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ABSTRACT

Small failures should only disrupt a small part of a net-
work. One way to do this is by marking the surrounding
area as untrustworthy — circumscribing the failure. This
can be done with a distributed algorithm using hierarchical
clustering and neighbor relations, and the resulting circum-
scription is near-optimal for convex failures.
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1 Introduction

Given a failure in a network, | want to be able to determine
just how bad it is. One way of determining this is to cir-
cumscribe the failure region: mark a connected subset of
nodes in the network graph such that the failure is entirely
surrounded.

This is an important problem because it allows a dis-
tributed algorithm to contain the disruptions due to failure
of a region of the network. Many services may be unaf-
fected by a small failure, and should be able to continue
running as before, while those few affected enter a recov-
ery state. A large failure, on the other hand, may reasonably
force the entire network into recovery mode.

In this paper, | introduce a mechanism for creating
near-optimal circumscriptions based on neighbor relations
in a hierarchical clustering, as well as an distributed algo-
rithm implementing the hierarchical method.

2 Network Model

The network is a graph where nodes are machines and
edges are links between machines. Although applicable to
any network, the ideas presented herein were designed in
an amorphous computing model.[1] The particular model
used features a high-diameter network embedded in two-
dimensional space where nearby nodes are connected and
distant nodes are not (e.g. a large ad-hoc wireless network).

The method presented is therefor best tuned for that envi-
ronment.

No geometric information, coordinates, or time syn-
chronization is provided to machines in the network. Ma-
chines are, however, assumed to be partially synchronous:
they have clocks with a relative drift of |r| < ¢, yielding a
timing uncertainty L = }%: This assumption allows use
of the partially-synchronous perfect failure detector from
[9], which detects a failed neighbor in constant time.

Finally, I assume a perfect communication model:
messages on a link are delivered in order and without error
within a bounded time. This assumption is stronger than
necessary, but simplifies analysis greatly at the cost of little
generality.

3 Definitions

The failures considered here are stopping failures, in
which a machine simply ceases to function. A connected
failure is a connected set of machines which suffer simulta-
neous stopping failures. Machines neighboring this region
on the graph detect the failure via a perfect failure detector:
this set of machines is the border of the failure. The bor-
ders of several failures may intersect: in this case, the iden-
tities of the failures are necessarily blurred together. This is
an almost-connected failure — a collection of connected
failures such that the union of the failures and their borders
forms a connected set. All of these failures are lumped to-
gether under the name region failure.

A connected set of non-failing machines which con-
tains the border circumscribes a failure. If the border is
connected, then it circumscribes the failure. If the border
is disconnected, then more machines must be added in or-
der to connect its components and form a circumscription
— imagine a detour around a broken bridge. This detour
might arbitrarily long, if the failure occurs at an impor-
tant choke-point in the network. An optimal circumscrip-
tion is a circumscription such that no other circumscription
has a lower diameter. Note that if a failure partitions the
network, then no circumscription exists: this is unsurpris-



(b) Almost-Connected Failure

Figure 1. There are two types of region failures: connected
and almost-connected. Black nodes are failing machines
and grey nodes are machines in the border of a failure. The
left figure shows a region failure — a connected set of fail-
ing machines. The right figure shows an almost connected
failure: connected failures with intersecting borders.

(b) Disconnected Border

Figure 2. Circumscribing a failure (black nodes) can re-
quire an arbitrarily large set when the border is not con-
nected. If the border is connected (left) then the border
(grey nodes) is itself a circumscription. If the border is
not connected (right), then the graph topology may have
changed enough to force the addition of many other nodes
(light grey) to form a circumscription.



ing, since circumscription aids consistency and availabil-
ity, thereby degrading partition tolerance, as per Brewer’s
conjecture.[4][5]

The goal, then, is to find a circumscription c-
competitive with optimal for any region failure.

4  Circumscription Via Hierarchy

One more component is needed, an appropriate hierarchi-
cal clustering with neighbor relations. A hierarchical clus-
tering organizes the network into a tree topology: walking
up the tree proceeds from a leaf cluster containing a single
machine through exponentially larger clusters to the root
cluster, which contains every machine in the network. To
be an appropriate hierarchical clustering for my purposes,
there are four additional requirements:

o All root-to-leaf paths must be the same distance — i.e.
the clustering can be organized into “levels” with the
leaves at level zero and the root at level n.

e The hierarchy has O(lg diam) levels (this will usually
be guaranteed by the exponentially larger clusters)

e The distance between any two machines in an ith level
cluster is less than some maximum distance d; which
scales exponentially (i.e. d;/d;—1 = b forevery level).
The maximum distance for the root level should be
approximately equal to the diameter of the network.

e Every cluster maintains a set of neighbors — same-
level clusters nearby in the network, regardless of lo-
cation in the hierarchy. Two level 4 clusters are re-
quired to be neighbors if any two members are within
3d; hops of one another. The subset of neighbors
within d; are tight neighbors. The neighborhood of
a cluster is the union of the cluster and its neighbors.

Given a hierarchy of this type, there is a surprisingly
simple method of circumscribing a region failure. The
neighbor relationships offer approximations of the network
topology at progressively rougher levels of refinement —
at a high enough level, the description is rough enough that
the failure hardly changes it. This turns out to be a good
enough approximation of the underlying network to gener-
ate a near-optimal circumscription.

The procedure is simple: consider the “border clus-
ters” — clusters intersecting the failure or its border. If
every border cluster in layer 7 is still connected to all of
its neighbors (or else can prove that all neighbors discon-
nected from it are definitely dead), then the union of the
layer i border clusters and their neighbors circumscribes
the failure. If we select the lowest layer for which this is
true, then it is competitive with the optimum for convex
failures.

I will now proceed to prove these claims:
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(b) Level 2

(c) Leve 3

Figure 3. An example of an appropriate hierarchy: this
shows the middle three levels of a five-level hierarchy pro-
duced by the PNHIERARCHY algorithm [3] on 2000 parti-
cles. Each cluster is a different color, with thick black lines
showing the approximate boundaries.



First, some variables to work with:

e F'is a region failure that does not partition the net-
work.

e By is the border of failure

e (Cp; is a set of border clusters — level i clusters in-
tersecting F or the border of F'. If a cluster C'is split
by the failure such that it exceeds the maximum ra-
dius, then it is analyzed as a set of clusters C’ with the
same name and neighbor relationships.

e N(C) is the set of neighbor clusters of cluster C

The final preliminary is one more definition, prov-
ably dead, which asserts when it is safe to consider a clus-
ter completely destroyed:

Definition 1: Provably Dead Following a failure F', a set
of clusters D is provably dead if four conditions hold:

1. Every cluster in D is a tight neighbor of every other
cluster in D

2. Following thefailure, there is some connected compo-
nent which intersects every tight neighbor of D which
is not a member of D.

3. No tight neighbor of D is still a neighbor following
thefailure.

Essentially, these conditions say that a provably dead
region is one where every tight neighbor can verify with ev-
ery other tight neighbor that no connection with the region
exists any more. The first condition ensures that the diame-
ter of the neighbor-graph is small; the second requires that
the tight neighbors be able to communicate, and the third
states that the provably dead region must be in fact dead.

Theorem 2: Following a failure F', let ¢ be a level of hier-
archy in which, for every member of Cp;, all of its pre-
failure tight neighbors are either still neighbors or else
provably dead. Then the union of neighborhoods of border
clusters, Cg; U N(Cp;), contains a connected component
which circumscribes the failure F'.

Proof: See Appendix A.

A complementary relationship also holds, which is vi-
tal for producing a distributed algorithm implementing cir-
cumscription: if any component is missing a neighbor, then
all components are missing neighbors.

Corollary 3: Following a failure F, let ¢ be a level where
some member of Cg; is no longer related to a pre-failure
tight neighbor whichis not provably dead. Then every clus-
ter in C'g; isrelated by a chain of neighbor relations to a
cluster missing a non-provably dead neighbor.

(b) No Lost Connections

Figure 4. Circumscription can be found by testing for in-
valid neighbor relationships. The illustration (a) shows a
network divided into small regions with neighbor relations
(thick lines). A failure (shaded area) breaks some neighbor
relationships (dotted lines). At a higher level of the hier-
archy, however, the neighbor relationships still hold (b), so
circumscription can be guaranteed.

Figure 5. Nodes X and Y, in the shaded failure region,
are provably dead because they are tight neighbors of each
other and all of their other tight neighbors (4, B, and C)
can communicate and confirm that nobody can talk to X
andY



Figure 6. The shaded region is a non-convex failure, be-
cause the border with the rest of the network (thick black
line) is smaller than the diameter of the failure. The circum-
scription found will be much larger than optimal because
the clusters inside the failure must be provably dead.

Proof: See Appendix A.

Now that conditions for circumscription have been es-
tablished, | show that there is a level at which they are guar-
anteed to hold:

Theorem 4: Following afailure F', let d(Br) be the maxi-
mum distance between any two machinesin the border Bg
following the failure, and d' (F' U Br) be the maximumdis-
tance between any two failing or border machines, before
the failure. Then F is circumscribed by Cg; U N(Cg;) for
every level ¢ whered; > max(d(Br),d (F U Br))

Proof: See Appendix A.

Corollary 5: Under the above conditions, any cluster con-
tained entirely within F' is provably dead following the fail -
ure.

Proof: See Appendix A.

Corollary 6: Under the above conditions, for any mem-
ber of Cp;, every pre-failure tight neighbor is either till a
neighbor or else provably dead.

Proof: See Appendix A.

Finally, the hierarchy method of circumscription is
competitive with the optimum circumscription for a large
class of failures. These convex failures are failures for
which the diameter of the border is at least as large as
the diameter of the failure — to be precise, d(Br) >
dl(F U BF)

This is because clusters completely contained in the
failure need to be provably dead, even if the diameter of the
optimal circumscription happens to be tiny. Consider, for
example, the failure of a large region connected to the graph
by a single small choke-point: the optimal circumscription
is the tiny neck, and proving the region past the neck is
dead requires long-distance neighbor relations.

Theorem 7: For a convex failure F', let 4 be the minimum
level for which d; > d(Bg) > d((F U Br). The diam
eter of the circumscription component of Cg; U N(Cpg;)
is 11b-competitive with the diameter of an optimal circum-
scription (e.g. 22-competitiveif d; is powers of 2).

Proof: See Appendix A.

This isn’t a very nice bound, but it is within a con-
stant of optimal, and could be improved markedly by post-
processing of the circumscription set. It is, however, a fair
estimate of how far information must travel to guarantee
success.

5 Distributed Circumscription Algorithm

The hierarchy method of circumscription lends itself easily
to a distributed implementation. The key property is Corol-
lary 3, which mean that no cluster can prematurely decide
it has found the circumscription.

This algorithm assumes three pieces of data are stored
at every machine: a list of clusters the machine belongs
to, a list of neighbors and tight neighbors for each cluster,
and a list of tight neighbors for each tight neighbor of each
cluster.

Upon failure, every machine in the border detects the
failure and begins hunting (bottom up) for the minimum
level that will produce a circumscription. At level 4, the
border machines transmit a wakeup to everything within d;
hops, activating all machines which are members of Cp;
(the clusters which intersect the failure but not the bor-
der test for and detect their failed members on this wakeup
call).

Every machine in Cp; tests for missing neighbors.
News of missing neighbors is propagated by gossip through
the neighbor graph, and machines which can be eliminated
as provably dead are marked as such. Thus, by Theorem 2
and Corollary 3, eventually every machine agrees whether
there are missing neighbors which are not provably dead,
even if the machines are in disconnected components. If
there are missing neighbors, the border machines increment
level i and try again. If there are not, then the appropriate
level is found and all machines in Cp; U N(Cp;) mark
themselves as members of the circumscription.

By Theorem 4, this algorithm will eventually find a
level agreed upon by all machines for which Cg;UN (Cg;)
is a valid circumscription, and by Theorem 7 if the failure
is convex this will be competitive with an optimal circum-
scription for that level. Time to converge is dependent on
the time to detect missing neighbors and communicate this
information via gossip, which takes no more than the final
diameter at each level, for a logarithmic number of levels,
giving O(nlgn) where n is max(d(Br),d (F U Br)).



6 Contributions

I have described a simple distributed algorithm which finds
a circumscription for any stopping failure that does not par-
tition a network. This circumscription is near optimal for
convex failures.

Circumscribing a failure is a powerful tool for excep-
tion handling in distributed algorithms, as it bounds the
region in which exception handling needs to take place.
Optimal circumscription marks only a region directly pro-
portional to the severity of the failure, so small failures al-
low most of the network to continue running the algorithm
without any interruption. One obvious application is in dis-
tributed atomic storage, such as the Persistent Nodes in [2].

In a larger scope, it is interesting to consider what
relation there may be between the space-limited failures
dealt with by circumscription and the time-limited failures
considered by Khazan.[6] | conjecture that there may be a
general property unifying the two, much like the dynamic
finger and working set properties for data access. Since
distance in hops is equivalent to time lag when links are
homogeneous, it is tempting to think there is a relativis-
tic principle bounding the necessary effects of failures in a
large network.

If this is, indeed, the case, then it should be possi-
ble to formalize lower bounds on the space-time interval of
damage incurred by a failure, allowing explicit analysis of
design tradeoffs between data availability and consistency.
Moreover, | expect that, as indicated by this system, it will
be possible to asymptotically approach such a lower bound.
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A Proofs

Theorem 2: Following a failure F', let ¢ be a level of hier-
archy in which, for every member of Cp;, all of its pre-
failure tight neighbors are either still neighbors or else
provably dead. Then the union of neighborhoods of border
clusters, Cg; U N(Cp;), contains a connected component
which circumscribes the failure F'.

Proof: Assume this is false. Then every border cluster is
neighbor to all of its pre-failure tight neighbors that are not
provably dead, but the union of neighborhoods does not
have a connected component containing the border of F'.

First, note that a cluster is not necessarily connected
(in practice, they often will be, but the definition does
not require it, and some clustering methods will produce
disconnected clusters). The neighborhood of a cluster,
AU N(A), however, has a connected component contain-
ing the cluster A. This is because every cluster within d; of
anode in A is a neighbor of A, and the maximum distance
between nodes in A is d; — thus, there is a path between
any two nodes in A along which all nodes are, by definition,
in the neighborhood of A.

Similarly, if clusters A and B are still neighbors, then
the union of their neighborhoods, A U N(A) U BU N(B)
contains a connected component containing A and B. Each
cluster is in a connected component of its neighborhood,
and A and B are neighbors, so there must be a path from
A to B which is no more than 3d; in distance. Every node
on this path is a member of A’s neighborhood, so A and B
must be in the same connected component of the union of
their neighborhoods.

Thus, to fail, C'g; must be split into at least two con-
nected components X and Y such that no cluster in X is
a tight neighbor of any cluster in Y. However, before the
failure, X UY U F had a connected component containing
the failure and its border (F' U Bp). Since a cluster in X
cannot be a tight neighbor of a cluster in Y, there must have
been some set of clusters G completely contained in F' (i.e.
not part of Cg;) which connected X and Y. Thus we have
a contradiction since either G is empty and X and Y must
contain tight neighbors, or else both X and Y contain some
cluster which had a tight neighbor in G that is either prov-
ably dead (requiring clusters intersecting X and Y to be
connected and therefor tight neighbors) or else missing. O

Corollary 3: Following a failure F', let ¢ be a level where
some member of Cpg; is no longer related to a pre-failure



tight neighbor whichis not provably dead. Then every clus-
ter in Cp; isrelated by a chain of neighbor relations to a
cluster missing a non-provably dead neighbor.

Proof: For almost all cases, a stronger condition holds,
that every border node is part of a connected component of
C'B; Which intersects a cluster with a missing neighbor. As
above, if a component of Cg; which intersects the bound-
ary does not intersect every cluster in Cg;, then there must
be a missing neighbor (by pre-failure connectedness).

That leaves only the case of divided clusters, where
some connected component X intersects every cluster in
C'g; While another component Y intersects only some, but
X and Y are not connected because all of the components
in Y are split by the failure from components in X.

In this case, however, some cluster in Y must still
have a neighbor relation with some tight neighbor Z that
is not in C'p; (otherwise the network is partitioned) and ei-
ther X is missing its neighbor connection to Z or else X
and Y are related by a neighbor relation through Z. O

Theorem 4: Following afailure F', let d(Br) be the maxi-
mum distance between any two machinesin the border Br
following the failure, and d’' (F' U Br) be the maximum dis-
tance between any two failing or border machines, before
the failure. Then F is circumscribed by Cg; U N (Cg;) for
every level ¢ whered; > max(d(Br),d (F U Br))
Proof: If d; > d'(F U Br) then all clusters in the border
clusters Cp; and all clusters completely contained in the
failure F' are tight neighbors before the failure. Every ma-
chine in every border cluster is within d; of some machine
in the border B, a relation which holds following the fail-
ure as well. Then by the assumption that d; > d(Br),
the distance between any two border clusters following the
failure is at most 3d;, implying they must still be neighbors.
Thus, Cg; U N(Cp;) contains a connected subset which
contains every point in the border Bg, circumscribing F'.
O

Corollary 5: Under the above conditions, any cluster con-
tained entirely within F' is provably dead following the fail-
ure.

Proof: Let D be the set of clusters completely contained in
F

Condition 1 (D a complete graph of tight neigh-
bors): Since d; > d'(F U Br), every cluster in F'is a tight
neighbor of every other cluster in F'.

Condition 2 (Tight neighbors in a connected com-
ponent): For any machine in F', every tight neighbor of
its cluster is within d; of the border Br. The border is
contained in Cg; U N(Cp;), which, by circumscription,
must contain a connected component which intersects ev-
ery group within d; of the border.

Condition 3 (Deadness): Every member of D is
completely in F', thus completely dead.

Thus, any cluster contained entirely in F' is provably
dead following the failure. O

Corollary 6: Under the above conditions, for any mem-
ber of Cp;, every pre-failure tight neighbor is either till a
neighbor or else provably dead.
Proof: Consider a border cluster C € Cp; and a cluster N
which is a tight neighbor before the failure.

Assume this is false: then there is some pair C and N
for which N is not provably dead and not a neighbor of C
following the failure. If IV is completely contained in F',
then it is provably dead. Therefor there must be some ele-
ment of V outside of F'. Before the failure, there was a path
from C to N less than d; in distance. This path must inter-
sect the failure F' to be changed by it, and therefor there
must be elements of both clusters V and C within d; of the
border Br both before and after the failure. By assump-
tion, the maximum distance between elements in B is at
most d; following the failure, so there must be a path be-
tween N and C of at most length 3d; following the failure,
which would imply that V and C are still neighbors. O

Theorem 7: For a convex failure F', let i be the minimum
level for which d; > d(Br) > d((F U Br). The diam-
eter of the circumscription component of Cg; U N(Cpg;)
is 11b-competitive with the diameter of an optimal circum-
scription (e.g. 22-competitiveif d; is powers of 2).

Proof: Every element in Cpg; is within d; of Bp, so
every element in N(Cp;) is within 5d; of By (Neigh-
bors are within 3d; and have elements at most d; further
away). The distance between elements in the border is at
most d(Br) < d;, so the whole diameter of the circum-
scription component of Cg; U N(Cp;) is at most 11d;.
Since, by assumption, d; is the smallest d; greater than
d(Br) and since d; values scale exponentially by ratio b,
d; < b-d(Br) and therefor the diameter is bounded by
116 - d(BF).

An optimal circumscription has diameter of at least
d(Br), because the connected subset must contain the en-
tire border.

Thus hierarchy circumscription is 11b-competitive
with optimal for convex failures. O



