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This document contains all the APIs that talk to the teaching strategy program. Cur-

rently, they are implemented to print text. Ultimately, they should be able to do two things:

1. html manipulation (radio buttons, text etc)

2. diagram manipulation (jade, light up RC)

;;When nothing can be further deduced

(define (reply-to-student-set-variable-quiescent ckt)

(write-line "Nothing can be further deduced. You need to set another unknown."))

;;No contradiction

(define (reply-to-student-no-contradiction ckt)

(write-line "Accepted"))

;;State contradiction

(define (reply-to-student-state-contradiction ckt)

(display "Your setting caused a contradiction:

n"))
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;;Proof contradiction

(define (reply-to-student-with-proof contradiction)

(write-line ‘(,(explain contradiction))))

;;Supports for contradiction

(define (reply-to-student-with-support support-lst)

(write-line ‘(The contradiction is supported by these assumptions))

(write-line ‘(,support-lst)))

;;These are the supports set by the student

(define (reply-to-student-with-support-retract-choice lst)

(write-line ‘(Please retract one of these supports that you have set))

(write-line ‘(,lst)))

;;Value set is correct

(define (reply-to-student-set-value-correct ckt path)

(write-line ‘(value set is correct))

(write-line ‘,(the-value ckt path)))

;;Value set is incorrect

(define (reply-to-student-set-value-incorrect ckt)

(write-line ‘(value set does not match the value from the

constraint propagator, try again)))

;;Invalid retraction

(define (reply-to-student-invalid-retraction ckt)

(write-line ‘(Cannot be retracted)))

;;All interesting variables have been set

(define (reply-to-student-completed-setting-variable ckt)

(write-line ‘(All interesting variables have been set)))

;;Suggestion of a variable

(define (reply-to-student-with-variable connector)

(write-line ‘(You can try to determine ,(get-path connector))))
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;;All the variables that have been set and their corresponding values

(define (display-status lst)

(if (null? lst)

’done

(begin

(pp ‘(,(get-path (car lst)) = ,(get-assignment-value (car lst))))

(display-status (cdr lst)))))

;;Listing all interesting variables

(define (reply-to-lst-all-vars ckt)

(pp ‘(Variables are ,(map get-path interesting-var-lst))))

;;The value of a particular variable

(define (reply-to-student-with value ckt path)

(the-value ckt path))

;;Variable that doesn’t have a value yet (hasn’t been set)

(define (reply-to-student-without-value ckt path)

(write-line ‘(,path has not been set yet)))
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