, but not as much as Amazons. And
Cross Purposes is a brand new game; I believe this thesis is the first work to address
the problem.

10.1 Amazons

Amazons was invented by Walter Zamkauskas in 1988. Both human and computer
opponents are available for Internet play, and there have been several tournaments,
both for humans and for computers.

Amazons has several properties which make it interesting for theoretical study.
Like Go, its endgames naturally separate into independent subgames; these have
been studied using combinatorial game theory [3, 76]. Amazons has a very large
number of moves available from a typical position, even more than in Go. This makes
straightforward search algorithms impractical for computer play. As a result, com-
puter programs need to incorporate more high-level knowledge of Amazons strategy
[56, 54].

Buro [6] showed that playing an Amazons endgame optimally is NP-complete,
leaving the complexity of the general game open.1 I show that generalized Ama-
zons is PSPACE-complete [44, 45], by a reduction from bounded planar Two-Player
Constraint Logic (2CL).

1Furtak, Kiyomi, Uno, and Buro independently showed Amazons to be PSPACE-complete at the
same time as the author [30]. Curiously, [30] already contains two different PSPACE-completeness
proofs: one reduces from Hex, and the other from Generalized Geography. The paper is the result
of the collaboration of two groups which had also solved the problem independently, then discovered
each other. Thus, after remaining an open problem for many years, the complexity of Amazons was
solved independently and virtually simultaneously by three different groups, using three completely
different approaches, each of which leverages different aspects of the game to construct gadgets.
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Figure 10-1: Amazons start position and typical endgame position.

Amazons Rules. Amazons is normally played on a 10 × 10 board. The standard
starting position, and a typical endgame position, are shown in Figure 10-1. (I indicate
burned squares by removing them from the figures, rather than marking them with
tokens.) Each player has four amazons, which are immortal chess queens. White
plays first, and play alternates. On each turn a player must first move an amazon,
like a chess queen, and then fire an arrow from that amazon. The arrow also moves
like a chess queen. The square that the arrow lands on is burned off the board; no
amazon or arrow may move onto or across a burned square. There is no capturing.
The first player who cannot move loses.

Amazons is a game of mobility and control, like Chess, and of territory, like
Go. The strategy involves constraining the mobility of the opponent’s amazons, and
attempting to secure large isolated areas for one’s own amazons. In the endgame
shown in Figure 10-1, Black has access to 23 spaces, and with proper play can make
23 moves; White can also make 23 moves. Thus from this position, the player to
move will lose.

10.1.1 PSPACE-completeness

I reduce from the alternate vertex set for planar bounded 2CL, in Section 6.1.3. This
requires AND, OR, FANOUT, CHOICE, and variable gadgets.

Basic Wiring. Signals propagate along wires, which will be necessary to connect
the vertex gadets. Figure 10-2(a) shows the construction of a wire. Suppose that
amazon A is able to move down one square and shoot down. This enables amazon B
to likewise move down one and shoot down; C may now do the same. This is the basic
method of signal propagation. When an amazon moves backward (in the direction of
input, away from the direction of output) and shoots backward, I will say that it has
retreated.

Figure 10-2(a) illustrates two additional useful features. After C retreats, D may
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Figure 10-2: Amazons wiring gadgets.

retreat, freeing up E. The result is that the position of the wire has been shifted by
one in the horizontal direction. Also, no matter how much space is freed up feeding
into the wire, D and E may still only retreat one square, because D is forced to shoot
into the space vacated by C.

Figure 10-2(b) shows how to turn corners. Suppose A, then B may retreat. Then
C may retreat, shooting up and left; D may then retreat. This gadget also has another
useful property: signals may only flow through it in one direction. Suppose D has
moved and shot right. C may then move down and right, and shoot right. B may
then move up and right, but it can only shoot into the square it just vacated. Thus,
A is not able to move up and shoot up.

By combining the horizontal parity-shifting in Figure 10-2(a) with turns, we may
direct a signal anywhere we wish. Using the unidirectional and flow-limiting proper-
ties of these gadgets, we can ensure that signals may never back up into outputs, and
that inputs may never retreat more than a single space.

Variable, AND, OR, CHOICE. The variable gadget is shown in Figure 10-3(a). If
White moves first in a variable, he can move A down, and shoot down, allowing B to
later retreat. If Black moves first, he can move up and shoot up, preventing B from
ever retreating.

The AND and OR gadgets are shown in Figures 10-3(b) and 10-3(c). In each,
A and B are the inputs, and D is the output. Note that, because the inputs are
protected with flow limiters (Figure 10-2(a)), no input may retreat more than one
square; otherwise the AND might incorrectly activate.

In an AND gadget, no amazon may usefully move until at least one input retreats.
If B retreats, then a space is opened up, but C is unable to retreat there; similarly
if just A retreats. But if both inputs retreat, then C may move down and left, and
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Figure 10-4: Amazons FANOUT gadget.

shoot down and right, allowing D to retreat.
Similarly, in an OR gadget, amazon D may retreat if and only if either A or B first

retreats.
The existing OR gadget also suffices as a CHOICE gadget, if we reinterpret the

bottom input as an output: if if B retreats, then either C or A, but not both, may
retreat.

FANOUT. Implementing a FANOUT in Amazons is a bit trickier. The gadget shown
in Figure 10-4 accomplishes this. A is the input; G and H are the outputs. First,
observe that until A retreats, there are no useful moves to be made. C, D, and F may
not move without shooting back into the square they left. A, B, and E may move one
unit and shoot two, but nothing is accomplished by this. But if A retreats, then the
following sequence is enabled: B down and right, shoot down; C down and left two,
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shoot down and left; D up and left, shoot down and right three; E down two, shoot
down and left; F down and left, shoot left. This frees up space for G and H to retreat,
as required.

Winning. We will have an AND gadget whose output may be activated only if the
white target edge in the 2CL game can be reversed; we need to arrange for White
to win if he can activate this AND. We feed this output signal into a victory gadget,
shown in Figure 10-5. There are two large rooms available. The sizes are equal, and
such that if White can claim both of them, he will win, but if he can claim only one
of them, then Black will win; we give Black an additional room with a single Amazon
in it with enough moves to ensure this property.

If B moves before A has retreated, then it must shoot so as to block access to
one room or the other; it may then enter and claim the accessible room. If A first
retreats, then B may move up and left, and shoot down and right two, leaving the
way clear to enter and claim the left room, then back out and enter and claim the
right room.

Theorem 44 Amazons is PSPACE-complete.

Proof: Given a bounded planar 2CL graph of the form described in Section 6.1.3,
we construct a corresponding Amazons position, as described above. The reduction
may be done in polynomial time: if there are k variables and l clauses, then there
need be no more than (kl)2 crossover gadgets to connect each variable to each clause
it occurs in; all other aspects of the reduction are equally obviously polynomial.

As described, White can win the Amazons game if and only if he can win the
corresponding 2CL game, so Amazons is PSPACE-hard. Since the game must end
after a polynomial number of moves, it is possible to perform a search of all possible
move sequences using polynomial space, thus determining the winner. Therefore,
Amazons is also in PSPACE, and thus PSPACE-complete. �

10.2 Konane

Konane is an ancient Hawaiian game, with a long history. Captain Cook documented
the game in 1778, noting that at the time it was played on a 14 × 17 board. Other
sizes were also used, ranging from 8×8 to 13×20. The game was usually played with
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pieces of basalt and coral, on stone boards with indentations to hold the pieces. King
Kamehameha the Great was said to be an expert player; the game was also popular
among all classes of Hawaiians.

More recently, Konane has been the subject of combinatorial game-theoretic anal-
ysis [21, 7]. Like Amazons, its endgames break into independent games whose values
may be computed and summed. However, as of this writing, even 1× n Konane has
not been completely solved, so it is no surprise that complicated positions can arise.
I show the general problem to be PSPACE-complete.

Konane Rules. Konane is played on a rectangular board, which is initially filled
with black and white stones in a checkerboard pattern. To begin the game, two
adjacent stones in the middle of the board or in a corner are removed. Then, the
players take turns making moves. Moves are made as in peg solitaire—indeed, Konane
may be thought of as a kind of two-player peg solitaire. A player moves a stone of
his color by jumping it over a horizontally or vertically adjacent stone of the opposite
color, into an empty space. Stones so jumped are captured, and removed from play.
A stone may make multiple successive jumps in a single move, as long as they are in
a straight line; no turns are allowed within a single move. The first player unable to
move wins.

10.2.1 PSPACE-completeness

The Konane reduction is similar to the Amazons reduction; the Konane gadgets are
somewhat simpler. As before, the reduction is from the alternate vertex set for planar
bounded 2CL, in Section 6.1.3. Therefore, we need AND, OR, FANOUT, CHOICE, and
variable gadgets.

Also as in the Amazons reduction, if White can win the Constraint Logic game
then he can reach a large supply of extra moves, enabling him to win. Black is
supplied with enough extra moves of his own to win otherwise.

Basic Wiring. Wiring is needed to connect the vertex gadgets together. A Konane
wire is simply a string of alternating black stones and empty spaces. By capturing the
black stones, a white stone traverses the wire. Note that in the Amazons reduction,
signals propagate by Amazons moving backwards; in Konane, signals propagate by
stones moving forwards, capturing opposing stones.

Turns are enabled by adjoining wires as shown in Figure 10-6(a); at the end of
one wire, the white stone comes to rest at the beginning of another, protected from
capture by being interposed between two black stones. If the white stone tried to
traverse the turn in the other direction, it would not be so protected, and Black could
capture it. Thus, as in the Amazons reduction, the turn is also a one-way device,
and we assume that gadget entrances and exits are protected by turns to ensure that
signals can only flow in the proper directions.
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Figure 10-6: Konane wiring gadgets.

Conditional Gadget. A single gadget serves the purpose of AND, FANOUT, and
positional parity adjustment. It has two input/output pathways, with the property
that the second one may only be used if the first one has already been used. This
conditional gadget is shown in Figure 10-6(b); the individual uses are outlined below.

Observe that a white stone arriving at input 1 may only leave via output 1, and
likewise for input 2 and output 2. However, if White attempts to use pathway 2
before pathway 1 has been used, Black can capture him in the middle of the turn.
But if pathway 1 has been used, the stone Black needs to make this capture is no
longer there, and pathway 2 opens up.

FANOUT, Parity. If we place a white stone within the wire feeding input 2 of a
conditional gadget, then both outputs may activate if input 1 activates. This splits
the signal arriving at input 1.

If we don’t use output 1, then this FANOUT configuration also serves to propagate
a signal from input 1 to output 2, with altered positional parity. This enables us to
match signal parities as needed at the gadget inputs and outputs.

Variable, AND, OR, CHOICE. The variable gadget consists of a white stone at
the end of a wire, as in Figure 10-7(a). If White moves first in a variable, he can
traverse the wire, landing safely at an adjoining turn. If Black moves first, he can
capture the white stone and prevent White from ever traversing the wire.

The AND gadget is a conditional gadget with output 1 unused. By the properties
of the conditional gadget, a white stone may exit output 2 only if white stones have
arrived at both inputs. The OR gadget is shown in Figure 10-7(b). The inputs are
on the bottom and left; the output is on the top. Clearly, a white stone arriving via
either input may leave via the output.
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Figure 10-7: Konane variable, OR, and CHOICE gadgets.

As was the case with Amazons, the OR gadget also suffices to implement CHOICE,
if we relabel the bottom input as an output: a white stone arriving along the left
input may exit via either the top or the bottom.

Winning. We will have an AND gadget whose output may be activated just when
White can win the given Constraint Logic game. We feed this signal into a long series
of turns, providing White with enough extra moves to win if he can reach them. Black
is provided with his own series of turns, made of white wires, with a single black stone
protected at the end of one of them, enabling Black to win if White cannot activate
the final AND.

Theorem 45 Konane is PSPACE-complete.

Proof: Given a bounded planar 2CL graph of the form described in Section 6.1.3, we
construct a corresponding Konane position, as described above. As in the Amazons
construction, the reduction is clearly polynomial. Also as in Amazons, White may
reach his supply of extra moves just when he can win the Constraint Logic game.

Therefore, a player may win the Konane game if and only if he may win the cor-
responding Constraint Logic game, and Konane is PSPACE-hard. As before, Konane
is clearly also in PSPACE, and therefore PSPACE-complete. �

10.3 Cross Purposes

Cross Purposes was invented by Michael Albert, and named by Richard Guy, at the
Games at Dalhousie III workshop, in 2004. It was introduced to the author by Michael
Albert at the 2005 BIRS Combinatorial Game Theory Workshop. Cross Purposes is
a kind of two-player version of the popular puzzle Tipover, which is NP-complete
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Figure 10-8: An initial Cross Purposes configuration, and two moves.

(Section 9.1; [41]). From the perspective of Combinatorial Game Theory [4, 9], in
which game positions have values that are a generalization of numbers, Cross Purposes
is fascinating because its positions can easily represent many interesting combinatorial
game values.

Cross Purposes Rules. Cross Purposes is played on the intersections of a Go
board, with black and white stones. In the initial configuration, there are some black
stones already on the board. A move consists of replacing a black stone with a pair of
white stones, placed in a row either directly above, below, to the left, or to the right
of the black stone; the spaces so occupied must be vacant for the move to be made.
See Figure 10-8. The idea is that a stack of crates, represented by a black stone, has
been tipped over to lie flat. Using this idea, we describe a move as tipping a black
stone in a given direction.

The players are called Vertical and Horizontal. Vertical moves first, and play
alternates. Vertical may only move vertically, up or down; Horizontal may only move
horizontally, left or right. All the black stones are available to each player to be
tipped, subject to the availability of empty space. The first player unable to move
loses.

I give a reduction from planar Bounded Two-Player Constraint Logic showing
that Cross-Purposese is PSPACE-complete.

10.3.1 PSPACE-completeness

The Cross Purposes construction largely follows those used for Amazons and Konane.
To reduce from Bounded Two-Player Constraint Logic, we need AND, OR, FANOUT,
CHOICE, and variable gadgets, and a way to wire them together into arbitrary graphs.

One new challenge in constructing the gadgets is that each player may only directly
move either horizontally or vertically, but not both. Yet, for formula game gadgets
to work, one player must be able to direct signals two dimensionally. We solve this
problem by restricting the moves of Horizontal so that, after the variable selection
phase, his possible moves are constrained so as to force him to cooperate in Vertical’s
signal propagation. (We assume that the number of variables is even, so that it will
be Vertical’s move after the variable selection phase.) An additional challenge is that
a single move can only empty a single square, enabling at most one more move to be
made, so it is not obviously possible to split a signal. Again, we use the interaction
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Figure 10-9: Cross Purposes wiring.

of the two players to solve this problem.
We do not need a supply of extra moves at the end, as used for Amazons and Ko-

nane; instead, if Vertical can win the formula game, and correspondingly activate the
final AND gadget, then Horizontal will have no move available, and lose. Otherwise,
Vertical will run out of moves first, and lose.

Basic Wiring. We need wiring gadgets to connect the vertex gadgets together
into arbitrary graphs. Signals flow diagonally, within surrounding corridors of white
stones. A wire is shown in Figure 10-9(a). Suppose that Vertical tips stone A down,
and suppose that Horizontal has no other moves available on the board. Then his
only move is to tip B left. This then enables Vertical to tip C down. The result of
this sequence is shown in Figure 10-9(b).

The turn gadget is shown in Figure 10-9(c); its operation is self-evident. Also
shown in Figure 10-9(c) is a free input for Vertical: he may begin to activate this wire
at any time. We will need free inputs in a couple of later gadgets.

Conditional Gadget. As with Konane (Section 10.2), a single conditional gadget,
shown in Figure 10-10, serves the role of FANOUT, parity adjustment, and AND. A
signal arriving along input 1 may only leave via output 1, and likewise for input 2 and
output 2; these pathways are ordinary turns embedded in the larger gadget. However,
if Vertical attempts to use pathway 2 before pathway 1 has been used, then after he
tips stone A down, Horizontal can tip stone B left, and Vertical will then have no local
move. But if pathway 1 has already been used, stone B is blocked from this move by
the white stones left behind by tipping C down, and Horizontal has no choice but to
tip stone D right, allowing Vertical to continue propagating the signal along pathway
2.
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Figure 10-10: Cross Purposes conditional gadget.

FANOUT, Parity, AND. As with Konane, if we give Vertical a free input to the
wire feeding input 2 of a conditional gadget, then both outputs may activate if input 1
activates. This splits the signal arriving at input 1.

If we don’t use output 1, then this FANOUT configuration also serves to propagate
a signal from input 1 to output 2, with altered positional parity. This enables us
to match signal parities as needed at the gadget inputs and outputs. We must be
careful with not using outputs, since we need to ensure that Vertical has no free moves
anywhere in the construction; unlike in the constructions for Amazons and Konane,
in Cross Purposes, there is no extra pool of moves at the end, and every available
move within the layout counts. However, blocking an output is easy to arrange; we
just terminate the wire so that Horizontal has the last move in it. Then Vertical gains
nothing by using that output.

The And gadget is a conditional gadget with output 1 unused. By the properties
of the conditional gadget, output 2 may activate only if both inputs have activated.

Variable, OR, CHOICE. The variable gadget is shown in Figure 10-11(a). If Ver-
tical moves first in a variable, he can begin to propagate a signal along the output
wire. If Horizontal moves first, he will tip the bottom stone to block Vertical from
activating the signal.

The OR gadget is shown in Figure 10-11(b). The inputs are on the bottom; the
output is on the top. Whether Vertical activates the left or the right input, Horizontal
will be forced to tip stone A either left or right, allowing Vertical to activate the
output. Here we must again be careful with available moves. Suppose Vertical has
activated the left input, and the output, of an OR. Now what happens if he later
activates the right input? After he tips stone B down, Horizontal will have no move;
he will already have tipped stone A left. This would give Vertical the last move even
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Figure 10-11: Cross Purposes variable, OR, and CHOICE gadgets.
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Figure 10-12: Protected Or.

if he were unable to activate the final AND gadget; therefore, we must prevent this
from happening. We will show how to do so after describing the CHOICE gadget.

As with Amazons and Konane, the existing OR gadget suffices to implement
CHOICE, if we reinterpret it. This time the gadget must be rotated. The rotated
version is shown in Figure 10-11(c). The input is on the left, and the outputs are on
the right. When Vertical activates the input, and tips stone A down, Horizontal must
tip stone B left. Vertical may then choose to propagate the signal to either the top
or the bottom output; either choice blocks the other.

Protecting the OR Inputs. As mentioned above, we must ensure that only one
input of an OR is ever able to activate, to prevent giving Vertical extra moves. We
do so with the graph shown in Figure 10-12. Vertical is given a free input to a choice
gadget, whose output combines with one of the two OR input signals in an AND gad-
get. Since only one choice output can activate, only one And output, and thus one
OR input, can activate. Inspection of the relevant gadgets shows that Vertical has
no extra moves in this construction; for every move he can make, Horizontal has a
response. (This construction is analogous to the protected OR used in Nondeterminis-
tic Constraint Logic (Section 5.2.3), and should logically be added to the Two-Player
Constraint Logic formalism.)
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Winning. We will have an AND gadget whose output may be activated only if
the White player can win the corresponding Constraint Logic game. We terminate
its output wire with Vertical having the final move. If he can reach this output,
Horizontal will have no moves left, and lose. If he cannot, then since Horizontal has a
move in reply to every Vertical move within all of the gadgets, Vertical will eventually
run out of moves, and lose.

Theorem 46 Cross Purposes is PSPACE-complete.

Proof: Given a planar Bounded Two-Player Constraint Logic graph, we construct a
corresponding Cross Purposes position, as described above. The reduction is clearly
polynomial. Vertical may activate a particular And output, and thus gain the last
move, just when he can win the Constraint Logic game.

Therefore, and Cross Purposes is PSPACE-hard. As with Amazons and Konane,
Cross Purposes is clearly also in PSPACE, and therefore PSPACE-complete. �
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Chapter 11

Open Problems

In this chapter I list some games whose complexity appears to be unknown, or to
have some interesting aspect which is open. In general I do not formally define each
game.

Lunar Lockout. Lunar LockoutTM is a puzzle made by ThinkFun. It is a kind
of sliding-block puzzle, with only 1 × 1 blocks (robots). However, the robots, when
slid, are required to slide until they reach another block, where they stop. A robot
cannot slide if there is not another one in its path to stop it. The goal is to get a
specified robot a to specified place. This is an unbounded puzzle, and so potentially
PSPACE-complete. But the fact that the blocks are 1 × 1 makes it very difficult to
build gadgets, as is also the case with 1×1 Rush Hour, below. However, there is some
hope for a reduction from Nondeterministic Constraint Logic to Lunar Lockout; the
challenges with 1× 1 Rush Hour appear to be more severe.

There is a paper by Hartline and Libeskind-Hadas [39] purporting to show that
Lunar Lockout is PSPACE-complete. However, the authors changed the nature of
the game dramatically by adding the notion of fixed blocks. These are not in the
actual game, and not part of the natural generalization, which would just be to play
on an n× n board. The result is valid for the problem as defined, which is worthy of
study, but it is misleading to refer to it as Lunar Lockout. It is also much easier to
construct gadgets when fixed blocks are added; a big part of the challenge in Lunar
Lockout is making any sort of structure at all which is stable.

1× 1 Rush Hour. In Section 9.7, I raised the problem of Rush Hour with all the
blocks 1× 1. There is some empirical evidence due to Tromp and Cilibrasi [84] that
the minimum solution length for these puzzles grows exponentially with the puzzle
size, so it looks as if the puzzle could be hard. However, merely moving a single car
is in P, so a direct application of Nondeterministic Constraint Logic will not work.
This problem seems to straddle the line between easy and hard problems, and as a
result is very tantalizing.

Subway Shuffle. Subway Shuffle is a generalization of 1 × 1 Rush Hour along a
different dimension. It is played on a graph with colored edges (subway lines) and
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colored tokens (subway cars) occupying some of the vertices. A token may slide from
one vertex to another if the destination is empty, and the edge color matches the
token color. The challenge is again to get a given token to a given location. As
with 1× 1 Rush Hour, it is in P to merely move a token, so again a straightforward
application of Nondeterministic Constraint Logic will not work.

The extra freedom available in constructing configurations, due to the relaxation
of the grid graph constraint, and the addition of arbitrarily many colors, ought to
make it easier to build some sort of gadget in Subway Shuffle than it is in 1× 1 Rush
Hour. Therefore, it is even more frustrating and tantalizing that no hardness proof
has been found.

Phutball. Phutball [4] is a game played on a go board, with one black stone, the
ball, initially placed on the center of the board. On his turn, a player may either
place a white stone, or make a series of jumps. A jump is made by jumping the ball
over a contiguous line of stones, horizontally, vertically, or diagonally, into an empty
space. The white stones jumped are removed before the next jump. A player may
make as many jumps as he wishes on a single turn. The game is won by jumping
the ball onto or over the goal line. Left’s goal line is the right edge of the board, and
Right’s is the left edge of the board.

This game has the unusual property that it is NP-complete merely to determine
whether there is a single-move win [16]! The complexity of determining the winner
from an arbitrary position is unknown. As an unbounded, two-player game of perfect
information, it could be as hard as EXPTIME-complete. But the nature of the game
makes it extremely difficult to construct any sort of stable gadget.

Retrograde Chess. Given two configurations of chess pieces in a generalized n×
n board, is it possible to play from one configuration to the other if the players
cooperate? This problem is known to be NP-hard [5]; is it PSPACE-complete?

Dots and Boxes. This well-known game has an open complexity. A generalized
version is known to be NP-hard [4], but as a two-player, bounded game, by all rights
it should be PSPACE-complete.

Minesweeper. Minesweeper is a computer game in which the player attempts to
map out a square grid containing some mines. Clicking on an unexposed square
exposes it, and loses the game if it contains a mine; otherwise, the square displays a
number from zero to eight indicating how many of the surrounding squares contain
mines. By clever reasoning, a player tries to deduce which unexposed squares are
safe, and plays on them to expose them and gain information.

Richard Kaye showed that Minsweeper is NP-complete in 2000 [50]. This result
drew quite a lot of attention, as it tangibly connected theoretical computer science
to a game everybody had played.

However, Minesweeper is not NP-complete!
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Of course, I have to clarify that statement. What I mean is, the “natural decision
question” about Minesweeper is not NP-complete. Kaye asked a different question,
and showed that it was NP-complete. In this thesis, and more generally, I argue,
the natural decision question for any puzzle is, “from a given (legal) position, is
the puzzle solvable?”. But Kaye asked instead, “given a position (partial set of
exposed squares), is there a consistent placement for the mines?” This is of course
an interesting question as well, but by saying that a given puzzle is NP-complete, the
decision question ought to be whether the puzzle is solvable.

I have a result that Minesweeper is actually coNP-hard, and if we can assume
that we are given a valid (consistent) configuration in the decision question, then it
is coNP-complete. Unfortunately I did not have time to finish writing up this result
for this thesis; it will appear later. The reduction is from TAUTOLOGY.

Another interesting decision question about Minesweeper is, from a given position,
is the probability of winning by careful play greater than p? This seems like it could
conceivably be PSPACE-complete.

Go. Go with Japanese rules has been “solved”, from a complexity standpoint, for 23
years: it is EXPTIME-complete [68]. (Newer results have shown restricted configura-
tions PSPACE-hard [12, 86].) It is rather remarkable, therefore, that the complexity
of Go with the addition of the superko rule, as used for example in China and in the
USA, is still unresolved. In fact, both the upper and the lower bounds of Robson’s
EXPTIME-compleness proof fail when superko is added! All that is known is that it
is PSPACE-hard [53], and in EXPSPACE [69].

Robson, and others who have studied the problem (notably John Tromp), are
evidently of the opinion that go with superko is probably in EXPTIME. However, as
an unbounded, no-repeat, two-player game, it “ought” to be EXPSPACE-complete.
But this may be a case where there is effectively some special structure in the game
that makes it easier. The EXPTIME-hardness result builds variable gadgets out of
sets of kos (basic repeating patterns). If all dynamic state is to be encoded in kos,
then the problem is in fact in EXPTIME, because it is an instance of Generalized
Geography on an undirected graph, which is polynomial in the input size. The input
size is exponential in this case; it is the space of possible board configurations.

But it may be possible to build gadgets that are not merely sets of kos. It is very
difficult to do so; Go is “almost” in PSPACE, because in normal play moves are not
reversible, and it is only through capture that there is the possibility of the repeating
patterns necessary for a harder complexity.

Bridge. A hand of bridge is a bounded team game with private information. There-
fore, determining the winner could potentially be as hard as NEXPTIME. A reduction
from bounded Team Private Constraint Logic would appear to be difficult, for two
reasons. First, in bounded TPCL, the private information resides in the moves se-
lected; the initial state is known. But in Bridge, the private information resides in
the initial disposition of the cards. Second, there is no natural geometric structure
to exploit in Bridge, as there is in a typical board game.
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Rengo Kriegspiel. This is a kind of team, blindfold go. Four players sit facing
away from each other, two Black, two White. A referee sees the actual game board
in the center. The players take turns attempting to make moves. Only the referee
sees the attempted moves. The referee announces when a move is illegal, or when
the team’s own stone is already on the intersection, and when captures are made.
(He also removes captured stones from all players’ boards.) Players gradually gain
knowledge of the position as the game progresses and the board fills up.

This is an unbounded team game with private information, and therefore could
potentially be undecidable.1 It would appear to be extremely difficult to engineer a
reduction from Team Private Constraint Logic to Rengo Kriegspiel, showing unde-
cidability, but perhaps it is possible.

1Technically, Rengo Kriegspiel as played in the USA should be assumed to use a superko rule by
default. This prevents the global pattern from ever repeating, and thus bounds the length of the
game, making it decidable. However, we can consider the game without superko.
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Chapter 12

Summary of Part II

In Part II of this thesis I have shown very many games and puzzles hard. Some of the
proofs were difficult, especially as the proof technique was being developed, but some
were very easy, once the proof technique was in place. For example, it took about
half an hour to show Konane PSPACE-complete. Yet, in spite of a fair amount of
study by combinatorial game theorists, and an important cultural history, no prior
complexity results about Konane were known.

It is this kind of result that demonstrates the utility of Constraint Logic. A very
large part of the work of reductions has already been done, and often one can simply
select the kind of Constraint Logic appropriate for the problem at hand, and the
gadgets will almost make themselves.

Most individual game complexity results are not particularly important. There
are no game results in this thesis that are surprising, except for the undecidable
version of Constraint Logic, and that is an abstract game. But taken as a whole, they
demonstrate that the essential nature of games is captured effectively by the notion of
Constraint Logic. Furthermore, they lend credence to the idea that a game is always
as hard as it “can” be: a bounded two-player game (without any trivial simplifying
structure) ought to be PSPACE-complete, for example. Every additional result adds
weight to this hypothesis.
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Chapter 13

Conclusions

In this section I summarize the contributions I have made in this thesis, and sketch
some directions for future research.

13.1 Contributions

In this thesis I have made four important contributions.
First, I have demonstrated a simple, uniform game framework, Constraint Logic,

which concisely captures the concept of generalized combinatorial game. A Constraint
Logic game consists simply of a sequence of edge reversals in a directed graph, subject
to simple constraints. There are natural versions of Constraint Logic for zero-, one-,
two-player, and team games, both in bounded- and unbounded-length versions.

Second, I have demonstrated that each of these kinds of Constraint Logic game cor-
responds to a distinct complexity class, or equivalently, to a distinct kind of resource-
bounded computation, ranging from P-complete bounded, zero-player games, through
PSPACE-complete unbounded puzzles, and up to undecidable (r.e.-complete) team
games. This correspondence is proven by means of seven distinct reductions from
Boolean formula games complete for the appropriate class to the corresponding Con-
straint Logic game. For the undecidable team games, I also demonstrated that the
existing Boolean formula game in the literature was in fact decidable, and indepen-
dently derived a formula game which is actually undecidable.

Third, I have shown that the Constraint Logic game framework makes hardness
proofs for actual games and puzzles significantly easier. I have provided very many
new proofs, mostly for problems which were either known to be open or previously
unaddressed. In a few cases I rederived much simpler hardness proofs than the ones in
the literature for games already known to be hard, thus explicitly demonstrating how
much more concise and compact reductions from Constraint Logic can be, compared
to conventional techniques (such as reducing directly from Satisfiability, Quantified
Boolean Formulas, etc.) One key feature of Constraint Logic games that often makes
such reductions straightforward is that the hardness results for Constraint Logic apply
even when the graphs are planar, across the spectrum of Constraint Logic games (with
the single exception of bounded, zero-player Constraint Logic). This means that there
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is no need to build “crossover” gadgets—often the most difficult component—in the
actual game and puzzle reductions.

Finally, I have made more manifest the deep connection between the notions
of game and of computation. Games are a natural generalization of conventional,
deterministic computation. But a key difference from ordinary computation is that
in a (generalized combinatorial) game, one is always dealing with a finite spatial
resource. Any generalized combinatorial game can actually be played, physically, in
the real world. But Turing machines, by contrast, are only idealized computers. We
can never build a real Turing machine, because we can’t make an infinite tape.

The linchpin in this argument for games as computation is the undecidability
result for team games with private information. Perfect play in such games is in direct
correspondence with arbitrary computation on a Turing machine with an infinite tape.
Yet, there are only a finite number of positions in the game. Thus, games represent
a fundamentally distinct kind of computation.

13.2 Future Work

One direction for future work is obviously to apply the results here to additional
games and puzzles, to show them hard. I listed some candidates in Chapter 11. Some
of those games may yield to an application of Constraint Logic; others may not.

It is the ones which will not that are ultimately more interesting, such as 1 × 1
Rush Hour, and Subway Shuffle, which seem to lie right on the border between easy
and hard problems. By attempting to hit them with the hammer of Constraint Logic,
and observing how they fail to break, more can be learned about the mathematical
nature of games.

More generally, there is still the question of, what is a game? I declined to
pin down precisely what I meant by a game in Chapter 2, on the grounds that
previous statements that all “reasonable” games were no harder than X turned out
to change when the concept of game was extended. However, now that we have
reached undecidable games, is there anywhere left to go? I think so.

For one thing, there are higher degrees of undecidability. What if we play a game
on an infinite board? Deterministic computations on an infinite Turing machine tape
are recursively enumerable. Is there any kind of game we can conceive of which is not
even recursively enumerable? Such a game would correspond to a hypercomputation
[11], a “computation” beyond what Turing machines are capable of.

But there is still interesting space to explore in the relatively more pedestrian
classes of PSPACE, EXPTIME, EXPSPACE, etc. In particular, it is a bit unsatisfying
that one needs to add the concepts of teams and of private information to move
beyond ordinary two-player games. Isn’t there some way to just add another kind
of player? In general, an extra player represents an extra source of nondeterminism,
and computational power. The notion of private information is merely another way
of introducing an extra source of nondeterminism. In fact, one can explicitly add
private information to a one-player game as well; it then becomes, effectively, a two-
player game, because we might as well assume an adversary is choosing the private
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information. But what is the right way to look at private information in a two or
more player game that makes it look like another player?

Similarly, the notion of disallowing repetitions in a game is using a kind of private
information: the relevant history of the game is not present in the current configura-
tion. Is there a way to translate that kind of hidden information, or nondeterminism,
into another kind of player? It is these kinds of question which continue to fascinate
me.
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Appendix A

Computational Complexity
Reference

This appendix serves as a refresher on computability and complexity, and as a “cheat
sheet” for the complexity classes used in this thesis. For more thorough references
see, for example, [55], [74], [59], or [49].

The fundamental model of computation used in computer science is the Turing
machine. We begin with a definition of Turing machines. Note that there are generally
irrelevant differences in the precise form different authors use for defining Turing
machines.

A.1 Basic Definitions

Turing Machines. Informally, a Turing machine is a deterministic computing de-
vice which has a finite number of states, and a one-way infinite tape in which each
tape cell contains a symbol from a finite alphabet. The machine has a scanning head
which is positioned over some tape cell. On a time step, the machine writes a new
symbol in the currently-scanned cell, moves the head left or right, and enters a new
state, all as a function of the current state and the current symbol scanned. If the
transition function is ever undefined, the machine halts, and either accepts or rejects
the computation, based on whether it halted in the special accepting state.

Formally, a Turing machine is a 6-tuple (Q,Γ, δ, q0, b, qaccept) where

Q is a finite set of states,
Γ is a finite set of tape symbols,
δ : Q× Γ → Q× Γ× {L,R}, a partial function, is the transition function,
q0 ∈ Q is the initial state,
b ∈ Γ is the blank symbol, and
qaccept ∈ Q is the accepting state.

A configuration is a string in (Q ∪ Γ)∗ containing exactly one symbol from Q. A
configuration represents the contents of the tape, the current state, and the current
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head position at a particular time; the symbol to the right of the state symbol in the
string is the symbol currently scanned by the head. The rest of the tape is empty
(filled with blank symbols); configurations identical except for trailing blanks are
considered equivalent.

The next-state relation ` relates configurations separated by one step of the Turing
machine. a ` b when the head motion, state change, and symbol change following
the previous head position from a to b correspond to the transition specified in δ. `∗
is the transitive and reflexive closure of `.

A Turing machine halts on input ω ∈ Γ∗ in configuration x if q0ω `∗ x and
¬∃y x ` y. It accepts input ω if it halts in configuration x for some x which contains
qaccept; it rejects ω if it halts but does not accept.

A Turing machine M computes function fM if M halts on input ω in configuration
qacceptx, where x = fM(ω), for all ω.

Languages. A language is a set of strings over some alphabet. The language
{w | M accepts w} that a Turing machine M accepts is denoted L(M). If some
Turing machine accepts a language L, then L is Turing-recognizable (also called re-
cursively enumerable, or r.e.).

A language corresponds to a decision problem—given a string w, is w in the
language?

Decidability. If a Turing machine M halts for every input, then it decides its
language L(M), and is called a decider. If some Turing machine decides a language
L, then L is decidable (also called recursive); otherwise, L is undecidable. Note that
a Turing machine M which computes a function fM must be a decider.

One example of an undecidable language is the formal language corresponding to
the decision problem, “Given a Turing machine M and input ω, does halt on input
ω?”. This is called the halting problem. A string in the actual language would consist
of encodings of M and ω according to some rule.

Complexity. A Turing machine uses time t on input ω if it halts on input ω in t
steps: ω ` c1 ` . . . ` ct. The time complexity of a Turing machine M which is a
decider is a function t(n) = the maximum number of steps M uses on any input of
length n.

The time complexity class TIME(t(n)) is the set of languages decided by some
Turing machine with time complexity in O(t(n)).

Space complexity is defined similarly. A Turing machine uses space s on input ω if
it halts on input ω using configurations with maximum length s (not counting trailing
blanks). The space complexity of a Turing machine M which is a decider is a function
f(n) = the maximum space M uses on any input of length n.

The space complexity class SPACE(f(n)) is the set of languages decided by some
Turing machine with space complexity in O(f(n)).
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We are now ready to define some commonly used complexity classes:

P =
⋃
k

TIME(nk),

PSPACE =
⋃
k

SPACE(nk),

EXPTIME =
⋃
k

TIME(2nk

)

are the classes of languages decidable in, respectively, polynomial time, polynomial
space, and exponential time. Another important class, NP, will have to wait for
Section A.2 for definition.

Reducibility. A language L is polynomial-time reducible to language L′ if
there is a Turing machine M with polynomial time complexity such that
ω ∈ L ⇐⇒ fM(ω) ∈ L′. That is, membership of a string in L may be tested
by computing a polynomial-time function of the string and testing the result in L′.

Completeness. A language L is hard for a complexity classX (abbreviatedX-hard)
if every language L′ ∈ X is polynomial-time reducible to L. A language L is complete
for a complexity class X (abbreviated X-complete) if L ∈ X and L is X-hard.

Intuitively, the languages that are X-complete are the “hardest” languages in X
to decide. For example, if every language in PSPACE can be reduced to a language L
in polynomial time, then L must be at least as hard as any other language in PSPACE
to decide, because one can always translate such a problem in to a membership test
for L. The notion of polynomial-time reducibility is used, because a function that
can be computed in polynomial time is considered a “reasonable” function.1

Note that if a language L isX-hard and L is polynomial-time reducible to language
L′, then L′ is also X-hard. This fact is the basis for most hardness proofs.

A.2 Generalizations of Turing Machines

The basic one-tape, deterministic Turing machine, as defined above, can be enhanced
in various ways. For example, one could imagine a Turing machine with multiple
read-write tapes, instead of just one. Are such machines more powerful than the
basic machine? In this case, any multitape Turing machine M has an equivalent
single-tape machine M ′ that accepts the same language, with at most a quadratic
slowdown. Relative to the above complexity classes, they are the same.

1However, this definition is only appropriate for classes harder than P, because any language in
P is polynomial-time reducible to any other language in P. To define P-completeness appropriately,
we need the notion of log-space reducibility, which I will not define. See, e.g., [74] for details.
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Nondeterminism. One kind of enhancement that seems to increase the power
is nondeterminism. A nondeterministic Turing machine is defined similarly to a
deterministic one, except that the transition function δ is allowed to be multivalued:

δ : Q× Γ → 2Q×Γ×{L,R}.

That is, a nondeterministic transition function specifies an arbitrary set of possible
transitions. The above definition of acceptance still works, but the meaning has
changed: a nondeterministic Turing machine accepts input ω if there is any accepting
computation history q0ω `∗ x. Thus, a nondeterministic computer is allowed to
nondeterministically “guess” the sequence of transitions needed to accept its input.
If there is no such sequence, then it rejects.

Whether nondeterminism actually increases the power of Turing machines is a
very important unresolved question [73].

Nondeterministic Complexity. By analogy with the above definitions, we can
define time- and space- complexity classes for nondeterministic Turing machines.

The nondeterministic time complexity class NTIME(t(n)) is the set of languages
decided by some nondeterministic Turing machine with time complexity in O(t(n)).
The nondeterministic space complexity class NSPACE(f(n)) is the set of languages
decided by some nondeterministic Turing machine with space complexity in O(f(n)).

We may now define some additional complexity classes:

NP =
⋃
k

NTIME(nk),

NPSPACE =
⋃
k

NSPACE(nk)

are the classes of languages decidable in, respectively, nondeterministic polynomial
time and nondeterministic polynomial space.

The relationship between P and NP is unknown. Clearly P ⊆ NP, but is NP
strictly larger? That is, are there problems that can be solved in efficiently—in poly-
nomial time—using a nondeterministic computer, but that can’t be solved efficiently
using a deterministic computer? We can’t actually build nondeterministic computers,
so the question may seem academic, but many important problems are known to be
NP-complete [34], so if P 6= NP, then there is no efficient deterministic algorithm for
solving them.

However, it is known that PSPACE = NPSPACE [71]. More generally,
NSPACE(f(n)) ⊆ SPACE(f 2(n)). Nondeterminism thus does not increase the power
of space-bounded computation beyond at most a quadratic savings.

In relation to the concept of games and puzzles, a nondeterministic computation
is similar to a puzzle: if the right moves to solve the “computation puzzle” may be
found, then the computation nondeterministically accepts. We can’t build an actual
nondeterministic computer, but we can build and solve puzzles. A perfect puzzle
solver is performing a nondeterministic computation.
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Alternation. Chandra, Kozen, and Stockmeyer [8] have extended the concept of
nondeterminism to that of alternation. Essentially, the idea is to add the notion of
universal, as well as existential, quantification. A nondeterministic Turing machine
accepts existentially: it accepts if there exists an accepting computation history. In an
alternating Turing machine, the states are divided into existential states and universal
states. A machine accepts starting from a configuration in an existential state if any
transition from the transition function leads to acceptance; it accepts starting from
a configuration in a universal state if all possible transitions lead to acceptance.

Alternating time- and space-complexity classes ATIME(t(n)) and ASPACE(f(n))
are defined as above, and AP and APSPACE are defined analogously to P and
PSPACE (or NP and NPSPACE). It turns out that AP = PSPACE, and APSPACE
= EXPTIME. Thus, alternating time is as powerful as deterministic space, and al-
ternating space is as powerful as exponential deterministic time.

But what does alternation mean, intuitively? The best way to think of an alter-
nating computation is as a two-player game. One player, the existential one, is trying
to win the game (accept the computation) by choosing a winning move (transition);
the other player, the universal one, is trying to win (reject the computation) by find-
ing a move (transition) from which the existential player can’t win. And in fact, the
concept of alternation, and the results mentioned above, have been very useful in the
field of game complexity.

Again, we can’t build an alternating computer, but we can play actual two-player
games; a perfect game player is performing an alternating computation.

Multiplayer Alternation. Building on the notion of Alternation, Peterson and
Reif [61] introduced multiplayer alternation. It turns out that simply adding new
computational “players”, continuing the idea that an extra degree of nondeterminism
adds computational power, is not sufficient here. Instead, a multiplayer computation
is like a team game, with multiple players on a team, and with the additional notion
of private information. The game analogy is that in some games, not all information
is public to all players. (Many card games, for example, have this property.) The
concept is added to Turing machines by having multiple read-write tapes, with the
transition function from some states not allowed to depend on the contents of some
tapes. Multiplayer alternation is explored Chapters 7 and 8.

Multiplayer alternating machines turn out to be extremely powerful—so powerful,
in fact, that MPA-PSPACE, the class of languages decidable in multiplayer alternat-
ing polynomial space, is all the decidable languages.

This is a remarkable fact. A multiplayer alternating Turing machine can do in a
bounded amount of space what a deterministic Turing machine can do with an infinite
tape. Again, we can’t build actual multiplayer alternating computers. But if we lived
in a world containing perfect game players, we could do arbitrary computations with
finite physical resources.
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A.3 Relationship of Complexity Classes

The containment relationships of the classes mentioned above are as follows:

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME ( recursive ( r.e.

All of the containments are believed to be strict, but beyond the above relations,

the only strict containment known among those classes is P ( EXPTIME. P
?
= NP is

the most famous unknown relation, but it is not even known whether P = PSPACE.

A.4 List of Complexity Classes Used in this Thesis

The following classes are listed in order of increasing containment; that is, L ⊆ NL ⊆
NC3 . . . , with the exception that the relationship between NP and coNP is unknown.
(However, either NP = coNP, or neither contains the other.)

L = SPACE(log n).

NL = NSPACE(log n).

NC3 see, e.g., [74] for definition.

P =
⋃

k TIME(nk) = languages decidable in polynomial time.

NP =
⋃

k NTIME(nk) = languages decidable in nondeterministic polynomial time.

coNP = {L | L ∈ NP} = languages whose complements are decidable in nondeter-
ministic polynomial time. (ω ∈ L ⇐⇒ ω 6∈ L.)

PSPACE =
⋃

k SPACE(nk) = languages decidable in polynomial space.

NPSPACE =
⋃

k NSPACE(nk) = languages decidable in nondeterministic polyno-
mial space = PSPACE.

EXPTIME =
⋃

k TIME(2nk
) = languages decidable in exponential time.

NEXPTIME =
⋃

k NTIME(2nk
) = languages decidable in nondeterministic expo-

nential time.

EXPSPACE =
⋃

k SPACE(2nk
) = languages decidable in exponential space.

NEXPSPACE =
⋃

k NSPACE(2nk
) = languages decidable in nondeterministic ex-

ponential space = EXPSPACE.

2EXPTIME =
⋃

k TIME(22nk

) = languages decidable in doubly exponential time.

Recursive = decidable languages.

Recursively Enumerable (r.e.) = Turing-recognizable languages.

133



A.5 Formula Games.

A game played on a Boolean formula is often the canonical complete problem for a
complexity class. Boolean Satisfiability (SAT), the first problem shown to be NP-
complete [10], can be viewed as a puzzle in which the moves are to choose variable
assignments. Quantified Boolean Formulas (QBF), which is PSPACE-complete, es-
sentially turns this puzzle into a two-player game, where the players alternate choos-
ing variable assignments. There are formula games for EXPTIME, EXPSPACE, and
other classes, as well.

Here I will define Boolean formulas, and the basic formula games SAT and QBF.
Other formula games are defined in the text as they are needed.

A.5.1 Boolean Formulas.

A Boolean variable is a variable which can have the value true or false. A Boolean
operation is one of AND (∧), OR (∨), or NOT (¬). A Boolean formula is either a
Boolean variable, or one of the expressions (φ ∧ ψ), (φ ∨ ψ), and ¬φ, where φ and ψ
are Boolean formulas.

(φ ∧ ψ) is true if φ and ψ are both true, and false otherwise. (φ ∨ ψ) is true if
either φ or ψ is true, and false otherwise. ¬φ is true if φ is false, and false otherwise.

A literal is a variable x or its negation ¬x, abbreviated x.
A monotone formula is a formula which does not contain ¬. Monotone formulas

have the property that if the value of any contained variable is changed from false to
true, the value of the formula can never change from true to false.

A quantified variable is either ∀x or ∃x, for variable x.
A quantified Boolean formula is either a Boolean formula, or a quantified Boolean

formula preceded by a quantified variable.
∀x φ is true if φ is true both when x is assigned to false and when it is assigned

to true, and ∃x φ is true if φ is true when x is assigned either to false or to true.

A.5.2 Satisfiability (SAT).

The Boolean formula satisfiability problem is NP-complete, and is almost invariably
the problem of choice to reduce to another problem to show that problem NP-hard.
It is defined as follows:

Satisfiability (SAT)
INSTANCE: Boolean formula φ.
QUESTION: Is there an assignment to the variables of φ such that φ is true?

Equivalently, SAT could be defined as the question of whether a given quantified
Boolean formula which uses only existential quantifiers is true.

The process of choosing a satisfying variable assignment can be viewed as solving
a kind of puzzle.
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A.5.3 Quantified Boolean Formulas (QBF).

Quantified Boolean Formulas is PSPACE-complete, and is almost invariably the prob-
lem of choice to reduce to another problem to show that problem PSPACE-hard. It
is defined as follows:

Quantified Boolean Formulas (QBF)
INSTANCE: Quantified Boolean formula φ.
QUESTION: Is φ true?

The truth of a quantified Boolean formula corresponds to the winner of a two-
person game. This is easiest to see in the case where the quantifiers strictly alternate
between ∃ and ∀, as in ∃x ∀y ∃z . . . φ. Then, we may say that the ∃ player can win
the formula game if he can choose a value for x such that for any value the ∀ player
chooses for y, the ∃ player can choose a value for z, such that . . .φ is true.

This correspondence may also be understood in terms of the previously mentioned
result that AP = PSPACE: a two-player game of polynomially-bounded length is an
alternating computation that can be carried out in polynomial time.

135



Appendix B

Deterministic Constraint Logic
Activation Sequences

In this appendix I present the explicit activation sequences for several DCL gadgets
described in Section 4.2. Refer to that section for complete descriptions of the gadgets’
intended behaviors, and of the deterministic rule used. As mentioned there, all of the
gadgets used are designed on the assumption that signals will only arrive at their
inputs at some time 0 mod 4 (so that the first internal edge reversal occurs at time
1 mod 4), and also that signals will activate output edges only at times 0 mod 4.
This makes it possible to know what the internal state of the gadgets is when inputs
arrive, because any persistent activity in a gadget will repeat every two or four steps.

Switch Gadget. This gadget is used internally in many of the other gadgets. In
Figure B-1 I show all the steps in its activation sequence. When input arrives at A,
an output signal is sent first to B, then, when that signal has returned to the switch,
on to C, then to B again, and finally back to A. In some cases the extra activation of
B is useful; in the other cases, it is redundant but not harmful.

Existential Quantifier This gadget uses a switch to “try” both possible variable
assignments. The connected CNF circuitry follows a protocol by which a variable
state can be asserted by activating one pathway; a return pathway will then activate
back to the quantifier. When the quantifier is done using that assignment, it can
de-assert it by following the return pathway backwards; activation will then proceed
back into the gadget along the original assertion output edge.

In Figure B-2 I show the activation sequence. Only every fourth time step is
shown; in between these steps the internal switch is operating as above. Possible
activation of the satisfied in / satisfied out pathway is not shown, but when it occurs
it clearly preserves the necessary timing.

Universal Quantifier. The universal quantifier is similar to the existential quanti-
fier; it also uses a switch to try both variable assignments. However, if the assignment
to x = false succeeds, the gadget sets an internal latch to remember this fact. Then,
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if x = true also succeeds, the latch enables satisfied out to be directed out. Finally,
the switch tries x = false again; this resets the latch. This sequence is shown in Fig-
ures B-3 and B-4. Again, only every fourth time step is shown. Only the “forward”
operation of the gadget is shown; deactivation follows an inverse sequence.

If the assignment to x = false fails, and x = true succeeds, then the unset latch
state causes the x = true success to simply bounce back. This sequence is shown in
Figure B-5.

AND′. The AND′ gadget must respond to two different circumstances: first, input 1
arrives, and then input 2 later arrives (or not); and second, input 2 arrives when
input 1 has not arrived. The first case is shown in Figure B-6, the second in Figure B-
7. In each case only every fourth time step is shown, and the reverse, deactivating,
sequences are not shown.

OR′. The OR′ is complicated for two reasons. First, it must activate when either
input activates, but whichever has activated, if the other input then arrives, it must
simply bounce back cleanly (because the output is already activated). Second, the
internal switch required is more complicated than the basic switch. The basic switch
may be described as following the sequence ABCBA; the switch used in the OR′ would
correspondingly follow the sequence ABC.

Two sequences are shown. First, in Figures B-8 and B-9, an activation sequence
beginning with input 1 is shown. Part of the deactivating sequence is shown as well,
because it is not the reverse of the forward sequence (due to the modified switch). The
activation sequence beginning with input 2 is similar, but the “extra search step” taken
by the internal switch occurs during the forward rather than the reverse activation
sequence in this case.

Second, Figure B-10 shows the activation sequence when the OR′ is already active,
and the other input arrives. (In this case the operation is symmetric with respect to
the two inputs.) The second input is propagated directly to its return path.

FANOUT′, CNF Output Gadget. The correct operation of these gadgets (shown
in Figure 4-4) is obvious.

Crossover Gadget. The steps involved in crossover activation are shown in Fig-
ure B-11. The reverse sequence deactivates the crossover. The sequence shown has
a C-D traversal following an A-B traversal. C-D can also occur in isolation (but not
followed by A-B); note that after the A-B traversal (and at the same time mod 4),
the gadget is in a vertically symmetric state to the original one.
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A

C

B

(h) t = 7+4k

A

C

B

(i) t = 8 + 4k

A

C

B

(j) t = 9 + 4l

A

C

B

(k) t = 10 +
4l

A

C

B

(l) t = 11+4l

A
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B

(m) t = 12 +
4l
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B

(n) t = 13 +
4m
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C

B

(o) t = 14 +
4m

A

C

B

(p) t = 15 +
4m

A

C

B

(q) t = 16 +
4m

Figure B-1: Switch gadget steps. 0 ≤ k ≤ l ≤ m.
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try out
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B C DA

(a) try in about to ac-
tivate

try in

satisfied out satisfied in

try out

xx

B C DA

(b) x activated

try in

satisfied out satisfied in

try out

xx

B C DA

(c) try out activated
with x false

try in

satisfied out satisfied in

try out

xx

B C DA

(d) x deactivated

try in

satisfied out satisfied in

try out

xx

B C DA

(e) x activated

try in

satisfied out satisfied in

try out

xx

B C DA

(f) try out activated
with x true

try in

satisfied out satisfied in

try out

xx

B C DA

(g) x deactivated

try in

satisfied out satisfied in

try out

xx

B C DA

(h) x activated again

try in

satisfied out satisfied in

try out

xx

B C DA

(i) try out activated
with x false

try in

satisfied out satisfied in

try out

xx

B C DA

(j) x deactivated

try in

satisfied out satisfied in

try out

xx

B C DA

(k) try in deactivated

Figure B-2: Existential quantifier steps. Every fourth step is shown. Between steps
(b) and (c), (d) and (e), (e) and (f), (g) and (h), (h) and (i), and (j) and (k), a signal
is propagated into and out of the connecting CNF circuitry. Between steps (c) and
(d), (f) and (g), and (i) and (j), a signal is propagated through to the quantifier to
the right, and possibly through satisfied in / satisfied out and back. All inputs are
guaranteed to arrive at times 0 mod 4.
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(b) x activated
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M
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satisfied out satisfied in
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M

(e) Internal latch M activated

xx

try in

satisfied out satisfied in

try out

M

(f) satisfied in deactivated

xx

try in

satisfied out satisfied in

try out

M

(g) x deactivated

xx

try in

satisfied out satisfied in

try out

M

(h) Switch trying second branch

Figure B-3: Universal quantifier steps, part one. Every fourth step is shown.
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xx

try in

satisfied out satisfied in

try out

M

(a) x activated

xx

try in

satisfied out satisfied in

try out

M

(b) try out activated with x true

xx

try in

satisfied out satisfied in

try out

M

(c) satisfied in activated with x true and latch
M set

xx

try in

satisfied out satisfied in

try out

M

(d) satisfied out activated

Figure B-4: Universal quantifier steps, part two (continuation of part one).

xx

try in

satisfied out satisfied in

try out

M

(a) satisfied in activated with x true and latch
M not set

xx

try in

satisfied out satisfied in

try out

M

(b) satisfied in deactivated

Figure B-5: Universal quantifier steps, part three. These two steps replace the last
two in Figure B-4, in the case where the x false assignment did not succeed and set
latch M .
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(a) input 1 about to activate

input 1 input 2
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M

A B C D

E F

(b) input 1 return path acti-
vated; latch M set

input 1 input 2

output

M

A B C D

E F

(c) input 2 activated

input 1 input 2

output

M

A B C D

E F

(d) output activated

input 1 input 2

output

M

A B C D

E F

(e) input 2 return path acti-
vated

Figure B-6: AND′ steps, in the case when both inputs activate in sequence. Every
fourth step is shown.

input 1 input 2

output

M

A B C D

E F

(a) input 2 activated

input 1 input 2

output

M

A B C D

E F

(b) Without latch M set, sig-
nal bounces without activating
output

input 1 input 2

output

M

A B C D

E F

(c) input 2 return path acti-
vated

Figure B-7: AND′ steps, in the case when input 2 activates without input 1 first
activating. Every fourth step is shown.
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AB C D
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S

O

M N

(d) output activated

input 1 input 2
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AB C D

E F

S

O

M N

(e) output return path acti-
vated

input 1 input 2

output

AB C D

E F

S

O

M N

(f) switch successfully tries left
side

Figure B-8: OR′ steps, part one. Every fourth step is shown. If input 2 is activated
instead, the sequence will be slightly different; the switch will first try the left side,
and then the right.
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(c) switch entered

input 1 input 2
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O
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(d) switch tries right side

input 1 input 2
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O
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(e) back into switch

input 1 input 2
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AB C D

E F

S

O

M N

(f) output return path deacti-
vated

Figure B-9: OR′ steps, part two. Every fourth step is shown. If input 2 was activated
instead, the sequence will be slightly different; the switch send the return signal out
earlier.
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(a) input 2 activated

input 1 input 2
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(b) signal propagating

input 1 input 2

output
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E F

S

O

M N

(c) signal bounces

input 1 input 2

output

AB C D

E F
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O

M N

(d) input switch redirects sig-
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input 1 input 2

output

AB C D

E F

S

O

M N

(e) input 2 return path acti-
vated

Figure B-10: OR′ steps, part three. Every fourth step is shown. input 2 arrives
when the gate is already activated, and is cleanly propagated on to its return path.
Deactivation follows the reverse sequence.
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(k) t = 12 + 4k
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D

(l) t = 13 + 4k

A B

C

D

(m) t = 14 + 4k

Figure B-11: Crossover gadget steps. The padding edges required to enter and exit
at times 0 mod 4 are omitted; as a result, there is a gap between steps (g) and (h).
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