
Design and Construction of Genetic Applets

Timothy S. Gardner & James J. Collins
Center for BioDynamics &

Department of Biomedical Engineering
Boston University

August 31, 1999

Abstract: Advances in molecular biology and medicine are making gene therapy
an increasingly practical method for the treatment of chronic diseases. Regulated
expression of the introduced genes is necessary for safe and e�ective gene therapy.
However, the tools available for controlling the expression of arti�cially introduced
genes are limited. In this work, we are developing a theory and an experimental
protocol for constructing arti�cial gene networks that can regulate temporal expres-
sion of multiple genes. Such a network, which we have termed a \genetic applet",
provides the target cell with the ability to monitor and respond appropriately to
changes in its environment. In e�ect, the cell is "reprogrammed" to perform a de-
sired function. In addition to gene therapy, genetic applets may have applications
in chemical and biological warfare defense and biological research, and may provide
a new framework understanding the regulation of gene expression.

1



A Contents

A Contents 2

B List of Figures and Tables 3

C Statement of Objectives 4

D Statement of the Approach 4

E Statement of Signi�cance 4

F Key Words/Phrases 5

G Body of the Paper 5
G.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 5
G.2 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . . 7

G.2.1 Modeling Noise in Genetic Networks . . . . . . . . . . . . . . 8
G.2.2 Solving the M-Equation . . . . . . . . . . . . . . . . . . . . . 9

G.3 Modeling Genetic Applets . . . . . . . . . . . . . . . . . . . . . . . . 10
G.3.1 The Basic Toggle Switch . . . . . . . . . . . . . . . . . . . . 10
G.3.2 Analysis of Internal Noise in the Toggle . . . . . . . . . . . . 13
G.3.3 The Adjustable-Threshold Switch . . . . . . . . . . . . . . . 15
G.3.4 The Two-State Genetic Oscillator . . . . . . . . . . . . . . . 16

G.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
G.4.1 Experimental Manipulation of System Parameters . . . . . . 18
G.4.2 Outline of Recombinant DNA Work . . . . . . . . . . . . . . 19
G.4.3 Quantitative Measurement of Gene Expression . . . . . . . . 21

G.5 Pilot Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
G.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
G.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2



B List of Figures and Tables

Figures

1 Formulation of rate equations . . . . . . . . . . . . . . . . . . . . . . 8
2 Simpli�cation of rate equations . . . . . . . . . . . . . . . . . . . . . 9
3 Schematic of toggle switch . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Phase plane diagram of toggle equations . . . . . . . . . . . . . . . . 12
5 Bifurcation analysis of the toggle . . . . . . . . . . . . . . . . . . . . 13
6 Example potential surfaces . . . . . . . . . . . . . . . . . . . . . . . 14
7 Schematic of adjustable-threshold genetic switch . . . . . . . . . . . 15
8 Structure of the threshold . . . . . . . . . . . . . . . . . . . . . . . . 16
9 Schematic of two-state genetic oscillator . . . . . . . . . . . . . . . . 17
10 Simulation of the two-state genetic oscillator. . . . . . . . . . . . . . 17
11 Toggle switch prototype . . . . . . . . . . . . . . . . . . . . . . . . . 19
12 Hoechst staining of E. coli JM 3.3 cells . . . . . . . . . . . . . . . . 22
13 Threshold based image processing . . . . . . . . . . . . . . . . . . . 23
14 Edge-detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . 24
15 Single-cell GFP expression statistics . . . . . . . . . . . . . . . . . . 25

Tables

1 Repressors/promoters for the toggle switch. . . . . . . . . . . . . . . 20
2 Activators/promoters for the adjustable threshold switch. . . . . . . 21

3



C Statement of Objectives

Our objective is to develop a theoretical and experimental framework for the de-
sign and construction of arti�cial gene networks. These networks, termed \genetic
applets," will be designed using a combination of deterministic (macroscopic) and
stochastic (microscopic) modeling techniques. A genetic applet can be programmed
into DNA and delivered into cells to execute coordinated sequences of cellular func-
tions while responding to intracellular and extracellular signals. Speci�cally, we plan
to: (1) develop a theory of arti�cial gene expression and regulation using determin-
istic and stochastic mathematical modeling, (2) validate and re�ne the modeling
approach by testing our predictions against experimental data for single-cell gene
expression, and (3) design and construct the basic components of a genetic applet: a
genetic toggle switch, an adjustable-threshold genetic switch and a two-state genetic
oscillator.

D Statement of the Approach

In this project, we plan �rst to construct simple gene expression systems for eval-
uating and re�ning our theoretical approach. Using the Green Fluorescent Protein
(GFP) as a reporter gene in Escherichia coli, we will collect single-cell expression
data for various promoters under the regulation of their associated repressors. The
single-cell data will be collected using automated image processing of digital images
obtained from an epi-uorescence microscope. This data will allow us to evaluate
both the macroscopic and microscopic predictions of the model. These simple ex-
pression systems will be constructed from the individual genetic components to be
used in the toggle switch. Thus, they will simultaneously serve as the stepping-stone
for the construction of the toggle switch. After construction of the toggle switch, and
the analysis and re�nement of its function, we will construct the adjustable-threshold
switch and, �nally, the two-state genetic oscillator. This project will involve the col-
laboration of two groups at Boston University: the Center for BioDynamics and the
Center for Advanced Biotechnology.

E Statement of Signi�cance

This project represents a departure from traditional genetic engineering in that we
are constructing arti�cial networks of genes. These networks may have immedi-
ate value in clinical therapies, biomedical research, and biotechnology applications.
Moreover, these networks may provide a vehicle for evaluating the predictive poten-
tial of theoretical descriptions of gene networks. Because all parts of our networks

Abbreviations: A660, Optical Density at 660 nm; CAT, chloramphenicol acetyl
transferase; CCD, Charge Coupled Device; CDC, Cell Division Cycle; FRET, Free
Resonance Energy Transfer; GFP, Green Fluorescent Protein; IPTG, isopropyl �-D-
thiogalactopyranoside; LacZ, �-galactosidase; LB, Luria-Bertani; mRNA, messenger
RNA; RBS, Ribosome Binding Site; RNAP, RNA Polymerase; SD, Shine-Dalgarno
sequence; tRNA, transfer RNA.
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can be designed and manipulated, they permit each aspect of the theory to be tested
and re�ned. The improved theory can then be used to rapidly design more complex
gene networks with greater functionality. Furthermore, the theory can be extended
to the analysis and prediction of the function of natural gene networks.

F Key Words/Phrases

Gene regulatory networks, genetic engineering, nonlinear dynamics, statistical physics,
genetic toggle switch, genetic oscillator

G Body of the Paper

G.1 Introduction and Background

Advances in molecular biology and medicine are making the manipulation of cellular
function increasingly reliable and e�ective. These manipulations have proven to be
extremely powerful in basic biological research and have even shown promise in clin-
ical gene therapies [1]. However, the tools available for controlling the expression of
arti�cially introduced genes are limited to simple induction schemes [2{9]. Expres-
sion systems providing temporal, sequential and, most importantly, autoregulated
control of gene expression do not exist. Our objective is to dramatically extend the
reach of gene-expression technology by designing and building \genetic applets". A
genetic applet is essentially an arti�cial virus that, once delivered into a cell, would
coordinate the sequential expression of multiple genes. These genes could be used to
execute a series of speci�c tasks that would repair, enhance or modify cell function.
In e�ect, a genetic applet, encoded into DNA, would \reprogram" the function of
the target cell.

A functional genetic applet would be composed of two to tens of interacting
genes. Like a computer, an automobile or any other complex machine, a genetic
applet would be composed from many independent, simpler parts. A computer, for
example, is constructed from resistors, capacitors, inductors, and transistors. These
components are then combined into memory units, logic gates, ampli�ers and other
devices that are integrated to form a functional computer. Analogously, a genetic
applet is constructed from genes, promoters, and proteins that are combined to form
switches, memory units, sensors and other simple elements. These elements are then
integrated to form a functional applet.

In order to realize our ultimate goal of constructing a genetic applet, we must
�rst design, build and characterize the simpler components. Moreover, we must
evaluate and calibrate the modeling techniques that form the basis for the genetic
applet designs. Thus, our initial research will focus on building three successively
more complex elements|a genetic toggle switch, an adjustable-threshold switch,
and a two-state genetic oscillator|and re�ning the modeling techniques. The toggle
switch forms the building block for the adjustable-threshold switch; the adjustable-
threshold switch is the central component of the two-state oscillator; and, though
not described in this document, three or more copies of the two-state oscillator
can be used to construct a multi-state oscillator. A multi-state oscillator, which
sequentially expresses multiple genes, forms the core of a genetic applet.
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Although we have described the toggle switch, the adjustable-threshold switch
and the two-state oscillator as building blocks for a genetic applet, they are, by
themselves, small genetic applets. They can respond to internal and external cues,
can be auto-regulated and have tunable temporal characteristics. Moreover, these
devices could have immediate value in both clinical and biotechnology applications.
They might, for example, be used as sensitive in vivo detectors of chemical or biolog-
ical warfare agents, allow precisely controlled gene expression in gene therapies, or
provide a mechanism for initiating apoptosis in engineered micro-organisms. These
and other potential applications are discussed in greater detail in Section G.6.

Outside of their potential value in clinical treatments and biotechnology, genetic
applets and their constituent parts have great value in the theoretical study of the
regulation of gene expression. Gene expression in cells is an enormously complex
process composed of thousands of interacting genes that coordinate everything from
embryonic development to cell di�erentiation to immune responses. Advances in
molecular biology and bioinformatics have revealed many of these regulatory genes,
but they have not clari�ed how these genes interact to produce the observed cellular
behaviors.

One theoretical approach toward understanding gene expression is to construct
highly detailed models of well-characterized genetic systems such as � phage [10,11].
Another approach is to build more abstract but simpler models which characterize
many of the basic features of gene regulatory networks [12]. In such e�orts, re-
searchers use modeling and simulation techniques to reverse engineer existing bio-
logical systems. It is hoped that the lessons learned from these models can be used
to design and/or manipulate other genetic systems. Although these approaches
have been moderately successful in modeling gene expression, they have yielded few
practical methods for manipulating cellular function.

Genetic applets provide the basis for a forward engineering approach toward the
study of gene expression. A forward engineering approach may be more e�ective
than the reverse engineering approach because it permits the complete manipulation
of all elements in the system. The enormous complexities of natural gene networks
can be engineered out of the applets. Thus, they serve as highly simpli�ed, highly
controlled models of natural gene networks. The molecular mechanisms and inter-
actions governing the behavior of the applets can be used to test and re�ne a more
general theory of gene regulation. This theory can then be extended to natural gene
networks.

In the past, such complex engineering of cellular function was not possible be-
cause experimental techniques were inadequate, biological data were limited, and
the principles of cellular control were not well-understood. Although construction
of genetic applets may still seem far-fetched, we are con�dent in our approach.
In recent years, advances in experimental techniques have dramatically extended
our ability to manipulate DNA, genes, and proteins. At the same time, large-scale
genome-sequencing projects and advances in bioinformatics have created a wealth of
rapidly accessible biological data. Moreover, the rapidly growing �eld of functional
genomics has begun to produce abundant and detailed information about protein
and DNA interactions. Finally, our approach represents a signi�cant departure from
traditional genetic engineering in that we do not begin with experiments. We begin
by developing a theory of genetic applets using techniques from nonlinear dynamics,
neural network theory, and statistical physics. We then use this theory to guide the

6



experimental development of these devices; and conversely, the experimental data
will be used to improve and generalize the modeling techniques. To demonstrate the
feasibility of our combined theoretical/experimental approach, we plan to build the
following gene network systems: (1) a genetic toggle switch (i.e., a bistable switch),
(2) an adjustable-threshold genetic switch, and (3) a two-state genetic oscillator.

In the following discussion, we describe the application of a combined determin-
istic and stochastic modeling approach to the design and construction of genetic
applets. We begin, in Section G.2, with an introduction of the theoretical concepts
used to model and design gene networks. In Section G.3, we describe the genetic
toggle switch using a deterministic, and more intuitive, modeling approach. We
then describe how analytical stochastic modeling, in combination with experimen-
tal data on the statistics of single-cell expression, will be used to construct a toggle
switch with reliable and predictable macroscopic behavior. Next, we briey describe
extensions of the toggle switch to an adjustable-threshold switch and a two-state
oscillator. In Section G.4, we discuss the practical issues of implementing the gene
networks and collecting macroscopic, statistical and dynamic gene-expression data.
In Section G.5, we describe pilot data that provides an initial validation of both
the feasibility of our approach and the practicality of our modeling approach. Fi-
nally, in Section G.6, we highlight a few potential applications of the genetic applet
technology.

G.2 Theoretical Considerations

The design of the genetic toggle switch, the adjustable-threshold switch and the
two-state oscillator are primarily based on calculations made from deterministic
ordinary di�erential equation models of biochemical reactions. The formulation
of these equations from the biochemical reactions is a two-step process, each step
carrying a speci�c set of assumptions. In the �rst step, the individual biochemical
reactions are formulated into a set of rate equations as illustrated by the simple
example in Fig. 1. The rate equation formulation applies under certain physical
conditions. These conditions, which include homogeneity of the reaction mixture
and thermal equilbrium of the reacting species [13], will be termed the macroscopic
formulation. The second step in the modeling is a simpli�cation of the rate equations
by application of conservation laws and separation of time-scales|fast reactions
are assumed always to be in equilibrium. Thus, the fast variables can be solved
immediately in terms of the slow variables.1 This simpli�cation is illustrated in
Fig. 2.

Although the rate equation formulation of a biochemical process is often used
to describe biochemical processes [10, 16{21], including gene expression [10, 16, 21],
it is not necessarily an accurate description of biochemical events within a single
cell. When the system size becomes small or the reacting species become sparsely
populated, as occurs in an individual cell, some of the rate equation conditions no
longer apply. In reality, the concentration of a gene product within a cell uctuates
in time about a mean value [22,23]. These uctuations arise from internal noise|i.e.,

1More formally, the existence of distinct time scales in the reactions, allows the equations to be
expanded in a perturbations series [14]. The simpli�ed equations, which arise by preserving only
the lowest order terms in the series, describe the system behavior for long time scales [14, 15].
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Figure 1: Formulation of rate equations for a simpli�ed prokaryotic transcription reaction. R, D,
C and M represent the RNA Polymerase, the DNA promoter region, the RNAP-promoter complex
and the completed mRNA transcript, respectively. Lowercase letters denote the concentrations of
each species. In this scheme, the binding of the sigma factor is not included. The steps of open-
complex formation, transcription initiation, and polymerization are included in one catalytic step
represented by kc.

the probabilistic interactions of the reacting molecules [13].2 As explained below,
the macroscopic rate equations describe the dynamics of the mean concentration
of gene products in a single cell; or, in the case of a colony of cell clones, the rate
equations describe the macroscopically observed concentrations of gene products.
However, single-cell gene expression is more appropriately modeled as a stochastic
process (the microscopic formulation). From stochastic modeling, we can obtain
measures of the variability in the concentrations of gene products within a single
cell.

In this research, we will examine the e�ects of stochastic uctuations on the
behavior of the genetic networks described below. The issues pertinent to this
research are: (i) whether the intrinsic noise in the gene networks will disrupt the
predicted behavior of the gene networks; (ii) whether the system can be adjusted to
minimize the negative e�ects of intrinsic noise; and (iii) whether external or internal
noise can be utilized to enhance or expand the functionality of the gene networks.

G.2.1 Modeling Noise in Genetic Networks

A typical approach to stochastic modeling of physical systems is to add an ad hoc

additive or multiplicative noise term to the macroscopic equations. This approach,
called the Langevin approach, has been successfully applied to many physical, chem-
ical and engineering systems, both linear and non-linear [13, 24]. However, it has
been shown to accurately model stochastic uctuations only in the case of external
noise [13]. If the noise is internal, the physical interpretation of the noise term is
unclear and can produce incorrect results [13].

Alternately, one may numerically simulate the complete biochemical reactions [25].
In such simulations, the interactions of individual molecules are computed using the
rate constants to describe the probability of a particular reaction. Although such an
approach may provide accurate statistical data for a particular set of rate constants,
it cannot provide analytical relationships between the system parameters and the
concentration uctuations. Since quantitative data concerning the rate constants
in a set of biochemical reactions are often sparse, an analytical description of the
stochastic uctuations is especially important. Such a description provides a deeper
understanding of the e�ects of parameter changes on the system behavior.

2In contrast, external noise refers to uctuations arising from the application of a random force
that is external to the system [13].
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Figure 2: Simpli�cation of rate equations for a simpli�ed prokaryotic transcription reaction. The
total concentration of promoter DNA, d0, is constant. The resulting equation is analogous to the
familiar Michaelis-Menton formulation of an enzymatic reaction.

Here, we take a more analytical approach that applies in general to systems with
internal noise. To begin, we formulate the master equation, or M-equation, directly
from the biochemical reactions [13]:

_P (n; t) = f(P;n;k+;k�;S;R;
); (1)

where n represents the concentrations of the reacting species, k+ and k
�

are the
macroscopic rate constants for the forward and reverse reactions, S and R are
the stochiometric coe�cients for the forward and reverse reactions, and 
 is the
volume of the system. The M-equation describes the time evolution of the state-

transition probability, P (n; t). The state-transition probability can be interpreted as
the probability that the system will contain concentrations n at time t given that it
contained initial concentrations n0 at time t0. Thus, the solution of the M-equation
will provide a complete description of the stochastic behavior of the biochemical
system. To completely determine the M-equation, only the system volume, the
macroscopic rate constants, the stochiometric coe�cients and the initial states of
the reacting species must be provided.

G.2.2 Solving the M-Equation

For very simple reactions, the M-equation is linear. In this case, an exact solution
for the transition probability, providing a complete description of the stochastic
biochemical process, can be readily found. However, the M-equation describing
most reactions is nonlinear and an exact solution is not possible. Fortunately, a
general technique for obtaining the mean, variance, co-variance, auto-correlation
function and higher moments of the solution has been developed. This technique,
known as the 
-expansion, requires only that the biochemical system evolves to a
single stable �xed point [13].3 In this method, the M-equation is expanded in an
in�nite series about a small system parameter. The parameter typically chosen for
this expansion is 
�1=2 (
 = the volume of the system). Elimination of terms in the
expansion of order 
�1 and higher results in a linear Fokker-Plank equation for the
state-transition probabilities, the solution of which is a Gaussian stochastic process.
Thus, analytical expressions for the mean, variance, co-variance and autocorrelation

3The M-equation can be applied to systems with multiple �xed points, but its results are appli-
cable only to a local region around each stable �xed point. Thus, a di�erent approach is required
to analyze the global e�ects of internal noise in a bistable system. This approach is outlined in
Section G.3.
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Figure 3: Schematic of toggle switch. Promoter 1, P1, e�ciently transcribes gene 1 unless inhibited
by the repressor protein encoded by gene 2. Promoter 2, P2, e�ciently transcribes gene 2 unless
inhibited by the repressor protein encoded by gene 1. Open arrows indicate direction of transcription.
Clone: an additional gene or genes can be placed under the control of P1 or P2.

of the solution|in our case, the concentrations of gene products|are obtained from
the original nonlinear master equation. Higher moments can also be found from the

-expansion by inclusion of higher orders of 
�1=2.

One of the more signi�cant results, for this project, of the 
-expansion concerns
the evolution of the mean concentrations of reacting species. In a biochemical reac-
tion described by the M-equation, the 
-expansion proves that the dynamics of the
mean concentration of a species is accurately approximated, to order 
�1=2, by the
macroscopic rate equations [13]. Thus, the 
-expansion validates the macroscopic
modeling approach as an initial approximation of the behavior of a genetic network
(or any biochemical system).

G.3 Modeling Genetic Applets

G.3.1 The Basic Toggle Switch

The design for the genetic toggle (see Section G.4) is based principally on the fol-
lowing deterministic model that describes the dynamic interactions of two mutually
inhibitory genes. A schematic of the concept is shown in Fig. 3. If properly de-
signed, this system exhibits two stable states. In each state, only one of the two
genes is expressed by the host cell. The toggle equations, derived according to the
procedures outlined in Section G.2, are:

du

dt
=

k1 �1=�1
1 +Kmu(1 + v=K

iv)
� d1u (2)

dv

dt
=

k2 �2=�2

1 +Kmv(1 + u�=K�
iu)
� d1v

where,

u = concentration of gene product 1,
v = concentration of gene product 2,
�1 = maximum rate of synthesis of gene 1 mRNA by RNA polymerase,
�2 = maximum rate of synthesis of gene 2 mRNA by RNA polymerase,
�1 = rate of degradation of gene 1 mRNA,
�2 = rate of degradation of gene 2 mRNA,

10



k1 = rate of synthesis of gene product 1 by the ribosome,
k2 = rate of synthesis of gene product 2 by the ribosome,
Kmu = Michaelis constant for RNAP binding and transcription of gene 1,
Kmv = Michaelis constant for RNAP binding and transcription of gene 2,
Kiu = equilibrium constant for inhibitory binding of gene product 1 to promoter 2,
Kiv = equilibrium constant for inhibitory binding of gene product 2 to promoter 1,
d1 = rate of degradation of gene products 1 and 2,
� = degree of multimerization of gene product 1,
 = degree of multimeriztion of gene product 2.

The �rst term in each equation describes the synthesis of nascent proteins. Both
transcription by the RNA polymerase and translation by the ribosome are included
in the �rst term. Transcription, modeled as in Figs. 1 and 2, is competitively inhib-
ited by the opposing gene product (u or v). Inhibition is achieved by the binding, as
a homo-multimer, of one gene product to the opposing gene's promoter region. The
multimeric interaction is accounted for by the exponents � and  in the �rst term of
each equation. The second term describes the rate of degradation of proteins. In the
model presented here, this rate is assumed to be similar for both transcripts. Thus,
a single rate constant is used for protein degradation.4 Additional assumptions,
implicit in this model, are (i) mRNA turnover is rapid,5 and (ii) translation of each
mRNA transcript occurs at its maximum rate, i.e., proteins are rapidly synthesized
from the mRNA by an excess of ribosomes. These assumptions are supported by
experimental studies of transcription and translation in prokaryotes [26,27,31], and
can be extended, with some modi�cations, to eukaryotes.

Figure 4, which shows the geometric structure of Eqs. 2, reveals the origin of
the bistability: the nullclines intersect in three places producing one unstable and
two stable �xed points. From this �gure, three key features of the system become
apparent. First, the nullclines intersect three times, rather than once, because of
their sigmoidal shape. The sigmoidal shape arises for �,  > 1. Thus, the bistability
of the system depends on the homo-multimeric binding of the inhibitory proteins to
the DNA. Second, the strengths of the promoters must be matched. If the strengths
are not matched, the nullclines will intersect only once, producing a single stable
�xed point. Third, the state of the toggle is switched by the application of a transient
pulse of an inducing stimulus that pushes the system away from the stable steady
state, over the separatrix, and into the opposite basin of attraction.

To build a working genetic toggle switch, it is necessary to understand the e�ect
of each of the parameters in Eqs. 2 on the system behavior. Then, the switch can
be designed to produce robust bistable behavior in vivo. With eleven parameters,
this analysis could be daunting, but by rescaling time and non-dimensionalizing the
variables, these equations can be simpli�ed to the following system:

4Here we assume identical rate constants for protein degradation to facilitate the description of
the toggle behavior. However, this assumption is not necessary. The bi-stable behavior will exist
in the toggle under the same conditions on the model parameters, �1, �2, � and . However, it
could alter the balance of the two promoter strengths. Thus, a compensating adjustment in another
parameter may be necessary.

5If mRNA turnover is not rapid, it will not alter the bistable steady-state behavior predicted
by the macroscopic equations. It may, however, a�ect the kinetics of the system and, hence, alter
the e�ects of internal noise on the uctuations in expression. Thus, the bi-stability may be altered
indirectly.
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Figure 4: Phase plane diagram of Eqs. 2. A cell with the toggle switch genes will settle to state
1 if its initial state is anywhere above the separatrix; it will settle to state 2 if its initial state is
anywhere below the separatrix.

dû

d�
=

�1

1 + v̂�
� û (3)

dv̂

d�
=

�2

1 + û
� v̂ where;

� = d1 t;

û =
u

Kiu (1=Kmv + 1)1=�
;

v̂ =
v

Kiv (1=Kmu + 1)1=
;

�1 =
k1 �1=�1

d1Kiu (1 +Kmu)(1=Kmv + 1)1=�
and;

�2 =
k2 �2=�2

d1Kiv (1 +Kmv)(1=Kmu + 1)1=
:

Nine parameters in the original equations collapse into two. Thus, the range of
dynamic behaviors that can be produced by this system is easily understood by
analysis of only four parameters. The two new parameters, �1 and �2, are de�ned
as the e�ective strength of promoters 1 and 2, respectively. The e�ective promoter
strength (herein referred to just as promoter strength) is the net e�ect of the RNA
polymerase (RNAP) binding a�nity, the rates of transcription and translation, the
inhibitor binding a�nities, and the rates of degradation of the mRNAs and proteins.
These physical quantities can be manipulated in the experimental system to achieve
the desired promoter strength (see Section G.4).

Fig. 5 shows the result of two-parameter bifurcation analyses of the system. It
is clearly seen in Fig. 5a that the region of bi-stability grows larger as the strength
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Figure 5: Bifurcation analysis of the toggle. In both plots, the lines separating the bistable region
from the monostable regions are saddle-node bifurcations. (A) The slopes of the bifurcation lines,
for large �1 and �2, are determined by � and . (B) As � and  are reduced, the size of the bistable
region decreases.

of both promoters is increased. Though not apparent in the �gure, the separation
of the two stable states increases. Thus, the system becomes more robust both to
imbalances in the promoter strengths and to internal noise. Furthermore, if one
promoter is too weak or two strong, then the system falls outside the bistable re-
gion in Fig. 5. In Fig. 5b, the bifurcation analysis reveals that, the slopes of the
bifurcation lines, for large �1 and �2, are determined by � and . Thus, to obtain
bistability, at least one of the inhibitors must repress expression with cooperativity
greater than one. This suggests that repressor multimerization, or multiple operator
sites in the promoter, is necessary to obtain bistability. Higher-order multimeriza-
tion will increase the robustness of the system, allowing weaker promoters to achieve
bi-stability.

It should be noted that the above theory, though it is described for a system with
a competitive DNA binding inhibitor, applies qualitatively to systems with other
kinds of inhibition. Inhibition through protein-protein binding, un-competitive,
and non-competitive interactions will result in the same qualitative features of bi-
stability.

G.3.2 Analysis of Internal Noise in the Toggle

As explained in Section G.2, the 
-expansion approach cannot describe the e�ects
of internal noise in a bistable system. This approach fails because the 
-expansion
can only describe the local e�ects of stochastic uctuations. To better illustrate
why the 
-expansion fails, and to illustrate the alternate method used to analyze
internal noise in a bistable system, we will utilize the following heuristic description
of internal noise in a biochemical system.

The dynamics of certain systems can be visualized as a ball rolling on a potential
surface. In a monostable system, such as that given in Fig. 1 in Section G.2, the
potential surface has a single dip, a potential well, the bottom of which is centered
at the stable �xed point (Fig. 6). In a dissipative deterministic system, the ball will
ultimately settle to the very bottom of the well. However, in a system with internal
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Figure 6: Example potential surfaces. Arrows illustrate the competing e�ects of the internal noise
(solid arrows) and the macroscopic dynamics (dashed arrows). (A) Monostable system. (B) Bistable
system.

noise, the ball will never settle because it is constantly kicked away from the bot-
tom. Thus, the system is characterized by a competition between the macroscopic
dynamics which pushes the system toward the �xed point and the internal noise
which kicks the system away from the �xed point. In a monostable system, internal
noise serves only to create the uctuations around the �xed point. The distance
that the ball is kicked away from the �xed point increases as the steepness of the
potential well decreases. The uctuations of the ball about the �xed point are anal-
ogous to the uctuations of a reacting species about its mean concentration. The
M-equation and 
-expansion described in Section G.2 provide a general method for
calculating the relationship between the parameters of the biochemical reaction and
the shape of the potential well.

In a bistable system, such as the toggle, the internal noise can no longer be viewed
as simply creating uctuations about the mean concentration. Such a system can be
visualized as a potential surface with two wells; the bottom of each well corresponds
to the two macroscopic stable �xed points (Fig. 6). Thus, the ball will uctuate
around the bottom of one potential well until a su�ciently large kick pushes it over
the barrier and into the opposite potential well (where it will remain until another
large kick pushes it back). Here, the shape of the well will determine the signi�cance
of the internal noise in causing the random jumping between states. However, the
system cannot be analyzed with the 
-expansion approach because the macroscopic
equations do not possess a single stable �xed point. The 
-expansion cannot handle
the situation where the ball escapes from a well. Thus, an approach exempli�ed by
Kramers' escape problem [13] is necessary. In this approach, the escape time of the
ball|the average time for the ball to escape from one potential well|is calculated.
The escape time, in terms of the genetic toggle switch, is the average time for a
single cell to ip from one expression state to the other due to internal noise. If the
escape time from a state in a bistable system is large relative to the time scale of
the macroscopic equations, the state can be considered metastable. In other words,
a bistable system with internal noise will uctuate about one of the stable states
with little or no random switching to the opposing state. If, on the other hand,
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Figure 7: Schematic of adjustable-threshold switch. Transcription of gene 1 by promoter 1, P1,
is activated by protein X and simultaneously inhibited by the repressor protein encoded by gene 2.
Promoter 2, P2, e�ciently transcribes gene 2 unless inhibited by the repressor protein encoded by
gene 1. Open arrows indicate direction of transcription. Clone: an additional gene or genes can be
placed under the control of P1 or P2.

the escape time is of the same order as the time scale of the macroscopic equations,
the system will be likely to ip randomly between the two stable states. Thus, the
bistable behavior predicted by the macroscopic equations will not hold for the real
system with internal noise.

In practice, our goal is to design a toggle switch whose bistable behavior is robust
with respect to internal noise uctuations. To this end, we will apply the theories
outlined in this section and Section G.2 to analyze the variability in single-cell gene
expression. This data, which is obtained as described in Sections G.4 and G.5, will
be used to evaluate both the modeling techniques as well as the size and character
of the internal noise in the gene networks. These methods will �rst be applied
to simple monostable expression systems, such as those in plasmids pMKN3 and
pMKN7 (see Section G.4). These model systems will provide the knowledge and
experience necessary to analyze the e�ects of noise in the more complicated toggle
switch. If it is found that the toggle switch behaves poorly as a bistable system due
to internal noise, we will re�ne the toggle as necessary to produce a more robust
bistable behavior.

G.3.3 The Adjustable-Threshold Switch

By a relatively minor modi�cation of the toggle design, a genetic switch with an
adjustable switching threshold is produced. (Shown schematically in Fig. 7.) Like
the toggle, this device is composed of two mutually inhibitory genes. However,
promoter 1 is modi�ed such that it cannot transcribe gene 1 without the aid of an
additional activator protein. In the absence of protein X, promoter 2 will dominate
promoter 1 and gene 2 will be expressed. As the concentration of protein X rises,
the strength of promoter 1 will rise as well. Eventually, the strength of promoter 1
will exceed that of promoter 2 and the device will abruptly switch to the expression
of gene 1. By manipulating the relative strengths of promoter 1 (when activated)
and promoter 2, the activator concentration at which this transition occurs can be
altered.

The behavior of the adjustable-threshold switch is illustrated in Fig. 8, which
shows the steady-state concentrations of proteins u and v versus the concentration
of x for several values of parameters �1 and �2. (As for the toggle switch, �1 and
�2, are the e�ective strengths of the promoters.) This �gure reveals more clearly
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Figure 8: Structure of the threshold. Hysteresis exists at the switching threshold, as indicated
by the arrows. Both the location of the threshold and size of the hysteresis can be manipulated
independently. Parameter values: �1 = 5, �2 = 14 (curve a), �1 = 3, �2 = 10 (curve b), �1 = 2:7,
�2 = 15 (curve c).

the nature of the threshold and the associated hysteresis. It also demonstrates that
both the location of the threshold and the size of the hysteresis can be tuned.

G.3.4 The Two-State Genetic Oscillator

A two-state genetic oscillator is a device which alternately expresses one or another of
two genes. The oscillations will continue inde�nitely and without external stimulus,
and the period and amplitude of these oscillations can be tuned.

The oscillator (shown schematically in Fig. 9) is a straightforward extension of
the threshold device. Oscillations are produced when feedback with a time delay is
added to the adjustable-threshold switch. This can be accomplished by indirectly
stimulating the synthesis of protein X (the activator of promoter 1) with a gene
product of promoter 2. This scheme creates both the feedback and an adjustable
delay.

Fig. 10 illustrates the predicted behavior of the system. By adjusting the time
delay, the period of oscillations can be altered. Furthermore, the proper tuning
of this time delay and the strength of promoter 3 is critical for the production of
oscillations. If the delay is too long or too short, or if the promoter is too weak
or too strong, the system will not oscillate; instead, it will settle to a steady-state.
Both of these parameters can be manipulated experimentally to achieve the desired
behavior.

Though not shown here, oscillations can also be produced from an alternate
arrangement of the network in Fig. 9. In this design, promoter 3 is replaced with
a constitutively transcribed promoter that is repressed by the product of gene 3.
Secondly, gene 3 is placed under the transcriptional control of promoter 1.
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Figure 9: Schematic of two-state oscillator. Promoters 1 and 2 and genes 1 and 2 behave as
described in Fig. 7. Transcription of gene x by promoter 3 is activated by gene 3 which is under
control of P2. The activator encoded by gene x stimulates the transcription of gene 1. The time
necessary to express gene x creates the time delay needed for oscillations. Open arrows indicate the
direction of transcription.
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Figure 10: Simulation of the two-state genetic oscillator.
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G.4 Implementation

Below, we describe the experimental methods used to construct the toggle switch,
adjustable-threshold switch and two-state oscillator. For this project, we choose
E. coli as the host organism because its gene-regulatory mechanisms are relatively
simple and because it facilitates genetic manipulations. Beginning with the toggle
switch, all three devices will be constructed and tested. First, we describe the
various ways that the devices can be manipulated to achieve the desired behaviors.

G.4.1 Experimental Manipulation of System Parameters

In order to build functioning devices, it will be necessary to experimentally tune
various aspects of the gene and protein interactions. For example, the strengths of
promoters 1 and 2 in the toggle must be adjusted such that the system falls within
the bistable region. Physically, the adjustments can most easily be made to all three
systems by manipulating one or more of the following: the strength of RNAP bind-
ing to DNA (Kmu or Kmv), the maximum rate of mRNA synthesis by RNAP (�1
or �2), the strength of inhibitor binding to the DNA (Kiu or Kiv), the strength of
activator binding to DNA, the rate of translation of mRNA into functional protein
(k1 or k2), and the rate of protein degradation, i.e., protein stability (d1). Although
the principles described in the theory section apply equally well to prokaryotic and
eukaryotic cells, the speci�c manipulations necessary to adjust the system parame-
ters di�er. In this document, only the manipulations that are speci�c to prokaryotic
cells are described.

RNAP Binding. In prokaryotic cells, recognition of the promoter sequence by
RNAP is mediated by helper proteins called sigma factors that bind to two sites in
the promoter: the Pribnow box (or -10 region) and the -35 region. Each of these
sites has an ideal sequence called a consensus sequence. The strength of binding of
sigma factors, and thus the strength of RNAP binding, is determined by how closely
these regions match their consensus sequence [27]. Furthermore, modi�cations of
a region upstream of the -35 region, called the UP element, have been shown to
dramatically alter the rate of transcription [28, 29]. The UP element, which has
also been shown to have a consensus sequence, probably enhances the binding of
the RNAP complex. By modifying the sequence of the -10, -35 and UP regions, the
strength of RNAP binding and, hence, the promoter strength, can be altered.

Transcription Elongation. Once the RNAP binds to a promoter, it opens
the DNA double helix and moves forward, adding ribonucleotides to the mRNA
transcript. The rate of transcription is determined partially by the nucleotide con-
tent and partially by the secondary structure (if any) of the mRNA. High guanosine
and cytosine content will slow the transcription rate [27]. Secondary structures that
form in the mRNA behind the transcription complex can interfere with the tran-
scription process [27]. Although the DNA content of the coding region cannot be
substantially altered (only silent mutations will alter the mRNA sequence without
changing the protein properties), a leader region of mRNA can be inserted upstream
of the coding region. This region can be designed to slow the rate of transcription
elongation.

Inhibitor/Activator Binding. Special sequences of DNA called operators
are often found within or near a promoter. The inhibitor proteins (repressors) block

18



-

-

Ptrc cIlacIPL Clone

AmpR

GFPuv

Ptrc

cIts

rrnT1T2

pTAK

lacI

PL

A B

rrnT1T2

Figure 11: (A) Schematic of toggle switch prototype for expression in E. coli. (B) Physical design
of the pTAK plasmid carrying the toggle switch prototype. Key restriction sites are indicated.
Promoters and genes and their direction of transcription are indicated. Transcription terminators,
rrnT1T2, are also shown.

transcription by binding to these operators. On the other hand, when an activator
binds to an operator, it increases the binding a�nity and/or transcription rate of
the RNAP. A given repressor or activator will recognize only a speci�c operator
sequence. The a�nity of the repressor/activator for the operator can be altered by
mutating the operator sequence.

Translation Rate. The rate of translation of mRNA into an amino-acid se-
quence is governed primarily by three factors: the ribosome binding site (RBS), the
secondary structure of the mRNA, and the codon content of the coding region. The
RBS is located 5-20 bases upstream of the start codon. Translation is most e�-
cient when this sequence matches a consensus sequence called the Shine-Dalgarno
(SD) sequence [27,30,31,33]. Thus, translation rate can be altered by mutating the
RBS. As in transcription, the formation of secondary structures by the mRNA can
interfere with translation machinery. Thus, modi�cation of the leader region of the
mRNA or introduction of silent mutations into the coding region may be used to
change translation rate. Finally, in various organisms certain codons are favored,
i.e., tRNAs for certain codons are more abundant than others. Translation is more
e�cient when the favored codons are used [31, 32]. Thus, a coding region can be
optimized by introducing silent mutations that utilize the favored codons.

Protein Stability The stability of a protein can be altered by introducing muta-
tions that make it more or less resistant to denaturation or proteolytic degradation.
Although it is very di�cult to predict a protein's stability, powerful experimental
techniques such as directed evolution, DNA shu�ing and two-hybrid screening can
be used to rapidly screen large numbers of mutant proteins for the desired stabil-
ity characteristics. Furthermore, recent work has revealed prokaryotic amino acid
signal sequences which can be fused to the C-terminal of a protein [34{36]. These
sequences target the protein for rapid proteolytic degradation.

G.4.2 Outline of Recombinant DNA Work

The three principal objectives of the initial stages of the experimental work are: (i)
to individually test and modify the genetic components of the toggle switch, (ii) to
modify and arrange the DNA fragments of the individual toggle components such
that they can be integrated into a single plasmid, and (iii) to construct simple genetic
expression systems for testing, evaluating and re�ning the modeling approach.
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Repressor Promoter Inducer [Co-repressor]

ArsR Arsenic operon arsenate or oxidized arsenic,
antimony & bismuth

ArgR Arginine repressor [L-arginine]
AscG ASC operon unknown

CscR Sucrose operon D-fructose
DeoR (NucR) Deoxyribose operon deoxyribose-5-phosphate
DgoR DGORKAT operon D-galactonate
FruR Fructose operon D-fructose
GalR Galactose operon galactose
GatR Galactitol operon unknown

LexA SOS response regulon UV light & RecA protein
RafR Ra�nose operon ra�nose
TetR Tetracycline resistance operon tetracycline

Table 1: Alternate E. Coli repressors/promoters for the toggle switch.

The components used for the toggle switch prototype are: the PL promoter and
cIts gene from the bacteriophage �, the lacI gene from E. coli, and the Ptrc promoter
(a fusion of the trc and lac promoters from E. coli). These elements, arranged
for the toggle prototype as shown in Fig. 11, are chosen because they are well-
characterized and easily obtainable, which facilitates any necessary modi�cations.
Moreover, previous studies have shown that the strengths of the two promoters are
reasonably well-matched [37, 38]. The PL and Ptrc promoters are constitutive, i.e.,
they are e�ciently transcribed by the RNAP alone, and are repressed by the cIts and
lacI gene products, respectively. The cIts gene, because it carries the temperature
sensitive mutation, allows switching to PL expression by thermal induction. If the
wild-type allele of the cI gene is used instead, then induction of PL expression can be
achieved through the use of nalidixic acid or UV light. On the other hand, switching
the toggle to Ptrc expression is accomplished by a pulse of IPTG. The host organism
for the toggle switch, the E. coli JM 2.3 strain (E. coli Genetic Stock Center strain
5002), is chosen because it is de�cient in both a functional lacI gene and a lambdoid
phage.

As previously mentioned, the choice of the PL and Ptrc promoters and the cIts
and lacI genes is not a necessity. Any of the tens or hundreds of trans-acting
repressor proteins, and their associated promoters, found in E. coli are candidates for
use in a genetic toggle switch. A brief search of the Swiss-Prot protein database [39]
yielded the several potential repressors listed in Table 1.

Construction of the adjustable-threshold switch and the two-state oscillator will
mainly require modi�cations and additions to the toggle switch. For the adjustable-
threshold switch, one of the constitutive toggle promoters will be replaced with a
promoter that requires trans-activation. The two-state oscillator requires the addi-
tion of a feedback loop to the adjustable-threshold switch consisting of an additional
gene and promoter.

Construction of a trans-activated promoter is facilitated by the modular struc-
ture of the Ptrc promoter. The Lac repressor binding site begins exactly at the �rst
nucleotide (+1 nucleotide) of the transcribed DNA. The RNAP consensus sequences
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Activator Promoter Co-activator

AraC Arabanose operon arabanose
CadC Pcad (CAD Operon) low pH
CRP deoP2 cAMP
CynR Cyn operon cyanate
DsdC Dsd operon CRP, cAMP
FhlA Formate dehydrogenase/hydrogenase genes formate
MalT malPp maltose
MaoB Monoamine oxidase gene CRP, cAMP, tyramine
IlvY IlvC gene acetolactate,

acetohydroxybutyrate
UreR Urease operon urea

Table 2: Potential E. Coli activators/promoters for the adjustable threshold switch.

are located upstream of the Lac repressor binding site. Thus, the entire Ptrc pro-
moter upstream of the +1 nucleotide can be removed and replaced by nearly any
trans-activated promoter element. The new hybrid promoter, which retains the Lac
repressor binding site, is positively regulated by the trans-activator and negatively
regulated by the Lac Repressor.

Many suitable candidates for an activated promoter exist. A quick search of the
Swiss-Prot database revealed the possible activators/promoters listed in Table 2.
These activator/promoters are all reasonably well-characterized.

Construction of the feedback pathway in the two-state oscillator can be accom-
plished in one of two ways. The �rst, as illustrated in Fig. 9, is to place the expression
of the activator (protein X) under the indirect control of promoter 2. The single
level of indirection, provided by gene 3 and promoter 3, is necessary to produce a
required time delay. In the second design (not shown), promoter 3 is replaced with
a constitutively transcribed promoter that is repressed by any product of promoter
1.

G.4.3 Quantitative Measurement of Gene Expression

In order to achieve the objectives of this project we require three types of data:
macroscopic measurements of gene expression, statistical data describing single-cell
gene expression and measurements of the gene-expression dynamics. To this end,
we have selected the Green Fluorescent Protein as a reporter of gene expression.
The Green Fluorescent Protein, which can form its uorescent chromophore inde-
pendently of the host organim, can be quantitatively assayed in intact cells. Assays
of gene expression are minimally invasive and require few manual manipulations.
Thus, quanti�cation of expression using GFP is both e�cient and accurate. Macro-
scopic expression data can be collected using uorimeters or uroescence scanners,
while single-cell expression data can be collected by ow cytometry or uorescence
microscopy.

Macroscopic Expression Data. In this project, macroscopic expression data
is collected using a Molecular Dynamics STORM scanner which excites GFP with
a 450 nm blue laser and collects un�ltered emission light using a photomultiplier
tube. Bacterial cells expressing GFP are concentrated, transferred to a microtitre
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Figure 12: E. coli JM 3.3 stained with Hoechst 33258. Live cells were washed once in PBS (pH 7.4),
pelleted, and resuspended in 10 �g/ml Hoechst 33258. Cells were then incubated for 10 minutes in
the Hoechst solution, washed once with PBS, pelleted, resuspended in PBS, and transferred to a
glass slide. Images were taken using a Zeiss epi-uorescence microscope with a 100� objective, a
365 nm excitation �lter, a 480 nm barrier �lter, and a CCD camera.

plate, and scanned. The resulting images are quanti�ed by summing the total uo-
rescence emission from each well in the microtitre plate. The measured uorescence
is normalized by the cell density, which is measured by the optical scattering at 660
nm (A660). Measurements of expression from the Ptrc promoter using this method
are described in Section G.5.

Single-Cell Expression Data. Measurement of single-cell expression is ac-
complished using a Zeiss Axioskop epi-uorescence microscope with a digital CCD
imaging system. Single-cell expression is quanti�ed by summing the total expres-
sion of each bacterium in the visual �eld. This task raises two challenges. The �rst
is the object-�nding problem, i.e., how to rapidly and consistently distinguish the
boundaries of a single bacterium from the noisy background radiation. The second is
how to determine the number of copies of the expressing gene in a single bacterium.
Since each bacterium may contain a di�erent number of copies of the chromosome
(and likewise, the expression plasmid), the expression data will be inaccurate if not
corrected for the gene copy number.

We �rst address the second problem. We assume that plasmid copy number is
proportional to the chromosome copy number in a single cell.6 Thus, we can correct
the total single-cell uorescence by normalizing by chromosome copy number.

The number of chromosomes per cell can be observed under the uorescence mi-
croscope by staining with a DNA speci�c stain. Figure 12 is an image obtained by
staining the bacteria with Hoechst 33258 (Molecular Probes, Eugene, OR). Hoechst
33258 is a membrane permeable stain that binds to the DNA double helix [45{47]. In
the image, bacteria with one, two and four chromosomes are visible. Unfortunately,
the quantitative measurement of GFP expression simultaneously with a uorescence
stain presents practical di�culties. First, if the emission spectrum of GFP overlaps
with the absorption spectrum of the DNA stain, substantial re-absorption of GFP
emitted photons can occur. Second, a phenomenon know as Free Resonance Energy
Transfer (FRET) can occur if two uorescent species are in close spatial proximity

6Since we are not using stringent plasmids, the plasmid copy number is not necessarily linked
to the chromosome copy number [44]. Cell-to-cell variability in plasmid copy number is likely.
However, for the reasons outlined in Section G.2, we can assume that the mean copy number is
proportional to chromosome copy number. The variability in the copy number is accounted for by
the stochastic analysis of the expression data. Furthermore, the genes and promoters under study
can, if necessary, be inserted into a stringent plasmid.
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Figure 13: E. coli JM 3.3 expressing GFPuv from plasmid pMKN7. Live cells were washed once
in PBS (pH 7.4), pelleted, resuspended in PBS, and transferred to a glass slide. Images were taken
using a Zeiss epi-uorescence microscope with a 100� objective, a 365 nm excitation �lter, a 510 nm
barrier �lter, and a CCD camera. Solid arrows denote an intensely uorescing cell. Open arrows
denote faintly uorescing cells. (A) Original image|dynamic range is rescaled with a logarithmic
transformation. (B) Low-threshold intensity-�lter. (C) High-threshold intensity-�lter.

and have overlapping emission and absorption spectra [48]. In FRET, the energy
absorbed by one species is transferred non-radiatively to the next species which, in
turn, radiates the energy uorescently at a lower wavelength. Either phenomenon,
re-absorption or FRET, will alter the emission intensity from GFP and make quan-
titative measurements di�cult.

A way around this problem is found by observing that the length of a rod-shaped
bacterium is proportional to the copy number of the chromosome (Fig 12). Thus,
we can obtain a measure of chromosome copy number by measuring the length of
each bacterium. This measurement is obtained, without DNA staining, by using
the image processing algorithm described below.

Image Processing. The image in Fig. 13a shows the GFP uorecence of indi-
vidual bacteria. The human eye can easily distinguish the outline bacteria from the
moderate background noise. However, it is not clear where to draw the bacterial
boundaries so as to obtain a consistent estimate of the total uorescence. Further-
more, this quanti�cation task must be automated in order to obtain su�cient data
for statistical and stochastic analysis.

One method for �nding the boundaries would be a straightforward thresholding
algorithm in which all pixel intensities below a preset threshold are rejected and
all remaining adjacent pixels are considered to be a single bacterium. Although
this method is frequently used for object �nding, it fails in our case for the reason
illustrated in Fig. 13. In the unthresholded image, both faintly (open arrows) and
intensely (solid arrows) uorescing bacteria are visible. If the threshold is set low
enough to �nd the faintest bacteria, it fails to correctly delineate the boundaries of
the more intense bacteria. It includes a halo region around the intense bacteria.7 If,
on the other hand, the threshold is raised to eliminate the halos, it also eliminates
the faint bacteria.

Fortunately, more sophisticated image processing techniques have been devel-
oped that can overcome the problems associated with object-�nding in an image
with variable background noise. The algorithm we use is illustrated in Fig. 14. The
original raw image (Fig. 14a) is �rst rescaled with a logarithmic transformation to
compress the dynamic range (Fig. 14b). Next, the variations in background intensity
are removed using an algorithm called unsharp masking [40,41] (Fig. 14c). Then an

7This halo results from optical imperfections, di�raction e�ects and out-of-focal-plane emissions.
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Figure 14: E. coli JM 3.3 expressing GFPuv from plasmid pMKN7. The original image was ob-
tained as in Fig. 13. Solid arrows denote an intensely uorescing cell. Open arrows denote faintly
uorescing cells. Dashed circles indicate noise objects. All algorithms were implemented in Matlab
5.2 (Mathworks, Natick, MA). (A) Original image. (B) Original image|dynamic range is rescaled
with a logarithmic transformation. (C) Image �ltered with unsharp masking. (D) Mask produced
by edge-preserving smoothing algorithm. (E) Final mask obtained by eliminating noise objects.

edge-preserving smoothing algorithm is applied [42]. This algorithm delineates and
intensi�es the bacterial boundaries while simultaneously smoothing and rejecting
the background noise. Both the faint and intense bacterial objects are highlighted
(Fig. 14d). Finally, noise objects that survive the edge-preserving smoothing algo-
rithm are rejected by a minimum size criterion. The resulting mask (Fig. 14e) is
then used to quantify the uorescence and length of the bacterial objects. Single-cell
expression data for 662 bacteria obtain through automated image processing of �ve
digital uorescent micrographs are described in Section G.5.

Dynamic Expression Data. The use of GFP to obtain dynamic expression
data su�ers from one problem: GFP is an extremely stable protein [32, 34, 43].
The time constant for GFP expression is extremely long|on the order of tens of
hours [34]. Thus, as a reporter of gene expression dynamics, it is extremely poor.
Other reporters such as cloramphenicol acetyl transferase (CAT) or �-galactosidase
(LacZ) or direct assays of mRNA might be used instead. But they do not have the
attractive measurement properties of GFP and cannot be used for single-cell assays
of gene expression. Fortunately, GFP fusion proteins that have half-lives of less
than an hour in E. coli have been recently described [34]. These variants consist
of the full amino-acid sequence of GFP tagged with a C-terminal protease recogni-
tion sequence. Thus, the mutants retain the attractive measurement properties of
GFP and have dynamic characteristics that make them suitable for reporting the
dynamics of gene-expression.

G.5 Pilot Data

Steady-state gene-expression data collected as described in Section G.4 and the cap-
tions of Fig. 15 shows the expression of GFPuv from the Ptrc promoter of plasmid
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Figure 15: Single-cell GFP expression statistics. Expression of GFPuv from plasmid pMKN7 in E.
coli JM 3.3 cells was quanti�ed as described in the text and Fig. 14. 662 cells were quanti�ed from
5 digital micrographs. (A) Histogram of the number of chromosomes per bacterial cell. Number of
chromosomes was determined from the cell length. The median cell length was assumed to correspond
to a single chromosome. (B) Histogram of single-cell GFP expression illustrating the variability in
expression levels.

pMKN7 in 662 E. coli JM 3.3 cells. This �gure demonstrates the variability in ex-
pression among bacteria. The e�ects of various parameter changes on the variability
can be observed and related to theoretical predictions. This type of data will be
used to calibrate and re�ne the theories used to describe the gene networks.

G.6 Applications

Gene Therapy. The treatment of disease through gene therapy will likely re-
quire the regulation of transgene expression. Recent work by Rendahl et al. [52]
demonstrated a successful method for the delivery and controllable expression of a
recombinant epo gene in mice. Long-term, regulated expression of the epo gene,
which stimulates the production of red blood cells, may be used as a treatment for
hemoglobinopathies or anemia. In this scheme, the epo gene is placed under the
control of a tetracycline-controlled transcriptional activator. The presence of tetra-
cycline interferes with gene expression by binding to the transcriptional activator.
Thus, the expression of epo and the consequent production of red blood cells can be
turned on and o�, by the administration of tetracycline.

The drawback of this approach is that tetracycline must be continuously ingested
to maintain the suppressed state of the epo gene. Long-term ingestion of tetracycline
may be inconvenient or impractical for medical reasons. A better method for the
expression of epo or any other transgene is to place it under the control of the toggle
switch. Expression of the gene will then remain in either the \on" or \o�" states
until the toggle is switched by the transient ingestion of the appropriate drug.

Another potential gene therapy scheme is to place the transgene under the con-
trol of the adjustable-threshold switch. The switch would be constructed such that
it activates or inactivates the expression of the transgene in response to changes
in the concentration of a particular compound in the body. For example, su�erers
of diabetes must inject insulin into their blood-stream when their blood glucose is
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abnormally elevated. In a genetic applet treatment of this disease, the liver cells
might be transfected with an insulin gene that is under the control of the adjustable-
threshold switch. When blood glucose levels are elevated, the switch would initiate
production of insulin. Thus, the individual with diabetes would be freed of the need
for constant insulin injections.

The concentration of certain hormones in the body uctuate periodically during
the day. Thus, the treatment of diseases in which these hormones are de�cient is
better accomplished through the periodic ingestion of drugs. Such treatments might
be achieved by placing the missing or damaged gene under the control of the two-
state oscillator. The period of the oscillator could be adjusted appropriately for that
particular gene.

Cell Cycle Control. In recent work, it has been shown that a protein that
reversibly binds any one of the cell-division cycle (CDC) proteins can modulate
the frequency of cell division or stop and restart cell division completely [53]. This
scheme requires the controllable expression in vivo of the binding protein. The toggle
switch is an ideal system for expressing the binding protein. It can be ipped \on"
causing the cell cycle to stop or its frequency to change. The cell will remain in this
state until it is desired to restart the cell cycle or return it to its normal frequency.
Then, the toggle switch can simply be ipped again. Control of cell division in
this manner might be applied to the control of cell growth, used to improve the
manufacture of engineered tissues, or possibly used in the treatment of cancer.

The above form of CDC control is passive. That is, the binding protein is
a passive element that can only modulate the fundamental dynamics of the cell-
division cycle. Though this scheme can speed up the cycle, its stronger e�ect is
to slow or stop the cycle. However, active control of the cell may show even more
promise for altering CDC frequency (especially for increasing frequency). In active
control, a device with inherent oscillations could be coupled to the cell cycle and
drive it at a new frequency. Such a function could be carried out by a two-state
oscillator which periodically expresses one of the CDC proteins or a binding protein.
Furthermore, the frequency of the two-state oscillator, and hence, the frequency of
cell division, could be dynamically controlled by modulating, with external chemical
signals, the time-delay in the feedback loop.

Cell Suicide. Once a micro-organism or a human cell is genetically modi�ed
with a transgene, it is very di�cult to remove that gene. Thus, it may be desirable to
remove the altered human cells or destroy the genetically engineered micro-organism.
To accomplish this, the genes that initiate apoptosis would be placed under the
control of the toggle switch or the threshold switch. When it is desirable to destroy
the altered cell, a pulse of the appropriate compound will ip the switch and initiate
apoptosis.

A similar scheme has previously been demonstrated by Szafranski et al. [54]. In
this scheme, streptavidin, which is fatal to the bacterial cell, is expressed only in
response to IPTG or depletion of benzioc acid in the cell. However, the threshold at
which suicide is initiated cannot be adjusted. In a poorly controlled environment,
such as that found outside of the laboratory, trace amounts of the inducing com-
pound may prematurely initiate suicide. Thus, it is desirable to place these suicide
genes under the control of the adjustable-threshold switch.

Sensitive Chemical/Protein Sensor and Switch. In the experimental study
of gene expression, it may be desirable to monitor, in vivo or in situ, the concentra-
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tion of certain proteins or compounds. Such research could be facilitated by the use
of the adjustable-threshold switch. The switch would be designed to express a GFP
variant when the concentration of the protein or compound of interest rises above
or falls below a particular threshold. A highly sensitive version of this system could
be used as the basis for an in vivo system for the detection of biological or chemical
warfare agents.

The same sort of switch could be used to activate other genes in response to
changes in the cellular concentration of a particular protein or compound. For
example, the switch could be designed to activate a gene once per cell divison by
linking its expression to the concentration of metaphase promoting factor.
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