Cellular Computation and Communications using

Engineered Genetic Regulatory Networks
by
Ron Weiss
B.A., Brandeis University (1992)

S.M., Massachusetts Institute of Technology (1994)
Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2001
(© Massachusetts Institute of Technology 2001. All rights reserved.

Department of Electrical Engineering and Computer Science
August 24, 2001

Certified by .. ..o
Thomas F. Knight, Jr.

Senior Research Scientist

Thesis Supervisor

Certified by . ..o
Gerald Jay Sussman

Matsushita Professor of Electrical Engineering, MIT

Thesis Supervisor

Certified by . ..o e
Harold Abelson

Class of 1992 Professor of Computer Science and Engineering, MIT
Thesis Supervisor

Accepted by ...
Arthur C. Smith

Chairman, Department Committee on Graduate Students






Cellular Computation and Communications using
Engineered Genetic Regulatory Networks
by
Ron Weiss

Submitted to the Department of Electrical Engineering and Computer Science
on August 24, 2001, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, I present an engineering discipline for obtaining complex, predictable,
and reliable cell behaviors by embedding biochemical logic circuits and programmed
intercellular communications into cells. To accomplish this goal, I provide a well-
characterized component library, a biocircuit design methodology, and software design
tools. I have built and characterized an initial cellular gate library with biochemical
gates that implement the NOT, IMPLIES, and AND logic functions in FE. coli cells. The
logic gates perform computation using DNA-binding proteins, small molecules that
interact with these proteins, and segments of DNA that regulate the expression of
the proteins. I introduce genetic process engineering, a methodology for modifying
the DNA encoding of existing genetic elements to achieve the desired input/output
behavior for constructing reliable circuits of significant complexity. I demonstrate
the feasibility of digital computation in cells by building several operational in-vivo
digital logic circuits, each composed of three gates that have been optimized by genetic
process engineering. I also demonstrate engineered intercellular communications with
programmed enzymatic activity and chemical diffusions to carry messages, using DNA
from the Vibrio fischeri lux operon. The programmed communications is essential for
obtaining coordinated behavior from cell aggregates.

In addition to the above experimental contributions, I have developed BioSPICE,
a prototype software tool for biocircuit design. It supports both static and dynamic
simulations and analysis of single cell environments and small cell aggregates. Fi-
nally, I present the Microbial Colony Language (MCL), a model for programming
cell aggregates. The language is expressive enough for interesting applications, yet
relies on simple primitives that can be mapped to the engineered biological processes
described above.
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Chapter 1

Introduction

Genetic engineering with recombinant DNA technology is a powerful and widespread
laboratory technique that enables biologists to redesign life forms by modifying or
extending their DNA. It is currently used in a diverse set of applications that in-
cludes synthesis of pharmaceutical products, biochemical manufacturing, biomedical
research, genetically modified crops and animals, and human therapeutics. In these
applications, biologists typically modify organisms to express one or a few additional
proteins. For example, a newly inserted protein will interact with the modified cells
and improve a specific property of the organism, such as an enzyme that synthesizes
growth hormones to increase crop yields. Alternatively, the modified cells serve as
factories for manufacturing additional biochemicals that are completely independent
of the cell (for example, human insulin). While already providing great benefits,
existing genetic engineering applications only hint at the possibilities for harnessing
cells to our benefit.

The goal of this thesis is to lay the foundations of an engineering discipline for
building novel living systems with well-defined purposes and behaviors using stan-
dardized, well-characterized components. Cells are miniature, energy efficient, self-
reproduce, and can manufacture biochemical products. These unique characteristics
make cells attractive for many novel applications that require precise programmed
control over the behavior of the cells. The applications include nanoscale fabrication,

embedded intelligence in materials, sensor/effector arrays, patterned biomaterial man-
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Figure 1-1: Embedding biochemical logic circuits in cells for internal computation and
programmed intercellular communications, extending and modifying the behavior of
cells and cell aggregates.

ufacturing, improved pharmaceutical synthesis, programmed therapeutics, and as a
sophisticated tool for in-vivo studies of genetic regulatory networks. These applica-
tions require synthesis of sophisticated and reliable cell behaviors that instruct cells to
make logic decisions based on factors such as existing environmental conditions and
current cell state. For example, a cell may be programmed to secrete particular timed
sequences of biochemicals depending on the type of messages sent by its neighbors.
The approach proposed in this thesis for engineering the requisite precision control
is to embed internal computation and programmed intercellular communications into
the cells (Figure 1-1). The challenge here is to provide robust computation and com-
munications using a substrate where reliability and reproducible results are difficult
to achieve.

Biological organisms as an engineering substrate are currently difficult to modify

and control because of the poor understanding of their complexity. Genetic modifi-
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cations to cells often result in unpredictable and unreliable behavior. A single Fs-
cherichia coli bacterial cell contains approximately 10'° active molecules, about 107
of which are protein molecules. The cumulative interaction of these molecules with
each other and the environment determines the behavior of the single cell. Although
complex, these interactions are not arbitrary. Rather, cells are highly optimized in-
formation processing units that monitor their environment and continuously make
decisions on how to react to the given conditions. Moreover, from prokaryotes such
as bacteria to eukaryotes such as human cells, cells act both as individual units and as
a contributing part of larger and complex multicellular systems or organisms. Given
these attributes and inherent complexity, how can we successfully modify and harness

biological organisms for our purposes?

1.1 Thesis Statement

This thesis focuses on programming de-novo behavior in individual cells and cell

aggregates, and makes the following claim:

Controlled gene expression using engineered in-vivo digital-logic circuits

and intercellular communications enables programmed cell behavior that

is complex, predictable, and reliable.

The approach integrates several layers that include a library of well-characterized
simple components synthesized to have the appropriate behavior, a methodology for
combining these components into complex intracellular circuitry and multicellular
systems with predictable and reliable behavior, and software tools for design and

analysis. The following section elaborates this approach.

1.2 Approach

The first step in making programmed cell behavior a practical and useful engineering
discipline is to assemble a component library. For this purpose, I engineered cellular

gates that implement the NOT, IMPLIES, and AND logic functions. These gates are
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Figure 1-2: A simplified view of the two cases for a biochemical inverter. Here, the
concentration of a particular messenger RNA (mRNA) molecule represents a logic
signal. In the first case, the input mRNA is absent and the cell transcribes the gene
for the output mRNA. In the second case, the input mRNA is present and the cell
translates the input mRNA into the input protein. The input protein then binds
specifically to the gene at the promoter site (labeled “P”) and prevents the cell from
synthesizing the output mRNA.

then combined into biochemical logic circuits for both intracellular computation and
intercellular communications. In these biocircuits, chemical concentrations of specific
messenger RNA (mRNA) and inducer molecules represent the logic signals. The
logic gates perform computation and communications using mRNA, DNA-binding
proteins, small inducer molecules that interact with these proteins, and segments of
DNA that regulate the expression of the proteins. For example, Figure 1-2 describes
how a cellular inverter achieves the two states in digital inversion using these genetic
regulatory elements.

Given a library of components, biocircuit design is the process of assembling pre-
existing components into logic circuits that implement specific behaviors. The most
important element of biocircuit design is matching logic gates such that the cou-
plings produce the correct behavior. Typically, naturally occurring components have

widely varying kinetic characteristics and arbitrarily composing them into circuits is
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not likely to work. In this thesis, I demonstrate genetic process engineering — mod-
ifying the DNA encoding of existing genetic elements until they achieve the desired
behavior for constructing reliable circuits of significant complexity. The genetic mod-
ifications produce components that implement digital computation with good noise
margins, signal restoration, and appropriate standard interfaces for complex system
composition.

An important aspect of this thesis is engineering biological systems to exhibit dig-
ital behavior, because the digital abstraction is both convenient to use and feasible.
The digital abstraction is a very useful programming paradigm because it offers a re-
liable and conceptually simple methodology for constructing complex behavior from
a small number of simple components[88]. Digital computation provides reliability by
reducing the noise in the system through signal restoration. For each component in
the computation, the analog output signal represents the digital value better than the
analog input signal. Engineers carefully combine these reliable components into com-
plex systems that perform reliable computation. Experimental results in Chapter 4
describe in-vivo digital-logic circuits with good noise margins and signal restoration
to demonstrate the feasibility of programming cells using digital computation. In
the study of existing biological organisms, recent work[54, 52, 53, 64] suggests that
cells routinely employ digital computation to make certain decisions that result in
binary on/off behavior. Because the digital abstraction is both convenient to use
and feasible, it offers a useful paradigm for programming cells and cell aggregates.
However, much like desktop computers employ both digital and analog components,
in the future I will also incorporate analog logic elements into engineered biological
systems as the analog components become necessary for particular tasks.

In order to create novel biological systems, an engineer must be equipped with
design and modeling software that prescribes how primitive components may be com-
bined into complex systems with predictable and reproducible behavior. I present
BioSPICE, a prototype tool that aids biocircuit designers manage the complexity of
the substrate and achieve reliable systems. The inspiration to BioSPICE comes from

the utility of tools such as SPICE[57] in the design of electrical circuits. BioSPICE
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supports both static and dynamic analysis of single cell environments and small cell
aggregates.

For obtaining coordinated aggregate cell behavior, I demonstrate programmed
cell-to-cell communications using chemical diffusion to carry messages. Multicellular
organisms create complex patterned structures from identical, unreliable components.
This process of differentiation relies on communications between the cells that com-
pose the system. Learning how to engineer such robust behavior from aggregates is
important for having an improved understanding of distributed computing, a bet-
ter understanding of the natural developmental process, and for engineering novel
multicellular organisms with well-defined behaviors. Chemical diffusion is one of sev-
eral communication mechanisms that can help achieve coordinated behavior in cell
aggregates.

Finally, to achieve complex and reliable coordinated behavior, one must also con-
sider the characteristics of the execution environment and its constraints. For exam-
ple, cells frequently fail, their interconnect topology is constantly in flux, they have
limited computational resources, and messages between cells are frequently lost. The
Microbial Colony Language (MCL) is a programming and execution paradigm that
takes into account the constraints of the substrate. It offers a model for program-
ming cell aggregates that is simple enough for implementation in cells, yet expressive
enough for interesting applications. The Microbial Colony Simulator supports simu-
lations of the programmed behavior of aggregates that consist of up to ten thousand

cells.

1.3 Summary of Contributions
In this dissertation, I make the following contributions:

e The Cellular Gate Library: I describe the construction and characterization
of a small library of in-vivo logic gates in an effort to assemble the biological
equivalent of a TTL data book[60]. The cellular gates use four different dna-

binding proteins (lacl, ¢, tetR, luzR), with sixteen variations of the gate based
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Figure 1-3: Genetic process engineering of the cI/Apr_012) inverter. Experimental
results with E. coli cells demonstrate how a series of genetic modifications converts
a non-functional circuit into one that achieves the desired input/output behavior
for digital computation. The evident inverse sigmoidal relationship of the improved
inverter has good signal restoration and noise margins, and is useful for producing
reliable digital circuits of significant complexity.

on the cI protein. I establish and experiment with criteria for characterizing
and evaluating these gates, using transfer functions. The analysis emphasizes
what can be conveniently measured in-vivo, and special substrate properties,
such as signal fluctuations. This effort represents the first attempt to assemble
a library of simple standardized biological components that can be combined in

predictable ways to engineer novel cell behavior.

e Genetic process engineering: [ demonstrate the fundamentals of genetic
process engineering — taking existing genetic regulatory elements and modifying
their DNA encoding so that they can be used in constructing complex in vivo
digital-logic circuits. In particular, I mutated ribosome binding sites for the
cI repressor protein and its associated operator for the Bacteriophage A P(R)
promoter so that the resulting cellular logic gates had good noise margins and

signal-restoration characteristics (Figure 1-3). This work is important because
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it shows how to synthesize biological components with specific properties useful

for constructing reliable circuits of significant complexity.

e In-vivo Logic Circuits: I demonstrate several operational in-vivo logic cir-
cuits, with instances of three gates combined based on transfer functions. I show
that the genetic circuits have favorable noise margins and significant gain. This
work demonstrates the feasibility of using the digital abstraction for embedding

computation and control in cells.

e Intercellular Communications: I describe the design, testing, and character-
ization of engineered intercellular communications using programmed enzymatic
activity and chemical diffusions to carry messages, using DNA from the Vib-
rio fischeri luz operon. Specifically, I demonstrate the construction and testing
of engineered genetic circuits that exhibit the ability to send a controlled signal
from one cell, diffuse that signal through the intercellular medium, receive that
signal within a second cell, and activate a remote transcriptional response. This
work shows how to appropriate a natural intercellular signaling mechanism for
the component library, and couple the new component to other logic elements

for programmed cell behavior.

e BioSPICE: I introduce BioSPICE!, a prototype tool for biocircuit design and
analysis. It features analysis of the steady state, dynamics, and intercellular
behavior of genetic logic circuits. BioSPICE also enables the designer to analyze
and simulate modifications to the behavioral characteristics of cellular gates.
It can thus provide valuable insights toward reliable system design, such as

matching input/output threshold levels.

e Microbial Colony Language: I present the Microbial Colony Language
(MCL), a convenient computing paradigm for programming cell aggregates.
MCL is simple enough for implementing in cells, yet expressive enough for in-

teresting applications. I also describe the simulator for the language and several

!Distinct from Arkin’s Bio/SPICE[4]
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simulation examples. Many aspects of the language can be directly mapped to
the engineered biological processes described above. In the future, I expect that
a bio-compiler will translate programs written in MCL into genetic circuits im-

plementing the programs in cells.

1.4 Related Work

Related work includes various proposals for biochemical computation, study of the ge-
netic elements used in my cellular gate library, models of genetic regulatory networks,

and forward-engineered genetic regulatory networks.

Proposals for Biochemical Computation

At least as early as 1974, Roessler and others [66, 67, 68, 72| noted the possibility
of building universal automata by coupling bistable chemical reactions, and that
chemical reaction kinetics share a formal relationship with electronic circuit action.
Okamoto et al. studied a cyclic enzyme system and showed that it had some properties
of a McCulloch-Pitts neuron. In 1991, Hjelmfelt et al. [42] showed in principle how to
construct neural networks from coupled chemical reactions, and determined specific
connections for the construction of chemical logic gates. Later, Arkin and Ross [5]
refined this method to allow use of enzymes with lower binding cooperativity, and

applied their model to an in-depth analysis of a portion of the glycolytic cycle.

Study of Individual Genetic Elements

The genetic regulatory elements used in this thesis have been studied extensively. Re-
view material covering research for these elements includes treatments of the lambda
repressor(cl)[64], the lac operon(lacl)[56], the tetracycline repressor(tetR)[40, 41], and
the lux operon(luzR)[9, 18]. I chose to incorporate these elements into my circuits
partly because of the extensive literature that is available on them. However, in my
thesis, I integrate these well-known genetic elements in novel ways that do not exist in

the wild-type. The experimental results from the integrations show that the original
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components are not likely to couple correctly and produce the desired results, which

is the motivation for performing genetic process engineering.

Models of genetic regulatory networks

Monod and Jacob [55, 43], Sugita [79], Kauffman [48], and Thomas [84] have all made
various and partially successful attempts at describing the global qualitative dynamics
of genetic regulatory systems, by simplifying those systems to binary signal levels
and pursuing a treatment in terms of Boolean networks. Neidhardt and Savageau
[59] have noted the need for useful high-level logical abstractions to improve our
understanding of the integrative molecular biology of the cell. Several other works
have also modeled genetic regulatory networks using logical or discrete states [33, 34,
30, 31, 49, 71, 78, 85, 86]. Recently, McAdams and others [54, 52] have constructed
mathematical models of various genetic regulatory networks in vivo that incorporate
both digital and analog logic components.

Other modeling efforts are based on piece-wise linear[82], non-linear [5, 8, 11, 22,
32, 47, 92], statistical-mechanical[75, 76], rate equations with noise[12], and stochastic
methods [6, 24, 25, 52, 53]. The stochastic models are computationally intensive, but
offer promising detailed simulations suitable for modeling the effects of small numbers

of molecules and noise.

Engineered genetic regulatory networks

Besides this thesis, three other recent projects have experimentally demonstrated
forward-engineered genetic regulatory networks that perform specific tasks. Becskei’s
autorepressive construct[10] is a single gene that negatively regulates itself to achieve
a more stable output. Gardner’s toggle switch[29] is a genetic system where two
proteins negatively regulate the synthesis of each other. This system is bistable,
and sufficiently large perturbations can switch the state of the system. FElowitz’s
repressilator[23] is a genetic system where three proteins in a ring negatively repress
each other. The system oscillates between LOW and HIGH values. These works ana-

lyze the requirements for correct operation for their particular genetic circuits based
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on mathematical models of rate equations. My previous work[90, 89] has provided
BioSPICE simulations of a ring oscillator and an RS-Latch which are genetically
similar to the repressilator and toggle switch respectively. Some of the published
toggle-switch attempts are monostable or appear to increase the protein concentra-
tion of their HIGH value over time, while only 40% of the cells in the repressilator
experiments oscillate and the cell population exhibits significant variations in oscil-
lation phase and amplitude. Nevertheless, these works complement my thesis and
help demonstrate the feasibility of forward-engineering genetic regulatory networks
to achieve specific functions.

In this thesis, I take a different approach to building genetic regulatory networks.
Namely, the focus of my work here and in previous publications[90, 89, 91] is to
establish a methodology for building any logic circuit by extensively characterizing
and modifying the behavior of simple components to build a cellular gate library
of well-characterized components suitable for use in reliable logic circuits. Given the
cellular gate library, an engineer can predict the behavior of a complex system through

the functional composition of the input/output behavior of the simple components.

1.5 Thesis Outline

In the remainder of this thesis, Chapter 2 introduces the logic gates implemented for
this work. The NOT gate is the fundamental building block for constructing intracel-
lular circuits, while the IMPLIES and AND gates are used for intercellular communica-
tions. Chapter 3 introduces the BioSPICE tool for biocircuit design and analysis. The
chapter describes the model used for simulating a biochemical inverter, simulations
of simple logic circuits in single cells, analysis of genetic modifications to achieve the
desired gate behavior, and simulations of intercellular communications using chemical
diffusions. Chapter 4 describes experimental measurements of the device physics of
in-viwo logic gates, as well as genetic process engineering to modify gates until they
have the desired behavior. Chapter 5 presents experimental results of programmed

intercellular communications, including time response measurements and sensitivity
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to variations in message concentrations. Finally, Chapter 6 describes the Microbial
Colony Language, a useful paradigm for programming cell aggregates. The chapter
describes the language syntax and semantics, as well as simulations of programs for

pattern formation in cell aggregates.
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Chapter 2

Cellular Gates

A fundamental chemical process in the cell is the production of proteins from genes
encoded in the DNA. The cell performs important regulatory activities through DNA-
binding proteins that repress or activate the production of specific proteins. Knight
and Sussman [45] propose using repression to implement digital-logic inverters. This
chapter presents a formal model of this inversion mechanism, including several mod-
ifications, and explains how to construct any finite digital-logic circuit using these
inverters.

This chapter also introduces two additional logic gates that implement the IMPLIES
and AND logic functions. The inputs to these gates are messenger RNA (mRNA)
molecules that code for DNA-binding proteins, and small inducer molecules that
affect the activity of these proteins. Because the inducer molecules freely diffuse
through cell membranes, these two gates are useful for intercellular communications
and other external interactions with the in-vivo circuits.

In this chapter, Section 2.1 describes the biochemical process of inversion. Sec-
tion 2.2 explains how to build any finite intracellular logic circuits from inverters.
Section 2.3 describes the two intercellular communications gates implementing the

IMPLIES and AND logic functions.

24



trangl aty

transcription
operator RNAp

prormoter

Figure 2-1: Biochemical inversion uses the transcription and translation cellular pro-
cesses. Ribosomal RNA translates the input mRNA into an amino acid chain, which
then folds into a three-dimensional protein structure. When the protein binds to an
operator of the gene’s promoter, it prevents transcription of the gene by RNA poly-
merase (RNAp). In the absence of the repressor protein, RNAp transcribes the gene
into the output mRNA.

2.1 A Biochemical Inverter

Natural gene regulation systems exhibit characteristics useful for implementing in
vivo logic circuits. Figure 1-2 presents a simplified view of the two states in the
biochemical process of inversion in either the presence or absence of the input mRNA
signal. Figure 2-1 shows a more detailed description of the inversion process, including
the role of transcription and translation. In the original proposal by Knight and
Sussman, dna-binding proteins serve as the signals. I chose to represent signals using
mRNA rather than proteins because the mRNA representation is more convenient
for measuring and modifying the device physics of cellular gates, as discussed in
Section 4.1.

Figure 2-2 illustrates the functional construction of an inverter from its biochem-
ical reaction stages. Let 14 denote the concentration level of the input mRNA,
representing the input signal to the inverter. In the first stage, ribosomal RNA trans-

lates the mRNA product 14 into the input repressor protein ¢4. Let £ (translation

25



signal

W - B,
——— | trandation [— cooperative - transcription
input input binding | repression output
mMRNA protein MRNA
input
MRNA protein
L C T J
_ “gain”
0N / oA | T \ - B
0 1 0 1 0 1 0 1
qJA (pA pA LlJA
+ + = [ dighal inversin

Figure 2-2: Functional composition of the inversion stages: the translation stage
maps input mRNA levels (¢04) to input protein levels (¢4), the cooperative binding
stage maps input protein levels to bound operator levels (p4), and the transcription
stage maps bound operator levels to output mRNA levels (17). The degradation of
the mRNA and protein molecules is represented with the electrical ground symbol.
The degradation of mRNA is part of the translation stage, while the degradation of
proteins is part of the cooperative binding stage. The graphs illustrate the steady-
state relationships for each of these stages and the overall inversion function that
results from combining these stages.

stage) denote the steady state mapping between 14 and ¢4. In general, increases in
14 yield linear increases in ¢ 4 until an asymptotic boundary is reached. Factors that
determine this boundary include the amino acid synthesis capabilities of the cell, the
efficiency of the ribosome binding site, and mRNA stability. Because the cell degrades
both mRNA and input protein molecules, a continuous synthesis of the input mRNA
is required for a steady level of the input protein.

The second stage in the inverter employs cooperative binding to reduce the digital
noise. Here, the input protein monomers join to form polymers (often dimers, occa-

sionally tetramers), which then bind to the operator and repress the gene. Because
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the cells degrades the proteins, a continuous synthesis of the input protein is required
for maintaining the repression activity. Let p4 denote the strength of this repression,
defined as the concentration of operator that is bound by repressor. In steady state,
the relation C (cooperative binding stage) between ¢4 and p4 will generally be sig-
moidal. For low values of ¢4, the amount of repression increases only slightly as the
input protein concentrations increase because these concentrations are too low for
significant dimerization. Without dimerization, the monomeric repressor cannot bind
to the DNA. Then, at higher levels of ¢4 (when the input proteins dimerize easily),
cooperative binding and dimerization result in non-linear increases in the repression
activity. Finally, at saturating levels of the input protein when the operator is mostly
bound, the curve reaches an asymptotic boundary. Because the repressor activity is
maximal, additional repressor molecules have no noticeable effect. The purpose for
this stage is to provide signal restoration: as a result of this stage, the analog input
signal better approximates its digital meaning.

In the last stage, RNA polymerase transcribes the structural gene and inverts the
signal. Let ¢z denote the mRNA concentration for the output signal Z. Then, in
the steady state relation 7 (transcription stage) between v, and pa, 1, decreases
monotonically as p4 increases. With no repression, transcription proceeds at maxi-
mum pace (i.e. maximum level of ¢;). Any increase in repression activity results in
a decrease in transcription activity, and hence the inversion of the signal.

As illustrated in Figure 2-2, the functional combination 7 of the above stages

achieves digital inversion:

Yz =ZL(ha) =T oCo L(Ya)

7 is the transfer function of the inverter.

2.2 Intracellular Logic Circuits

Biochemical inverters are the building blocks for constructing intracellular logic cir-

cuits. First, most protein coding sequences can be successfully fused to any given
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promoter. Second, two inverters form a NAND gate by “wiring-OR” their outputs.
These two features combine to provide a modular approach to logic circuit design of

any finite complexity, as described below.

2.2.1 Modularity in Circuit Construction

The modularity in biocircuit design stems from the ability to designate almost any
gene as the output of any logic gate. Consider a logic element A consisting of an
input mRNA, M4, that is translated into an input protein repressor R4, acting on an
operator, O 4, associated with a promoter P4. Let P4 be fused to a structural gene
Gz coding for the output mRNA M. Figure 2-1 illustrates these genetic elements.
The DNA base pair sequence Gz (or the corresponding output mRNA sequence M)
that codes for an output protein R, determines the gate connectivity because the
output protein may bind to other operators in the system. The specific binding of
Rz to another downstream operator Oz connects gates together because the level of
Ry affects the operation of the downstream gate.

To a first approximation, the choice of the sequence Gz does not affect the transfer
function Z of the inverter, My = ToCoL(M,). An exception to this rule occurs when
Gz codes for a protein that interacts with operator O4 or with input protein repressor
R 4. Thus, the designer of in-vivo logic circuits must ensure that the signal proteins do
not interact with other circuit elements besides their corresponding operators. The
circuit designer should experimentally verify this required protein non-interference

prior to circuit design.!

Any set of non-interacting proteins can then serve as a
library of potential signals for constructing an integrated circuit.

Once protein non-interference is established, modularity of the network design
affords a free choice of signals. Any suitable repressor protein and its corresponding

mRNA is a potential candidate for any signal, where the issue of “suitability” is

!For example, the following simple in-vivo experiment checks whether a protein affects a
particular promoter. First, fuse a fluorescent protein to a promoter of interest and quantify
the in-vivo fluorescence intensity. Next, add a genetic construct that overexpresses the
protein of interest. Finally, check the new fluorescence intensity to determine whether the
protein affects transcription.
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Figure 2-3: A logic circuit and its DNA implementation: The “wire-OR” of the
outputs of two genes implements a NAND gate, and the choice of the output gene
determines the gate connectivity.

discussed in Section 3.3.3. This modularity is necessary for implementing a “bio-
compiler”: a program that consults a library of repressor proteins and their associated
operators and generates genetic logic circuits directly from gate-level descriptions.
Contrast this modularity with the method of Hjelmfelt et al.[42], that requires proteins
that modify other proteins, and where all signals are protein concentrations. In that
case, the resulting physico-chemical interdependence of successive logic stages makes

simple modularity almost impossible.

2.2.2 Implementation of Combinatorial Logic

The approach to combinatorial logic is to “wire-OR” the outputs of multiple inverters
by assigning them the same output gene. The output mRNA is expressed in the
absence of either input mRNA’s, and is not be expressed only when both inputs are
present. This configuration implements a NAND gate. Since the performance of a
NAND gate relies solely on that of its constituent inverters, well-engineered inverters
will yield well-engineered combinatorial gates.

Figure 2-3 illustrates a small circuit where a NAND gate connects to an inverter.
Here, mRNA and their corresponding proteins serve as the logic circuit wires, while
the promoter and protein/mRNA decay implement the gates. Since a NAND gate is
a universal logic element and can be wired to other gates, any finite digital circuit can

be built within practical limitations such as the number of distinct signal proteins
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available.

2.2.3 Choice of Signals

The library of naturally available signal proteins includes approximately a few thou-
sand candidates[51]. Any repressor protein with sufficiently cooperative DNA binding
and that does not interfere with normal cell operation is a potential candidate. The
experiments described in Chapter 4 use four different naturally occurring DNA bind-
ing proteins and their operators, as well as several novel mutations to one of the
operators. The number of naturally occurring proteins that could potentially serve
as signals may never limit biocircuit construction because other factors, such as the
metabolic capabilities of cells, are likely to place lower limits on biocircuit complexity
within a single cell. However, it may still be more efficient to synthesize artificial
dna-binding proteins for use as signals rather than finding natural sources. In the fu-
ture, combinatorial chemistry techniques, along with a method such as phage display,
will yield large libraries of novel DNA binding proteins and corresponding operators.
One potential source of a very large set of non-interacting signals is engineered Zinc

Finger DNA binding proteins[37].

2.3 Intercellular Gates

While the biochemical inversion mechanism suffices for building intracellular circuits,
external interaction with the cells requires additional logic gates. Small molecules
known as inducers freely diffuse through cellular membranes and interact with DNA
binding proteins. This section describes how the inducer-protein interactions im-
plement two different intercellular gates. Chapters 4 and 5 report on experimental
results where the IMPLIES gate enables human-to-cell communications while the AND

gate facilitates cell-to-cell communications.
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Figure 2-4: A genetic gate for the IMPLIES logic function using repressors and inducers.
Shown here are the two states when the repressor protein is present, the logic symbol
for the gate, and the logic truth table.

2.3.1 The iMPLIES Gate

The 1MPLIES gate allows cells to receive control messages sent by humans or detect
certain environmental conditions. Figure 2-4 illustrates the biochemical reactions,
the logic symbol, and the logic truth table for an intercellular gate that implements
the IMPLIES logic function. In the absence of the input mRNA and its corresponding
repressor, RNAp binds to the promoter and transcribes the output gene, yielding a
high output. As with the inverter, if only the input repressor is present, it binds to
the promoter and prevents transcription, yielding a low output. Finally, if both the
repressor and the inducer are present, the inducer binds to the repressor and changes
the conformation of the repressor. The conformation change prevents the repressor
from binding to the operator, and allows RNAp to transcribe the gene, yielding a
high output.

The IMPLIES gate has the same three biochemical stages as the inverter: transla-
tion, cooperative binding, and transcription. The inducer concentration levels affect
the cooperative binding stage C’, which now has two inputs. Let v, denote the in-

ducer concentration level, let ¢4 denote the concentration level of the input mRNA,
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and let ¢, denote the concentration level of the output mRNA. Here, the repression
activity pa resulting from the cooperative binding stage, pa = C'(¢a,v4), depends
non-linearly on the level of the repressor and on the level of the inducer. The binding
affinities of the active repressor to the operator, and of the inducer molecule to the
repressor, determine the shape of C’. The transfer function Z of the IMPLIES logic

gate is the mapping:

Yz =T(Ya) =T oC'(va, L(12))

The two gate inputs are not interchangeable. The input and output repressors
can be connected to any other circuit component, but the inducer input is an inter-
cellular signal, and is specifically coupled to the input repressor. As with the different
inverter signals, before building a circuit the designer should experimentally check for
unintended interactions between a specific inducer, other repressors, and other induc-
ers. Any set of non-interfering repressor/inducer pairs can then serve as a library of
potential signals for constructing intercellular circuits.

Chapter 4 describes experimental results demonstrating quantitative and pre-
dictable external interactions with cells by introducing known quantities of synthetic

inducer molecules to the growth medium.

2.3.2 The AND Gate

The AND gate allows cells to detect incoming messages from other cells. Figure 2-5
illustrates the biochemical reactions, the logic symbol, and the truth table for an
intercellular gate that implements the AND logic function. Here, RNAp normally
has a low affinity for the promoter and basal transcription is correspondingly small.
Therefore, in the absence of the activator and inducer inputs, the output is low. If
the activator is present but the inducer is not present, the activator has a low affinity
for the promoter and does not bind to it. In this case, the output is still low. Finally,
if the inducer and the activator are both present, the inducer binds to the activator.

The newly formed bond changes the conformation of the activator and allows the
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Figure 2-5: A genetic gate for the AND logic function using activators and inducers:
two of the states when the activator is present, the logic symbol for the gate, and the
logic truth table.

activator /inducer complex to bind to the operator. In turn, the activator/inducer
complex helps recruit RNAp to the promoter and initiate transcription, yielding a
high output. Often, a dimeric form of the activator is necessary for complex formation.

Similar to the biochemical stages of the NOT and IMPLIES gates, the AND gate
stages include translation, cooperative binding, and transcription. The first stage,
translation, is similar in all three cases. For the AND gate, the following cooperative
binding stage C"” maps the activator protein ¢4 and inducer v4 inputs to an activation
level, w4, rather than repression. Similar to the two-input cooperative binding stage
for the IMPLIES gate, the activation level ws = C"(¢4,v4) depends non-linearly on the
concentration of activator and inducer. The binding affinities of the inducer molecule
to the activator and of the activator/inducer complex to the operator determine the
shape of C”. Lastly, the transcription stage maps the activation level, w4, to output
mRNA 1z, in a positive relation. The transfer function Z of the AND logic gate is

the mapping:

Yz =T(Ya) =T oC"(va, L(¥a))
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As with the IMPLIES gate, the two inputs are not interchangeable, and the inducer
must always be coupled with the corresponding activator. Again, the interference
between inducers and other circuit elements should be checked experimentally prior to
circuit design. Beyond the challenge of finding non-interfering activator/inducer pairs,
any multicellular system design must also address the spatial issues of intercellular

communications.

2.3.3 The sEND Gate

To initiate communications to receiver cells that have the AND gate, sender cells
synthesize inducer molecules using a SEND gate. The input to the SEND gate is mRNA
coding for a special catalytic enzyme, with a concentration of ¢4. The enzymatic
reaction of the gate, £, produces inducer with an intracellular concentration v 4, where
the inducer also diffuses into the medium. The steady state mapping, va = E(da),
is a positive relation with an asymptotic boundary defined by the availability of the
appropriate metabolic precursors in the cell. The intracellular level of the inducer,
Va4, is also affected by the surrounding extra-cellular concentration of the inducer.
Chapter 5 describes experimental results that demonstrate engineered cell-to-cell
communications using the SEND and AND gates. First, sender cells produce the cat-
alytic enzyme [uzl, an input to the SEND gate. [uzl molecules then catalyze the
formation of VAI (3-N-oxohexanoyl-L-Homoserine-lactone), the output of the SEND
gate, using metabolic precursors found in the cell. VAI diffuses into the medium and
enters neighboring receiver cells that have the AND gate. The receiver cells consti-
tutively express luzR, the activator input to the AND gate. When VAI enters the
receiver’s cytoplasm, VAI induces luzR to form a dimeric or multimeric complex,
which then binds to the lux P(R) promoter and activates transcription of the green
fluorescent protein (GFP). Using various fluorescence detection tools, a researcher
can then observe and quantify when cells receive messages from their neighbors.
The next chapter describes biocircuit design and analysis with BioSPICE, a tool
for simulating and analyzing in-vivo digital-logic circuits and intercellular communi-

cations.
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Chapter 3

Biocircuit Design and Analysis

Biocircuit design poses several important challanges, some that are in common with
electrical circuit design, and some that are unique. As with electrical circuits, the
behavior of biocircuits depends on the characteristics of the component gates. It is
therefore important to first characterize the behavior of the gates, by measuring their
device physics, before attempting to design circuits of significant complexity. Based
on the characteristics of individual gates, one can predict the behavior of complex
circuits built from these components. In this chapter, I use BioSPICE to develop and
simulate a model of biochemical inversion, and then demonstrate how to predict the
behavior of biocircuits based on this model. I also show that the correct behavior of
these circuits is highly dependent on using gates with matching characteristics.
Initial attempts at constructing gates often yield devices with unacceptable be-
havior. For example, a particular device may have insufficient signal restoration capa-
bilities or inadequate noise margins. In designing electrical circuits, one uses process
engineering to modify the characteristics of the devices (for example, gain or trigger
levels) until they obtain the desired behavior. In this chapter, I introduce genetic
process engineering, the analogous mechanism for biocircuit design. I demonstrate
how BioSPICE facilitates genetic process engineering by predicting the new behav-
ior of devices that results from genetic modification to specific stages in biochemical
inversion. The analysis and insights gained from these BioSPICE predictions guide

the engineer in genetically modifying existing components to achieve the appropriate
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Figure 3-1: Tools for circuit design: Spice and BioSPICE.

behavior for building reliable circuits of significant complexity.

In contrast to electrical circuit design where identical components are separated
spatially, each component in a biocircuit shares the same physical space but relies on
different biochemical reactions. The complexity of biocircuit design is exacerbated
by the fact that the components typically have widely varying kinetic characteristics.
These gates are built from dna-binding proteins, ribosome binding sites, and protein
binding sites with inherently different kinetic characteristics. Therefore, a critical el-
ement in biocircuit design is analyzing and optimizing the behavior of each new gate
included in the cellular gate library. In this chapter, I describe the conditions neces-
sary for matching gates to achieve correct digital behavior. This analysis motivates
specific genetic modifications to achieve gate device physics that match with other
gates, for correct design and construction of complex circuitry.

In discussing biocircuit design, this chapter often highlights the role of BioSPICE.
With electrical circuits, tools such as SPICE[57] help designers manage the complexity
of their substrate and achieve reliable systems. The BioSPICE prototype tool aims
to help biocircuit designers in a similar manner. It is an integrated collection of
software tools that features analysis of the steady state, dynamics, and intercellular
behavior of genetic logic circuits (Figure 3-1). BioSPICE enables the designer to
analyze and simulate modifications to the behavioral characteristics of cellular gates.
It can thus provide valuable insights toward reliable system design, such as matching

gate input/output threshold levels.
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In the rest of this chapter, Section 3.1 presents a biochemical model of a reaction
system implementing an inverter. Section 3.2 describes simulation results of two
simple but interesting logic circuits built from inverters. Section 3.3 analyzes the
steady state behavior of the inverter model, the requirements for gate matching, the
effects of genetic modifications on the transfer curves of inverters, and other issues in
biocircuit design. Finally, Section 3.4 describes BioSPICE simulations of intercellular

communications using genetic logic circuits.

3.1 A Biochemical Model of an Inverter

To implement digital-logic computation, an inverter combines several natural gene
regulatory mechanisms. These mechanisms include transcriptional control, transla-
tion of mRNA, repression through cooperative binding, and degradation of proteins
and mRNA transcripts.

Table 3.1 presents one possible chemical model of the reactions involved in bio-
chemical inversion. In particular, this model incorporates characteristics from the
Bacteriophage A cI repressor operating on the P(R) promoter and the Ogrl and
Ogr?2 operators. The mRNA 4 molecule represents the input signal, and the mRNA,
molecule represents the output signal. Ribosomal RNA (rRNA) translates mRNA 4
into the input protein repressor A, and A, denotes the dimeric form of A. P, denotes
the concentration of the active form of the promoter for Z. A promoter is active only
when its associated operator is unbound by a repressor. Py A, and Py A, represent
the repressed (i.e. inactive) forms of the promoter, where either one dimer or two
dimers are bound to the promoter respectively. RNA polymerase (RNAp)! initiates
transcription from the active form of the promoter, Pz, into mRNAz, the gene tran-
script. This gene transcript typically codes for other signals (e.g. protein repressors

or activators), or for structural and enzymatic proteins that perform certain cellular

!The simulations in this section assume that the concentrations of RNA, and rRNA are fixed.
Chapter 4 discusses how to measure the effect of fluctuations in these concentrations, as well as
other factors, on the inverter’s behavior. Once these effects have been quantified, robust gates can
be designed.
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mRNA 4 + rRNA tkl—u’ mRNA, + rRNA + A (3.1)
k ec(mrna
mRNA, —=mre) (3.2)
decay
kdim(a) kdec(a)
A+ A Ay (3.3) A ected, (3.5)
dimerization decay
ksngi(a Kdec(a
Ay 29 A4 A (3.4) Ay —decled), (3.6)
single decay
krprs(a?) kdec(gaA)
PZ + A2 41) PzA2 (37) PzA4 d4) PZA2 (310)
repress ecay
kdis(a2) krprs(a4)
PzAQ - — PZ + A2 (38) PzA2 + A2 e PzA4 (311)
dissociation repress 2
k ec(ga?2 k is(a
PZAQ (iie((::uy) PZ (39) PzA4 & ¢ ( :) PZA2 —+ A2 (312)
Pz + RNA, H Pz + RNA, + mRNA, (3.13)
k ec(mrna
mRNA, —, (3.14)

decay

Table 3.1: Biochemical reactions that model an inverter. mRNA, is the input and
mRNA the output.

tasks.

The model includes the components described in Section 2.1 in the following
reactions: translation of the input protein from the input mRNA (reactions 3.1-3.2),
input protein dimerization and decay (reactions 3.3-3.6), cooperative binding of the
input protein (reactions 3.7-3.12), transcription (reaction 3.13), and degradation of
the output mRNA (reaction 3.14).

To simulate an inverter, BioSPICE automatically converts the chemical equations
of this model to the system of ordinary differential equations in Table 3.2. The

system of differential equations includes an entry for each of the molecular species

38



d(mRNA,) = drivepnpna, (t) — Kdec(mrna) - MRNA 4 (3.15)

d(A) = 2- ksngl(a) ' A2 - kdec(a) -A + kxlate -rRNA - mRNAA
-2 kdim(a) : A2 (316)

d(A2) = kdim(a) : A2 - ksngl(a) : A2 - kdec(aZ) ) A2
—krprsa2) - Pz - A2 + Kais(a2) - Pz A2
—krprs(as) - Pz A2 - Az + Kais(as) - Pz As (3.17)

d(PZ) = kdis(aﬂ) ) PZAQ - krprs(aQ) : PZ : A2 + kdec(ga2) . PzAQ (318)

d(PZAQ) = krprs(aZ) Py - A2 - kdis(aZ) ' PZAQ - krprs(u4) ' PZA2 ' A2
+kdec(ga4) : PZA4 - kdec(ga?) . PZA2 + kdis(a4) . PzA4 (319)

d(PzAs) = kprs(asy - Pz Az - Ay — kais(as) - PzAs — Kec(gasy - Pz As  (3.20)

d(mRNAz) = kxscm'be . PZ . RNAp — kdec(mrna) . mRNAZ (321)

Table 3.2: Ordinary differential equations used to simulate a single inverter. These
equations are derived from the biochemical inversion model in Table 3.1.

involved in inversion: the input mRNA mRNA,, the input protein monomer A,
the dimeric form of the input repressor protein Ay, the unbound promoter P, the
promoter bound with one repressor protein dimer Pz A,, the promoter bound with two
repressor protein dimers PzA,, and the output mRNA mRNA,. Each differential
equation describes the time-domain behavior of a particular molecular species based
on all the equations in the biochemical model that include that particular molecule.
For example, the “K g, (q) - A?” term of differential equation 3.17 is derived from model
equation 3.3, while the “—k,,g(4) - A2” term is derived from model equation 3.4. Note
that the “drive,,gya,(t)” term in differential equation 3.15 allows the user to specify

an external drive to vary the input levels of the inverter over time.
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To simulate a circuit with BioSPICE, the user first defines the configuration of the
circuit. For each inverter in the circuit, the user specifies the input protein, the output
protein, and the promoter/operator region. BioSPICE then consults a biochemical
kinetics database and converts the circuit to a Mathworks MATLAB M-File[38] that
contains differential equations such as the ones in Table 3.2. These equations include
the kinetic rates that are associated with the specific choices for the genetic elements.
For example, the following circuit definition comprises an inverter with an external

drive for the input:

(let ((circuit ’((invert A Pr_Op_A 1 Z)
(drive mRNA_A "drive_mRNA_A"))))

(circuit->matlab-derivs circuit "protein-db.scm" '"mrna_inverter_circuit")))

The inverter has an input protein A, a promoter/operator region Pr_Op_A, a
gene cistron count of 1, and an output protein Z. The file drive mRNA_A defines the
time-domain behavior of an external drive that adds input mRNA_A to the sys-
tem. BioSPICE converts this circuit based on the kinetic rates in the database
protein-db.scm to a system of differential equations, and stores the result in the
MATLARB file mrna_inverter_circuit.m. The user then defines the simulation pa-
rameters, such as the duration of the simulation. Finally, the user can observe the
dynamic behavior of the circuit by directing BioSPICE to solve the system of differ-
ential equations using MATLAB’s stiff differential equations solver ode15s[73]. This
solver is a variable order solver based on the numerical differentiation formulas that
optionally uses backward differentiation formulas (Gear’s method).

Figure 3-2 shows a BioSPICE simulation of the dynamic behavior of the inverter
circuit with the above chemical reactions in response to an external stimulus. The
kinetic constants (Table 3.3) used in this simulation were obtained from the liter-
ature describing the phage A promoter Pgr and repressor (cI) mechanism [39, 64].
The graphs show the concentrations of the molecules involved in the inversion, with
blue curves representing mRNA | red curves representing proteins, and green curves

representing genes. The top graph is for the input mRNA 4, followed by graphs for
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Kdim(ay | 8333 || Erprs(a2) | 66.67 || Kgeca) | 9775 || Kdec(ga2) 2887
ksngi(ay | -1667 || kgista2) | -2 Kdec(a2) | 5775 || kdec(gas) 2887
Edim(z) | 8:333 || Krprs(aa) | 333.3 || Kdee(z) | D775 | Kdec(mrna) | 2.0
Esngi(z) | -1667 || Kdis(aa) | -25 Kdec(z2) | 5775 || kgscrive .0001
k:clate .03

AU

Table 3.3: Kinetic constants used in BioSPICE simulations. The units for the first
order reactions are 100 sec™! and the units for the second order reactions are uM '
100 sec™?.

the input protein repressor and its dimeric form, followed by graphs for the active
and inactive forms of the gene, and finally the graph for the output mRNA ;.

The reactions proceed as follows: At first, no input mRNA or input protein re-
pressor are present. As a result, Pz is active and RNAp transcribes the gene into
the output mRNA ;. The level of mRNA 7 increases until it stabilizes when the gene
expression and decay reactions reach a balance. At this stage, the input signal is LOW
while the output signal is HIGH.

Then, an externally-imposed drive increases the input mRNA 4, which rRNA trans-
lates into the input repressor protein A. The protein begins to form dimers, and these
dimers bind to the promoter’s free operators. The system quickly reaches a state
where each promoter is essentially completely bound by two dimers. The almost
total inactivation of the promoters occurs at a fairly low concentration of the dimer
Ay, and indicates the strong repression efficiency of the ¢/ repressor that is used for
this simulation. As a result of the promoter inactivation, transcription stops and the
output mRNA; decays to zero. At the end of this stage, the input signal is HIGH
while the output signal is LOW.

Finally, the external drive of mRNA 4 stops, resulting in the decay of mRNA 4,
A, and A,. Slowly, the repressor dimers dissociate from the P, operators, and the
level of the active promoter Py rises back to the original level. This allows RNAp to
resume transcription of Pz, and the level of the output mRNA ; rises again. At this
stage, the input signal reverts to LOow, while the output signal reverts to HIGH.

The simulation shows that the gate switching time (measured in minutes for this
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Dynamic behavior of inverter (gene count = 10)
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Figure 3-2: The dynamic behavior of the inverter. The graphs show a time-series of
the molecular concentrations involved in inversion, in response to a stimulus of input

mRNA.

mechanism) is governed by the rate of recovery of Pz. The limiting rate is therefore
the dissociation of bound repressor dimer A, from P;. Figure 3-3 shows simulation
results of how an engineered reduction in the repressor binding coefficient improves
the gate delay. Through simulations such as this, BioSPICE offers insights into
biocircuit design and ultimately motivates laboratory experiments. For example,
Section 4.4.2 describes experimental results of reducing the binding efficiency of cI to

the A promoter by mutating base pairs in the Ogr1 region.
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Dynamic behavior of the original inverter versus an inverter with reduced cl:operator binding

T
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Figure 3-3: Improving gate delay: the effect of reducing the repressor binding effi-
ciency by a factor of one hundred. For the promoter and output mRNA, the graphs
compare the molecular concentrations of the original gate and of the modified gate.
Overall, the modification reduces the gate delay in switching from LOW to HIGH
output.

3.2 Simulations of “Proof of Concept” Circuits

This section describes BioSPICE simulation results of an RS Latch and a ring oscil-
lator, two simple but interesting logic circuits built from the inverter model discussed
above. The simulations provide a first indication of the feasibility of using the pro-
posed chemical reactions to implement logic circuits. Furthermore, the analysis and
simulations of modifications to the kinetic coefficients provide valuable insights toward

reliable system design.
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Figure 3-4: Dynamic behavior and circuit diagrams of the RS latch. The inputs S
and R are normally HIGH, and are set to LOW to toggle the state of the outputs A and
B. The simulations shows that the gate operates correctly in response to relatively
long and short input pulses.

3.2.1 Storage: Analysis of an RS Latch

The RS Latch is a good initial test circuit for the biochemical inversion model and
should operate correctly even if its constituent parts are not perfectly matched. It
persistently maintains a data bit which can be toggled ON and OFF. The RS Latch
consists of two cross coupled NAND gates, with inputs S and R for setting and

resetting the complementary output values A and B (Figure 3-4). The inverters with
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inputs R and B and common output A constitute one of the NAND gates, while the
inverters with inputs S and A and common output B constitute the other NAND
gate. The inputs S and R are normally HIGH, and are set to LOW to toggle the latch.

The following is the BioSPICE definition used to simulate this circuit, where each

of the inverters has the kinetic characteristics from Table 3.3:

(let ((circuit ’((invert A Pr_Op_A 1 B)
(invert B Pr_0Op_B 1 A)
(invert R Pr_Op_R 1 A)
(invert S Pr_0Op_S 1 B)
(drive mRNA_R "driveRi")
(drive mRNA_S "driveSi"))))

(circuit->matlab-derivs circuit "protein-db.scm" "rs_latch_circuit"))

Figure 3-4 shows the correct simulated dynamic behavior of this RS latch in
response to relatively short and long input pulses. Initially, both inputs S and R are
high, and the outputs A and B compete for dominance. In this simulation, B becomes
HIGH while A becomes LOW. In a physical implementation of this circuit, factors such
as the relative repression efficiency, original concentration level, and stochastic noise
determine which signal initially becomes HIGH.

After the initial output values settle into a steady state, an external stimulus
reduces the level of the input R in order to toggle the value stored by the latch. This
relatively long pulse results in expression of the output A and a subsequent decay of
the output B. When R regains its original HIGH level, the circuit still maintains a
HIGH level for A and a LOw level for B. Notice that the expression of A from two
genes during the toggle phase results in a level of A that is higher than than the
level of A during the steady state following the toggle. However, the circuit functions
correctly because the higher analog value of A does not exceed the range defined to
be a digital “1”. Because A is a repressor, once A reaches a saturating repression
level, any additional increases in concentration do not affect the output of the gate.

Finally, a short external stimulus reduces the level of S in order to toggle the RS

latch back to the original state. In this case, S regains its HIGH level before B builds

45



e el ) Pt et Nl Needl Sy

50 100 150

time (x100 sec)

Figure 3-5: Dynamic behavior of a ring oscillator. The three curves are the outputs
of the three inverters. Note the 120° phase shift between successive stages.

up to its own steady state HIGH level. The level of B drops for a short period, but
then B rises back up to the appropriate HIGH level. Therefore, as expected, both long

and short pulses effectively set and reset the latch.

3.2.2 Connections: Analysis of a Ring Oscillator

A ring oscillator is another useful test circuit, especially because the correct behavior
of the circuit is highly sensitive to the “device physics” of its components. The
oscillator consists of three inverters connected in a series loop without any external

drive:

(let ((circuit ’((invert A Pr_Op_A 1 B)
(invert B Pr_0Op_B 1 C)
(invert C Pr_0Op_C 1 A))))

(circuit->matlab-derivs circuit "protein-db.scm" "mrna_ring_osc")))

The simulation results in Figure 3-5 depict the expected oscillation in signal con-
centrations, as well as a phase shift between the values (values shown are protein

concentrations, not mRNA). Note, however, that oscillation occurs close to the Low
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Dynamic behavior of ring oscillator with mismatched inverters
0.04 T T

concentration (uM)

time (x100 sec)

Figure 3-6: A time-series simulation illustrating the incorrect behavior of a ring oscil-
lator with mismatched inverters. The second inverter’s repressor binding coefficient
is three times lower than the original, while the third inverter’s transcription rate is
twice as strong as the original.

end of the signal values. This results from the skewed transfer curve that describes
the steady state characteristics of the inverters. Basically, for each inverter in the
circuit a low level of the input repressor is sufficient to inactivate the corresponding
promoter. Once the input of an inverter reaches that threshold, the inverter’s output
will begin to decay. Sections 3.3.3 and 4.1.2 discuss methods for correcting the skew
in the transfer curve.

While the circuit oscillates correctly when the gates are perfectly matched, incor-
rect behavior may result from coupling mismatched components. Figure 3-6 shows
the effect of mismatched inverters on the dynamic behavior of the ring oscillator. The
inverters have different binding coefficients and transcription rates. Specifically, the
values of the kinetic constants k,,.52) and k,,.4) for protein repressor B are now a
third of the original ¢/ values, and the value of k;scrpe for C’s promoter is now twice
the original. As a result, the output of the inverter with the strongest transcription
rate settles into HIGH, while the other two outputs settle into Low. Clearly, correct
behavior of the circuit is highly sensitive to the “device physics” of its components.
Therefore, an integrated approach using BioSPICE and laboratory experiments is

crucial for the success of biocircuit design.
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Inverter Transfer Curve (inset: two inverters)
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Figure 3-7: The simulated transfer curve of the A ¢//P(R) inverter, with the transfer
curve of two such inverters connected in series shown in the inset. Both graphs plot
¢4 versus ¢.

3.3 Steady State: Design and Analysis

As shown above, the correct dynamic behavior of bio-circuits is highly dependent
on the steady state characteristics of the component gates. The complexity of bio-
circuit design is exacerbated by the fact that each of the components uses different
protein and dna-binding sites. These typically have widely varying kinetic character-
istics. Therefore, a critical element in bio-circuit design is analyzing the steady state
behavior of the cellular gates. The analysis motivates specific genetic modifications
to achieve gate device physics that match with other gates, for correct design and
construction of complex circuitry. This section describes BioSPICE simulations to
compute the transfer curve of an inverter, the steady state conditions necessary for
matching gates, BioSPICE analysis of genetic mutations to optimize the inverter’s
steady state characteristics, and prediction of the behavior of circuits using transfer

functions of individual inverters.
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3.3.1 Steady State Behavior

The transfer curve of an inverter, useful for analyzing the steady state behavior,
maps an input level ¢4 to an output level ¢,. Figure 3-7 shows the transfer curve
of an inverter with the kinetic rates from Table 3.3, as computed by BioSPICE. To
compute the transfer curve of a given circuit, BioSPICE performs a set of simulations,
where each simulation has a different steady rate of input signal synthesis. For each
synthesis rate, BioSPICE records the level of the corresponding output signal if the
system settles into a steady state. In this case, the definition of a steady state is some
number of simulation time steps where all the state variables do not fluctuate by more
than a small threshold. Each simulation that settles into a steady state contributes
a point to the approximation of the transfer curve. The inset illustrates the transfer
curve of two such inverters connected in series.

The skewed curve shows that an inverter based on the A ¢/ repressor and P(R)
promoter is very sensitive to low concentrations of the input protein. Thus, for a
HIGH output signal, even small increases in the synthesis rate of the input may alter
the output signal to LOW. Section 3.3.3 discusses how to modify the behavior of these
gates in order to make them more robust to such fluctuations. Chapter 4 describes in
detail how to measure the transfer curve, systematic fluctuations, and noise of in-vivo
biochemical gates. The discussion also reports on experimental results in measuring
and modifying the transfer curves of these gates that achieve more balanced transfer

curves.

3.3.2 Matching Thresholds

An inverter’s transfer curve describes the behavior of a single gate, but the information
is also useful for connecting multiple gates into operational logic circuits. Transfer
functions suitable for implementing digital-logic circuits gates must have Low and
HIGH ranges such that signals in the LOW range map strictly into the HIGH range,
and vice versa. The shape of the curve, represented by its gain (i.e. slope), determines

how well the gate reduces noise from input to output. For electronic digital circuits,
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Figure 3-8: Transfer band thresholds: HIGH and LOW input ranges for a hypothetical
inverter. The transfer band, capturing systematic fluctuations in signals, is defined
by the two curves.

the Low and HIGH signal ranges are typically the same for all gates because the cir-
cuit is composed of transistors with identical threshold voltages, spatially arranged.
However, in biochemical digital circuits, the gate components (e.g. proteins and pro-
moters) have different characteristics depending on their reaction kinetics. Therefore,
the designer of biological digital circuits must take explicit steps to ensure that the
signal ranges for coupled gates are matched appropriately, as described below.
Before discussing the rules for biochemical gate coupling, I introduce a variation
of the transfer function, the transfer band, that captures systematic fluctuations in
signal levels. It is especially important to consider fluctuations in biological settings.
Experiments in Chapter 4 report signals fluctuatation by a factor of ten for cells

with the same genetic circuit grown under the same conditions. The transfer band
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captures these fluctuatations with a region enclosed by a pair of transfer functions,
as shown in Figure 3-8. Z™" is the function that maps an input to the minimum
corresponding observed output, and Z™ is the function that maps an input to the
maximum corresponding observed output.

Let I; and I;; be the input thresholds. Then, the LOW and HIGH gate matching

requirement from above is:

[in LOW] (0,1;) 22 (Zmin(1,), Ime=(0)) [out HIGH]
[in HIGH] (Iip, 00) 2% (0, Tma(I,,)) [out LOW]

Consider the case of two inverters, I and J, with J’s output coupled to I's input.

Then, the coupling is correct iff:

(T™™MJa), T™(0)) C (L, 00)
(0,T™(Jw)) < (0,1y)

Then, assuming monotonic functions, the following conditions are necessary and

sufficient for correct coupling:

T Ja) > Iy
T Jim) < Iy

3.3.3 Genetic Process Engineering

The first step in developing biocircuits is designing, building, and characterizing
several inverters. It is likely that these inverters will not match correctly according
to the definitions above. Fortunately, there are biochemical techniques to adjust
inverters to obtain the correct behavior for use in complex circuits (Figure 3-9).
These include:

e Modifying the repressor/operator binding affinity: Certain base pair

mutations at an operator site alter the affinity of the repressor to the operator.
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Figure 3-9: Modifications to specific stages in the inversion process: (a) Reducing
the repressor/operator binding affinity (b) Reducing the strength of the promoter
(c) Reducing the strength of the RBS (d) Increasing the cistron count (e) Adding

autorepression

As illustrated in Figure 3-9(a), weakening the repressor affinity shifts C, the
cooperative binding stage mapping the input signal ¢4 to the repression activ-
ity pa, outward to the right. For a given level of the input repressor protein,
there is now less repression activity than before the mutation. The mutations
result in different behaviors for each repressor/operator pair. Figure 3-10 shows
BioSPICE simulations where hypothetical reductions in the repression affinity
of ¢I to Ogrl shift the overall transfer function of the cI/P(R) inverter out-
ward. In these simulations, the original values of k,prsa2) and kyprea4) were
scaled down by factors of ten, one hundred, and one thousand. Section 4.4.2

reports experimental transfer functions results where the affinity of ¢/ to the A
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Inverter: Modify Repressor Affinity
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Figure 3-10: Reducing the binding affinity of the repressor to the operator shifts the
transfer function of an inverter outward.

promoter is modified by mutating base pairs on OR;. The experimental results

demonstrate the desired shift outward.

e Modifying the strength of the promoter: Certain base pair mutations at
the promoter site alter the affinity of the RNA polymerase to the promoter.
DNA sequence determinants of promoter strengths have been studied exten-
sively [17, 87, 44]. As illustrated by Figure 3-9(b), weakening a promoter shifts
T, the transcription stage mapping between p4 and ¥z, inward. Any given level
of the active promoter (the complement of p4) now results in less transcription
and therefore less mRNA output (¢z). BioSPICE simulations (Figure 3-11)
show the overall inward shifts of the transfer curve of the c¢I/P(R) inverter that
result from weakening the P(R) promoter. In these simulations, the original

value of k. ive Was scaled down by factors of two, five, and ten.

e Modifying the strength of the ribosomal binding site (RBS): Modi-
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Modify promoter affinity for inverter (inset: two inverters)
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Figure 3-11: Reducing the binding affinity of the RNA polymerase shifts the transfer
functions of the c¢I/P(R) inverter inward. Inset shows the effects on the transfer
functions of two inverters in series. The diagonal lines correspond to input equals
output.

fications to the RBS alter the affinity of rRNA to the mRNA. Figure 3-9(c)
illustrates the shift in £, the translation stage mapping between 14 and ¢4,
resulting from a reduction in rRNA affinity. For any given level of the in-
put mRNA 14 there is now less translational activity and therefore less input
protein ¢ 4. Section 4.4.1 reports on experimental transfer curve results with
different ribosome binding sites for cI. Weaker RBS’s caused an outward shift

to the overall transfer curve of the original cI/P(R) inverter.

e Increasing the cistron count: The cistron count is increased by adding copies
of the coding sequence for the output protein downstream of the promoter. As
illustrated in Figure 3-9(d), the increase in cistron count on shifts £, the trans-
lation stage mapping between 4 and ¢4, upward. For any given level of the

mRNA input ¢4 there is now additional input protein repressor ¢4. The curve

o4



Different Cistron Counts for Modified Inverter
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Figure 3-12: The effects of increasing the cistron count per gene (i.e. the number of
structural genes per operator region). In this case, the original inverter mechanism
has been modified to 100x less binding affinity of the repressor and 40x less binding
affinity of the promoter.

values are scaled by a linear factor in the initial range of the translation before
reaching metabolic constraints of the cell’s translational machinary. BioSPICEs
simulations (Figure 3-12) demonstrate the overall outward shift of the transfer

curve of the ¢I/P(R) inverter as the cistron count increases from one to five.

e Altering the degradation rate of a protein: The degradation rate of pro-
teins can be normally achieved by changing a few amino acid residues on the C
terminus [13, 62, 63]. For example, decreasing the half life of the input protein A
causes L, the translation stage mapping between 14 and ¢ 4, to shift downward.
Because of the increase in the protein degradation rate, for any given level of
the input mRNA 14, there is now less repressor protein ¢4 present. Another
possibility for increasing the degradation rate is to choose bacterial strains that

have high concentrations of effective proteases [80].
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Figure 3-13: Biocircuit design components, showing compilation of a logic circuit
into a genome that encodes that circuit, and BioSPICE, a tool for simulating and
analyzing the resulting genome.

e Adding autorepression: An operator that binds the output protein may
be added to the promoter/operator region to accomplish autorepression. The
simulated transfer functions shown above are not balanced because they are
more sensitive to fluctuations in LOW input signals versus fluctuations in HIGH
input signals. Autorepression reduces the maximum output protein synthesis
rate and therefore reduces some of the asymmetry in the signal sensitivities.
Figure 3-9(e) illustrates the effect of adding autorepression on C, the cooperative
binding stage of inversion. For low levels of the input protein repressor, the
promoter is active and transcribes the output protein. This output protein
binds to the operator of its own promoter, and therefore there is always some
concentration of inactive/bound promoter p4. High levels of input repressor

increase p4 until saturation.

3.3.4 Functional Composition of Transfer Functions

In biocircuit design, the engineer creates a genetic logic circuit using a small set of
basic gates and a database of biochemical reaction kinetic rates (Figure 3-13). The
kinetics database contains transfer curve measurements obtained using the mechanism
described in Chapter 4. Given transfer curve measurements, the engineer predicts the
behavior of complex circuits through the functional composition of behavioral data

describing only the basic components. For example, Figures 3-7 and 3-11 show the
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predicted steady state behavior of circuits with two inverters based on the transfer
curves of the constituent inverters.

Without autorepression, the transfer function of an inverter is determined by the
input mRNA ¢4, RBS, input protein A, operator, promoter, and output mRNA ¢,
but not by the output protein Z. This means that the relation ¢; = Z;(¢4) does
not depend on Z. Therefore, gate couplings are independent of the output protein.
To predict the transfer function of two gates in a series, ¢y = Zy(¢,) connected to
¢z = I1(¢4), the database only needs to contain * = Zy(¢z) and * = Z;(¢4), where *
denotes any protein. In this thesis, I use the cyan and yellow derivatives of the green
fluorescent protein[35] to measure transfer curves. The measurements I obtain with
these reporters allow prediction of the composition of gates.

If the inversion uses autorepression, then the relation ¢, = Z3(d4) also depends
on the characteristics of Z. To compute the transfer function of a gates coupling
¢y = Zy(¢z) connected to ¢z = Z3(ha), the database must specifically include the
transfer functions of the input/output protein pairs Y/Z and Z/A and their associated
mRNA.

Using the transfer curve measurements, the efficacy of a particular transfer func-
tion in implementing the digital abstraction is evaluated in terms of factors such as
gain and noise margins. The transfer function of inverters in a series is the functional
composition of their respective transfer functions. A series of inverters is then also
evaluated in terms of gain and noise margins. Because the transfer functions are
different for each inverter, the gates must be matched as described in Section 3.3.2.
In addition, the matching process must also evaluate the gain and noise margins re-
sulting from gate couplings, and only select proteins that achieve satisfactory levels

of these factors.

3.3.5 Implementation Choices

The objective of biocircuit design is to take a desired logic circuit and a database of
kinetic rates as input, and produce a genetic network that implements the circuit. The

design process searches the database and assigns suitable proteins to each gate, where

o7



the overall behavior of the circuit depends on these choices. To prevent interference
between the gates, a different protein is used for each unique signal. Therefore, the
number of proteins needed to implement a circuit is proportional to the complexity
of the circuit. The gates must be robust enough to use a wide variety of proteins with

different reaction kinetics. Some of the key choices in biocircuit and gate design are:

e Global gene copy number: The circuits are typically implemented on one or
several plasmids. High copy number plasmids place a metabolic burden on the
cell, while low copy number plasmids may result in large stochastic noise. In
this thesis, I use medium copy number plasmids (e.g. 20-50 copies per cell)

based on pBR322 and p15A origins of replication.

e Qutput proteins: An output protein must be soluble, bind some known operator
site(s), and not interfere with normal cell function. To ensure sufficient gain and
noise margins, DNA binding should be highly cooperative (e.g. A cI represses

using two dimers).

e Promoter/operator regions: Operators should bind repressors cooperatively, and
promoters should not be too strong as they may saturate subsequent gate inputs

and interfere with normal cell metabolism.

e Signal threshold levels: The gate input thresholds must be chosen to provide
high gain near the switching threshold, adequate noise margins at the HIGH and

LOW signal levels, and balanced transition times.

e Per-gate cistron count: The cistron count can be adjusted for each output

protein to match threshold levels.

e Plasmids versus chromosomal encodings of circuits: A genome encodes the en-
tire logic circuit with a set of genes, each with its own promoter, operator, and
structural genes. Normally this genome construct is encoded on one or more
extracellular DNA strands (e.g. plasmids). In the future, chromosomal inser-

tions of genetic circuits may significantly improve the stability of DNA coding
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for the biocircuit in the organism. The chromosomal encodings may also allow
more complex circuitry as these circuits will place a smaller metabolic burden

on the cell.

Caveats

Published data on kinetic constants is scarce and often imprecise. In several cases,
the constants used in the simulations here were guessed from published equilibrium
constants. This situation is rapidly getting better, and it is expected that more
accurate and complete data will be available in the near future. The experiments in
Chapter 4 provide some initial data for this purpose.

Another issue that must be address is stochastic noise in gene expression. In cells,
typical promoter copy counts correspond to very low concentrations. Therefore, the
stochastic noise in concentrations resulting from the discreteness of the transcription
reactions can be significant (see e.g. Arkin and Ross [5]). To decrease this stochastic
variance, I use medium plasmid copy numbers. There are also several known plas-
mids, such as pSC101, with a tight copy number control mechanism and therefore
significantly reduce the plasmid copy number fluctuations. Finally, recent results[83]
suggest that decreasing the translational efficiency while increasing the transcriptional
efficiency reduces fluctuations in gene expression.

As is apparent from the discussion above, there are many biochemical mechanisms
that can be explored in order to design reliable intracellular gates and circuits. Next,

we turn our attention to designing intercellular communications.

3.4 Intercelllar Communications

BioSPICE also provides a platform for simulating and analyzing intercellular commu-
nications coupled to genetic logic circuits. The input to an intercellular simulation is
a network of gene expression systems (including the relevant protein products) and a
small layout of cells on some medium. BioSPICE consults a database of reaction ki-

netics and diffusion rates to simulate the dynamic characteristics of the target system.
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Figure 3-14: Communications Circuit: Gate level representation of a genetic circuit
to accomplish a simple bacterial task.

The simulation computes the time-domain behavior of concentrations of intracellular
genetic elements and intercellular message passing chemicals.

Consider a simple bacterial task, where upon receipt of a message (represented by
inward diffusion of a message passing chemical), a cell communicates to its neighbors
and instructs them to set a state bit. Figure 3-14 presents an intercellular genetic
logic circuit designed to perform this task. The initiating signal D is a chemical that
traverses the cell membrane and results in the presence of protein A in the cyto-
plasm. Chapter 4 demonstrates how inducer molecules such as 1PTG (Isopropylthio-
B-galactoside) and aTc (Anhydrotetracycline) perform this function. The presence of
A results in controlled synthesis of C'. To amplify the signal, the inverter with input
A can by adjusted to be sensitive to even small quantities of A. Once a sufficient
concentration of A accumulates, the cell synthesizes C' and secretes it into the sur-
rounding environment as chemical message M. M diffuses through the medium and
functions as a message to neighboring cells. In response to M, the neighbors each set
their RS latch with output I to HIGH.

Figure 3.4 shows snapshots from a BioSPICE simulation of the above system
on a 4 x 4 grid (representing the medium) with two bacterial cells (heavily shaded
squares). Initially (image one), the output of the RS latch (represented by I) is LOW.
Then, an external drive D is introduced into the environment next to the cell at the

bottom-right corner (image two). The external drive instructs the bottom-right cell
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Figure 3-15: Biospice simulation snapshots showing intracellular protein and inter-
cellular message chemical concentrations for the simple task described in this section.
The shaded rectangles represent cells, and the rest of the grid represents the medium.
The vertical bars denote the levels of protein concentrations.

to transmit a message M to its neighbors. Once the neighboring cell receives M,
denoted when FE is present, the cell uses G to set the RS latch. Finally, when the
external drive dissipates and the message M decays, the value of I remains latched
at HIGH.

The next chapter describes measurements and genetic modifications of in-vivo
logic gates to obtain components with the desired behavior for constructing complex

and reliable circuits.
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Chapter 4

Measuring and Modifying Device
Physics

Potentially the most important element of biocircuit design is matching gate char-
acteristics. Experimental results in this chapter demonstrate that circuits with mis-
matched gates are likely not to function correctly. In generating Biology’s complex
genetic regulatory networks, natural forces of selection have resulted in finely tuned
interconnects between the different regulatory components. Nature has optimized
and matched the kinetic characteristics of these elements so that they cooperatively
achieve the desired regulatory behavior. In building de-novo biocircuits, we frequently
combine regulatory elements that do not interact in their wild-type settings. There-
fore, naive coupling of these elements will likely produce systems that do not have
the desired behavior.

In genetic process engineering, the biocircuit designer first determines the behav-
ioral characteristics of the regulatory components, and then modifies the elements
until the desired behavior is attained. In this chapter, I show experimental results of
using this process to convert a non-functional circuit with mismatched gates into a
circuit that achieves the correct response. The experiments focus on examining and
modifying the steady state behavior of the genetic circuits, and represent the first
example known to the author of designing robust genetic regulatory components for

use in building reliable biocircuits of significant complexity. Future work will also
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Figure 4-1: An idealized transfer curve for an inverter: The gain (or slope) is flat, then
steep, then flat again. Analog ranges represent digital “zeros” and “ones.” Because
of the gain, the output of the inverter is a better representation of the digital value
then the input (i.e. signal restoration).

consider the dynamic behavior of the circuits. The ultimate goal of the research re-
ported in this chapter is to assemble a library of components with known and useful
“device physics”, akin to the TTL Data Book for electrical circuit design. The knowl-
edge of device physics plays a fundamental role in achieving predictable and reliable
biocircuit design.

In this chapter, Section 4.1 describes the formal framework for measuring signals
and transfer curves. Section 4.2 introduces circuits used to experimentally set in-vivo
signal levels. Section 4.3 reports on the transfer curve of the lacl/p(lac) inverter. Sec-
tion 4.4 describes measurements and modifications to the transfer curves of inverters
based on cI/)\p(R,Olg). Section 4.5 reports on the transfer curve of an IMPLIES gate
based on lacl/p(lac). Finally, Section 4.6 discusses several physical constraints that

limit the size and complexity of circuits that can be embedded in single cells.
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4.1 Signals and Transfer Curves

A transfer function is the relation between the input signal and the output signal of
a gate or a circuit in steady state. Figure 4-1 illustrates an idealized transfer curve
for an inverter that is required for achieving the digital abstraction. Section 4.1.1
describes how to measure an individual signal in a genetic circuit, by constructing a
probe that measures expression activity in vivo. Section 4.1.2 introduces a mechanism
for estimating the transfer function by measuring many different points of the transfer
curve. The techniques outlined in this section are used to measure and analyze the

characteristics of in vivo logic gates in subsequent sections in this chapter.

4.1.1 Measuring a Signal

Recall that ¢x, the mRNA level mRNAx of signal protein X from all genes coding
for it, represents a logic signal. This section derives a direct correlation between mea-
surements of fluorescence intensities for reporter proteins and actual signal intensities.

Assume only gene Gx codes for mRNAx. Then, the relevant chemical reactions

for a signal is the rate of transcription of the gene G x and the decay rate of mRNA:

X
Gx + RNA, 2 5 G 4 RNA, + mRNAx (4.1)

transcribe

kX
mRNAy —=2, (4.2)

decay

X

serive TEDTESENts the rate

Gx is the active (unrepressed) form of the gene, and &
of transcription from Gx into the mRNA product. Then, assuming this is the only

production of X in the system, the signal level ¢x in steady state is:

X ire " [Gx] - [RNA
QSX = [mRNAX] — kzscmbe )[(GX] [R p]

dec(mrna)

(4.3)

To measure the signal mRNAx, insert a reporter protein RP; as an additional
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structural gene into mRNAx with its own ribosome binding site. Let n represent
the cistron count of signal protein X. Also, assume that for the concentrations of

interest, RP; remains mostly in monomeric form:

RP;

mRNAx + rRNA '“’41> mRNAx + rRNA +n - X + RP, (4.4)
translation
k ec(rp
Rp, = (4.5)
decay
Then, the time derivative for the reporter concentration is:
d[RP,]
= kR ImRNAx] - [rRNA] — Kaee(rp,) - [RP1] (4.6)
At steady state:
0= kAP - [mRNA,] - [rRNA] = Kgee(rp) - [RP1] (4.7)
Then, the signal level is:
¢x = [mRNAx] = # -[RPy] (4.8)
kzlatle ’ [TRNA]

For a useful operating range, the reporter’s fluorescence intensity F} approximates

its concentration (by a multiplicative factor m):

[Rpl] = F1 TN (49)

Then, a fluorescence measurement correlates to the actual signal by:
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kdec(rpl) * My .
kel - [TRNA]

zlate

Assuming that ribosomal RNA (rRNA) levels average to be fairly constant, then
the actual mRNA signal can be approximated by the fluorescence intensity multiplied
by a constant (unknown) factor. This signal approximation is useful for biocircuit

design because knowing the relative signal values is sufficient for matching gates.

Measuring multiple signals

There are at least two alternatives for measuring multiple signals in the same circuit.
One approach is to build multiple DNA constructs, where for each construct, the same
reporter protein is inserted into one of the desired mRNA coding sequences. Then,
each signal is measured separately in a different experiment where the conditions are
duplicated as much as possible.

The second approach to measuring multiple signals is to use several different
fluorescent proteins in the same construct. This approach allows simultaneous mea-
surements of multiple signals in the same cell during the same experiment. For a

signal ¢y that is associated with a reporter protein RP,:

kdec(rpn) “My .
EEPn . [rRNA]

zlate

éy = [mRNAy] = F, (4.11)

To normalize the simultaneous readings of different reporter proteins, first use

the same RBS upstream of each reporter coding sequence. This sets the translation

k' RP,

rate, zlate’

to be equivalent. Also, use reporter proteins with the same decay rate
Kdec(rp,)- Finally, the multiplicative factor m, is correlated between the different

reporter proteins by the method described in Section 4.2.
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Signal representation

The choice to represent signals using mRNA rather than dna-binding proteins as
originally proposed by Knight and Sussman[45] is more convenient for several reasons.
There are two possibilities for using fluorescent proteins for signal measurements.
In the first approach, the reporter fluorescent protein is fused to the dna-binding
protein in either the N or C terminus. Here, a transcription event synthesizes a single
protein-fusion molecular complex that contains both the dna-binding protein and the
fluorescent protein.

While the fluorescence intensity in this approach is a direct measurement of the
concentration of the dna-binding protein, the approach suffers from two drawbacks.
First, the protein-fusion may alter the behavior of the original dna-binding protein
under study. Second, certain dna-binding proteins such as the Bacteriophage A cI are
very efficient repressors, and even a small concentration of these repressors shuts down
transcription from their corresponding promoters. Due to the auto-fluorescence of
cells, such low protein concentrations cannot be detected with fluorescent proteins in-
vivo. Therefore, with this method one cannot effectively measure the characteristics
of gates based on highly efficient repressor proteins.

The second approach to measuring dna-binding protein signals using fluorescent
reporters is to encode a polycistronic reporter!, as in equation 4.4. However, this
approach requires that both the signal protein and the fluorescent reporter have
the same synthesis and decay rates. Otherwise, their concentrations will diverge,
and the fluorescence intensity will not accurately reflect the concentrations of the
signal protein. The efficiency of the ribosome binding site (RBS) largely controls the
synthesis rate, and both proteins can have the same RBS to achieve approximately
the same synthesis rates. However, in certain situations, it can be quite difficult to
engineer both proteins to exhibit the same decay rates. Furthermore, this approach
suffers from the same drawback as above when trying to measure the behavior of

highly efficient dna-binding proteins.

LA polycistronic gene organization is one where a single mRNA is transcribed, but it codes for
multiple gene products, where each product is translated independently from the mRNA
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inverter

“drive” gene output gene

Figure 4-2: Genetic setup used for measuring transfer curves. The “drive” genetic
construct enables the researcher to control and observe the input signal, using a
fluorescent protein (e.g. CFP). Simultaneously, the output signal is observed using a
different fluorescent protein (e.g. YFP).

As shown in equations 4.10 and 4.11, using mRNA as the signal enables measure-
ments that are both directly correlated with the actual signal and where low repressor
protein concentrations can still be observed. Specifically, the RBS for the reporter
protein is typically engineered to be highly efficient, while the corresponding RBS for
the repressor protein can be quite weak. In this manner, a gate with a highly efficient
repressor can be characterized, because low concentrations of the repressor protein

will be accompanied with higher concentrations of the reporter protein.

4.1.2 Measuring the Transfer Curve of an Inverter

Once individual signals can be measured, the transfer function of a gate is estimated
by measuring many points on the curve. A point on the transfer curve is a steady
state relation between the mRNA level ¢4 of the input protein and the mRNA level
¢z of the output protein. A point is measured by constructing a system with an
unknown but fixed ¢4, and measuring ¢4 and ¢.

To obtain many points, construct a system that can yield various fixed values of
¢4, and observe the corresponding values of ¢,. Figure 4-2 shows a genetic setup that
enables a researcher to control and observe input protein levels, and simultaneously
observe resulting output levels. Let Pp’ represent a promoter under a certain condi-
tion (i.e. “drive”) that results in a fixed value of ¢4, say ¢4”. Let Z denote the transfer

function of inverter I. Then, for each drive Pp’, the value pair (kj’—“(j), ,f;(‘ﬁ—?]))) is
ec(rp ec(rp
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Figure 4-3: Simulation for measuring points on the transfer function of an inverter
using three promoters, each with ten different cistron counts.

measured with the reporter RP as described above. One measures this value pair in a
single experiment using two different fluorescent proteins. With a set of these points,
one obtains the transfer curve of a gate, where all points are normalized to the same
(albeit unknown) units.

Figure 4-3 illustrates points on an inverter’s transfer curve, obtained by simulating
thirty different drive intensities. To measure a complete transfer curve, the range of
inputs must cover both the LOw and HIGH input ranges. This may require different
genetic constructs with both strong and weak promoters. One does not need to know
a priori about the characteristics of Pp? to use it for measuring points on the transfer
curve. In addition, drives with similar characteristics simply add redundancy to the
measurements.

Next, we turn to laboratory experiments for measuring and modifying the device
physics of several biocircuits and gates. Unless otherwise noted, in the remainder of

this thesis all graphs represent data with actual living E. coli cells.
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Figure 4-4: Plasmids with circuits to set protein expression levels. The concentration
of 1PTG (Isopropylthio-3-galactoside) controls the expression level of the output pro-
teins, in these cases ECFP or EYFP. The inclusion of the ¢l coding sequence prior to
the ECFP coding sequence should not have a noticeable effect on ECFP expression.

4.2 Genetic Constructs to Set a Signal Level

The first step in measuring the device physics of an inverter is to construct genetic
circuits that allow the researcher to externally set the in-vivo level of a signal. This
is performed using simple circuits with an inverter connected to an IMPLIES gate
(Figure 4-4). I constructed two such circuits, one with the enhanced yellow fluorescent
protein (EYFP) and one with the enhanced cyan fluorescent protein (ECFP), both
from Clontech[35]. The inverter that comprises the constitutive promoter p(laclq)
has an input that is always set to LOW, because the cell does not contain a repressor
for the p(laclq) promoter. Therefore, the output of the inverter, lacl, is constantly
HIGH. Then, since the lacl repressor input to the p(lac) IMPLIES gate is constantly
HIGH, the level of the inducer molecule input, IPTG (Isopropylthio-3-galactoside), is
positively correlated with the level of the output. The researcher controls the level

of the output signal with this circuit by externally setting the level of IPTG, which
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Figure 4-5: FACS data for IPTG inductions of pINV-102. The values for the OuM
culture reflect auto-fluorescence of the cells, while the values for the other two con-
centrations reflect high levels of EYFP expression.

freely diffuses into the cell.

Figure 4-5 shows Fluorescence-Activated Cell Sorting (FACS)[74] data of E. coli
cells with the pINV-102 plasmid grown to steady state in three different concentra-
tions of IPTG.2 Each graph is a histogram correlating fluorescence intensities with the
number of cells that have been observed with those particular fluorescence intensities.
The cells that were grown in a medium containing OuM IPTG emit approximately the
same distribution of fluorescence values as cells that do not contain DNA that codes
for any fluorescent protein (data not shown). Therefore, these fluorescence intensities
are attributed to the auto-fluorescence of the cells. Cells grown in increasing levels of
IPTG emit higher levels of fluorescence, representing higher levels of output mRNA
and protein expression.

Figure 4-6 shows median fluorescence values of pINV-102 and pINV-112-R1 cell
populations induced with a range of IPTG concentrations. The graph shows how to
control an in-vivo signal using external induction with IPTG. Notice the sigmoidal
shape of the fluorescence values. Initially, the IPTG concentrations have very lit-

tle effect. Once the IPTG concentration reaches a critical threshold, the inducer

2 Appendix A describes the materials and methods used for the experiments in this chapter.
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Figure 4-6: Controlling signal levels: The graph shows how to control an in-vivo
signal using external induction with IPTG. The different curves show the fluorescence
levels of ECFP and EYFP that correspond to the same signal level. The relationship
between the two curves helps compute the normalization factor between ECFP and
EYFP reporter levels.

molecules begin to de-activate enough lacl repressor molecules such that transcrip-
tion from p(lac) proceeds occasionally. From 10uM to 1,0004M the level of expression
rises as the level of IPTG increases. Finally, at approximately 1,000uM, when the
IPTG molecules de-activate essentially all the lacI molecules, RNAp transcribes p(lac)
at a maximum rate. Past the saturation point, additional IPTG has no effect on the
output level.

The relationship between the ECFP and EYFP fluorescence intensities in Figure 4-
6 is used to normalize between simultaneous ECFP/EYFP readings in subsequent
experiments in this section. The graphs show sigmoidal curve fittings of the data

points using the error function erf:

y="7-erfloz+ )+ o (4.12)
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where

2 e
erfz) = VA /O,we dt (4.13)

For a given IPTG level, the level of ECFP and EYFP expression is approximately
the same. Therefore, a given ECFP fluorescence intensity f. correlates to the corre-
sponding EYFP fluorescence intensity by finding the IPTG level with an ECFP value
of f. and then determining the EYFP fluorescence for that level of IPTG.

These graphs demonstrate how to control the level of expression of a particular
protein using an external stimulus. Such a genetic setup is used in the following

sections to set the levels of input mRNA to the inverters under study.

4.3 Transfer Curve of a lacl/p(lac) Inverter

Figure 4-7 shows the genetic circuit used to measure the device physics of an inverter
based on the lacl repressor and the p(lac) promoter. The first two logic gates set
the level of the input signal to the inverter in a mechanism similar to one used in
the circuit from Section 4.2. Here, the Apr_o12) inverter functions as a constitutive
promoter (no cl in the system) to set a constant high level of the Tet repressor
(tetR). Then, through the tetR/P(LtetO-1) IMPLIES gate, the concentration of the aTc
(Anhydrotetracycline) inducer molecule controls the level of the lac repressor (lacl).
lacl is the input protein to the inverter gate under study. The ECFP transcribed
along with lacl reports the level of the input signal, as described in Section 4.1.1.
Finally, EYFP reports the output signal expressed from the lacI/p(lac) inverter.
The output of this circuit is the logic NOT of the aTc input signal. Figure 4-
8 shows FACS data of the EYFP output signal in different three experiments that
results from varying the aTc input signal levels. For a LOw input signal of 172 aTc,
the output of the circuit is appropriately HIGH. For a HIGH input signal of 10074

aTc, the output of the circuit is correctly Low. In addition, for an intermediate
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Figure 4-7: Genetic circuit to measure the transfer curve of the lacl/p(lac) inverter.
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Figure 4-8: Transfer curve FACS data points for the lacI/p(lac) circuit, demonstrating
inversion of the input signal.

input signal value of 1074 aTc, the output values vary considerably among the cells.
Therefore, in the same way that electrical logic circuits have forbidden zones, the

output behavior is undefined for a region of intermediate input values.
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Figure 4-9: Transfer curve gain and noise margins for the lacl/p(lac) circuit.

Figure 4-9(a) illustrates the transfer function of the circuit with respect to the
level of the inducer. The figure relates aTc input levels to EYFP output fluorescence
levels, with error bars depicting the range that includes 95% of the flow cytometry
fluorescence intensities recorded for that particular aTc level. The figure shows the
range of input values with undefined output behavior, as well as the non-linear gain of
the circuit. Overall, this in-vivo circuit exhibits significant gain and signal restoration.

Figure 4-9(b) illustrates the good noise margins between LOW and HIGH signal
values. Input signal levels of 37% aTc are immediately before the sharp transition
from HIGH to LOW output, while input signal levels of 3079 aTc are correspondingly
before the transition from LOW to HIGH output. As the figure shows, the output
levels resulting from these two close input signals do not overlap. The favorable
noise margins and significant gain of this circuit clearly demonstrate that digital-
logic computation is feasible with genetic circuits.

By correlating ECFP and EYFP readings for the same experiment, Figure 4-10
shows the transfer curve of the lacl/p(lac) inverter. The ECFP fluorescence inten-
sities are normalized to the EYFP levels according to the methodology described in

Section 4.1.1 and based on the experimental results from Section 4.2. After nor-
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Figure 4-10: The transfer curve of the lacl/p(lac) inverter.

malization, each point represents the median fluorescence intensities for a particular
experimental condition of the input signal (ECFP) versus the output signal (EYFP).
The gain of the inverter of 4.72 is sufficient for digital-logic computation, and is likely
to be related to the pentameric nature of lacl repression[56].

The lacl/p(lac) gate characterized in this section is the first component of the cel-
lular gate library. Next, we describe the addition of the second component to the gate
library, the cI/Ap(r—o12) inverter. In particular, the following section demonstrates
genetic process engineering to modify the original behavior of this gate and obtain

the desired behavior for digital computation.

4.4 Measuring and Modifying Transfer Curves of
cI/\p(r-012) Inverters

While the gain exhibited by the lacI/p(lac) is sufficient, other repressor/promoter
combinations can yield better signal restoration. One such example is the c//Ap(r—012)
inverters. The cl repressor binds cooperatively to the A Ogl and Og2 operators (Fig-

ure 4-11), which results in high gain according to the simulations in Section 3.3.1.
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Figure 4-11: Cooperative binding of cI to Ap(r—o12) yields high gain.

The Ap(r—o012) is a synthetic promoter that I designed and that excludes Og3 of the
wild type A promoter. The affinity of ¢/ to Og3 is weak and including this operator
would not significantly enhance the repression efficiency of cl.

The ¢l monomer, also known as A repressor, has an amino domain comprised of
amino acids 1-92, a carboxyl domain of residues 132-236, and 40 remaining amino
acids that connect the two domains[64]. The monomers associate to form dimers,
which can then bind to the 17bp operator regions. c¢I’s intrinsic affinity to Ogl is
about 10 times higher than to Og2, and therefore typically binds Og1 first. However,
the binding of ¢ to Ogl immediately increases the affinity of a second dimer to Og2
because of the interaction with the previously bound dimer. As a result, repressor
dimers bind to Ogrl and Og2 almost simultaneously. From a circuit engineering
perspective, this cooperative binding leads to a much desired high gain since the
transition from low repression activity to high repression activity occurs over a small
range of repressor concentrations.

The genetic circuit to measure the device physics of the cI/Ap(r—012) is logically
similar to the one used to measure the lacI/p(lac) inverter (Figure 4-12). Here, the
lacI/p(lac) IMPLIES gate controls the level of the c/input. For a particular experiment,
the researcher sets the repressor level by controlling the IPTG concentration.

The logic interconnect of this circuit should result in EYFP fluorescence intensities
that are inversely correlated with the IPTG input levels. However, as shown in

Figure 4-13, the circuit is completely unresponsive to variations in the IPTG levels.

7



lacl

cl
0 [high] CFP YFP
(Off) P(lac) Do
IPTG
Lambda P(R-012)

TO Term

pINV-110 Placlq) pINV-107

4887 bp oAC) ] 3759 bp
p15A ori RBSII

T1 Term o

ECEP RBSII

ColE1 ORI

Figure 4-12: Genetic circuit to measure the transfer curve of cI/Ap(r_o12), using lacl
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Figure 4-13: The unresponsive transfer curve of the original cI/ Ap(R—012) inverter.

The lack of response stems from the mismatch between the kinetic characteristics of

the lacI/p(lac) gate versus the cI/Ap(r—o12) inverter. Specifically, with no IPTG, the
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Figure 4-14: The Ribosome, mRNA, and different Ribosome Binding Sites.

fully repressed expression level from p(lac) still results in a low level of ¢/ mRNA.
Because the ribosome binding site is very efficient, the low mRNA level results in some
translation of the cI protein. And because cI is a highly efficient repressor, even a low
concentration represses the Apr_p12) promoter to the point where no fluorescence
can be detected. This gate mismatch highlights the importance of understanding
the device physics of the cellular gates. The following two sections describe genetic
process engineering to modify genetic elements in the cI/Ap(r—012) inverter such that

the gate obtains the desired behavioral characteristics.

4.4.1 Modifying Ribosome Binding Sites

Ribosome Binding Site (RBS) sequences significantly control the rate of translation
from the input mRNA signal to the input protein. These sequences align the ribosome
onto the mRNA in the proper reading frame so that polypeptide synthesis can start
correctly at the AUG initiation codon. The affinity of the ribosome’s 30S subunit to
the RBS that it binds determines the rate of translation. This translation rate, k;qze,
is part of the biochemical reaction 3.1 for modeling and simulating the inverter. For a

given input mRNA level, a reduction in k.. yields a lower input protein level, which
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Figure 4-15: The effect of weaker RBS’s on the behavior of the c¢I/Ap(r—o12) circuit.
Here the output YFP exhibits the desired inverse sigmoidal relationship to the IPTG
input.

in turn pushes the entire transfer curve upward and outward (Figure 3-9(c)). The
motivation to perform this particular genetic modification stems from circuit design
and analysis using BioSPICE simulations.

Figure 4-14 shows the original highly efficient ¢/ RBS used in the circuit above, as
well as three other less efficient RBS’s from the literature[29]. Starting from pINV-110,
I constructed three new plasmids (pINV-112-R1, pINV-112-R2, pINV-112-R3) where
the three weaker RBS’s replace the original RBS of the cI. pINV-112-R1 contains the
strongest RBS, while pINV-112-R3 contains the weakest RBS.

Figure 4-15 shows the dramatic effect of the RBS change on the behavior of the
circuit, where now the output YFP exhibits the desired inverse sigmoidal relationship
to the IPTG input. The circuit with the strongest RBS (pINV-107/pINV-112-R1)
shows a moderate sensitivity to IPTG, while the circuits with the other two RBS’s

display a more pronounced response to variations in IPTG.
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mut5: TACATATGGCGGTGATA
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Figure 4-16: The cI repressor dimer, its a-helix motifs, and mutations to OR]1.

4.4.2 Modifying Repressor/Operator Affinity

Replacing the strong ribosome binding site with weaker sites converted a non-functional
circuit into a functional one, and demonstrated the utility of genetic process engineer-
ing. This section describes further modifications to the repressor/operator affinity
that yield additional improvements in the performance of the circuit. These modifi-
cations are motivated by the BioSPICE simulations of Figures 3-9(a) and 3-10. The
simulations show how reductions in k,p,s, the binding affinity of the repressor to the
operator, reshape the transfer curve of the inverter upward and outward.

To reduce the repressor/operator affinity, I constructed three new plasmids with
modified Ogl sequences using site-directed mutagenesis (Figure 4-16). c¢I's amino
domain is folded into five successive stretches of a-helix, where a-helix 3 lies exposed
along the surface of the molecule[64]. This a-helix recognizes the A\ operators and

binds the repressor to those particular DNA sequences. The two a-helix 3 motifs of the
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Figure 4-17: The effect of Ap(r_012) Orl operator mutations on the behavior of the
CI/)\p(R_Olg) circult

repressor’s dimer complex are separated by the same distance as the one separating
successive segments of the major groove along one face of the DNA. These motifs
efficiently bind the repressor dimer to the mostly symmetric A operator regions, where
each operator consists of two half-sites. The following is the consensus sequence for
the twelve operator half-sites in the wild-type Bacteriophage A(subscripts correspond

to the frequency of the base pair in the given position):

Ty A Ts Cia Ay Cui Cr Gy Cs
CV2 CV3 T2 T1 T4 Tg T1
A1 A1 Cl Gl Cl

In determining which mutations to perform, I conjectured that bases with high
frequency in the consensus sequence would be significant to strong repressor/operator
binding. mut4 is a one base pair mutation C—A of the fourth Og1 position. mutb is
a two base pair mutation that also modifies the sixth Og1 position C—A, and mut6
is a three base mutation that also modifies the fifth Og1 position T—G.

The experimental results in Figure 4-17 demonstrate the effect of coupling the

three Apr_012) Orl operator mutations with the weakest ribosome binding site from
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Figure 4-18: Genetic process engineering of the cI/ Ap(r-o012) inverter. A series of
genetic modifications converts a non-functional circuit into one that achieves the
desired input/output behavior.

above. The two and three base pair Orl mutations, coupled with the weak RBS,
produce a circuit where the highest levels of ¢/ cannot repress the output of the
cl/Ap(r—012) gate. However, a one base pair mutation to Ogl in plamids pINV-107-
mut4/pINV-112-R3 yields a circuit with a well-behaved response to the IPTG signal,
and is a good gate candidate for other biocircuits.

In summary, using genetic process engineering I first examined the behavioral
characteristics of the cI/Apr_012) inverter, and then genetically modified the gate
until I produced a version with the desired inverse sigmoidal behavior. The design
and experimental results illustrate how to convert a non-functional circuit with mis-
matched gates into a circuit that achieves the correct response (Figure 4-18). Note
that in choosing genetic variations, the specific ribosome binding site modifications
in Section 4.4.1 can be applied to any inverter and are independent from the spe-
cific genetic candidate. However, the operator mutations in Section 4.4.2 are specific
to the Apg) and cl and cannot be generally applied to other operators. Accord-

ingly, there are several strategies to optimizing a new component. First, one can test
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Figure 4-19: Logic circuit for measuring the lacl/p(lac) IMPLIES gate. aTc controls
the lacl input, while the IPTG input is controlled directly. Yellow fluorescence reports
the output signal.

modifications that are applicable to any component. Second, one can study the par-
ticular component by reading the literature and performing laboratory experiments,
and choose mutations based on the understanding of the specific biochemistry of the
element. Third, one can perform large-scale random mutations on the element, and

screen for mutants that have the desired behavior.

4.5 Characterizing the lacl/p(lac) iMPLIES Gate

The lacl/p(lac) inverter gate, whose transfer curve is measured in Section 4.3, also
implements the IMPLIES operation (Figure 4-19). A HIGH IPTG input always yields
a HIGH output, while a HIGH aTc input in the absence of IPTG yields a LOW output.
Figure 4-20 illustrates the response of the circuit to five different levels of IPTG
simultaneously coupled with five different levels of aTc. The circuit behaves correctly
with a HIGH output unless aTc is HIGH and IPTG is Low.

The device physics measurements in this chapter facilitate biocircuit design be-
cause they enable prediction of the behavior of complex circuits using the charac-
teristics of simple components, as described in Section 3.3.4. With the appropriate
tools, the engineer of biocircuits can begin to design and produce large-scale circuits.
However, there are limitations to the complexity of a circuit that one can implement

using these biochemical mechanisms. Next, we turn our attention to this issue.
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Figure 4-20: The circuit response of the lacI/p(lac) IMPLIES gate, mapping the IPTG
and aTc inputs to the resulting fluorescence. The graph shows fluorescence intensities
under twenty-five separate conditions with five different IPTG levels and five different
a'Tc levels. The circuit behaves correctly with a LOW output only when aTc is HIGH
and IPTG Low.

4.6 Physical Constraints in Building Circuits

Certain physical constraints, such as volume and metabolic requirements, limit circuit
complexity in a single cell. There are approximately 107 protein molecules per cell.
If one assumes that to represent an individual signal in a cell requires roughly one
hundred to five hundred molecules, then one thousand signals require an additional
1%—5% of the original number of protein molecules in a single cell. Given that the size
of the signal protein molecules is average with respect to the other protein molecules
in the cell, the additional volume required for a biocircuit with one thousand gates
should not significantly affect the health of the engineered cells.

The metabolic requirements of operating a circuit depend on the size of the circuit,

the number of molecules needed to represent a signal, and the rate at which the cell
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needs to synthesize the signal molecules. Let s, m, and d be defined as follows:

s = number of signals in the circuit
m = number of molecules per signal to represent a “1”
1
d = decay rate of a signal molecule (i.e. 5 life in minutes)

Then, the protein synthesis rate to sustain all signals at “1” is

s+-m mol

2d min

Since E. coli cells multiply roughly every 30 minutes, each cell must synthesize
at least 107 protein molecules in 30 minutes. The following table shows the effect of

various parameter values on the synthesis rate required to operate the circuit in the

cell:
protein synthesis (per min)
s m | d | # of molecules | % of total
100 | 100 | 100 250 0.08%
500 | 250 | 10 6, 250 1.88%
1000 | 500 2 125,000 37.50%

The table shows that a circuit with one thousand gates, where each gate requires
five hundred protein molecules, and the half life of each protein is two minutes, re-
quires the cell to synthesize proteins at an additional forty percent rate in order to
sustain the engineered computation. This places a rather high metabolic strain on the
cell, and a circuit with these characteristics is unlikely to be operational in a single
cell. To engineer behavior with higher complexity in these cells, one must enlist the
coordinated effort of multiple cells. This analysis provides motivation for the next
chapter, where we discuss engineered cell-to-cell communications to enable coordi-
nated behavior in cell aggregates. The work derives inspiration from the biological

developmental process.
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Chapter 5

Intercellular Communications

The biological development process requires coordinated, robust action among a very
large number of essentially identical, unreliable components. In stark contrast to cur-
rent computer science engineering practice, these developmental programs are highly
fault tolerant. Imagine what would happen if any biological mechanism exhibited the
same fragility as a modern microprocessor, operating system, or satellite.

Previous work in my group [1, 14, 15, 58, 65, 89, 90| has examined some of these
robustness and pattern formation issues in simulation, with intriguing results. We
found that the topic we call amorphous computing requires a different set of algorithms
and a different approach to thinking about structures than conventional computer
science.

However, we also must better understand the developmental process in a biolog-
ical context. Although we are making significant progress, we simply do not fully
understand the pattern formation of even the simplest of biological structures. But
surely concepts from computer science, such as subroutines, divide-and-conquer, re-
cursion and iteration will play a major role in understanding the genetic control of
developmental diversity. Both biology and computer science have lessons to learn
from a cooperative investigation of this field.

Even simple biological systems can exhibit complex developmental processes. The
motile, gram-negative bacterium Myzococcus ranthus, for example, exhibits social be-

havior and cellular differentiation during cooperative feeding. The controlled, density
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dependent, release of antibiotics and cell wall degrading enzymes to kill competitors
allows moving swarms (so-called “wolf-packs”) to act more effectively than individ-
ual cells [19]. Similarly, M. zanthus exhibits selection, during starvation, of a small
number of cells out of a swarm of 100,000 to change form from rod-like bacteria to
environmentally protected spherical myxospores. Spore formation requires high cell
density, nutrient limitation, and a solid surface [20, 46].

In this chapter, I demonstrate a biological implementation of a key component in
building such developmental pattern engineering techniques — cell-to-cell communica-
tions. Communication between cells is obviously essential to any kind of coordinated
expression. However, in development and in the amorphous computing simulations,
one kind of communication emerges as especially important — the ability to detect and
act on chemical signal concentration gradients. Such gradient dependent expression
is the building block of locally unique behavior, as well as the organizing principle
that allows the construction of local coordinate systems through the creation and
detection of chemical gradients. Such trophic behavior provides one basic organizing
principle for complex patterned development.

I have isolated a specific chemical cell-to-cell signaling mechanism from a natural
biological system, the quorum sensing system of Vibrio fischeri. This system encodes
genes and promoter sequences that allow the controlled expression of the chemical
Vibrio fischeri autoinducer (VAI) within one sender cell, and the detection and con-
trolled expression of specific genes in another, receiving cell. The free diffusion of the
VAI chemical within the medium and across cell membranes allows the establishment
of chemical gradients and the controlled expression of genetic circuits as a result.

Specifically, I demonstrate the construction and testing of engineered genetic cir-
cuits which exhibit the ability to send a controlled signal from one cell, diffuse that
signal through the intercellular medium, receive that signal within an a second cell,
and activate a remote transcriptional response (Figure 5-1). The work reported in
this Chapter implements and characterizes cell-to-cell communication components for
the cellular gate library.

In the remainder of this chapter, I describe the mechanism of quorum sensing
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Figure 5-1: Cell-to-cell communication schematics: (1) The sender cell produces small
signal molecules using certain metabolic pathways. (2) The small molecules diffuse
outside the membrane and into the environment. (3) The signals then diffuse into
neighboring cells (4) and interact with proteins in the receiver cells, and thereby
change signal values.

in bacteria (Sections 5.1-5.1.1), present the plasmids engineered for communications,

and report on experimental results (Section 5.2).

5.1 Quorum Sensing in bacteria

Vibrio fischeri is a gram-negative bioluminescent marine prokaryote that naturally
occurs in two distinct environments. In seawater, it swims freely at concentrations of
approximately ten cells per liter. It also grows naturally in a symbiotic relationship
with a variety of invertebrate and vertebrate sea organisms, especially the Hawai-
ian sepiolid squid, Euprymna scolopes and the Japanese pinecone fish, Monocentris
japonica [69]. In these symbiotic relationships, the bacteria grows to densities of
approximately 10%° cells per liter.

In the free-living state, Vibrio fischeri emits essentially no light (< 0.8 pho-
tons/second/cell). In the light organ of the Hawaiian Sepiolid Squid, however, the
same bacteria emit more than 800 photons/second/cell, producing very visible bio-
luminescence. In culture, Vibrio fischeri demonstrates a similar density dependent

bioluminescence, with induction occurring at about 10 cells/liter.
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Figure 5-2: The lux Operon (on the left), and luxI metabolism that catalyzes the
formation of VAI (on the right).

Work over many years has established that this behavioral change is due to a
natural mechanism of detecting cell densities, which has been termed quorum sens-
ing [28]. The quorum sensing mechanism relies on the synthesis and detection of a
very specific, species unique chemical, an autoinducer, which mediates intercellular
communications. In Vibrio fischeri, this autoinducer chemical (VAI) has been iden-
tified as N-(3-oxohexanoyl)-3-amino-dihydro-2-(3H)-furanone [21]. The gene, LuxlI,
catalytic protein, and synthetic pathway for this chemical have also been identified
[27].

Briefly, the LuxI gene encodes an acyl-homoserine lactone synthesase that uses
highly available metabolic precursors found within most gram-negative prokaryotic
bacteria — acyl-ACP from the fatty acid metabolic cycle, and S-adenosylmethionine
(SAM) from the methionine pathway — to synthesize VAL

The Vibrio fischeri autoinducer (VAI) freely diffuses across the bacterial cell mem-
brane. Thus, at low cell densities, low VAI concentrations are available. Within a light
organ, or at high culture densities, VAI builds up within the environment, resulting
in a density dependent induction of bioluminescence.

The response mechanism to VAI concentration has also been extensively analyzed
[77]. Briefly, the LuxR gene codes for a two domain DNA binding protein that
interacts with VAI and the Lux box of the LuxICDABEG operon promoter to exercise
transcriptional control (Figure 5-2). At nanomolar concentrations, VAI binds to the

N terminal domain of the LuxR protein, which in turn activates the C-terminal helix-
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Figure 5-3: The lux Operon and quorum sensing: density dependent bioluminescence.

turn-helix DNA binding domain. The LuxR, protein acts as a transcriptional activator
for the RNA polymerase holoenzyme complex. The activated protein likely binds in
dimeric or multimeric forms, because of the evident dyadic symmetry of the Lux box
binding domain. Figure 5-3 shows the genetics of bioluminescence in two distinct
environments in which Vibrio fischer: naturally occurs.

Successful cloning and expression of the Lux genes into E. coli have established
the genetic structure of the Vibrio fischeri Lux operon[26]. It is somewhat surprising
(although common) for the transfer of regulatory genes and entire metabolic pathways

to function straightforwardly across gram-negative species boundaries in this way.

5.1.1 Genetic Features of the LuxR/LuxI operons

The nucleotide structure of the sequenced regulatory region is shown in Figure 5-4.
This region encodes two divergently transcribed promoters. The left operon consti-
tutively expresses the LuxR transcript as coded by the left ORF. This operon has a
standard ¢"® binding region, consisting of a -10 and -35 sequence, and a CRP/CAMP
binding site. The CRP/CAMP binding site allows catabolic repression on the left

LuxR operon.
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Figure 5-4: The promoter regions for LuxR and LuxI in Vibrio fischersi.

The right operon drives expression of the LuxICDABEG transcript, coding for
autoinducer production (LuxI) and the bioluminescence cassette of LuxCDABEG.
The operon consists of a standard -10 ¢ binding site, but is missing the -35 site.
Instead, the luzx box, a 20 base inverted palindromic repeat, allows dimeric binding
of the active form of LuxR binding protein, activating the RNA polymerase holoen-
zyme complex, under control of the LuxR protein — and hence indirectly, the VAI
concentration.

The lux box is a common motif in regulatory proteins of the LuxR family, and
occurs upstream of many LuxR homologous genes. The sequence of the Lux box in
this construct is 5’(ACCTGTAGGATCGTACAGGT); the consensus sequence for similar
lux boxes in other constructs is [36] 5’(RNSTGYAXGATNXTRCASRT)3’ (N = A, T, G,
C; X =Norgap;S=G,C; R=A,G Y=C,T).

Note that the dimeric binding of the LuxR product produces the kind of nonlinear
concentration/response behavior discussed in [45, 89] and widely seen in DNA binding
protein transcriptional control. This nonlinear response is an essential element of
signal restoration and digital control of expression.

The transcription of the right operon also enhances the production of LuxI, and
thus the VAI synthesase, and VAI. We see here the key component of a Schmidt-
trigger positive feedback gate — once transcription is turned on, the enhancement is

self-reinforcing, leading to hysteresis in the transfer curve.
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Figure 5-5: Genetic and logic circuits for pSND-1 sender and pRCV-3 receiver. The
senders cell constitutively express luzl, which catalyzes the formation of VAI. VAI
diffused into the environment and neighboring cells, which detect VAI through the
transcriptional activation of lux P(R).

5.2 Intercellular Signaling Experiments

In order to experiment with engineered cell-to-cell communications, I constructed a
series of plasmids, as described in Appendix B. The plasmids encode genetic logic
circuits that enable cells to send messages, and logic circuits that enable cells to detect
and respond to incoming messages. The following sections describe experiments to
characterize the cell-to-cell communication capabilities engineered into E. coli cells

using these genetic circuits.

5.2.1 Sending a constant cell to cell signal

The first intercellular communications experiment involved sending a constant signal

from one cell type to another. The pSND-1 plasmid encodes a circuit that directs the
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Figure 5-6: Time-series response of receivers to signal. The negative controls (pRCV-
3 and pRCV-3) show no increase in fluorescence over time. The positive control with
constitutive expression of GFP(LVA) (pRW-LPR-2) shows a high level of fluorescence.
The mixed culture of senders and receivers (pRCV-3 + pSND-1) shows the increase
in fluorescence over time due to the cell-to-cell communications. Finally, a highly
concentrated extract of VAI mixed with the receivers (pRCV-3 + pTK-1 AI) shows
a rapid increase in fluorescence.

cell to continuously send the VAI message. The pRCV-3 plasmid encodes a circuit
that directs the cell to express GFP(LVA), a variant of the green fluorescent protein
from Clontech, when VAI enters the cell (Figure 5-5). Cultures of E. coli DH5«
transformed with the pRCV-3 plasmid and cultures of E. coli DH5« transformed
with the pSND-1 plasmid were grown separately overnight @37°C in LB AMP. A
96-well clear bottom plate was loaded with 200ul of LB AMP in each well. 10ul of
pSND-1 cells were loaded horizontally to each well, along with controls consisting
of cells expressing GFP(LVA) constitutively with the pRW-LPR-2 plasmid, E. coli
DHba containing pUC19 to serve as a negative control, and a series of wells containing
extracted VAI (see below).

Vertically, 10ul of cells containing the pRCV-3 construct were also loaded into

each well. Thus, each well contained a variety of senders, and a uniform set of
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receivers. The plate was grown in a Biotek FL-600 fluorescent plate reader for two
hours, and fluorescence at the GFP(LVA) peak (excitation filter 485/20 nm, emission
filter 516/20 nm) was measured every two minutes. Figure 5-6 shows the time-series
response of the different cultures. Wells containing only the pRCV-3 cells, or with
added pUC19 cells, showed no increase in fluorescence. The well containing pRCV-3
cells and pRW-LPR-2 cells (which express GFP(LVA)) served as a positive control for
high levels of fluorescence. Wells containing the pRCV-3 cells plus extracted pTK1
autoinducer showed high, and increasing levels of fluorescence. Cells with pRCV-3
and pSND-1 showed the expected increase in fluorescence demonstrating successful

cell-to-cell signaling.

5.2.2 Characterization of the receiver module

The genetic circuit to receive messages (plasmid pRCV-3) was further characterized
by inducing the promoter with different levels of VAI extracted from cell culture.
Cultures of Vibrio fischeri and of E. coli containing the pTK1 plasmid were grown
overnight to stationary phase in GVM broth or LB AMP respectively @30°C which
allows evaluation of their bioluminescence. After verification of light production,
100 ml of the cultures were centrifuged at 3300 g, and the supernatant collected.
The supernatant was extracted with 10 ml of ethyl acetate by vigorous shaking in
a separatory funnel for 10 minutes. The ethyl acetate extract (upper fraction) was
separated and dried under vacuum. The resulting crude extract was redissolved in
1ml of DI water to provide 100x VAI extract.

I analyzed the effectiveness of serial dilutions of the VAI extracts from pTK1 and
Vibrio fischeri in inducing GFP expression of the pRCV-3 cells. Both the Vibrio
fischeri and pTK1 extracts were about equally effective at inducing expression of the
pRCV-3 promoter, as measured by GFP production. Cells with different levels of
VAI were incubated @37°C for four hours, and the maximum fluorescence achieved
for each culture was recorded. Figure 5-7 shows that increasing levels of autoinducer
yielded increasing GFP expression by the receiver. High levels of the extract, however,

were toxic to the cells, and resulted in relatively low fluorescence levels.
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Figure 5-7: The effect of different autoinducer levels on the maximum fluorescence
attained by the receivers.

5.2.3 Sending controlled cell-to-cell signals

The third experiment characterized the response of the receivers to variations in the
strength of the message transmitted by the senders. For this, the LuxI gene was
placed under the control of the Tet promoter from the Clontech pPROTet system.
Figure 5-8 provides a schematic representation of the experiment. In one cell, the
pLuxI-Tet-8 plasmid exerts controlled expression of the LuxI autoinducer synthesase
using the Tet operon. The synthesase catalyzes the conversion of normal cellular
metabolic products into VAI; thus, controlling the LuxI expression level controls the
VAI production in the cells. The VAI produced within the cells migrates though the
cell membrane of the sender, into the culture medium, and through the membrane of
the receiver — a cell containing the pRCV-3 plasmid. There, it interacts with the N-
terminal domain of the LuxR DNA binding protein product, disabling it from binding
to the lux box binding site. The expression of the GFP reporter gene is enhanced,
resulting in high levels of fluorescence.

The experiment involved the incubation of similar mixed cell cultures on 96-well

clear bottom plates. One important difference was the culture medium — the pPRO-
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Figure 5-8: Genetic and logic circuits for pLuxI-Tet-8 sender and pRCV-3 receiver.

TET cells carry Spectinomycin and Chloramphenicol resistance, while the pRCV-
3 cells carry Ampicillin resistance. The experiments were carried out by growing
overnight cultures of both types of cells in the appropriate antibiotic containing
medium, followed by centrifugation at 4000g to remove the medium, and resuspension
to similar cell density in LB containing no antibiotics, so that both cell types could
grow.

Three rows of pRCV-3 cells were loaded on a microplate, and two of these rows
were also loaded with pLuxI-Tet-8 cells. The sender cells in the various columns were
induced with different levels of aTc. Also, one control column included receivers that
were induced directly with the VAI extract. Figure 5-9 shows the results of this ex-
periment after culturing the plate for four hours @37°C. As expected, the null wells
containing no aTc or VAI showed no enhancement of fluorescence, while the positive
control wells with the 10x VAI extract exhibited fluorescence. The experiments la-
beled BL21-LuxITet include senders where the pLuxI-Tet-8 plasmid was transformed
into BL21-PRO cells, while the experiments labeled DH5a-LuxITet include senders
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Figure 5-9: Controlling the sender’s signal strength: maximum response of receivers
to different aTc induction of senders. The 10X VAI positive control column shows
the results of introducing the VAI extract into the wells. The rest of the columns
illustrate the response of the receivers from induction of the senders with various
levels of aTec.

where the pLuxI-Tet-8 plasmid was transformed into E. coli DH5c cells.! In wells
containing sender cells induced with aTc at levels below about 20ng/ml, the receiver
cells exhibit only only a small fluorescent response. In wells induced with aTc levels
above 200ng/ml, the receiver cells exhibit a significant response. Sufficiently high

levels of aTc inhibited cell growth.

5.2.4 Visual Observation of Communications

Finally, this section describes three visual observation experiments of cell-to-cell com-
munications in order to understand the diffusion and reaction characteristics. First,
pINV-112-R3 and pSND-1 were transformed into E. coli JM2.300 cells to create sender
cells. With IPTG induction, these sender cells emit cyan fluorescence that serves as an
easily identifiable marker due to the ECFP encoded downstream of p(lac) on pINV-
112-R3. In addition, the pSND-1 plasmid directs the cells to constitutively express

In BL21-PRO cells, TetR (needed for controlled induction of the Tet promoter) exists on a
plasmid, while in DH5« TetR is part of the chromosomal DNA.
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luxI, resulting in constant transmission of the message.

Second, pRCV-3 and pPROLar.A122 were transformed into E. coli JM2.300 cells
to create receiver cells. The pRCV-3 plasmid instructs the cell to express GFP(LVA)
when VAI enters the cytoplasm. The pPROLar.A122 plasmid confers Kanamycin
resistance to the cell. Therefore, these sender and receiver cells have both Kanamycin
and Ampicillin resistance.

The experiments reported here used a Nikon Eclipse E800 fluorescence microscope
equipped with a Hamamatsu C4742 ORCA I CCD camera controlled by QED Imaging
software. The cyan fluorescence filter is Chroma Cyan GFP (excitation: 436,20,
emission: 480/40), the green fluorescence filter is a Chroma FITC/EGFP (excitation:
480/40, emission: 535/50), and the yellow fluorescence filter is a Chroma Yellow GFP
(excitation: 500/20, emission: 535/30).

In the first visual observation experiment, sender and receiver cells were grown
separately overnight @37°C, shaking at 250 RPM, each in 2ml LB Amp/Kan 1mM
IPTG inside 14ml Falcon Polystyrene tubes (352051). Then, the JM2.300[pSND-
1/pINV-112-R3] cells were pelleted at 6800 RPM, and resuspended in fresh 50ul LB
Amp/Kan 1mM IPTG. The JM2.300[pRCV-3/pPROLar.A122] cells were pelleted at
6800 RPM, and resuspended in fresh 4001 LB Amp/Kan 1mM IPTG. 10ul droplets
of receiver cells were spotted on an LB Amp/Kan 1mM IPTG agar plate, and dried for
ten minutes. Then, 0.2ul droplets of sender cells were spotted next to the receivers
such that the senders partially overlapped the receiver cells. A quick check under
the microscope showed that the sender cells were emitting cyan fluorescence, while
the receivers exhibited no fluorescence. The plate was then incubated for one hour
@37°C.

Figure 5-10 shows the fluorescence pattern of a sender droplet partially overlapping
a receiver droplet after the incubation period. The images were captured with a Plan
Fluor 4X objective, using the cyan and yellow filters?. The physical width of each

image is approximately 1.7mm. The senders were still emitting cyan fluorescence,

2The yellow filter is better than the green filter for distinguishing between cyan fluorescence and
green fluorescence
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Senders (cyan filter) Receivers (yellow filter)

Overlay of images

Figure 5-10: Microscope fluorescence images of overlapping communicating cells (4X
objective).

while the receiver cells were emitting green fluorescence due to the VAI that diffused
from the senders. The interesting patterns resulted from liquid diffusion and mixing.

Figure 5-11 shows fluorescence images of the same communication experiment un-
der a higher magnification (40X objective). Each picture represents a montage of three
overlapping image captures, with a total physical width of approximately 0.27mm.
At this degree of magnification, some individual bacterial cells can be distinguished.

The second visual observation experiment captured a time-lapse series of images
that illustrate the dynamic behavior of the communications (Figure 5-12). Sender and
receiver cells were grown separately overnight @37°C, shaking at 250 RPM, in 2ml LB
Amp/Kan cultures inside 14ml Falcon Polystyrene tubes, pelleted, and resuspended
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Overlay of images

Figure 5-11: Zoomed microscope fluorescence image of overlapping communicating
cells (40X objective).

in 100yl fresh LB Amp/Kan. Two 7.0ul droplets of receiver cells were spotted on an
LB Amp/Kan 1mM IPTG agar plate, and a 7.0ul droplet of sender cells was spotted
near the two receiver droplet. For this experiment, the plate was incubated at room
temperature under the microscope using a Plan Flour 1X objective. The physical
width of each image is approximately 7mm.

First, a brightfield image was captured to record the location of the droplets.
Then, a series of fluorescence images were captured at one minute intervals using the
green filter. The cyan semi-circle in each fluorescence image is an artificial marker of
the location of the sender droplet, superimposed based on the brightfield image.

The first fluorescence image was captured ten minutes after spotting the droplets.
It shows that the receiver cells closest to the senders have already started responding
to the VAI message. The two subsequent images display an increase in fluorescence

intensity due to the diffusion and accumulation of VAI. Based on the fluorescence
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10 minutes 45 minutes 90 minutes

Figure 5-12: Time-series fluorescence images showing the response of receivers to
communication from nearby senders on a plate.

40 minutes 5:00 hours 7:30 hours

Figure 5-13: Time-series fluorescence images illustrating the response of smaller
colonies of receivers to communication from nearby senders on a plate.

response, VAI appears to diffuse at approximately 1cm per hour through the agar.
The third visual observation experiment captured a time-lapse series of images
with smaller colonies of receivers and a smaller droplet of servers (Figure 5-13). Sender
cells were grown overnight @37°C, shaking at 250 RPM, in 2ml LB Amp/Kan inside
14ml Falcon Polystyrene tubes. Receiver cells were picked from —80°C cell stock
into 1000l LB Amp/Kan medium, then 20ul were plated on LB Amp/Kan, and
incubated @37°C for 7 hours. Then, 0.3ul of sender cell were spotted, and bright-
field and fluorescence images were captured as above. The three images show the

communication gradient over time across the different receiver colonies.
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| Species | Relation to host | Regulate | I Gene | R Gene |

Vibrio fischeri marine symbiont | Bioluminescence luxl luzR

Vibrio harveyi marine symbiont | Bioluminescence luel, M | luzN,P,Q

Pseudomonas aeruginosa human pathogen | virulence factors lasl lasR
Rhamnolipids rhll rhiR

Yersinia enterocolitica human pathogen | ? yenl yenR
Violaceum production

Chromobacterium violaceum | human pathogen | Hemolysin cvil cviR
Exoprotease

Enterobacter agglomerans human pathogen | ? eagl ?

Agrobacterium tumefaciens plant pathogen Ti plasmid conjugation | tral traR

L virulence factors

Erwinia caratovora plant pathogen Carbapenem expl erpR

FErwinia stewartii plant pathogen Extracellular capsule esal esaR

Rhizobium leguminosarum plant symbiont Rhizome interactions rhil rhiR

Pseudomonas aureofaciens plant beneficial Phenazine production phzl phzR

Table 5.1: Signaling Systems Similar to VAI: N-acyl-L-Homoserine Lactone Autoin-
ducers in Bacteria.

5.3 Similar Signaling Systems

This chapter describes work that successfully isolates an important intercellular com-
munication mechanism from a naturally occurring bacterial system, analyzes its com-
ponents, and engineers its interfaces with standard genetic control and reporter mech-
anisms. While the work reported in this chapter captures one such communication
mechanism, realistic genetically controlled developmental systems will require per-
haps dozens of such signals. The Lasl/LasR system from Pseudomonas aeruginosa
[16], for example, appears to encode a similar regulatory system, but one that uses
a different, and non-cross reacting autoinducer, and a different structure homologous
to the lux box. Table 5.1 lists additional signaling systems similar to VAI that could
serve as potential communication signals[81]. Isolation and characterization of such
additional communication mechanisms will allow the construction of more complex

multicellular systems.
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Chapter 6

The Microbial Colony Language

The discussion so far has focused on realizing in-vivo digital-logic circuits and im-
plementing rudimentary cell-to-cell communications. The digital abstraction reduces
noise in computation and simplifies programming constructs for individual cells, while
the diffusion-based communications serves as a foundation for coordinated behavior.
However, in attempting to achieve complex and reliable coordinated behavior, one
must consider the characteristics of the execution environment and its constraints.
Most importantly, individual cells have limited computational capacity and frequently
fail. In addition, cells continuously migrate, their interconnect topology is constantly
in flux, messages between cells are frequently lost, and their program execution rates
may differ due to fluctuations in kinetic rates.

Still, by programming large aggregates of cells that execute in parallel and co-
ordinating their actions through intercellular communication, complex tasks can be
accomplished. The goal of the Amorphous Computing project [2] is to develop novel
paradigms for programming such substrates.

This section defines the microbial colony language (MCL), a simple computing
paradigm for programming cell aggregates. MCL is simple enough for implementation
in cells, yet expressive enough for interesting applications. The main features of this
paradigm include unreliable computing elements, asynchronous execution, unreliable
broadcast-based messaging with a small communications radius, and a simple event-

driven rule-based programming language. This section also describes the Microbial
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Colony Simulator (MCS), a software tool for this verifying the behavior of programs
written in this language.

The language exposes programming mechanisms that cells can perform reliably,
although the user cannot rely on the execution of any individual cell. The program for
a single cell comprises event-triggered rules, Boolean state, Boolean operations, and
limited range chemical diffusion for communication. The simplicity of language will
likely enable programs written in MCL to be executed in cells, by using asynchronous
in vivo digital circuits and cell-to-cell communications. I have implemented MCS, a
language-level simulator that models cell aggregates executing microbial programs.
Simulations show that these programs can produce large-scale pattern generation and
coordinated group behavior.

Section 6.1 defines the syntax and semantics of the language. Section 6.2 describes
the simulator and the pattern-forming behavior of example programs. Finally, Sec-

tion 6.3 discusses the feasibility of implementing MCL programs in cell aggregates.

6.1 The Language

The execution model of MCL fits the substrate of biological cells. First, the model
only allows the use of asynchronous logic due to continuous variations in kinetic rates
of gates. Second, because of the dynamically changing interconnect, only broadcasts
can be used for intercellular communication. The core of the language consists of
messages between elements, Boolean markers stored in elements, and rules for taking

action by the elements.

Rules

An MCL program comprises a set of event-driven rules. The general pattern for a

rule is:

(event

boolean-expression-of-markers
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(action_1 ... action_m))

The meaning of the above pattern is:

if the Boolean expression of markers holds when the event takes place,

perform the actions in any order

Events

An event can be an incoming message or marker decay. Rules are triggered by events
and satisfaction of Boolean expressions of markers. If a single action enables multiple
rules, then the activation order of the rules is unspecified. Importantly, the activation
of rule r; resulting from event x could inhibit the activation of another rule ry from

event x if r; unsets a marker required by rs.

Messages

Messages between cells propagate by diffusion and decay after some time. The mes-
sage tag and the arguments uniquely identify a message. The diffusion of a message
is controlled by the hop-count (counting down). An element will react to an incoming
message if either the element has not yet received the message, or the message has
a higher hop-count than the same previous incoming messages to this element. A
message may also decay after a given lifetime, and thus the element may react to the
same message again in the future. If not specified, hop counts default to one, while

lifetimes default to infinity. The general pattern for a send message action is:
(send msg-tag [(diffuse hop-count)] [(decay lifetime)])

Messages are matched in a rule as follows:

foo :  message indicated by foo arrived

(foo . args) : message that arrived contains arguments
(msg (diffuse =0)) : message arrived with hopcount = 0
(msg (diffuse > 0)) : message arrived with hopcount > 0

*

no event needed to trigger this rule
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Markers

The general pattern for setting and unsetting a marker:

(set marker [(decay lifetime)]) : set the marker, optionally to decay after some time
(unset marker) : unset the marker, also causing a marker decay event

(if marker previously set)

A marker may decay with a particular lifetime. The decay event is matched in a

rule as follows:

(bar (decay =0)) : bar’s lifetime has fallen to 0, or has been

unset (at which point bar is no longer present)

6.2 MCS: Language-Level Simulator

For desiging, simulating, and experimenting with coordinated cell behavior, one needs
to examine the predicted behavior of programs in large cell aggregates. BioSPICE
(Chapter 3) cannot simulate large aggregates because the computation resources re-
quired are too great. I therefore implemented the Microbial Colony Simulator (MCS)
on top of hlsim[3] and Coore’s event-driven layer[14]. An MCL program, consist-
ing of a set of asynchronous rules, is translated into an hlsim amorphous computing
event-driven simulation. Because MCS simulates at a higher level than BioSPICE, it
is appropriate for simulating cell aggregates with up to approximately ten thousand
cells.

Figure 6-1 shows a simple MCL program that creates alternating segments of
differentiated cells. The program consists of a set of independent asynchronously
executing rules. Initially, a contiguous band of cells is distinguished as Tube cells,
and a few cells at one of the ends of the band are classified as Crest cells. The start
message directs Crest cells to send a message to neighboring cells. This triggers
a chain reaction of message transmissions and setting values of Boolean variables,
ultimately resulting in the pattern of cells such as the one shown in Figure 6-2. The

left-most image depicts the initial conditions, where orange circles represent Tube
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(start
Crest
((send (make-seg C 1) 3)))

( (make-seg seg-type seg-index)
(and Tube (not C) (not D))
((set seg-type)

(set seg-index)
(send created 3)))

(created } message
(or C D) }condition

[((set Waiting 10))]) ractions

(*
(and Bottom C 1 (Waiting (= 0)))
((send (make-seg D 1) 3)))

(*
(and Bottom D 1 (Waiting (= 0)))
((send (make-seg C 2) 3)))

(((make-seg) (= 0))
Tube
((set Bottom))) (*

(and Bottom C 2 (Waiting (= 0)))

(((make-seg) (> 0)) ((send (make-seg D 2) 3)))

Tube

((unset Bottom))) (*
(and Bottom D 2 (Waiting (= 0)))
((send (make-seg C 3) 3)))

Figure 6-1: An MCL program for creating segments: The program consists of a set
of independently executing rules.

cells and green circles represent Crest cells. At the end of the simulation, red circles
represent C segment cells and blue circles represent D segment cells.

Programs written in MCL can achieve more complex behavior and differentia-
tion patterns. Figure 6-3 shows a series of simulation snapshots for another MCL
program that generates large-scale patterns. As above, each circle represents a cell,
and the shading of the circle represents the particular state of the element. The pat-
tern shown here is a caricature of cell differentiation during embryogenesis to form
somites along the neural tube. Somites are paired wedge-shaped segmentations in the
paraxial mesoderm on either side of the notochord. The somites contribute to the

differentiation of musculature regions, limbs, and the axial skeleton.

6.3 Implementing MCL Programs in Cells

The programming elements of MCL conveniently map to biochemical reactions dis-

cussed in previous chapters. DNA binding proteins and RS latches. can implement
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Figure 6-2: Segment formation: Time-series simulation snapshots of an MCL program
execution resulting in cells that differentiate into an alternating pattern of C and D
type segments.

Figure 6-3: MCL pattern generation: Time-series simulation snapshots of pattern
generation using another simple program written in MCL. The pattern formation is
a caricature of somitegenesis, starting from the notochord and mesoderm (left-most
image), and ending with three somites (right-most image).
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Boolean state variables. Engineered genetic regulatory networks, such as the ones
describes in Chapter 4, can implement logic statements. The diffusion-based com-
munications can be implemented using enzymes such as luxl, intercellular signaling
chemicals such as VAI, and DNA binding proteins such as luxR, as described in Chap-
ter 5. Finally, controlled decay of markers can be achieved with amino acid tails that
determine protein half-lives. With these mappings, a bio-compiler will translate small
programs written in MCL into engineered genetic regulatory networks that implement

the programs.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis lays the foundation of an engineering discipline for obtaining complex,
predictable, and reliable cell behaviors by embedding biochemical logic circuits and
programmed intercellular communications into cells. To accomplish this goal, this
thesis provides a well-characterized cellular gate library, a biocircuit design method-
ology, intercellular communications for programming cell aggregates, and software
design tools. The cellular gate library includes biochemical gates that implement the
NOT, IMPLIES, and AND logic functions in E. coli cells.

This thesis introduces a biocircuit design methodology that comprises a mecha-
nism for measuring the device physics of gates and criteria for evaluating, modifying,
and matching gates based on their steady state behavior. By using the abstraction
of logic circuits, complex and reliable behavior is synthesized from reliable, well-
characterized components with matching input/output characteristics. An important
element in biocircuit design is genetic process engineering, a methodology for mutating
the DNA encoding of existing genetic elements to achieve the desired input/output
behavior for constructing reliable circuits of significant complexity. The optimized
components I synthesized with this process exhibit the desired signal restoration and
noise margins for reliable digital computation. I demonstrated the feasibility of digital

computation in cells by building several operational in-vivo digital logic circuits, each
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composed of three gates that have been optimized by genetic process engineering.

Because of the limits to single cell circuit complexity, and to demonstrate coordi-
nated behavior in cell aggregates, I also engineered intercellular communications. The
mechanism relies on programmed enzymatic activity and chemical diffusions to carry
messages, using DNA from the Vibrio fischeri luz operon. I built and characterized
several circuits that integrate intracellular logic with luz operon-based intercellular
communications.

In addition to the above experimental contributions, I developed BioSPICE, a
prototype software tool for biocircuit design. BioSPICE simulates in-vivo logic cir-
cuits using ordinary differential equations that model biochemical rate equations. The
kinetics for the rate constants were derived from the literature and yield simulation
results that predict the behavior of engineered biocircuits. BioSPICE simulations of
modified rate constants illustrate the effects on the static and dynamic behavior of the
circuits, and serve as motivation for genetically modifying components in laboratory
experiments. Finally, this thesis presents the Microbial Colony Language (MCL), a
simple model for programming cell aggregates. This model is powerful enough for
programming cell aggregates to form interesting patterns, but is simple enough so

that the language primitives can be mapped to the genetic reactions described above.

7.2 Future Work

The section discusses future work relevant to the above components of my thesis and

other research directions.

The cellular gate library

The cellular gate library described in this thesis uses genetic elements of the Bac-
teriophage A cl repressor, lactose operon, tetracycline repressor, and lux operon. I
chose these elements because they have been studied extensively in the literature and
are readily available for cloning. In the future, the construction of more elaborate

biocircuits will require the assembly of a larger component library.
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There are two main sources for candidate genetic elements for the component
library. The first is naturally occurring dna-binding proteins, which number in the
thousands[51]. Only a handful of these elements have been studied extensively and
are readily available from either commercial or academic sources. Therefore, a major
effort will be isolating these genetic cadidates from their various organisms. In addi-
tion to finding natural sources, a second, potentially more efficient source for genetic
candidates, is to synthesize artificial dna-binding proteins for use as signals. For ex-
ample, combinatorial chemistry techniques, along with methods such as phage display,
can yield large libraries of novel DNA binding proteins and corresponding operators.
One potential source of a very large set of non-interacting signals is engineered Zinc
Finger DNA binding proteins[37].

Future component libraries will also include elements that perform other digital
logic functions (for example, OR, NAND, XOR), and gates implementing analog behav-
ior. Electrical circuits can provide inspiration for implementing many types of logic
components. However, it is also important to examine existing genetic regulatory sys-
tems to find biologically inspired computational elements that can be implemented
reliably and efficiently in cells. For example, in cases where multiple transcription
factors determine the activation of genes, it may be efficient to implement discrete

logic components that have more than two logic states.

Genetic process engineering

As we move towards component libraries with genetic elements from a large variety of
organisms and with widely different kinetic characteristics, genetic process engineering
will become essential to synthesizing elements with standard interfaces and matching
characteristics. It will be important to streamline and automate genetic process
engineering in order to make it high-throughput. A major emphasis will focus on how
to efficiently choose, synthesize, and test the genetic modifications. The biocircuit
engineer may choose mutations based on existing knowledge, such as ribosome binding
sites with known efficiencies or operator/protein mutations that affect DNA binding.

Alternatively, the engineer may generate large scale libraries of mutant circuits and
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screen for ones that have the desired behavior.

Constructing n-vivo logic circuits

While in theory the computing abstraction and implementation presented in this
thesis allows the construction of biocircuits of any complexity, metabolic constraints
are likely to limit the size of circuits in single bacterial cells to less than one thousand
gates. We are still far from constructing circuits of such magnitude, although advances
in cloning techniques, oligonucleotide synthesis, custom gene synthesis, and improved
chromosomal integration techniques will make it possible to efficiently construct such

large circuits in the foreseeable future.

Software design tools

For designing circuits with high complexity, an important requirement will be im-
proved modeling and behavioral prediction techniques. There are two important as-
pects that will improve the utility of BioSPICE. First, the experimental data should
be incorporated back into the database of kinetic constants. To achieve this requires
normalizing fluorescence intensity data with actual protein concentrations in the given
organisms. It also requires a mechanism for converting the transfer curve experimen-
tal results into kinetic constants that constitute the logical computation process. The
second effort that will improve BioSPICE is to model the stochastic behavior of these
synthetic biochemical systems and experimentally verify the predictions by observing

the fluctuations exhibited by cell populations.

Intercellular communications

There are signalling mechanisms similar to the Vibrio fischeri luz operon that could
serve as potential communication signals[81]. Isolation and characterization of addi-
tional diffusion-based communication mechanisms will facilitate the construction of
more complex multicellular systems. Nature also provides other types of communica-

tion mechanisms, for example ones that involve specific cell-surface receptors. Such
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mechanisms enable targetted intercellular communication where only pre-determined

cell types are able to receive certain messages.

Other research directions

As discussed above, important research directions include large scale biocircuit mod-
eling, design, synthesis, and testing. However, to make this technology useful for
a broad range of applications will also require other research efforts. For example,
an important direction is to implement these biocircuits in other organisms, such as
the more complex eukaryotic cells (yeast, plants, mammalian cells), and the simpler
mycoplasmas. Another exciting opportunity is to integrate synthetic biocircuits with
existing cellular functions, both for observational purposes and for precise control
of the production of certain proteins. Finally, there are many interesting challenges
and opportunities in programming cell aggregates, where biocircuits can be used for
a variety of applications such as programmed tissue engineering or directing cellular
robots to assemble molecular scale structures. At this stage, we have only begun
to explore the potential of engineering precise, reliable, and complex predetermined
behavior into cells and cell aggregates, which can ultimately provide significant ben-
efits to fields such as biomedicine, agriculture, biological research, and biomaterials

manufacturing.
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Appendix A

Transfer Curve Experiments

A.1 Plasmid Construction

plasmid parent #1 parent #2 description of construct

pINV-4 pPROLar.A122 | pGFP(LVA) Insert p(lac):GFP(LVA) into pl5A ori plasmid
pINV-5 pINV-4 pTrcHisA Insert p(laclq):lacl

pINV-101 pINV-5 pPW121 Insert RBS-II:cI downstream of p(lac)
pINV-102 pINV-5 pEYFP Replace GFP(LVA) with EYFP

pINV-106 pINV-102 pBR322 Insert p(lac):EYFP into pBR322 backbone
pINV-107 pINV-106 pPW121 Replace p(lac) with Ap(r—o12)
pINV-107-mut4 || pINV-107 n/a 1bp mutation of Ap(r—012)
pINV-107-mut5 || pINV-107 n/a 2bp mutation of Ap(r_012)
pINV-107-mut6 || pINV-107 n/a 3bp mutation of Ap(r_o12)

pINV-110 pINV-101 pECFP Replace GFP(LVA) with ECFP
pINV-112-R1 pINV-110 n/a Replace RBSII with RBS-D

pINV-112-R2 pINV-110 n/a Replace RBSII with RBS-G

pINV-112-R3 pINV-110 n/a Replace RBSII with RBS-H

pINV-202 pINV-102 pPROTet.E132 | Replace p(laclq) with P(LtetO-1)
pINV-203 pINV-107 pcDNAG6/TR Replace EYFP with tetR

pINV-206 pINV-202 pECFP Add ECFP after lacl

Table A.1: Overview of the construction of the transfer curve plasmids.

Table A.1 provides an overview of the plasmids constructed for the transfer curve

experiments. Figures A-1, A-2, and A-3 illustrate the lineage of the plasmids and

their major features. These plasmids were constructed using basic molecular cloning

techniques described in standard molecular biology laboratory manuals[7, 70]. Ta-

ble A.2 lists the oligonucleotides and restriction enzymes used to construct these
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plasmids. Entries with PCR primers indicate the use of GibcoBRL PCR Supermix
High Fidelity to PCR amplify a parent plasmid with overhanging ends that contain
the appropriate restriction sites. Otherwise, the plasmids were purified from trans-
formed FE. coli DH5« cells and digested with the appropriate enzymes. Restriction
enzymes were purchased from New England Biolabs. Synthetic oligonucleotides were
synthesized on an Applied Biosystems 394 DNA/RNA Synthesizer, purchased from
MIT’s biopolymer Laboratory, and purchased from Oligos Etc. All cloning work was
performed with heat shock transformation using Max Efficiency DH5a Competent
Cell from GibcoBRL.

Source plasmids were obtained as follows: pECFP, pEYFP, pGFP(LVA), pPRO-
Lar.A122, and pPROTet.E132 from Clontech, pBR322 and pPW121 from ATCC, and
pcDNAG6/TR and pTrcHisA from Invitrogen. DNA sequencing to verify the plasmids
was done with the Applied Biosystems Prism 310 Genetic Analyzer.
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-35 region

-10 region

- pTrcHisA
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Kan(r)
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CAP bs
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-35 region
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T1Term GFP(LVA) RBS
lacZ-dGFP fusion start
Kan(r)
TO Term -10 region C
P(aci ECFP
pINV-101 3(5 & P
-35 region
4944 bp y
CAP bs
p15A ori P(LAC) Kan(r)
-35 region
-10 region

T1Term Resil

TO Term -10 region

GFP(LVA) RBSII P(laclq)

pINV-110
4887 bp
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P15A ori
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RBSII
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Figure A-1: Features and lineage of the transfer curve plasmids I.
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PEYFP pINV-5
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Figure A-2: Features and lineage of the transfer curve plasmids II.
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pPROTet.E132 PINV-102

pINV-107 pcDNA6/TR

RBSII /

cl OR2
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Figure A-3: Features and lineage of the transfer curve plasmids III.
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| plasmid parent | digest | pcr primers
AACGCTCGAGTAGAGGCATCAAATAAAACG
NV PPROLar.A122 Nhel/Xhol ATCGGCTAGCTTCATAGGTGATTGCTCAGG
PINV- ACTGGCTAGCACGACAGGTTTCCCGACTGG
PGFP(LVA) Nhel/Xhol ACTGCTCGAGACGGCCGACTAGTAGGTCAGC
) ATGACTGCTAGCTCTAGATTACGTTGACACCATCGAATGG
pTrcHisA Aatll/Nhel ATGCGACGTCATTGCGTTGCGCTCACTGCC
pINV-5
pINV-4 AatIl/Nhel none
ATCATCGGTACCTAGAATTAAAGAGG
PINV-5 Acc65l TCAATCGGTACCCCTGTGTGAAATTGTTATCC
pINV-101 S, o ATGATGGGTACCAATTGTTATCAGCTATGCAC
p ce AGAAGAGGTACCAATTAAAGAGGAGAAATTAAGCATGAGCACAAAAAAGAAACC
S—— f— AGTAGGGAATTCAATTAAAGAGGAGAAATTAAGCATGGTGAGCAAGGGCGAGGAG
p co ATCTCATCAGTTGGAATTCTAGAGTCG
pINV-102 — - ATACCTGAATICTTAGCTGACCTACTAGICGG
PINV- co TCAATCGGTACCCCTGTGTGAAATTGTTATCC
TACCTAGACGTCACCATTCGATGGTGTCAACG
PINV-102 Aatll/Bsal AGGTTAGGTCTCACCGAATCAGCTAAGAATTCTAGAGTCG
pINV-106
pBR322 AatIl/Aval none
AGTCTACCTAGGAATTCAATTAAAGAGGAG
PINV-106 Avrll ATCAGACCTAGGAACCTGTCGTGCTAGCTCTAG
PINV-107 — Boal ATGGATGGTCTCACTAGTAAATATCTAACACCGTGCC
p sa AGTTACGGTCTCACTAGGACATGCAACCATTATCACCG
TCATCGACCTGCATCGTTACATCTGGCGGTGATAATGGTTGCATG
PINV-107-mut4 | pINV-107 BspMI ACGTAGACCTGCAGAGGTAAAATAGTCAACACGCAC
TCATCGACCTGCATCGTTACATATGGCGGTGATAATGGTTIGCATG
PINV-107-mut5 | pINV-107 BspMI ACGTAGACCTGCAGAGGTAAAATAGTCAACACGCAC
TCATCGACCTGCATCGTTACAGATGGCGGTGATAATGGTTGCATG
PINV-107-mut6 | pINV-107 BspMI ACGTAGACCTGCAGAGGTAAAATAGTCAACACGCAC
INV-101 Baal AGGTATGGTCTCATCGGCCGTCTCGAGTAGAGGC
PLRV- sa ATCAGTGGTCTCAGCAATTCTAGGTACCAATTGTTATC
pINV-110 S— aal ATGATCGGTCICATTGCTTAAAGAGGAGAAATTAAGCATGGTGAGCAAGGGCGAGGAGCTG
p sa ATCACTGGTCTCACCGATTACTTGTACAGCTCGTCC
ACTGATGTCGACTCACACAGGAAACCGGTTCGATGAGCACAAAAAAGAAACC
PINV-112-R1 PINV-110 Sall ATCTACGTCGACAATTGTTATCCGCTCACAATTCC
ACTGATGTCGACTCACACAGGAAAGGCCTCGATGAGCACAAAAAAGAAACC
PINV-112-R2 PINV-110 Sall ATCTACGTCGACAATTGTTATCCGCTCACAATTCC
ACTGATGTCGACTCACACAGGACGGCCGGATGAGCACAAAAAAGAAACC
PINV-112-R3 PINV-110 Sall ATCTACGTCGACAATTGTTATCCGCTCACAATTCC
ACTTCAGGTCICTACCATAGGCGTATCACGAGGCCCTTTC
PPROTet.E132 Bsal TCTATCGGTCTCATTGCTGAATTCGGTCAGTGCGTCCTG
PINV-202 NV-102 ol AGGTTAGGTCTCATGGTGTCAACGTAATCTAGAG
PINV- sa ATCAGTGGTCTCAGCAAAGAGGAGAAATTAAGCGTGAAACCAGTAACGTTATACG
ACTGATACCTGCTACGATGTCTAGATTAGATAAAAGTAAAG
pcDNAG/TR BspMI ATCTGAACCTGCACGATTAAGACCCACTTTCACATTTAAGTTG
PINV-203 NV-107 - ACAGTAACCTGCTGACTTAATTCTTAGCTGATTCGGGCAG
PINV- Sp TAGTGAACCTGCTAGTACATGCTTAATTTCTCCTCTTTAATTG
INV-202 Baal TCAGTAGGTCTCATGCTTGGCAATTCCGACGTCATIGC
LNV~ sa ATCTGAGGTCTCTACCTTCTGGTAAGGTTGGGAAGCC
PINV-206 p— Baal TGTTCAGGTCTCGAGCAAAGAGGAGAAATTAAGCATGGTGAGCAAGGGCGAGGAG
p sa TGAGCAGGTCTCTAGGTACAAGTTGGTAATGGTAGCGACC

Table A.2: Oligonucleotides and restriction enzymes used to construct the transfer

curve plasmids
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A.2 Strains, Growth, Conditions, Chemicals

The host cell for all transfer curve experiment was E. coli JM2.300 [A—, lacI22,
rpsL135 (StrR), thi-1] (CGSC strain 5002). This cell does not contain ¢l (A repres-
sor) or tetR and carries a non-functional Lac repressor (lacI22), and therefore the
cell’s existing genetic elements do not interfere with the operation of the transfer
curve circuits. The JM2.300 strain is also fast growing and capable of overexpressing
plasmid bound genes.

For the experiments, cells were grown in LB medium (DIFCO) with various in-
ducers and antibiotics (Sigma) in log phase between 9 and 12 hours @37°C with a
single 1000:1 dilution step into fresh medium, shaking at 250 RPM inside 14ml Falcon
Polystyrene tubes in a New Brunswick Scientific Innvoa 4230 refrigerated incubator
shaker. Depending on the plasmid’s antibiotic resistance, a combination of 100£%
Ampicilin and 5024 Kanamycin was used. Isopropylthio-3-galactoside (IPTG) and

Anhydrotetracycline (aTc) were used in various concentrations.

A.3 Gene Expression Assay

Gene expression data of fluorescence intensities were collected with a Becton-Dickinson
FACSVantage flow cytometer with an argon excitation laser. For detecting cyan fluo-
rescence, the laser excitation was set at 458nm with an emissions filter of 485/22nm.
For detecting yellow fluorescence, the laser excitation was set at 514nm with an emis-
sions filter of 575/26. Filters were obtained from Omege Optical.

In preparing the samples, after reaching optical density of 0.5 measured at 600nm,
cells were peletted at 6800 RPM for 1 minute, washed with 0.22um filtered PBS,
peletted again, and resuspended in PBS. For each culture, 50,000 events were col-
lected. WinMDI software (J. Trotter, The Scripps Research Institute, available at
http://facs.scripps.edu/software.html) was used to analyze the data. The
flow cytometry files were also analyzed with Matlab after conversion into ASCII
format using MFI (E. Martz, University of Massachusetts, Ambherst, available at

http://marlin.bio.umass.edu/mcbfacs/flowcat.html#mfi).
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Appendix B

Communications Plasmids

In order to experiment with intercellular communications, I constructed a series of
plasmids, and then transformed them into E. coli cells. The plasmids can be roughly
categorized into three groups: preliminary plasmids (Section B.1), plasmids that
enable cells to transmit the message by catalyzing the formation of autoinducer (Sec-
tion B.3), and plasmids that enable cells to respond to the message through the use of
the appropriate region of the lux operon (Section B.2). Table B.1 gives an overview

of the plasmids used for these experiments.

B.1 Preliminary Plasmids

Initially, we constructed a series of plasmids (Figure B-1) that could serve as tem-
plates for cloning the final sender and receiver plasmids. The first plasmid, pRW7-1,
combines the backbone of the general purpose high copy number plasmid pUC19 with
GFP(LVA) from Clontech pGFP(LVA). Both pUC19 and pGFP(LVA) were digested
with Spel and Xmal, and the GFP(LVA) CDS and its associated synthetic ribosome
binding site (RBSII) were cloned into pUC19. GFP(LVA) is a variant of the green
fluorescent protein with a destabilizing tail (amino acids RPAANDENYLVA) that
results in a protein half life of approximately 40 minutes.

Next, to produce pRW7-2, a transcription termination region (rrnB T1) based on
a sequence from pKK232-8 [61] was cloned into pRW7-1 using two oligonucleotides.
The oligos were annealed by incubating @97°C for 10 minutes, then incubating @65°C
for 15 minutes, incubating @24°C for 15 minutes, and finally storing @4°C, to produce
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plasmid parent #1 parent #2 description of construct

pRWT-1 pUC19 pGFP(LVA) Insert GFP(LVA) into pUC19 backbone
pRWT-2 pRWT7-1 Insert rrnB T1 before GFP(LVA)
pRW7-3 pRW7-3 Insert rrnB T1 after GFP(LVA)

pRWT7-4 pRWT7-3 Insert p(LAC-const) before GFP(LVA)
pRW-LPR-2 || pPRW7-3 pPW121 Replace p(LAC-const) with Ap(g)
pRCV-3 pRWT-3 pTK-1 Insert luxR:P(L):P(R) before GFP(LVA)
pRCV-4 pRWT-3 pTK-1 Insert luxR:P(L):P(R):luxI before GFP(LVA)
pTK-1 Vibrio fischeri | n/a Insert lux operon into pUC19 backbone
pLux19-S1 pTK-1 pUC19 Insert luxI after p(lac)

pLuxI-Tet-8 || pTK-1 pPROTet.E132 | Insert luxI after P(Ltet-O1)

pSND-1 pTK-1 pRWT7-4 Insert luxI after p(LAC-const)

Table B.1: Plasmids for cell-to-cell communications.

the following double stranded segment with overhangs that match an AatIl and Xmal
digest:

TGONTGOGCCCTTAAGGGTCCGTAGTITATITTGCTTTCCOAGTCAGCTTTCTOACCCGOAMAG CAMATAGACMCAMCAGCCACTTGCGAGAGTGGCCAGGCC
The annealed oligos were then ligated into pRW7-2 digested with Aatll and Xmal.
The plasmid pRW7-3, which includes the same transcription termination region but
on the 5’ end of GFP(LVA), was constructed in a similar fashion. The oligos used have
HindIIT and Xbal overhangs, and were cloned into a pRW7-2 HindIII/Xbal digest.
The final preliminary plasmid pRW7-4 includes p(LAC-const), a new constitutive
synthetic promoter, in front of the GFP(LVA) CDS. We designed the constitutive
promoter p(LAC-const) based on the LAC promoter, as shown in Figure B-2. In
p(LAC-const), the lacO and CAP binding sites have been removed, and the -10 and
-35 regions have been modified to resemble the consensus -10 and -35 regions respec-
tively [50]. p(LAC-const) was introduced into pRW7-3 (digested with Agel/Acc65I)
using a pair of oligos with Agel and Acc65] overhangs that were annealed using the
same procedure as above. The plasmid pRW7-4 was transformed into E. coli DH5«
chemically competent cells. The construct consisting of p(LAC-cons) followed by

GFP(LVA) was verified by detecting the fluorescense of the cells (data not shown).
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pUC19 PGFP(LVA)

RBSII /

GFP(LVA)

mB T1 RBSII

GFP(LVA)

APr

\ PRWT-2

3108 bp

ColE1 ORI
mB T1 RBSII
GFP(LVA)
APr
mB T1
ColE1 ORI /p
mB T1 cl OR2
p(LAC-const) -10 region -35P(R)

mB T1

PELA) LAMBDA P(R)

-10 P(R)
RBSII
GFP(LVA)

APt GFP(LVA) APT

PRW7-4
3222 bp

pRW-LPR-2
3245 bp

mB T1 mB T1
P(LAC)

-10 region
-35 region

ColE1 ORI pUC ORI CAP bs

Figure B-1: Preliminary plasmids
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1 CAPbs 35

/—/%
p(LAC) (1) GCGCAACGCAATTAATGTGAGT TAGCT CACT CATTAGGCACCCCAGGCT TTACACTTTAT

P(LAG const) (1) ommmmmmmeo s COGGTTAGOGCTCTCATTAGGCACCCCAGGCT TGACACTTTAT
-10 lacO
61 Sy 112

[app— - ~
P(LAC)  (61) GCTTOOGGCTCGTATGTTGIGTGGAATTGTGAGCGGATAACAATTTCACACA
P(LAC const)  (44) GCTTCCGGCTOGTATAATGACTGCATTTATTGGTAG -« - - - - - ----

Figure B-2: Comparison of p(LAC) with p(LAC-const)

mB T1 )QA mB T1
. /LuxR

LuxR RBS

APr

LuxR RBS

lux P(L)

ux P(L) lux P(R)

lux P(R)

RBSHI ColE1 ORI

ColE1 ORI
GFP(LVA)

rmB T1 GFP(LVA)

Figure B-3: Receiver plasmids
B.2 Receivers

The receiver plasmid pRCV-3 was constructed using pRW7-3 as the plasmid backbone
and by inserting the luxR Py, P region from pTK1 upstream of GFP(LVA). We per-
formed a PCR reaction using forward primer 5’ (CATGGGTACCTCCGGAATAAAGCTT-
TACTTACGTAC)3’ and reverse primer 5’(CATGGGTACCGGCCGGTTTATTCGACTATAA-
CAAACC)3’, yielding the luxR Pp,Pg region with Acc65l cut sites at both tails. The
PCR product was then ligated into a pRW7-3 Acc651 digest, and the resulting colonies
were screened by restriction mapping and and partial plasmid sequencing to ensure
that the insert was in the correct orientaion.

The receiver plasmid pRCV-4 served as a control plasmid to verify the abil-
ity of the lux operon to exert positive control on the synthesis of GFP(LVA). The
luxR Py, PgluxI region from pTK1 was extracted with a PCR reaction using forward

primer 5’ (CATGGGTACCTCCGGAATAAAGCTTTACTTACGTAC)3’ and reverse primer
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lux P(L) transcription start

LuxR RBS

AP lux P(R) transcription sta

Vibrio

f' h 1 ColE1 ORI \ Luxi RBS
Ischeri \ 2L Luxi

LuxC RBS

pTK1
11334 bp

LuxC

Luro Res pPROTet.E132

LuxD

ORF-V

Terminator

pUC19 ——>

LuxG RBS

LuxA RBS

LuxE RBS LuxA

LuxB LuxB RBS
/ \ P(Ltet0-1)

Lux!
L —

Luxl

pLux19-S1

pLuxlI-Tet-8
3343 bp 2801 bp

Myc
EK Site
MCs

ColE1 ORI

ColE1l

Luxl

rmB T1

ColE1 ORI

Figure B-4: Sender plasmids

5’ (CCTTGGTACCGGCCGAACAACATTAATTTAAGACTGC)3 . As above, the PCR prod-
uct was then ligated into a pPRW7-3 Acc65I digest, and the resulting colonies were
screened by restriction mapping and partial plasmid sequencing to ensure that the

insert was in the correct orientaion.

B.3 Senders

We isolated individual components of the Vibrio fischer:i system for further use.
Plasmids described in this section are shown Figure B-4. The LuxI coding region
was cloned and placed under control of the Lac promoter of the pUC19 plasmid.
This was done by PCR of the pTK1 plasmid DNA using selected primers which in-

cluded non-matching 5" EcoRI cut sites. Specifically, we performed a PCR reaction
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using forward primer 5’ (AGG/AATTCGAATAAACGCAAGGGAG)3’ and reverse primer
5’ (CCGJAATTCCCTATAATATACTTAG)3’, yielding the full length LuxI coding sequence,
including the ribosomal binding site, but with paired, distal EcoRI cut sites. PCR
was performed using Life Technology High Fidelity PCR Supermix (25ul), 1ul of each
primer, and 1ul of 300ng/ul pTK1 plasmid DNA. The reaction was denatured 5
minutes @94°C, followed by 30 cycles of denaturing 30 seconds @94°C, annealing 30
seconds @50°C, and extension 1 minute @Q70°C. Reaction products were verified by
gel electrophoresis, and separated from primers using the Bio101 Geneclean spin pro-
tocol. The purified PCR product was digested with EcoRI, and ligated with prepared
pUC19 vector, which had been cut with EcoRI and dephosphorylated with Amersham
shrimp alkaline phosphatase.

The resulting ligation was transformed into E. coli DH5« and plated on LB AMP.
The transformed colonies exhibited two distinct morphologies, clear, small colonies
and opaque, large colonies. Six of each colony morphology were streaked, grown,
and minipreped. Restriction digests and gel eletrophoresis showed that the small
colonies contained the LuxI gene in the correct, expressing, orientation. One such
clone, pLuxI19-S1 was chosen for further study.

The same EcoRI digested LuxI PCR product was also similarly cloned into the
Clonetech pPROTET.E332 plasmid. This plasmid contains a Col-E1 ori, chlomam-
phenicol resistance gene, and a TetO controlled promoter. The TetO promoter is
inhibited by the TetR gene product, in the presence of the anitbiotic tetracycline.
The TetR gene is chromosomally carried in a special version of E. coli, which also
carries the spectinomycin resistance gene. As a first step, the ligation reaction was
transformed into subcloning efficiency DH5« cells, grown up in LB chloramphenicol
(50ug/ml). After verification of the correct insert, miniprep DNA was re-transformed
into the TetR containing strain, which was then grown in LB spectinomycin chloram-
phenicol broth.

The PROTet system allows controlled expression of the inserted gene using vary-
ing amounts of a non-growth-inhibitory version of tetracycline, anhydro-tetracycline

(aTc). In this way, we can control expression of the LuxI gene, and hence the level
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of VAI in these cells, through control over the aTc concentration.

The plasmid pSND-1 was constructed for constitutive expression of luxl, by re-
moving the GFP(LVA) CDS from pRW7-4 and replacing it with luxI from pTK1. A
PCR reaction using forward primer 5’(CATGGGTACCTCCGGAATAAAGCTTTACTTACG-
TAC)3’ and reverse primer 5'(CATGAAGCTTAACAACATTAATTTAAGACTGC)3’ yielded
the luxI coding sequence, including the ribosomal binding site. The PCR product was
then ligated with a pRW7-4 Acc651/HindIII digest, and transformed into chemically

competent DHba.
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