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Abstract. We demonstrate that it is possible to achieve robust and
reasonably accurate localization in a randomly placed wireless sensor
network composed of inexpensive components of limited accuracy. We
present an algorithm for creating an accurate local coordinate system,
aligned with the global coordinates, without the use of global control,
globally accessible beacon signals, or accurate estimates of inter-sensor
distances. The coordinate system is robust and automatically adapts to
the failure or addition of sensors. We present a theoretical analysis of the
accuracy, simulation results, and recent experimental results. Two key
theoretical results are: there is a critical minimum average neighborhood
size of 15 for good accuracy and there is a fundamental limit on the reso-
lution of any coordinate system determined strictly from local communi-
cation. Simulation results show that we can achieve position accuracy to
within 20% of the local radio range even when there is variation of up to
10% in the radio ranges. The algorithm improves with finer quantizations
of inter-sensor distance estimates: with 6 levels of quantization position
errors better than 10% are achieved. Experimental results with acoustic
ranging distance estimates suggest that this algorithm works well on real
hardware.
keywords: sensor networks, localization, tracking, acoustic ranging

1 Introduction

Advances in technology have made it possible to build ad hoc sensor networks
using inexpensive nodes consisting of a low power processor, a modest amount
of memory, a wireless network transceiver and a sensor board; a typical node is
comparable in size to 2 AA batteries [5]. Many novel applications are emerging:
habitat monitoring, smart building reporting failures, target tracking, etc. In
these applications it is necessary to accurately orient the nodes with respect to
the global coordinate system. Ad hoc sensor networks present novel tradeoffs in
system design. On the one hand, the low cost of the nodes facilitates massive
scale and highly parallel computation. On the other hand, each node is likely
to have limited power, limited reliability, and only local communication with a



modest number of neighbors. The application context and massive scale make
it unrealistic to rely on careful placement or uniform arrangement of sensors.
Rather than use globally accessible beacons or expensive GPS to localize each
sensor, we would like the sensors to be able to self-organize a coordinate system.

In this paper, we present an algorithm that exploits the characteristics of
ad hoc wireless sensor networks to discover position information even when the
elements have literally been sprinkled over the terrain. The algorithm exploits
two principles: (1) the communication hops between two sensors can give us an
easily obtainable and reasonably accurate distance estimate and (2) by using
imperfect distance estimates from many sources we can minimize position er-
ror. Both of these steps can easily be computed locally by a sensor, without
assuming sophisticated radio capabilities. We can theoretically bound the error
in the distance estimates, allowing us to predict the localization accuracy. The
resulting coordinate system automatically adapts to failures and the addition of
sensors. Although described for sensor networks, this algorithm can be applied
for localization in many contexts such as smart materials, smart dust, etc.

There are many different localization systems that depend on having direct
distance estimates to globally accessible beacons such as the Global Positioning
System [6], indoor localization [1] [15], and cell phone location determination [3].
Recently there has been some research in localization in the context of wireless
sensor networks where globally accessible beacons are not available. Doherty
et al [4] present a technique based on constraint satisfaction using inter-sensor
distance estimates (and a percentage of known sensor positions). This method
critically depends on the availability of inter-sensor distance measurements and
requires expensive centralized computation. Savvides et al [16] describe a dis-
tributed localization algorithm that recursively infers the positions of sensors
with unknown position from the current set of sensors with known positions,
using inter-sensor distance estimates. However, theoretical analysis of how the
error accumulates with each inference and what parameters affect the error is
extremely difficult. The algorithm we present does not rely on inter-sensor dis-
tance estimates, is fully distributed, and we can theoretically characterize how
the density of the sensors affects the error. Our algorithm is based on a simpler
method introduced by Nagpal [12] but also independently suggested in [10].
Since then several variations of this algorithm have been proposed ([13], [17]).
The analysis presented here applies to all of these systems and can help theoreti-
cally predict achievable accuracy. In addition, we show how coarse grain distance
measurements can be easily incorporated into this framework.

Section 2 presents the algorithm for organizing the global coordinate system
from local information. We present a theoretical analysis of the accuracy of the
coordinate system along with simulation results is presented in section 3. Sec-
tion 4 reports simulation results that generalize the basic algorithm to include
more accurate distance information based on signal strength. Section 5 investi-
gates the robustness of the algorithm to variations in communication radius as
well as sensor failures. Finally, Section 6 describes experimental results of the
algorithm in conjunction with acoustic ranging.



2 Coordinate System Formation Algorithm

In this section we describe an algorithm for organizing a global coordinate sys-
tem from local information. Our model of an ad hoc sensor network is randomly
distributed sensors on a two dimensional plane. Sensors do not have global knowl-
edge of the topology or their physical location. Each sensor communicates with
physically nearby sensors within a fixed distance r, where r is much smaller than
the dimensions of the plane. All sensors within the distance r of a sensor are
called its communication neighborhood. In the first pass we assume that all sen-
sors have the same communication radius and that signal strength is not used
to determine relative position of neighbors within a neighborhood. Later in sec-
tions 4 and 5 we relax both of these constraints. We also assume that some set
of sensors are “seed” sensors - they are identical to other sensors in capabilities,
except that they are preprogrammed with their global position. This may be
either through GPS or manual programming of position. The main point is for
the seeds to be similar in cost to the sensors, and for it to be easy to add and
discard seeds.

The algorithm is based on the fact that the position of a point on a two
dimensional plane can be uniquely described by its distance from at least three
non-collinear reference points. The basic algorithm consists of two parts: (1)
each seed produces a locally propagating gradient that allows other sensors to
estimate their distance from the seed and (2) each sensor uses a multilateration
procedure to combine the distance estimates from all the seeds to produce its
own position. The following subsections describe both parts of the algorithm in
more detail.

2.1 Gradient Algorithm

A seed sensor initiates a gradient by sending its neighbors a message with its
location and a count set to one. Each recipient remembers the value of the
count and forwards the message to its neighbors with the count incremented by
one. Hence a wave of messages propagates outwards from the seed. Each sensor
maintains the minimum counter value received and ignores messages containing
larger values, which prevents the wave from traveling backwards. If two sensors
can communicate with each other directly (i.e. without forwarding the message
through other sensors) then they are considered to be within one communication
hop of each other. The minimum hop count value, hi, that a sensor i maintains
will eventually be the length of the shortest path to the seed in communication
hops. Hence a gradient is essentially a breadth-first-search tree [8].

In our ad hoc sensor network, a communication hop has a maximum physical
distance of r associated with it. This implies that a sensor i is at most distance
hir from the seed. However as the average density of sensors increases, sensors
with the same hop count tend to form concentric circular rings, of width approx-
imately r, around the seed sensor. Figure 1 shows a gradient originating from a
seed with sensors colored based on their hop count. At these densities the hop



Fig. 1. Gradients propagating from a seed. Each dot represents a sensor. Sensors are
colored based on their gradient value.

count gives an estimate of the straight line distance which is then improved by
sensors computing a local average of their neighbors’ hop counts.

2.2 Multilateration Algorithm

After receiving at least three gradient values, sensors combine the distances from
the seeds to estimate their position relative to the positions of the seed sensors.
In particular, each sensor estimates its coordinates by finding coordinates that
minimize the total squared error between calculated distances and estimated
distances. Sensor j’s calculated distance to seed i is:

dji =
√

(xi − xj)2 + (yi − yj)2 (1)

and sensor j’s total error is:

Ej =
n∑

i=1

(dji − d̂ji)2 (2)

where n is the number of seed sensors and d̂ji is the estimated distance computed
through gradient propagation. The coordinates that minimize least squared error
can be found iteratively using gradient descent. More precisely, the coordinate
estimate starts with the last estimate if it is available and otherwise with the
location of the seed with the minimum estimated distance. The coordinates are
then incrementally updated in proportion to the gradient of the total error with
respect to that coordinate. The partial derivatives are:

∂Ej

∂xj
=

n∑
i=1

(xj − xi)(1−
dji

d̂ji

) and
∂Ej

∂yj
=

n∑
i=1

(yj − yi)(1−
dji

d̂ji

) (3)



and incremental coordinate updates are:

∆xj = −α
∂Ej

∂xj
and ∆yj = −α

∂Ej

∂yj
(4)

where 0 < α << 1.

2.3 Algorithm Properties

This simple algorithm has many advantages. It does not rely on global clocking,
globally unique identifiers, etc. The algorithm can easily adapt to the addition
of sensors and addition of seeds. It can also adapt to the death of sensors and
seeds, provided that sensors can locally monitor their neighbors. As a result it is
a very attractive and natural algorithm to use in this setting, and many similar
algorithms have been proposed ([10], [2], [13], [17]). One of the key questions
however is how good an accuracy can one expect from this algorithm, and in
what ways can the quality be improved without losing its desirable properties.

3 Analysis

In this section we analyze the accuracy of the coordinate system produced by this
algorithm. In particular we are interested in the effect of the random distribution
of sensors and the average local neighborhood size on the accuracy of the position
estimates. We present both theoretical and simulation results.

Accuracy is measured by computing the average absolute error (distance)
between the actual physical location and the logical position. The error comes
from two sources: (1) errors in the distance estimates produced by gradients and
(2) errors produced by combining the distance estimates using multilateration.

For the purpose of analysis, the sensors are assumed to be distributed inde-
pendently and randomly on a unit square plane. This means that for each sensor
we choose a random x coordinate and random y coordinate on the unit square,
independently of all other sensors. The probability that there are k sensors in a
given area a can be described by a Poisson distribution [11].

Pr(k sensors in area a) =
(ρa)k

k!
e−ρa

From this formula, we can derive the expected number of sensors in area a
to be ρa. ρ is equal to N

S where N is the total number of sensors and S is the
total surface area. The value that we are interested in is the expected number of
sensors in a local neighborhood, which we will call nlocal. A sensor communicates
with all other sensors within the communication radius r. Thus the expected
local neighborhood nlocal is ρπr2. In reality the sensors are randomly distributed
but would probably not arbitrarily overlap, which reduces the variance in local
neighborhood sizes. This random distribution represents a worst case analysis
where sensors may overlap arbitrarily.



3.1 Error in Distance Estimate

The first source of error in distance estimate arises from the discrete distribu-
tion of sensors. A gradient computes the shortest communication path from the
source to any sensor. Let the gradient value of sensor i be hi, then the distance
between sensor i and the source is at least hi × r. In the ideal case the gradient
value is equal to the straight-line distance, which would imply that with each
communication hop one moved a distance r closer to the source. However given
any two sensors, there may not be enough intermediate nodes for the shortest
communication path to lie along the straight-line path between the source and
destination. In that case, the gradient value overestimates the actual distance
between the sensor and the source. Intuitively this is related to the density of
sensors within a local neighborhood.

We can characterize the effect of density on the error using results derived in
the context of random plane graphs and packet radio networks. In these models,
receivers are spatially distributed (usually randomly) and each receiver com-
municates via broadcast with all neighbors within a fixed radius. The goal is
usually to guarantee connectivity and optimize network throughput. Shivendra
et al showed that the theoretical expected local neighborhood nlocal to ensure
connectedness is between 2.195 and 10.526 and simulation experiments suggest
at least 5 [14]. Silvester and Kleinrock proved that nlocal = 6 produces optimal
network throughput for randomly distributed receivers [7]. In the process they
derived a formula for how the expected distance covered in one communication
hop is affected by the parameters of the random distribution. The expected dis-
tance covered per communication hop, dhop, is the physical distance between a
pair of sensors divided by the expected number of hops in the shortest commu-
nication path. Kleinrock and Silvester [7] showed that dhop depends only on the
expected local neighborhood nlocal, not the total number of sensors.1

dhop = r(1 + e−nlocal −
∫ 1

−1

e−
nlocal

π (arccos t−t
√

1−t2)dt) (5)

In Figure 2, we numerically compute and plot dhop for different nlocal using
this formula. From this graph we can see that when the expected number of
local neighbors is small, the distance covered per communication hop is small
and the percentage of disconnected sensors is large. But as the expected local
neighborhood increases, the probability of nodes along the straight-line path
increases rapidly until nlocal = 15, when further increases in local sensor density
has diminishing returns. Hence the analysis suggests nlocal of 15 to be a critical
threshold for achieving low errors in the distance estimates.

1 Since nlocal is proportional to N/S where N is the total number of sensors, it would
seem odd to say that the formula does not depend on the total number of sensors.
However if nlocal is kept constant and N is increased (which implies the total area
S must increase), then N has no effect. Hence it is appropriate to say that dhop

depends on only nlocal.
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Fig. 2. Theoretical and experimental values for the average distance covered in one
communication hop dhop, for different expected local neighborhoods nlocal. There is
significant improvement below nlocal = 15, after which increasing the neighborhood
size has diminishing returns.

In Figure 2, we also show the measured value of the average distance covered
per hop for different nlocal, averaged over several simulations of a gradient from
a random source. We also show the percentage of unconnected sensors. The
result confirms that the average distance covered per hop does vary as predicted
by Kleinrock and Silvester. The formula slightly under-predicts dhop due to an
approximation made in the proof when the source and destination are close. Also,
the simulation results suggest nlocal of at least 10 is necessary to significantly
reduce the probability of isolated sensors.

Improving the Distance Estimate through Smoothing Even in the ideal
case of infinite density, the distance estimates produced are still integral multiples
of the communication radius r. This low resolution adds an average error of
approximately 0.5 r to the distance estimates. Therefore we expect the error to
asymptote around 0.5 r.

The gradient distance estimate is improved by computing a local average.
Each sensor collects its neighboring gradient values and computes an average of
itself and neighbor values.

si =

∑
j∈nbrs(i) hj + hi

|nbrs(i)|+ 1
− 0.5 (6)
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Fig. 3. Average error in gradient distance estimates for different nlocal. Significant
improvements are seen in the integral distance estimates for nlocal < 15. Beyond 15
there is improvement when the distance estimates are smoothed.

where hi is the gradient value at sensor i (in other words, the integral distance
estimate in units of r). nbrs(i) are all the sensors within the communication
radius r of sensor i.

Intuitively, sensors can determine if they are on the edge of the band by
noticing that a large fraction of their neighbors have an integral distance estimate
one lower or one higher than their own. The larger the fraction, the closer they
are to the edge. The formula is derived from the effect of smoothing a gradient
on a linear array of evenly spaced sensors where it produces the perfect distance
(formal derivation in [12]). However in our model the sensors are not evenly
spaced and there are variations in density even within a neighborhood. The
variations in density are the main source of error in the smoothing process.

Simulation Results on Distance Error Figure 3 shows results from sim-
ulation experiments that calculate the average absolute error in the integral
distance estimates for different values of nlocal. To vary nlocal, the total number
of sensors N is changed while keeping S and r constant. This keeps the physical
diameter of the network (in units of r) constant across all simulations, so that
all experiments are equally affected by any errors correlated with distance. In
each simulation a gradient is produced by a randomly chosen sensor in the lower
left corner. The data point for each value of nlocal is averaged over 10 simula-
tions. The absolute error for a sensor i is computed as errori = hidhop − di,
where hi is the gradient value, di is the Euclidean distance between sensor i and
the source, and dhop is the expected distance covered per hop calculated using



formula 5. This takes into account the fact that dhop represents the expected
distance traveled in one hop for a given sensor density.

The results confirm our earlier analysis. As the value of nlocal increases the
accuracy of the distance estimate improves, with both the average and standard
deviations in error decreasing dramatically. However past nlocal = 15 the error
before smoothing asymptotes at 0.4r due to the limited resolution. Further anal-
ysis of these simulations shows that the error does not increase significantly with
distance from the source because the majority of the per hop error is removed
by using Kleinrock and Silvester’s formula (5). The error is also not correlated
with orientation about the source which is an interesting side-effect of choos-
ing a random distribution versus a rectangular or hexagonal grid where there is
anisotropy.

For each of the experiments done for integral gradient values, we also cal-
culated the error in the smoothed gradient value for each sensor. The average
error results are also plotted in the same figure. The simulation experiments
show that for nlocal > 15 smoothing significantly reduces the average error in
the gradient value. Before that the error is dominated by the integral distance
error. At nlocal = 40 the average error is as low as 0.2 r. However the error is
never reduced to zero due to the uneven distribution of sensors.

3.2 Accuracy of Multilateration

The distance estimates from each of the seeds has a small expected error. We
combine these distance estimates by minimizing the squared error from each
of the seeds using a multilateration formula. Multilateration is a well-studied
technique that computes the maximum likelihood position estimation. We use
gradient descent to compute the multilateration incrementally.

However, the seed placement has a significant effect on the amount of error
in the position of a sensor. As explained in section 3.1, we can treat the error
in the distance estimate from a single seed as radially symmetric and invariant
with distance. However, when the distances from multiple seeds are combined,
the error varies depending on the position of the sensor relative to the seeds. In
Figure 4 the concentric bands around each seed represents the uncertainty of the
distance estimate from that seed; the width of the band is the expected error in
the distance estimate. The intersection region of the two bands represents the
region within which a sensor “may” exist — the larger the region, the larger
the uncertainty in the position of the sensor. Hence the error in position of a
sensor depends not only on the error in the distance estimates, but also in the
position of the sensor relative to the two sources. Let ε be the expected error
in the distance estimates from a seed, and θ be the angle 6 ASB. The overlap
region between two bands can be approximated as a parallelogram.

Theorem 1: The expected error in the position of a sensor S relative to
two point sources A and B is determined by the area of the parallelogram with
perpendiculars of length 2ε and internal angle θ. The area is (2ε)2

sin θ .



Fig. 4. Error in position relative to two seeds can be approximated as a parallelogram.
The area of this parallelogram depends on the angle θ. When θ is 90 degrees the error
is minimized, however in certain regions θ is very small resulting in very large error.

The area of the parallelogram is minimized when θ is 90 degrees (square)
and when θ is very large or very small the bands appear to be parallel to each
other resulting in very large overlaps and hence large uncertainty.

As we add more seeds, the areas of uncertainty will decrease because there
will be more bands intersecting. If placed correctly the intersecting regions can
be kept small in all regions. This analysis suggests first placing seeds along the
perimeter to avoid the large overlaps regions behind seeds. However if seeds are
inexpensive then another possibility is simply to place them randomly.

Simulation results on Position Error The simulations presented here are
motivated by an actual scenario of 200 sensors distributed randomly over a
square region 6r×6r. This gives a local neighborhood size of roughly 20, which we
know from our previous analysis to give good distance estimates. We investigate
two seed placement methods: (1) all seeds are randomly placed and (2) four are
hand placed at the corners and the rest are randomly placed. Figure 5 shows the
location estimation accuracy averaged over 100 runs with increasing numbers of
seeds.

We can see that location accuracy is reasonably high even in the worst case
scenario with all randomly placed seeds. Accuracy improves with the hand place-
ment of a few. However, the accuracy of both strategies converge as the number
of seeds increases and the improvement levels off at about ten seeds. These re-
sults suggest that reasonable accuracy can be achieved by carefully placing a
small number of seeds when possible or using a large number of seeds when you
are unable to control seed placement.

3.3 Theoretical Limit on Resolution

There is, in fact, a fundamental limit to the accuracy of any coordinate system
developed strictly from the topology of the sensor graph no matter how many
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Fig. 5. Graph of position error versus number of seeds for two different seed placement
strategies. Position error for smoothed hop count and 6 level radio strength distance
estimates are shown.

seeds we use. We can think of each sensor as a node in a graph, such that two
nodes are connected by an edge if and only if the sensors can communicate in
one hop, i.e. they are less than r distance apart. It is possible to physically move
a sensor a non-zero distance without changing the set of sensors it communicates
with, and thus without changing any position estimate that is based strictly on
communication. The old and new locations of the sensor are indistinguishable
from the point of view of the gradient. The average distance a sensor can move
without changing the connectivity of the sensor graph gives a lower bound on
the expected resolution achievable.

Theorem 2: The expected distance a sensor can move without changing the
connectivity of the sensor graph on an amorphous computer is ( π

4nlocal
)r.

Proof: Let Z be a continuous random variable representing the maximum
distance a sensor p can be moved without changing the neighborhood. The prob-
ability that Z is less than some real value z is:

F (z) = Pr(Z ≤ z) = 1− e−ρA(z)

which is the probability that there is at least one sensor in the shaded area A(z)
(Figure 6). The area A(z) can be approximated as 4rz when z is small compared
to r and we expect z to be small for reasonable densities of sensors. The expected
value of Z is:
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Fig. 6. A sensor can move a distance z without changing the connectivity if there are
no sensors in the shaded area.

E(Z) =
∫ ∞

0

zḞ (z)dz (7)

=
∫ ∞

0

ρ4rze−ρ4rzdz (8)

= −ze−ρ4rz

∣∣∣∣∞0 + (− 1
ρ4r

)e−ρ4rz

∣∣∣∣∞0 (9)

= −(z +
1

ρ4r
)e−ρ4rz

∣∣∣∣∞0 (10)

= r(
π

4nlocal
) q.e.d (11)

where Equation 9 is by the product rule 2.
Hence, we do not expect to achieve resolutions smaller than π

4nlocal
of the local

communication radius, r, on an amorphous computer. Whether such a resolution
is achievable is a different question. For nlocal=15. this implies a resolution limit
of .05r, which is far below that achieved by the gradients.

4 Improving Estimates using Inter-sensor Distance
Measurements

One virtue of our algorithm is that it can function in the absence of direct dis-
tance measurements. At the same time, our algorithm can be easily generalized
to incorporate direct distance measurements if available. For example, suppose
that sensors are able to estimate the distance of neighboring sensors through
radio strength, then these estimates can easily be used in place of r, or one hop.

In the signal strength simulation experiments, we show how the error in
position estimates changes as we allow multiple levels of quantization. In other
words, a sensor i with 2 levels of quantization can determine whether its neighbor
is within one mini hop or two mini hops. Figure 5 shows the position error for the
case of six radio strength quantization levels with two different seed placement
2 Proof courtesy of Chris Lass.
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stratagies as the number of seeds increases. First, we can see that six levels
of quantization information gives much improved accuracy over smoothed hop
count information. Second, as in the case of hop count, the accuracy improves
with increasing numbers of seeds tapering off at 10 seeds.

Figure 7 shows the effect of different amounts of signal strength information
on location estimation accuracy for eight seeds. We see that position accuracy
increases with increased levels of quantization. Beyond 7 levels there are di-
minishing returns. Our original position estimates based on hop count with no
quantization yield a position accuracy between 2 and 3 levels of quantizations.
This is because we us local averaging to improve the distance estimates. We plan
to investigate how smoothing could be used in conjunction with quantization in
the future.

We get very high position accuracy with six levels of quantization: error less
than 10%. At this level of accuracy with a radius of 20 feet, we could discern
locations within 2 feet, which is comparable to commercial GPS.



5 Robustness

Up to this point we have assumed that each of our sensors had the same commu-
nication radius r. In a real-world application we would expect to see variations
in radio range from sensor to sensor. Our algorithm can also tolerate variations
in communication radius. In Figure 7 we show the error in distance estimate
and position estimates when we allow up to 10% random variation in the com-
munication radius. As we can see, the position estimates are reasonably robust
to variation in sensor communication radius, tolerating up to 10% variation in
range with little degradation.

The algorithm can also adapt automatically to the death and addition of sen-
sors and seeds. If sensors are added, they can locally query neighbors for gradient
values and broadcast their value. If this causes any of their neighbors distances
estimates to change then those changes will ripple through the network. As a
sensor receives new gradient values it can just factor that into the multilater-
ation process. New seeds simply initiate gradients and any sensor that hears a
new seed can then incorporate that seed value into the multilateration process.
Prior location estimates will serve as good initial locations for multilateration
ensuring fast convergence.

If we assume that sensors randomly fail, then the accuracy is not affected
unless the average density falls below 15. If enough sensors in a region die then
distance estimates will be affected since they must be propogated around the
perimiter of the “dead zone”, leading to overestimates. However, regional failures
can be easily corrected by randomly sprinkling new sensors in that area.

The effect of seed failure depends on their placement strategy. Random place-
ment would be more statistically robust in the face of seed failure. Other place-
ment strategies would be more fragile. In these regimes, sensors have to recognize
that seeds have failed to then exclude them from multilateration perhaps using
active monitoring of neighbors’ aliveness to produce active gradients.

Our algorithm can tolerate a certain amount of message loss, because there
are multiple redundant paths from seeds to sensors and therefore distance es-
timates are repeated many times. In general, the error caused by occasional
message loss is unlikely to be anywhere close to the error caused by the random
distribution of sensors.

6 Experimental Results

In this section we evaluate the performance of our localization algorithm on real
sensor network hardware. We explore the use of acoustic ranging as our source
of direct intersensor distance measurements.

Our hardware platform is comprised of 100 Berkeley MICA2 motes [5] each
the size of two AA batteries. The MICA2 mote consists of an Atmel 128 micro-
controller and a Chipcon CC1000 radio transceiver operating at 433 MHz. At-
tached to the mote is a sensor board with a Sirius PS14T40A 4.3KHz sounder and
a Panasonic WM62A microphone. Figure 8 shows a picture of a single MICA2
mote.



Fig. 8. A Berkeley MICA2 mote with sensor board.

Fig. 9. Motes placed on a 5x7 grid aligned with an outside cement sidewalk.

In our experiments we used 35 motes evenly distributed in a 5x7 grid across
a 11’x16’ area with a 83 cm node to node grid spacing. The motes were placed
outside on a large cement sidewalk similar to the one shown in Figure 9.

6.1 Acoustic Ranging

Acoustic ranging is a technique for measuring the distance between a sender and
receiver using the time of flight difference between radio and audio signals. A
sender simultaneously sends out a radio message and an audio signal. Receivers
timestamp incoming radio messages and then measure the delay to the receipt
of the subsequent audio signal. Finally, the distance is calculated by multiplying
this delay by the speed of sound.

We employed MICA2 acoustic ranging software developed by Vanderbilt Uni-
versity [9]. Their algorithm uses a train of 16 12.5 mSec 4.3KHz pulses separated
by 50–72 mSec pauses. Both the sender and receiver know the exact pulse train
timings. The receiver digitally records the incoming signal during the active pe-
riods of the pulse train. This buffer of samples is then passed through a 4-5KHz
band pass filter. The beginning (and end) of the pulse train is found when the
average absolute value of the signal goes above (or below) the total average ab-
solute value of the signal. The signal is recognized if the length of the pulse train
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Fig. 10. Acoustic ranging measurements. The blue line indicates the performance of
an ideal distance estimator. Points indicate the mean of multiple range measurements
made at the same distance while the error bars indicate the standard deviation of those
measurements.

is between minimum and maximum bounds. If recognized then the distance is
calculated using the delay between receipt of the radio signal and the beginning
of the pulse train.

In order to measure acoustic ranging performance, we collected distance mea-
surements between motes in the grid. Each mote was given a chance to launch
48 successive ranging experiments. We then compared the average of the mea-
surements received from these experiments against their actual ground truth dis-
tances. Figure 10 compares ranging estimates against the corresponding ground
truth distances. Figure 11 shows the ranging information for one node, node
119. The mean values of the range data are shown as circles centered around the
neighbor nodes. Zero error measurements would correspond with all the circles
intersecting at node 119.

Out of 352 − 35 = 1190 possible ranging measurements, 664 measurements
were successfully gathered. The error for these 664 measurements had a mean
of 15.8 and standard deviation of 25.7, which is around 19 percent of the 82.5
cm node to node grid spacing. These results indicate that, on average, each
node has ranging estimates for 19 other nodes. Our work with acoustic ranging
suggests that, beyond several meters, acoustic ranging is not effective. However,
as shown in Figure 10, the mean error in acoustic ranging measurements remains
constant as distance increases. Taken together, these results indicate that such
large neighborhood sizes are an artifact of the small area in which we conducted
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Fig. 11. Ranging information for node 119. Ranging estimates are only shown for nodes
less than two hops away. Node 119 has ranging information for nodes 66, 103, 55, 64,
77, and 51

our experiments. If we had placed our motes further apart, we would expect to
have seen much smaller neighborhood sizes.

The large neighborhood sizes observed here reduce the applicability of these
results to real world sensor networks, few of which will be able to boast such
excellent ranging connectivity. In addition, the high degree of acoustic connectiv-
ity fails to adequately stress the localization algorithm; with sufficient acoustic
connectivity, all nodes can simply perform multilateration calculations based on
direct ranging estimates from the anchors. To remedy both these problems, we
introduced the notion of a ranging limit parameter in our experiments. When
such a limit is set, nodes refuse to communicate with other nodes that are farther
away than the limit value. This constraint effectively reduces the communications
radius and thus the neighborhood size. By setting the limit value appropriately,
our experimental results far better model real world sensor networks with sparse
node distributions. We conducted the same localization experiment with limit
values of ∞ and 125 cm.

6.2 Empirical Localization Results

In this section, we present acoustic ranging based localization results produced
with the same 5x7 grid. The 664 acoustic range estimates were distributed
through the network using the gradient propagation algorithm and positions



were calculated using multilateration. The four corner nodes were selected as
seeds.

We present results for two different limit values, ∞ and 125 cm. For each of
those cases, we show localization results calculated with and without straight-
ness factor compensation. Straightness factors are used to compensate the raw
gradient propagated distance estimates. Their use is predicated on the observa-
tion that, especially in sparse networks, the path taken by the gradient between
an anchor and any one node is often more circuitous, and consequently, longer
than the straight line path connecting the anchor and node directly. The extent
to which the gradient distance overestimates the actual distance depends heavily
on the local node density distribution in the region between the anchor and node
being considered.

There are several different algorithms for computing straightness factors. In
the algorithm that we present here, each anchor uses the gradient propagated
distance and the true distance between it and all other anchors to calculate a
set of straightness factors. Each anchor averages these straightness factors and
propagates that average throughout the network. Before performing multilater-
ation, nodes multiply their gradient distance to each anchor by that anchor’s
corresponding straightness factor. Niculescu and Nath [13] propose a slightly
different algorithm where nodes correct an anchor’s gradient distance by using
the straightness factor of the anchor closest to them rather than the straightness
factor of the anchor whose distance they are trying to correct.

Figures 12, 13, 14, and 15 show the estimated positions for 35 motes overlaid
on top of the ground truth positions. Figures 12 and 13 show results with and
without straightness factor compensation with no ranging limit set. Figures 14
and 15 show results with and without straightness factor compensation with the
ranging limit set to 125 cm (just over one hop distance). When simulating a high
density sensor network (by setting the range limit to ∞), our localization algo-
rithm estimated positions with a mean error of 16 cm without using straightness
factor compensation and 17 cm with it. When modelling low density networks
(by setting the range limit to 125 cm), our algorithm estimated positions with
a mean error of 75 cm and 37 cm without and then with straightness factor
compensation respectively.

We have observed several interesting results in our experiments. The first of
these is the radial pattern in estimated node positions seen when using uncom-
pensated localization with a small ranging limit value, as shown in Figure 14.
Another interesting result is that straightness factor compensation has little if
any benefit when used in high density networks, which we modeled experimen-
tally by setting the ranging limit to ∞. However, straightness factor compensa-
tion provides a dramatic increase in localization accuracy when used in networks
that have much lower densities, as seen in the experiments in which the range
limit parameter was set to 125 cm.

All three of these results can be explained by the fact that as network density
decreases, the rate at which gradient path length overestimates true distance in-
creases. As a result, in low density networks without straightness factor compen-
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Fig. 12. Ground truth and estimated positions for a 5x7 grid with limit = ∞ and no
straightness factor compensation. The four corners are the seed nodes. Filled circles
represent the ground truth positions while open circles represent position estimates
derived from multilateration. The distance error has a mean of 16 cm and a standard
deviation of 9 cm.

sation, anchor distances are overestimated in proportion to their actual distance.
When combined with an anchor placement policy that dictates placement on the
network perimeter, the localization algorithm produces a radial error pattern as
shown in Figure 14. In higher density networks, the gradient path length and
the true distance are close enough together so as not to contribute significant
systematic error for the straightness factor compensation to rectify. Another per-
spective is that since the total change introduced by the straightness factor is
proportional to the number of hops, it becomes less significant as the number
needed to traverse a path in the network decreases.

7 Conclusions and Future Work

In this paper, we present an algorithm to self-organize a global coordinate sys-
tem on an ad hoc wireless sensor network. Our algorithm relies on distributed
simple computation and local communication only, features that an ad hoc sen-
sor network can provide in abundance. At the same time it is able to achieve
very reasonable accuracy and the error is theoretically analyzable. The algo-
rithm gracefully adapts to take advantage of any improved sensor capabilities
or availability of additional seeds. Given that so much can be achieved from so
little, an interesting question is whether more complicated computation is worth
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Fig. 13. Ground truth and estimated positions for a 5x7 grid with limit = ∞ and
straightness factor compensation. The distance error has a mean of 17 cm and a stan-
dard deviation of 8.6 cm.
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Fig. 14. Ground truth and estimated positions for a 5x7 grid with limit = 125 cm and
no straightness factor compensation. The distance error has a mean of 75 cm and a
standard deviation of 27 cm.



0  

16  

28  

30  

34  

36  

39  

42  43  

44  

45  

47  

51  

52  

53  

54  

55  

57  60  64  

66  

67  

73  76  

77  

83  

85  

91  94  

95  

96  103  

104  

105  

107  

119  

Fig. 15. Ground truth and estimated positions for a 5x7 grid with limit = 125 cm
and straightness factor compensation. The distance error has a mean of 37 cm and a
standard deviation of 13 cm.

it. Experimental results indicate that our localization algorithm combined with
acoustic ranging for internode distance estimates works well in practice.
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