High-Level Architecture for the Intelligent Book

Intelligent Book Project
MIT Project for Mathematics and Computation
Cambridge Computer Laboratory
Summer 2003

The goal of the Intelligent Book project is to construct web-based educational resources
that understand principles and strategies pertinent to their subject matter, and use these to
pose and answer questions, to fill in details, and to accumulate new examples as suggested
by the conversations with its readers. The project’s immediate objective is to develop
programs to support class exercises in the analysis and design of electronic circuits for use
at Cambridge University and at MIT.

This memo provides a high-level view of the architecture of the program and the main
modules—details of the individual modules are given elsewhere. This architecture is still a
draft, and we expect it to change as the project evolves.

1 Basic architectural framework

Figure 1 shows the overall framework of the intelligent book system. Students use browsers
on client machines to connect to a central web server. Each client machine runs a web
browser that can handle HTML and Javascript. In addition to the browser, there may be
client-side Java applets that perform specialized functions. In general, the browser owns the
screen real-estate, which it either handles itself (e.g., with HTML) or delegates ownership
of specific screen areas to the applets.

The shaded rectangle in the figure represents the client-server interface. All communica-
tion across the interface with the browser is via HTTP. The Java applets may use specialized
protocols, but all client-server protocols are built on HTTP and XML-RPC.!

The server-side application is written primarily in Scheme and talks to the web server
(Apache) via modlisp, which is an Apache module designed for communicating with Lisp.?
The Scheme application servicing the client uses a data base to save any necessary user
state from transaction to transaction. This data base (PostgreSQL in our implementation)
is also shared among all users of the system. As the number of clients expands, we expect
to be running multiple Scheme processes on the server, and eventually, multiple servers.

Scheme pages and XDOC

The server-side Scheme application consists of several modules. There are specialized mod-
ules that handle circuit design (see section 2.1). There is also a general module called

!We may have to back off from the requirement to use HT'TP, and allow some of the Java applet protocols
to use persistent connections. Our current thinking is to try not to do that. We do, however, want always
to use XML-RPC and avoid ad hoc or language-specific serialization schemes.

2Modlisp is an open-source implemention by Fractal Concept. See www.fractalconcept.com.



LILCUIESCIIL DOOAK T1IFI-ICVCL al CLLILeCLUulc Uil L AUguUsLY (1, 24UV &

Scheme

Data
Base

Browser with XHTML
and Javascript support

Shared
database
among
all users

Java

Applet
Java
Applet

Server machine Client machine

Figure 1: High-level architecture of the intelligent book system showing how functionality
is partitioned between the server and the clients.

Scheme pages.’

Scheme pages is a module that processes descriptions of web pages, generating HTML
to be presented by the web server (via modlisp). The language in which these pages are
described is called XDOC. XDOC is being jointly developed with Chris Terman, who is using
it for MIT’s Computer Architecture class (6.004). XDOC will also be used to support the
next version of MIT’s Artificial Intelligence class (6.034), and eventually, MIT’s introductory
software course (6.001). The goal here is for all these courses to adopt a consistent page
description language.*

XDOC is an XML-based language with several kinds of features:

3We need a better name for Scheme Pages. Hal suggests SSP (Scheme server pages), in analogy with
ASP and JSP.

4The XDOC language is meant to be consistent across courses, but we expect that different courses will
use different implementations of XDOC. Scheme pages is one implementation. In In 6.004 uses and XDOC
implementation in Python.



LILCUIESCIIL DOOAK T1IFI-ICVCL al CLLILeCLUulc Uil L AUguUsLY (1, 24UV J

e General-purpose layout and interface elements (such as radio buttons and menus),
described by appropriate tags. In some cases these are just HTML tags, but others
may be more elaborate. This tag set is extensible—tags are translated into HTML or
Javascript, which is then sent to the browser.’

e Special-purpose interface elements for education (such as a multiple-choice or fill-in-
the-blank questions).

e General methods for specifying how elements combine to form page layouts, and how
layouts combine to form more complex layouts.

XDOC pages need not be static—the page definitions can include escapes into Scheme
to provide dynamic generation of page elements.5

2 Architecture of the circuit system

The circuit design system follows the basic architecture described in section 1. Figure 2
shows the server-side Scheme modules for the system.

2.1 Server-side modeling components

The part of the system to the left of the dotted line is Ul-independent. The main components
are:

e Scmutils: Scmutils is an extensive algebraic manipulation system implemented in
MIT/GNU Scheme. It extends Scheme’s generic arithmetic operators to include sym-
bolic algebra, and it also contains numerous packages and utilities for symbolic and
numeric mathematical operations.

e The constraint propagation and truth maintenance system runs on top of Scmutils
(although the actual dependence on Scmutils is currently very minimal). It integrates
constraint propagation and truth maintenance though a mechanism that can attach
condition nodes to each constraint. By manipulating these condition nodes, the TMS
interface can cause certain constraints to be asserted or withdrawn.

For example, in an electrical circuit application, there may be several different models
of a transistor, each one with its own v — ¢ characteristic represented as a constraint
that relates voltage and current. Asserting all of these constraints simultaneously
would lead to contradictions. The TMS permits the different assumptions for the
different models to be individually asserted and withdrawn under user control.

®Hal advocates developing a system like the one Microsoft adopted in ASP.NET, which interposes an
abstraction layer between the ASP.NET inteface elements (called “controllers” in ASP-speak) and ordinary
HTML.

SEven for dynamically generated pages, the intent is to design XDOC so that all page descriptions can
be processed into HTML that is then sent to the browser.



LILCUIESCIIL DOOAK T1IFI-ICVCL al CLLILeCLUulc

LAl 1L AUgUst (, sUVI

Circuit-
XML-RPC

HTTP
Teaching
strategy

Circuit
Language

Server
dialogue
manager

Circuit-

specific
B S

Ul management

Constraint
Propagation
and
Truth
Maintenance

Scmutils

(Symbolic
Algebra)

Ul-independent Ul-dependent

Figure 2: Major server-side modules for the circuit application. All of these are written in
Scheme. Modules to the left of the dotted line deal with circuit modeling, reasoning, and
teaching strategy, independent of user interface. Modules to the right deal with the UL

e The circuit language takes circuit descriptions, expressed in terms of parts and their

interconnections, and instantiates circuit models, represented as constraint networks
with accompanying TMS nodes.”

o The teaching strategy module controls the interaction with students in circuit analysis
problems. It is based on the circuit language and constraint propagator. The hope
is that the module can generate useful interactions largely through general heuristics,
and without a lot of circuit-specific knowledge. For example, if the student asks for
a suggestion about what to do next in an analysis task, the program could suggest
finding the value of a variable that (according to the constraint propagator) can be
deduced in a small number of steps from values that the student already knows.

8
"See http://swissnet.ai.mit.edu/projects/intelligent-book/circuit-language.pdf for documen-
tation on the circuit language.

8See nttp://swissnet.ai.mit.edu/projects/intelligent-book/teaching-strategy for information
on the teaching strategy module.

Independent
Ul management
with browser



LILCUIESCIIL DOOAK T1IFI-ICVCL al CLLILeCLUulc Uil L AUguUsLY (1, 24UV J

2.2 Server-side interface components

The dotted line in figure 2 separates the components that deal with modeling and reasoning
from the components that handle the interface. The link between these two parts of the
system is the communication between the teaching strategy module and the server dialogue
manager.

The dialogue manager serves as the abstraction barrier between the interface-dependent
and interface-independent parts of the system. For example, if the teaching module wants to
ask the student to set the value of some parameter it would call the ask-student-to-set-value
procedure, which is part of the dialogue manager. A rudimentary implementation of the
manager could simply print a message on the screen:

Please set the value of a component

and wait for the student to type a reply.’

A more mature version of the manager would interpret the operations specified by the
teacher module, breaking these down into two sorts of elements:

1. General interface elements that can be handled by the browser and handled via XDOC.

2. Circuit-specific elements that are handled by the client applets.

Any particular teaching strategy operation could be handled by elements of one type or
the other, or by combinations of elements of both types. Including the server-side dialogue
manager as an abstraction layer permits us to change these decisions without affecting the
teaching module itself, as XDOC and the circuit-specific applets evolve.

2.3 Client-side components

Figure 3 shows the main components of the client architecture for the Intelligent Book
circuit application.

The major component here is a Java applet called Jade. Jade is a circuit-diagram editor
and circuit simulator written for use in MIT’s computer architecture class (6.004), and is
currently being modified both for the Intelligent Book and for new 6.004 applications. Jade
was designed to be a stand-alone Java application. We are developing a Jade API that
permits Jade to be run as a Java applet and exposes the basic interface operations for
program manipulation.

The Jade-specific APIs are used by a library of circuit-specific UI components that is
designed to be an extensible library of basic Ul elements for use by the circuit program.

This library is used by a client-side dialogue manager to implement the operations
that have been prescribed by the server-side dialogue manager. Neither the server-side
nor the client-side dialogue manager has yet been designed, so we’re not sure about how

9This rudimentary implementation, which does not use a client-server architecture at all, is what we are
currently using to debug the modeling and reasoning portions of the Intelligent Book.



LILCUIESCIIL DOOAK T1IFI-ICVCL al CLLILeCLUulc Uil L AUguUsLY (1, 24UV A\

circuit-independent Jade API

Ul management XML-RPC Browser with XHTML
in XDocs —-E—— 3 and Javascript support
HTTP

Circuit
application
Ul elements

Client
dialogue
manager

circuit-specific < >

Ul management

Figure 3: Client-side architecture for the circuit program.

functionality is partitioned between them. But in general, the server-side manager will deal
with the abstract circuit, while the client-side manager will deal with the actual geometric
circuit layout.

As an example of how an operation might proceed through these layers of abstraction,
the teaching strategy module might issue an operation such as “suggest that the student
provide values for the resistance of R¢ or Rg. This would be interpreted by the server-side
dialogue manager as “make the client display a message and highlight Rc and Ry on the
diagram. This would in turn be realized by the client-side dialogue manager as “display
a message and highlight the circuit elements at (x,y) position (30,67) and (30,20). This
would be implemented in terms of calls to the UI application library, some of which would
use the Jade API.

As should be obvious, the details in the above paragraph have not yet been fleshed out.
What we do know is that (1) the dialogue managers must maintain a map between the
abstract circuit and the geometric diagram; and (2) there will be some sort of XML-RPC
protocol between server-side and client-side managers.



LILCUIESCIIL DOOAK T1IFI-ICVCL al CLLILeCLUulc Uil L AUguUsLY (1, 24UV i
3 Examples

Figures 4 and 5 are preliminary sketches of the kinds of interactions we expect the system
to deal with.

Figure 4 shows the student setting a particular current to 10 milliamperes, presumably
in response to a question posed by the teaching module. In this interaction model, there
are a couple of different screen areas. One with the circuit diagram, is delegated to Jade.
Another with messages, and a third with command buttons like “Help”. In our architecture,
the circuit area would be controlled by Jade, while the others could be either controlled
directly by the browser or by special circuit applets. We have not yet decided which model
to pursue.10

C | L —
=+ =l
|1. I._
RB'. % R‘[%
User interaction log
System responses (questions)
User text input

Figure 4: Example of an interaction with the intelligent book, showing the basic screen
layout.

In figure 5, the system has responded to the student’s value by pointing out that there
is a contradiction, and asking the student which design criterion has been violated. The
selection method could be handled either through browser forms and radio buttons or

0An advantage of delegating the latter two screen areas to applets is that it would presumably allow
a more flexible mix of circuit-specific operations into the dialogue interaction without having to make a
round trip to the server. On the other hand, much of the functionality we would build here would probably
duplicate capabilities that are already in the browser, and isolate these interaction elements from standard
means of control, such as by style sheets.



LILCUIESCIIL DOOAK T1IFI-ICVCL al CLLILeCLUulc Uil L AUguUsLY (1, 24UV O

through a special circuit applet. In this case, using the browser seems more straightforward,
but we have not yet made this decision.

Set! (V_c=10V)
Your choice of V.. contradicts one of vow

design specifications! Which one?

Ovolta in Q Input impedence O Output swing
e i)

Figure 5: Intelligent book interaction: The constraint system has detected that the student’s
chosen value leads to a contradiction, and the teaching strategy model asks the student to
say which design specification is violated.



