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Abstract

 

A paintable computer is defined as an agglomerate of numerous, finely dispersed, ultra-miniaturized 
computing particles; each positioned randomly, running asynchronously and communicating locally. 
Individual particles are tightly resource bound, and processing is necessarily distributed. Yet computing 
elements are vanishingly cheap and are regarded as freely expendable. In this regime, a limiting problem is 
the distribution of processing over a particle ensemble whose topology can vary unexpectedly.

The principles of material self-assembly are employed to guide the positioning of "process fragments" — 
autonomous, mobile pieces of a larger process. These fragments spatially position themselves and re-
aggregate into a running process. We present the results of simulations to show that "process self-
assembly" is viable, robust and supports a variety of useful applications on a paintable computer.

We describe a hardware reference platform as an initial guide to the application domain. We describe a 
programming model which normatively defines the term process fragment and which provides 
environmental support for the fragment’s mobility, scheduling and data exchange. The programming 
model is embodied in a simulator that supports development, test and visualization on a 2D particle 
ensemble.

Experiments on simple combinations of fragments demonstrate robustness and explore the limits of scale 
invariance. Process fragments are shown interacting to approximate conservative fields, and using these 
fields to implement scaffolded and thermodynamic self-assembly. Four applications demonstrate practical 
relevance, delineate the application domain and collectively illustrate the paintable’s capacity for storage, 
communication and signal processing. These four applications are Audio Streaming, Holistic Data Storage, 
Surface Bus and Image Segmentation.
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CHAPTER 1

 

Introduction  

 

Scenario - Painting the Computing

 

In the next years, process technology will arrive at the point where autonomous 
computing elements can be scaled to the size of large sand kernels and sold at bulk 
prices. Coupled with a commensurate shrink in the footprint of sensors and actua-
tors, the concept of "personal computing" will take on a radically new dimension. 
While the details of how people relate to this ultra-commoditized form of comput-
ing remain largely conjectural, a couple of points are already apparent:

 

1.

 

As the computing elements become resilient to environmental stress, they will 
migrate off the expensive, precision engineered motherboards, and into every-
day objects such as building materials, furniture, and clothing.

 

2.

 

People will find it more natural to deal with computation as a bulk item, prefer-
ring to manipulate it by the jar full, by the bolt, by the cord, or by the shot glass.

One could loosely delineate commodity level computing as those instances where 
the price of the computing is so low that it is comparable to detergent and where the 
form factor is so small that it seamlessly blends into everyday environment.
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As a representative embodiment, we advance the notion of a 

 

paintable computer

 

. 
Based on the architecture originally described by Sussman, Abelson and Knight 
[1], a pinless IC with an on board micro, program memory and a wireless trans-
ceiver, is reduced to the size of a small match head and powered parasitically. Sev-
eral thousand of these particles would be suspended into a viscous medium and 
deposited it on surfaces like paint. Once exposed to power, they should boot and 
self organize their local address space. External I/O would be via physical contact 
with an object fitted with a transceiver whose protocols mimic the behavior of the 
chips.

While the details will change en route to practice, this notion of a 

 

paintable

 

 cap-
tures the essence of what could be a big part of our computing future: computation 
as a tangible, fluidly dispersible additive to ordinary objects. Want a surface to be 
smart? Add a layer of computing. Want it to be smarter? Add a second coat. Has the 
computing lost its luster? Get out the belt sander.

The atomic element of a 

 

paintable

 

 is the particle (fig 1-1

 

a

 

). Characteristic specs 
include a ’486 class micro, an internal clock running at ~ 50 MHz, and 50-100K of 
RAM for code/data storage. All the I/O to the micro is gated through a wireless 
transceiver supporting a minimum duplex rate of 100 Kb/s.Communication is via 
asynchronous links to the nearest neighbors. A power subsystem harvests power 
from the immediate environment with minimal constraints on the particle’s place-

ment

 

1

 

.  

Once exposed to power, each particle builds an enumerated list of the neighbors 
with which it can communicate (fig. 1-1

 

b

 

). There is no hardware support for recov-
ering relative orientation or distance. And critically, no particle has any knowledge 
of the world beyond its communication radius.

 

1. Candidate techniques include chemical, optical, electrodynamic coupling or sliding 
mechanical contact to conductive planes.
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Scenario - Painting the Computing

(a)

(b)

FIGURE 1-1. Paintable computer: particle and ensemble

Paintable computers are ensembles of homogeneous particles (a) each contain-
ing a micro, memory, a wireless transceiver and support for harvesting envi-
ronmental power.

Particles are pseudo randomly positioned and communicate locally with their 
immediate neighbors (b). On boot-up, particles build an enumerated list of 
their neighbors . There is no hardware support for estimating distance or orien-
tation. And particles are purposefully blind to the world beyond their commu-
nication radius.
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The Problem - Programming Paintchips

 

Decades of research and productizing have failed to produce robust, general meth-
ods for programming massively parallel systems that could take hold in the market-
place. And the native architecture of a 

 

paintable

 

 seems to take a bad thing to a fatal 
extreme. Indeed the basic attributes read like a compiler designer’s epitaph; 

 

an 
unknown number of micros arranged in an unknown topology with slow, asynchro-
nous local interconnects. Individually, each micro is too resource poor to do any 
useful work, yet the network message flow is chaotic and the unit reliability is low

 

. 
Here is a detailed look at the worst of these sorrows:

 

Asynchrony

 

  Clock level synchrony is out. Two neighboring particles can 
not be guaranteed to have the same clock rate, let alone lock them. Event 
level synchrony also seems beyond reach. In an unknown topology with 
sporadic unit failures, there is no way for a process on one particle to predict 
or direct the activity on a neighboring particle. Code running on one particle 
should therefore never explicitly synchronize to events generated on another 
particle.

extreme 

 

Fault Tolerance  

 

Allied with the inherent asynchrony is the pro-
pensity of individual particles to fail completely. A defining characteristic of 
a paintable computer is that the user should be permitted certain activity that 
will cause some particles to die. For example, if a 

 

paintable

 

 is layered onto a 
wooden surface, the user should think nothing of driving a nail into that sur-
face, or machining it to an arbitrary shape.

 

Network Locality 

 

 Particles can only communicate directly with other par-
ticles in the immediate spatial vicinity. A particle’s knowledge of the envi-
ronment stops completely at the border of this neighborhood. And even 
within this neighborhood, particles have no sense of relative orientation or 

distance to neighbors

 

2

 

.

 

Adaptive Topology

 

  Any truly 

 

paintable

 

 system will have final topology 
which is unknown at the time when the application code is written. While it 
will always be possible to recover an approximate coordinate system at run-
time, no application code should prescribe a particular spatial layout of the 
processors. As a consequence, application code may not explicitly address a 

 

2. While the size of the neighborhood can vary substantially, current experiments run on 
neighborhood sizes ranging from 8 to 20 particles.



 

5

 

The Solution - Self-assembly

 

particle by location  neither as an absolute location nor as a relative loca-
tion (eg. two hops north).

 

Code Compactness 

 

 On-particle memory is very limited, inter-particle 
communication bandwidth is slow compared to processor speed, and there 
is no external support for virtual memory. Functions running on a given par-
ticle should therefore be self contained and sized to fit completely in a single 
particle.

While there is nothing to prevent particles from passing data or code to their 
neighbors, no process on a given particle can predict or control the state of 
processes running in the neighborhood.

 

Combinatorics

 

  A basic strategy of compiler design for massively parallel 
machines is to anticipate likely failure modes and adapt the data flow to 
optimize for speed and tolerance to foreseeable faults. This in turn imputes 
to the compiler designer the ability to predict and account for all possible 
hardware-related states surrounding a particular computational event.

For systems where the native combinatorics outstrip the compiler’s ability to 
predict and adapt, the only option is to impose those restrictions necessary 
to limit the number of possible states. In many ways, the 

 

paintable

 

, with its 
unconstrained placement of particles, represents a worst case in the combi-
natorics of the hardware and would require the largest number of restrictions 
to tame its complexity.

 

The Solution - Self-assembly

 

Cumulatively, these hurdles suggest that it will never be practical to expect a 
human to structure a procedure for unrestricted use on this architecture. The start-
ing point for this research is the claim that 

 

if we can not get a human to structure 
the procedures, we are going to have to get the procedures to structure themselves

 

. 
Consequently, this work advances a programming model based on process self-
assembly — the undirected reassembly of a process from randomly distributed frag-
ments of code with state. 

A ready analog to this notion can be found in the self assembly of materials. Self-
assembly in the material domain is defined as "

 

the spontaneous organization of 
objects, under equilibrium conditions, into stable aggregates

 

"[7]. Investigators 
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have reported measured success at assembling complex irregular structures from 
suitably treated component parts [22][29]. Often this assembly process is revers-
ible, suggesting that one could start with a end structure, deconstruct it into its orig-
inal parts, place the parts into a medium which supports mobility, and agitate them 
until the reassembly process achieves a local minimum — preferably in the original 
state (fig. 1-2)   

A loose mapping between material self-assembly and process self assembly follows 
basic intuition. The component parts of the material structure correspond to frag-

ments of a running process

 

3

 

. The assembled material structure corresponds to the 

 

3. imagine the mapping the program and data space of a process onto a 2D memory, and 
then dicing that memory into irregular shapes. Each of these puzzle pieces would be a 
individual component in the self assembly.

FIGURE 1-2. Material re-assembly

The original aggregate structure (a) consisting of six components is 
broken up into these individual parts (b). Once placed into a fluid 
medium and agitated, the parts incrementally reassemble (c) (d).
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Roadmap

 

original coded procedure represented as a 2D planar graph. And the fluid medium 
which supports the material self-assembly is the memory space of the machine on 
which the procedure is executed.

The mapping is necessarily vague, and different modes of material self-assembly 
will offer competing guidelines. It nevertheless points toward a powerful model for 
organizing computation. Processes which self assemble from mobile process frag-
ments are potentially resilient to topological variations in the hardware, and should 
be robust to expansive changes in scale. With this behavior in mind, we state the 
thesis of this dissertation: "

 

A programming model employing a self-organizing 
ecology of mobile process fragments supports a variety of useful applications 
on a paintable computer

 

"

In support of this thesis statement, this work proffers several contributions:

 

• process self-assembly: a novel distributed programming methodology which 
maps existing techniques in material and virtual self-assembly to a broad class 
of dense ensembles of asynchronous, locally inter-networked computing nodes.

• a programming model built around a novel abstraction for inter-process com-
munication, and the construct of a "process fragment" as the atomic element of 
process self assembly.

• illustrative examples of abstraction and modularity in process self-assembly.

• four applications that are both novel in their own right and that collectively 
demonstrate the paintable’s capacity for storage, communication and basic sig-
nal processing.

Roadmap

The remainder of this document lays out the rationale, builds the tools, explores 
basic concepts, extends them to applications and then takes stock. Chapter 2 moti-
vates the architecture from an economic perspective, reviews background and 
related work, and specifies the criteria for evaluating the research. Chapter 3 pre-
sents the hardware reference platform, the programming model, and a simulator 
that embodies them both. Chapter 4 uses six simple examples to illustrate basic pro-
cess fragment behavior and to introduce important programming constructs. Chap-
ter 5 explores the application domain with four examples implemented on the 
simulator. For each application, the purpose and underlying algorithms are 
explained, and the functionality is demonstrated. Chapter 6 states the conclusions, 
lists the contributions and speculates on avenues for future work.
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CHAPTER 2 Background 

This chapter presents the background and motivation. A review of the economic 
fundamentals of IC chip manufacturing highlights the growing impetus for comput-
ing on sand-sized nodes. Work on Complex Adaptive Systems advances an alter-
nate model of computing that is well suited to finely distributed architectures, the 
important caveat being that applications built on this alternate model have stub-
bornly resisted engineering refinement. Work on directed self-assembly of natural 
and artificial systems has produced techniques for guiding the self assembly toward 
bounded compliance with a predefined target structure. The chapter concludes with 
a list of criteria by which the design component of this research can be evaluated.

IC Economics

The search for techniques to program a paintable takes on an added urgency when 
you realize that you may soon need to use them. And a combination of feasibility 
and cost pressure make this a real possibility. The manufacturing capability for 
much of the paintable architecture will appear as a byproduct of the foreseeable 
advances in process technology. Indeed elements of the architecture are already in 
place (eg. micro and memory), while much of the remainder lies in the critical path 
of eagerly anticipated markets (eg. monolithic RF, active tagging).
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Simple feasibility however is never sufficient to drive the deployment. Entrant 
technologies must always exhibit some compelling advantage over entrenched 
alternatives. For distributed computing on miniaturized nodes, the advantages 

include small size, portability and tolerance to harsh environments1. Beyond these 
limited specialty domains lie applications where finely distributed computing must 
contest directly with conventional architectures for use in mainstream information 
processing tasks. Here, one compelling advantage is cost, yes cost. Specifically, 
dense ensembles of dust size computing elements support a price / MIP ratio with 
which centralized architectures can not compete, with potential for over 100-fold 
increases in compute capacity per unit cost. The remainder of this section explains 
why.

For IC’s sold en mass in a consumer market, the first order determinant of the price 
is the size of the unpackaged die. Even immense one-time expenses for initial 

development and plant (~ 109 $) can be amortized over monthly sales of several 
million units. In an industry characterized by a dizzying dynamic, the fixed cost of 

fabricating a single wafer (~ 102 $) has remained comparatively stable for decades. 
These fixed costs include manufacturing of the raw silicon ingot, slicing it into 
wafers, marching it through the ovens, packaging, and testing at multiple stages 
throughout the process. With the unit area of processed wafer as the fixed cost, the 
manufacturing cost for an individual IC depends on the percentage of the wafer’s 

dies which are functional — the   yield 2. Alternatively, given a constant yield, the 

cost of a single IC depends the area of the die3.

This simple relationship between yield, die size and unit cost have important conse-
quences for economic viability of ultra-miniaturized computing nodes. A single 
defect is enough to render an entire die inoperable. By drastically minimizing the 

1. an excellent example is the work on distributed sensor nodes. Centimeter scale nodes 
with power, computing, sending and communication are deployed ad-hoc and self orga-
nize to perform some coordinated sensing task. More detail in [50].

2. In this report, the term "yield" represents the percentage of a processed wafer that pro-
duces working dies.

3. Use of the die size as an estimate of manufacturing cost has a lower bound. For very 
small IC’s, the minimum size can be defined by a pad ring — a rectangular ring of current 
drivers and contact pads for the bonding wires. And beneath a certain size, the cost of any 
IC is dominated by the packaging. However these lower bounds are seldom inviolate and 
often yield to technological advances in the face of economic pressure. For example, pin 
intensive IC’s use ball grid arrays which, together with flip chip surface mounts have 
become an attractive alternative to explicit packaging.
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IC Economics

economic penalty incurred by each defect, smaller dies enjoy a natural cost advan-
tage over larger ones. How much? Consider the abstracted instance of three archi-

tectures; a high performance CPU measuring 1 cm2, a smaller embedded 

microprocessor unit (MPU) measuring 25 mm2, and an ultra small microcontroller 

core (MCU) measuring 1 mm2. Contrived yet credible architectural features can be 
selected to render each of these architectures capable of equal amounts of compute 

capacity per unit area4. For example, at their nominal clock speeds;

1 CPU = 4 MPU’s = 100 MCU’s

For defect-free manufacturing processes, these three architectures would deliver 
identical amounts of compute capacity per wafer. For processes where the yield is 
imperfect, the situation can be very different. Appendix A1 naively models process 
defects as point failures and steps through a coarse failure analysis based on three 
assumptions.

1. The likelihood of a failure at any given point is modelled as a 2D Poisson event

2. The presence of one failure within the boundary of a die is sufficient to classify 
the die as a reject.

3. Any one point failure will render one and only one die inoperable. Failures do 
not span boundaries to affect multiple dies.

Proceeding from these assumptions, we can calculate the expected value for the 
aggregate compute capacity recoverable from a wafer. Fig. 2-1.compares this data 
for the three architectures on a single log-log plot. The independent axis shows the 
total number of defects per wafer. At the extreme right, failures blanket the wafer 
and all dies of all sizes are inoperable (...bummer). On the extreme left, the yield is 
perfect and the expected compute capacity is maximized for all architectures (...it’s 
Miller time). In the middle is a region where the sensitivity to defects varies dra-
matically depending on the die size.   

Along the line labeled (corresponding to 1060 defects), 18,560 of the MCU’s 

(95 % of the wafer) are still viable and available for generating revenue. Likewise, 
201 MPU’s (26 % yield) and 1 CPU’s (0.5% yield) remain functional. So at the 
point where only one large die remains operable, there is almost a 200× difference 
in yield between the large and small format dies.

4. CPU → 1 GHz clock, 5 stage pipeline
MPU → 250 MHz clock, 5 stage pipeline
MCU → 50 MHz clock, no pipelining. no onboard cache

x3
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FIGURE 2-1. Expected yield per wafer

This log-log plot shows yield on a wafer as a function of defect count for three die 

sizes; 1 cm2 (large), 25 mm2 (medium), and 1 mm2 (small). Statistics for three 
sample defect rates (labelled x1 x2 and x3) are broken out and listed in table 2-1 
below. Note that in the instance where 1060 failures leave one large die functional, 
the yield differential between the large and small dies approaches a factor of 200.

.

TABLE 2-1. Yields for selected defect rates

No. of Defects
(label from

plot of fig. 2-1)

Yielda  (number of functioning dies)

a. The "yield" represents the fraction of the wafer occupied by functioning dies.

Small dies Medium dies Large dies

220 (x1) 0.989 (19,380) 0.755 (592) 0.326 (64)

600 (x2) 0.970 (19,006) 0.464 (364) 0.048 (9)

1060 (x3) 0.947 (18,560) 0.256 (201) 0.005 (1)
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Complex Adaptive Systems.

Process yields are among the most tightly guarded secrets in the IC industry. Yet 
products are commonly produced from processes operating in a yield regime of 
30 %. And while a given process is often matured to support a much higher yield, 

the motivation can be undercut by the introduction of a succeeding IC process5.

The take away message from this section is; measured in raw compute capacity on 
silicon IC’s, the large form factor, "high performance" dies are the among most 
expensive, inefficient form that computing can take. And that the only reason that 
we tolerate this surcharge is because we lack robust techniques for efficiently dis-
tributing our computing over numerous fine grain ensembles — an issue that is taken 
up in the next two sections.

Complex Adaptive Systems.

Of course, the difficulty with the preceding analysis is that it treats raw compute 
capacity as a universal currency. Unfortunately, in the prevailing models of compu-
tation, not all ALU clock ticks are equal. Most computations that are expressed pro-
cedurally as a sequence of instructions on a Turing equivalent machine do not 
distribute efficiently, if they distribute at all. Comparisons based solely on compute 
capacity are inherently flawed in that they imply that a procedure runs on both 
architectures and produces identical results. In instances when this requirement is 
enforced, the cost advantage of the miniaturized nodes is all but lost in a sea of 
overhead for control and synchronization. 

This section examines the work on Complex Adaptive Systems as a vehicle for 
recasting the concept of "computation" into a form that is more amenable to com-
puting on paintable class architecture.

Design of contemporary computing systems has been constrained by a number of 
seemingly reasonable assumptions about architectural reliability and performance 
criteria of both the hardware and software. For example, few people are interested 
in a sorting procedure that, for a dramatic decrease in run time, will produce results 
that, while imperfect, are still "good enough". The difficulty in this case is the defi-
nition of "good enough". Similarly, given a procedural description of a task, few 

5. consider the effect that bringing up a 0.1 micron process has on an existing 0.18 micron 
process. A 20% yield on the 0.1 micron line is equivalent to an 65% yield on the 0.18 
line.
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people are interested in ultra-cheap yet faulty hardware that will get most of the job 
done most of the time. Computing was defined a series of discrete state transforma-
tions executed under direction of coded instructions assembled into a procedure. 
The only suitable computing elements were those that could read the instructions 
from the stream and then faithfully sequence through the associated computational 
events. The only suitable computations were those that could be uniquely described 
by a procedure. System designers internalized these assumptions into a mindset and 
set of axioms that guided the development of most man-made computing systems.

Scientists investigating the dynamics of natural phenomena have developed an 
alternative view of computation which has challenged elements of the computer 
designer’s canon. Work on natural systems ranging from neurons to weather pat-
terns has produced several key insights:

• these systems could be modeled to some level of fidelity by computational mod-
els. To the degree that this worked, the natural system could be regarded as 
’computing’ — and doing so using ’hardware’ that was heretofore regarded as 
unsuitable. It’s not a computer, but it’s computing!

• when comparing various models, investigators had to rethink the goals of the 
given computation in view of the goals of the entire system. For example, in 
time critical applications, doing half the job in a fourth the time may be prefera-
ble to running to completion, particularly if errors could be cleaned up down-
stream.

• the development of the computational models was at least indirectly informed 
by observed characteristics of the underlying hardware — ants, neurons, particle 
systems, Wall Street traders — all very non-traditional hardware.

An early example of this approach was David Marr’s work on vision in the 1970’s 
[32]. Departing from mantras of the time, he cast vision as a computational task and 
sought to characterize the computation on three levels: the competence (objective), 
the algorithm and the hardware. His approach was to hypothesize the objective of a 
given computation (building a visual precept) in the context of the goals of the 
larger system (survival). This first step was a precursor to any consideration of the 
algorithm and form of the hardware. 

This and subsequent work on "Natural Computation" [4] broadened our formal def-
inition of computation by establishing new metrics to measure the efficacy of com-
puting devices and algorithms. Returning to the previous example, it is now 
acceptable to consider an imperfect sorting algorithm because the bounded algo-
rithmic shortcomings could be balanced against speed of execution, size of the 
code, suitability for novel hardware and the ability to make up for inevitable errors 
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later. Similarly hardware with bounded inconsistencies in performance can be seen 
as preferable if it is uniquely suited to a harsh environment, adaptive in some task 
specific way and is resilient to failures of its component parts.

This and related work on Complex Adaptive Systems provide the underpinnings for 
an alternative form of computing that is central to this research.

• Arbitrarily complex system behavior can be created from large numbers of sim-
ple processing elements.

• Reliable computation can be expressed as the aggregate statistics taken over a 
large set of local interactions. Dependence on statistics decouples the global 
result from the outcome of any one local interaction. 

Work on StarLogo [43] captures the strengths and the pitfalls of this approach. 
Autonomous virtual creatures, coded with simple behaviors, interact to mimic the 
global behavior of slime mold, traffic jams and forrest fires. Using StarLogo as an 
experimental platform, even high school age children can synthesize complex phe-
nomona. The drawback is that no insights emerge as to methods for engineering the 
second order behavior. Programming is largely trial and error.

Self Assembly

Self-assembly appears in several forms, each distinguished by the complexity of 
the structures that they generate and the ease with which one can characterize (and 
replicate) the behavior.

Scaffolded self-assembly. Objects position themselves into shape complimen-
tary receptacles. Any lock-and-key scheme qualifies as scaffolded self-assem-
bly. A good example is the Fluidic Self-assembly technique from Alien 
Technology [1]. Small objects are cut to one of several different shapes and 
slurried over a surface. The surface is patterned with depressions whose shape 
matches one of the shape types of the objects. Objects in the slurry which con-
tact a depression with matching shape tend to lock into place.

Thermodynamic self-assembly. Also called entropic self-assembly. Objects 
move under the influence of attractive and repulsive forces exerted on them by 
other objects. The net force exerted on an object corresponds to the object’s 
instantaneous free energy. The aggregate structure corresponds to the configu-
ration with the minimum free energy (at least a local minimum).
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An oft cited example from nature is the water droplet. The repulsive forces 
exerted on water by the air favor shapes with the minimum exposed surface 
area. An early example from the regime of man made systems is the smooth 
flat beds of molten metal used in glass manufacture.

Coded self-assembly. This is the most complex form. Individual interactions 
are guided by coded instructions embedded in the agencies. An agency’s selec-
tion of code is a function of the local environmental and the agency’s instanta-
neous state. While the interactions are local, the codes which direct them can 
be arbitrarily complex.

This is the form of self-assembly most commonly employed in the coordinated 
activity of large ensembles of robots. Coded self assembly has the potential for 
managing complexity on a scale comparable to that of living systems. How-
ever it is the most difficult to characterize and emulate.

Systems which self-assemble offer a rich set of insights and techniques for use in 
information processing. The trick has been to map the behavior from the material 
domain to the virtual. Several research projects have taken up this challenge.

An early programming application of scaffolded self assembly was Hewitt’s 
Planner[26]. Planner employed pattern directed invocation to dynamically 
assemble a process from a set of predefined software components. The hardware 
venue was a traditional single processor architecture. The atomic components were 
algorithms that were packaged for autonomous execution and labeled externally by 
patterned "keys". An executing component in need of a particular function would 
express the function as a key and broadcast a request. Available components with a 
matching key were candidates for servicing that request, with control passed to the 
selected candidate. 

The work of the Amorphous Computing Group pro-
duced the first instances of coded self assembly tar-
geted to domain characteristic hardware[1]. They 
defined the target hardware as a dense ensemble of 
randomly positioned miniaturized processing nodes, 
each running asynchronously and communicating 
locally. In the spirit of bulk commodities, individual 
particles were subject to sporadic failure, both individ-
ually in large groups. 
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 In their original programming model, all code is permanently embedded in the par-
ticles at the time of manufacture. This code contains multiple functions that can be 
"woken up" in response to a number of predefined conditions. With the code stati-
cally positioned, the principal manifestation of the self-assembly is the assignment 
of property labels for the particles. While these labels can correspond to patterns of 
arbitrary complexity, they are all created by unsupervised local interaction, and 
each exhibits acceptable fidelity to a predefined target pattern.

Coore developed the concept of a "growing point" as a tokenized interrupt that used 

pheromones and tropisms6 to direct its migration among the particles [14]. Nagpal 
extended the hardware model to approximate the mechanical properties of epithe-
lial cells [40]. Radiating gradients carried messages and built estimates of the dis-
tance from dynamically selected reference points. Messages were combined with 
barrier synchronization to sequence the assignment of material properties and prop-
agate new gradients.

The goal of this research is to extend virtual self-assembly to include fragments of a 
coded procedure as the atomic element of the assembly process.

Criteria for Success

Ultimately, the success of this research is measured by the support it lends to the 
thesis statement. However, lurking behind this thesis statement were two larger 
agendas: 1) to provide a crucial enabling technology to an emerging architectural 
class, and 2) to demonstrate the class’s practical importance. The conduct of this 
work necessarily involved a substantial design component for each of three core 
elements: a hardware reference platform to define the computing environment, a 
programming model that engendered self-assembly, and a set of applications to 
qualify the architecture’s utility. Throughout, design decisions were made, often in 
the face of numerous alternatives.

As an additional vehicle for evaluating this research, metrics are presented for each 
of these three components. Some of these metrics can be expressed in checklist 

6. This work makes heavy use of biological metaphors. In this case, "pheromones" are gra-
dient fields with embedded state information. A "tropism" is a function of several gradi-
ent fields.
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form and evaluated in a yes/no fashion. Others resist formal reduction and have to 
be argued rhetorically. Here is a breakdown of the questions that must be answered.

Hardware Reference Platform. As an architectural blueprint, the questions to be 
asked about the reference platform are: 

1. How well does the reference model capture the fundamentals of an architectural 
class? Is it overdefined, underdefined? Does it capture the characteristics of 
interest without being unnecessarily restrictive?

2. Is it sane? Do any of the assumptions offend basic laws of physics or econom-
ics? Physical laws to watch are power consumption and communication capa-
bilities. Economic "laws" relate the utility of the paintable to that of the more 
entrenched architectures such as classic embedded controllers. Are there fore-
seeable circumstances likely to obviate the paintable as an architectural class?

Programming Model: The specific metrics of interest here are:

1. Does the programming model adequately define its underlying abstractions, 
program components, and basic computing resources available in the particles?

2. Does the programming model support the fundamentals of self assembly? No 
claim is made to understand the fundamentals of self assembly. Rather, we are 
looking for faithful incorporation of a well articulated subset.

3. Does the programming model support data exchange among the assembled pro-
gram components? 

4. Does the programming model compromise any of the affordances of a paint-
able? Does it have difficulty scaling when the number of particles spans several 
orders of magnitude?

Applications: There are many flavors of self assembly. Did we chose the right 
one? The answer should be evident in the applications. It is up to the applications to 
collectively demonstrate that the architecture supports performance sufficient to 
merit further attention. The evaluation criteria here are:

1. Are the applications "real"? Namely, are they functions that people currently 
use, could possibly use or that solve existing problems?

2. Do they make sensible use of the architecture? A handheld calculator running 
on a 250 GOP (giga-operations per second) machine doesn’t count.

3. Is the performance robust under the variability inherent in a paintable (unpre-
dictable topology, intermittent failures, expansive swings in the size of the 
ensemble, etc.)?

4. Is the specific application demonstrative of a broad class of algorithms?
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5. Do the applications actually employ self assembly. Any procedure which could 
execute its entire function on a single particle or with many copies of a single 
process fragment is uninteresting.

Throughout remainder of this report, we will revisit these questions.

Onward ...
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CHAPTER 3 System Architecture:
Programmable Particles, Computing Substrate

This chapter is the fine print — a lot of it. It presents a reference platform for the 
hardware, a detailed model for the programming, and a simulator that embodies 
them both. The centerpiece is the programming model. Novel abstractions for 
memory usage, inter-process communication and component interaction define a 
versatile new model for concurrent computation. The hardware reference platform 
describes the underlying computing environment with a model of a particle’s inter-
nal architecture. Various component implementations are examined and subsumed 
into a single abstraction based on a universal machine fetching code and data from 
local memory while exchanging messages with networked neighbors via error-free 
channels. The concept of pushpin computing is outlined as a contemporary illustra-
tion of this architectural class. Finally, a dedicated simulator supports a graphical 
programming environment for development and test of software for the succeeding 
chapters.

This chapter is the lion’s share of the research. It is voluminous and necessarily 
dense. By the end, you will know what you are programming and how to program 
it, but not why. The jumble of rules, abstractions and nomenclature will be consis-
tent and often accordant with the metaphor of material assembly. Yet, it will take 
the next three chapters to ground them and motivate their use. Still, every good 
game has its rules, and the fun doesn’t start until the rules have been read.
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Hardware Reference Platform

As a preamble to defining a modular programming model, this section describes a 
hardware reference platform that defines the computing environment inside the par-
ticles. The crucial attributes of this platform are that it is overtly conventional, uni-
versally programmable and tightly resource bound. Modest RAM storage, 
organized in a linear address space, contains executables that run on a single gen-
eral purpose computing element. All external I/O is managed through a single net-
working subsystem which supports the abstraction of error-free data exchange with 
a small number of peripherals — in this case, spatially neighboring particles repre-
sented as virtual portals (fig 3-1). Four properties delineate this architectural class:  

1. All addressable neighbors are spatially proximal to the particle — with the neigh-
borhood defined by the communication range of the network subsystem.

2. The number of addressable neighbors (N) can vary unpredictably, reflecting the 
fact that the number of neighboring particles within a communication range can 
vary; either intentionally or unintentionally. The network subsystem must 
respond by automatically adjusting the number of virtual peripherals ports that 

it maintains1.

3. Messages sent to the neighbors can exhibit probabilistic transit times and are not 
automatically acknowledged. While verification can always be explicitly 
requested, all messages have an unconstrained latency. Transit time (t) can be 
described by a probability density function p(t) which, after some multi-modal 
transients, asymptotically approaches zero as t → ∞. Conversely, messages that 

are received are assumed to be free of error2.

4. All code and data which is not prestored in a particle must come from neighbor-
ing particles — or other devices communicating under the guise of a particle. 
Any external device can exchange data with neighboring particles by adopting 
the particle’s wireless protocols and mimicking its network behavior.

For the remainder of this report, we adopt the platform definition above as a suffi-
cient description of candidate hardware. Any particle designed to this loose specifi-
cation will be amenable to the tools and techniques of the succeeding text. By 
adopting this generic superset of the paintable as the reference platform, we side-

1. It is up to the network subsystem to maintain the mapping between the virtual port that 
represents each neighbor, and the actual neighboring particle.

2. This delegates to the network subsystem the task of error detection, error correction and, 
as necessary, request for retransmit.
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FIGURE 3-1. Hardware Reference Platform

The hardware reference platform maps the messy physicality of deeply embedded sys-
tems to the sterile virtual constructs that underlie coded procedures. Software modules 
execute on a standard fetch-decode-write computing element operating on local memory. 
The processor can also exchange messages with the neighboring particles, each repre-
sented locally by homogeneous virtual ports created and maintained by the network sub-
system. The hardware supports Direct Memory Access (DMA) transfer between a port 
and the local network buffer.

The tight coupling between the physical world and the embedded particles is reflected in 
the nature of these virtual ports. They can appear and disappear unpredictably. However 
the number of virtual ports always reflects the number of actual particles with which the 
network subsystem maintains active contact. Transit time for the message is probabilis-
tic, with a vanishing but nonzero likelihood that the message will fail to arrive. Particles 
can only communicate with other particles. External devices seeking to exchange data 
with a particle must mimic the wireless behavior of a particle in order to gain surrepti-
tious access to a local neighborhood.

The reference platform makes no explicit mention of the powering subsystem because 
the choice of power source does not normatively impact the structuring of the software 
components — at least not directly. Indirectly, the support for pseudo-random positioning 
of the particles produces the variability in the size of a particle’s neighborhood. — an 
effect that the networking subsystem must compensate for.
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step dependence on the engineering and economics of speculative subsystems for 
wireless networking and power harvesting, and admit an extended array of form 
factors and applications — from millimeter scale paintchips and laminar particles, to 
centimeter scale pushpins tacked up on a wall, to decimeter scale nodes air-dropped 
over open terrain, to meter scale buoys clustered on the open sea.

The remainder of this section expands on this platform definition with reviews of 

individual subsystems3, and a look at pushpin computing as an initial solution to 
the problems of power and networking. While stopping well short of a complete 
design, our treatment of the pushpin machines suffices for two crucial sanity 
checks: 

1. an implementation of the reference platform can be built using commercially 
available components and materials

2. at least one implementation of the reference platform supports a minimum risk 

path for monolithic integration into the 4 mm2 size regime (i.e. is easy to inte-
grate into a single low cost IC).

Component Subsystems

Processor/Memory.  Each particle is fitted with a 
microprocessor which serves as the particle’s universal 
computing element. All executable code resides in the 
particle’s RAM and executes on the microprocessor. 
The instruction set must be rich enough to efficiently 
execute any instruction stream compiled down from a 
general purpose programming language such as C. 
Minimum RAM size is 50K words organized in chunks of 8 bits or greater spread 
over a 16 bit address space. While not required, hardware assist for interrupt sched-
uling and for integer and floating point math is probably a good investment. The 
internally generated clock should support an operating range of 10-200 MHz, 
dynamically adjustable to account for available power and network bandwidth.

This definition admits many variations on common architectural themes; vanilla 
von Neuman CISC cores, Harvard architecture, super scalar, RISC, and VLIW. 
However, given the emphasis on power efficiency, the simpler bare bones models 

3. Computing elements, networking and power.

ALU
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may be preferable. Micros in this class are already manufacturable in sub 1mm2 

form factors4. Additional work remains to minimize the power consumption.

Power.  There is nothing to preclude a particle from oper-
ating exclusively from battery storage. But most applica-
tions involving statically positioned particle ensembles 
will want to take advantage of harvestable power avail-
able in the immediate environment. There are almost as 
many power harvesting techniques as there are environ-
ments to harvest from; chemical, mechanical, optical, and 
electro-magnetic coupling. Virtually any technique which produces an electrical 
potential across two points is of interest, provided that it affords the particle at least 
some latitude in its positioning — namely no precision placement and no dedicated 
interconnects.

Some example scenarios:

• photovoltaics: solar cells fitted to one or more sides of the package.

• chemical: (primitive battery) for centimeter scale packages distributed over a 
surface with the correct chemicals. Or for very small packages thrown into a 
vessel containing the correct chemicals (think stomach).

• structural: pins protruding from the particles pierce layered membranes to draw 
power from isolated planes. More detail is given below in the text on pushpin 
computing.

For most techniques of interest, the amount of available power will fluctuate 
depending on the particle’s position, particle density and the material characteristics 
of the immediate environment. Consequently, the other subsystems must be able to 

match their consumption to the available power5.

In the selection of any power harvesting technique, the two dominant questions are: 
How much can we get? What is the minimum that we need? The amount of avail-
able power will vary greatly depending on the technique under consideration. The 
amount of power consumed will typically be dominated by the needs of the net-

work subsystem6.

4. Consider the 1.2M transistors of Intel’s venerable i486. A geometry-only shrink to 
0.1 micron is sufficient to confine it to a 1 mm2 area.

5. Possibly varying the frequency of the clock or by cycling through wake/sleep modes.
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Networking.  Data exchange between a particle and its envi-
ronment is gated through the particle’s network subsystem — 
a wireless transceiver that supports a minimum average parti-
cle-to-particle bandwidth of 100 kbs full duplex. As with the 
definition of the power subsystem, the term "wireless" does 
not mean contactless. Rather it implies "directionless" with a 
strict prohibition against precision hardwired interconnects 
that would constrain the positioning of the particles. 

The reception area should be at least approximately circular, with a radius that 
yields an average neighborhood size of 8 or more particles. Within this radius, the 
network subsystem performs basic link management, periodically running its node 
discovery and verification functions to maintain an enumerated list of the neighbor-
ing particles with which it can speak. Changes in the neighborhood particle topol-
ogy, both intended and unintended, are automatically reflected in this list. Channel 
coding and error detection/correction are employed as needed to maintain signal 
integrity and support the abstraction of a dedicated, error-free link. 

Communication is strictly peer to peer with no inherent hierarchy among locally 

communicating peers7. As an example from contemporary practice, consider ether-
net based LANs. All nodes connected to the medium (usually coaxial cable) are 
considered part of the local network. Signalling is one-to-many with one node 
transmitting while the remainder listen. Speaker assignment is contention based 
with instantaneous bandwidth relying on the statistics of random collisions. Map-
ping this analogy to an ensemble of paintable particles, the network connection 
among the P particles in an ensemble can be regarded as the aggregate of P over-
lapping mini-networks. Each mini-network is centered about one particle and is 
defined to consist of that particle and the neighbors with which it can communicate. 
Each particle defines at most one mini-network. But a particle with N neighbors 
will simultaneously be a member of up to N+1 distinct mini-networks. 

While the term "wireless transceiver" naturally suggests near-field RF as the under-
lying link, there are a number of basic problems which motivate a look at alterna-
tives.

6. The expectation is that 1mW will suffice for the micro.

7. A hierarchy can emerge from networking software layered onto the underlying communi-
cation link. However no hierarchical organization is implied by the hardware. This 
approach contrasts with Bluetooth style pico-nets and other standard cell-based networks.
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• luminescence: while still a research topic, progress has been reported on effi-
cient light-emitting structures which can be patterned directly onto CMOS dies 
[3]. Particles fitted with these light sources and omnidirectional photosensors 
could communicate through a physical medium whose translucency was 
matched to the desired communication radius. Motivation for this approach is 
the copious bandwidth native to optical signalling.

• electrostatics: for particles in the size regime of 10-200 mm2, two electrostatic 
techniques —capacitive coupling[34] and dissipative loading — show initial 
promise. While the bandwidth is necessarily limited, the technology thresholds 
are modest enough to permit development using commercially available com-
ponents. 

• near-field RF: The recent past has witnessed spirited commercial interest in 
miniaturized RF transceivers, with a number of monolithic devices either 
already announced or in late stage development. The breadth and depth of this 
interest is sufficient to ensure a steady rate of progress in the bandwidth, foot-
print and power efficiency of mobile RF systems for at least the next years.

However, use of RF in particles presents several basic difficulties, depending on 

the scale. For use with particles on the size scale of several cm2 operating in 
open environments, the severe anisotropy of the reception area negates an 
assumption crucial to results in the following chapters. For particles on the sub 

10 mm2 size scale, the antenna design and the supra-GHz carrier frequencies 
represent the kind of obstacles that necessitate more basic research. 

Pushpin Computers

As a vehicle for characterizing the basic architecture, feasibility experiments were 
conducted on designs for pushpin computers. In the pushpin variant, particles are 

sized to the cm2 scale, communication is based on electrostatic sensing, and power 
is delivered through catheterized pins that protrude from the package to make 
mechanical contact to rubbery conductive planes. While construction of a truly 
paintable IC would have involved protracted development at the component level, 
pushpin computers enjoy a relatively modest hardware threshold, and yet are func-
tionally compliant with the reference platform.  

As a precursor to a wider treatment by Lifton[34], initial experiments were per-
formed on a 3-pin particle. Here, the computing elements are targeted toward bean 
sized packages with the three pins protruding from the base. The pins are of 
unequal length, catheterized so that only the tips make electrical contact. These 3-
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prong pushpins are thumb tacked into a planar composite consisting of seven sheets 
of soft rubbery silicone (fig. 3-2). Two of these layers are electrically conductive, 
separated by intervening layers that are non-conducting. The upper most active 
layer is resistive, with ohmic rolloff naturally limiting the range of any current-
driven signal radiating from a point source. In operation, pushpins are randomly 
positioned on the composite’s surface and use the two longest pins to contact the 
conducting planes to draw power. The third pin contacts the resistive sheet and 
alternates between radiating a signal and listening for an answer.

Fig. 3-3 shows a lumped parameter model for communication via a resistive sheet. 
The effective resistance between the communication pin of a transmitting particle 
to the ground pin of a receiving particle is modeled as the cascade of an effective 
sheet resistance Rmi and a fixed shunt resistance internal to the particle Rs. In the 
talk mode, a particle passes a bandlimited binary stream through the communica-
tion pin. Neighboring particles in listening mode sample the voltage drop across the 
shunt resistor using a comparator and a uniform threshold Vth to recover a binary 
stream. The effective resistance of the sheet increases with distance, essentially 
limiting the distance over which a logical high can be sensed.  

FIGURE 3-2. Pushpin computers positioned in layered composite

A cross sectional view of composite populated with pushpin computers.
3-prong computing elements (pushpin computers) are thumb tacked into layered 
composite carrying supply voltage, ground, and a resistive layer used for signal-
ling.
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Three system characteristics crucial to any paintable networking method are the 
communication radii, the signalling bandwidth and the power dissipation. For the 
dissipative pushpin network, these performance figures were sampled using the test 
apparatus of fig. 3-4. A sheet of dissipative anti-static polymer, measuring 6 x 11 
inches, was fitted with a set of 330 sockets that were positioned irregularly and 
bonded using conductive epoxy. Transmitting particles were modeled by three 
unpopulated sockets onto which a signal could be externally applied. Receiving 
particles were represented by sockets populated with discrete resistors whose com-
plimentary leads were connected to a ground plane.  

For a given point source, the size of the reception area is a non-linear function of 
three variables; the spatial density of the receivers, the absolute volume resistance 

of the unpopulated sheet8 (Rv) and the ratio of the sheet volume resistance to the 
shunt resistance (Rv/Rs). Fig. 3-5 plots the signal strength as a function of distance 
for two values of (Rv/Rs). Data was collected by applying 5 volts DC to an unpop-
ulated socket. For each of the populated sockets, the induced voltage was measured 

8. Rv is estimated by averaging the point-to-point resistance between sample point pairs on 
an unpopulated sheet. 

FIGURE 3-3. Pushpin 
Network

A pushpin uses one pin to contact 
the resistive sheet. This communica-
tion pin is temporally multiplexed 
between a talk mode and listen 
mode. Particles in the talk mode 
pass a bandlimited binary stream 
directly through the pin into the 
sheet. The sheet acts as a dissipative 
channel connecting the transmitting 
particle to multiple listeners, with 
the amount of ohmic dissipation 
increasing with distance. Listeners 
sample the signal level using a 
thresholded comparator to recover a 
binary stream.
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FIGURE 3-4. Epoxied Resistor Jungle (ERJ)

Top: Front view of polymer sheet mounted in a wooden frame. 330 sockets are ran-
domly positioned on the polymer and most populated with shunt resitors. The shunt 
reistors extend upward from the sockets to contact a conductive mesh that is tied to 
ground. All but three of the sockets are populated.

Left: Rear view of polymer with the base of the sockets exposed for electrical mea-
surment. The bases of the unpopulated sockets are circles.

Right: close up of top showing one of the unpopulated socket. 
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at the base9 along with the straight line distance back to the "transmitting" socket. 
This procedure was repeated for each of the three unpopulated sockets. Fig. 3-5 
shows the sampled data points and a fitted curve. Note that for a given particle den-
sity, selection of a threshold voltage is sufficient to define the expected size of a 
neighborhood.  

9. The point at which the shunt resister contacted the socket.

FIGURE 3-5. Distance dependent attenuation in the ERJ

A 5V DC potential is applied at the unpopulated sockets on the ERJ. The 
induced potential is measured on the populated sockets and plotted as a function 
of distance. The test is conducted for two values for the shunt resistance (Rs in 
fig. 3-3). In the design of a network, selection of a threshold voltage defines the 
size of the neighborhood.
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Discussion.  Nothing in this brief treatment approaches closure on the many crucial 
implementation questions surrounding the hardware for pushpin computing. No 
data was gathered on the failure modes of the conducting silicone used in the power 
planes. And in the networking subsystem, no consideration was given to the addi-
tional power consumption or the bandwidth costs for clock recovery, channel cod-
ing or error management. These challenges and more have been taken up by 
Lifton[34].

The crucial message of this section is that the relevance of the programming model 
developed herein is not confined to a specific design for pinless paintchips with 
their speculative subsystems for power and communication. Rather, the program-
ming model can be designed to an extended architectural class — one that includes 
tractable designs based on conventional components. Joint development of the 
hardware and software for ultra dense distributed computing can begin with man-
ageable hardware that captures the essentials of the problem domain. 
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Programming Model

To program a paintable is to program on both sides of a great divide. On the one 
side, programs must embody an organizing principle that anticipates the irregular-
ity, asynchrony, fluctuation, expansive scale, and complex behavior of the particle 
collective. On the other side, programs must necessarily consist of modules which 
run on individual particles where the computing environment is well ordered, con-
sistent, and reliable. This section presents a programming model (PM) for the 
paintable, and illustrates its application with a simple run-time example. The mech-
anism for extra-ensemble data exchange is revisited. Work on related programming 
models is reviewed.

But first, whence the metaphor of material self assembly?

Computation is often applied to model events in the physical world. A successful 
approach has been to pattern the structure of programs after the structure of physi-
cal events that they model. Object oriented programming organizes programs into 
’objects’ whose instantaneous state is internalized as a collection of state variables 
and whose exposed interface is a set of object-specific procedures. Stream pro-
gramming uses delayed execution as a model for the progress of information 
through cascaded physical systems.

As computing migrates onto densely distributed embedded substrates, a program-

ming abstraction based on material self-assembly10 follows naturally. As with the 
paintable, the "hardware" in material self assembly consists of numerous, unreli-
able components arranged in a heterogeneous ensemble whose native complexity 
strains traditional analytic techniques. Material self-assembly, when viewed as a 
computation, offers fresh approaches toward exercising quantitative control over 
these seemingly chaotic systems. Finally, a programming model based on material 
self-assembly captures the dichotomy inherent in computing on a paintable. Simple 
behaviors guiding local interaction must be engineered to yield global behavior 
which is complex, adaptive, yet to at least a degree, predictable.

10."self-assembly" is broadly defined to include several common variants (scaffolded, 
entropic, and coded) operating on a variety of substrates (biological cells, insect colonies, 
man made nano-structures).
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PM Specification

The programming model is built on three cornerstones; the process fragments, the 
shared memory partitions, and the embedded operating system (OS). Process frag-
ments are autonomous, self contained computational elements that interact locally 
to perform coordinated tasks. Shared memory abstracts both the inter-process com-
munication and the inter-particle transfer. The OS regulates the operating environ-
ment, schedules local resources and supports the process fragments with a 
collection of service functions packaged as a "toolkit".

Once the programming model is in place, this text concludes by revisiting the 
model for I/O with the external environment. Additional detail is given on the 
required similarity between an I/O portal and a particle. The format and methods of 
data exchange are defined.

Particle Memory Organization

Software on a paintable is organized into autonomous, self-contained executables 
referred to herein as "process fragments" (pfrags). All pfrags running on the parti-
cle’s micro reside in the particle’s RAM space. Most of the RAM is available for 
pfrag program and data. However a section of the RAM is reserved what is called 
the I/O space  an area which is at least readable by any pfrag running on the par-
ticle’s micro (fig. 3-6).  

A subset of the I/O space is called the HomePage. The HomePage is an area where 
pfrags can both read and write tagged data. Any pfrag local to the particle can post 
to the HomePage. And posts to the HomePage are readable by all local pfrags.

The remainder of the I/O space is subdivided into mirrored instances of the Home-
Pages of neighboring particles. When a pfrag on a given particle posts a piece of 
tagged data to the particle’s HomePage, copies of that post appear at the mirror sites 
on all the neighboring particles. The caveat is that the latency in the mirroring oper-
ation is unconstrained.  

The basic unit of information on these bulletin boards is the post — an instance of 
data that is tagged for identification. Posts are structured as key/value pairs, where 
the value component can be another key/value pair. The size of the posts is regu-
lated by the particle’s OS and is bounded by the space available on the HomePage. 

The size of the local HomePage is determined by the particle’s OS, which de-frag-
ments the HomePage as necessary. The OS also dynamically maintains the size of 



35

Programming Model

the I/O space. For every neighbor with which a particle maintains an active contact, 
the OS allots a mirror site in the local I/O space for the neighbor’s HomePage. The 
constituency of the neighborhood is periodically checked, and changes in the num-

ber of active neighbors11 triggers an adjustment in the number of mirror sites.

Actual dimensions will necessarily be technology and task dependent. As an illus-
tration, the simulations of the following chapters assumes a total particle RAM 
capacity of 50K words. Each HomePage is allotted 1K words. Each particle has an 
average of 15 neighbors, yielding an average I/O space of 16K words — roughly a 
third of the total RAM space.

Finally, two additional FIFO’s are defined that support inter-particle transfer of the 
process fragments. The Bassinet is an input FIFO where incoming process frag-

11.Due to either a run time fault or the intentional appearance / disappearance of a particle.

FIGURE 3-6. Organization of Particle’s RAM

Most of the RAM is used as executable space for the currently running pro-
grams. However the IO space is reserved. A subset of the IO space — the 
HomePage — is available for programs to read and write tagged data. The 
remainder of the IO space is read-only.
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ments are assembled during serial input. Similarly, the Launch Pad is a staging area 
where outgoing process fragments are buffered for streaming out to one of the 
neighboring particles.

Process Fragments

The atomic element of the paintable programming model is the process fragment 
(pfrag). These are autonomous program entities that migrate among the particles 
and interact with the local environment. As a subclass of general computational 
processes, pfrags consist of coded behaviors and state. The state is internalized as 
data in a vector and the behaviors are defined by sequences of machine instructions. 
The additional restrictions that distinguish process fragments as a subclass can be 
reduced to three normative requirements:

1. They are self contained executables capable of fitting entirely in the RAM space 
of a single particle.

2. They gate their entire I/O through the I/O space in the particle’s RAM, with 
writes directed to the HomePage and reads taken from anywhere in the I/O 
space.

3. They define behavior for 5 functions which the particle’s OS can issue to them 
at any time. These functions are public handles similar to the public methods of 
traditional Object Oriented Languages such as Java.

Sized to fit  Conceptually, paintable process fragments are intended as self con-
tained executables. In the strict sense, this means that no pfrag can allocate scratch 
memory or execute a branch instruction that points to an address outside the frag-
ment’s bounded address space. However, implementation has motivated three 
exceptions: 

• A process fragment can request from the OS a parcel of scratchpad memory. 
This is a one time request that is made as part of the fragment’s initial negotia-
tions for entry into the particle. This memory is exclusively bound to the pro-
cess fragment and is automatically freed when the fragment departs or is erased.

• The OS can also maintain a collection of library functions that it makes avail-

able to pfrags as needed12. The flip side is that a pfrag must be prepared for an 
instance when a requested function is not available.

12.See description of Pfrag Toolkit on page 42.
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• Finally, while it is outside the spirit of this spec, there is nothing to stop a pfrag 

from using the HomePage as temporary data storage13.

Gated I/O  All data traffic between a process fragment and its environment is gated 
through the I/O space and managed by calls to the OS. Data on the I/O space are 
organized as posts — variable length packets structured as key/value pairs.

Process fragments use OS function calls to query the number of neighboring 
HomePages that have been mirrored in the I/O space, to inquire as to the number of 
posts on a given HomePage mirror, to sense the available free space on the local 
HomePage, and to read / write the posts. These OS functions are limited to memory 
management. The OS has no capacity to interpret the keys in the posts or to pre-
process the posts (i.e. no searching, sorting, or filtering). Pfrags must also be pre-
pared for the case when lack of space on the HomePage causes posts to the HomeP-
age to fail.

A process fragment receives the posts as a string of data with a reported length. It is 
up to the pfrag to interpret the keys in the post in order to assign meaning to the 
remaining data. There is no requirement that all posts be meaningful to all pfrags. 
Indeed, most posts will be indecipherable to most pfrags. The alternative would 
necessitate some sort of centrally maintained global semantic taxonomy — of poten-
tially unbounded size. In the implementation of the following chapters, we circum-
vent this problem by limiting the key values to pfrag tags. These tags uniquely 
identify pfrag types and are assigned to the pfrag during authoring from a centrally 
maintained database accessible from the development environment.

Process fragments do not communicate directly. Rather, they infer the type and 
state of other local pfrags from the posts in the HomePage. Currently, pfrags that 
wish to communicate with each other must do so by passing tagged posts back and 
forth through the HomePage. Work on the applications highlighted the shortcom-
ings of this approach for data exchange. Future revisions of this spec will provide 
an alternative, probably involving message passing via the HomePage to set up 
DMA-style transfers between the pfrags.  

Public Handles  The process fragments’ behavior is completely defined by their 
collective response to 5 required handles: Install, DeInstall, Transfer-Refused, 
Transfer-Granted and Update 

13.yet
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Except in rare instances, four of these handles are comparatively simple. The Install 
and DeInstall handles carry out the pfrag’s portion of the housekeeping involved 
with positioning the executable in memory, running it, stopping it and removing it 
upon completion. The Transfer-Granted and Transfer-Refused handles are the 
pfrag’s portion of the handshaking involved with the migration of the pfrag from 
particle to particle. The lion’s share of the behavior is embodied in the Update rou-
tine, which is intermittently called by the embedded OS. These five commands are 
itemized in table 3-1 and discussed in more detail below:

FIGURE 3-7. Process Fragment

Process Fragments are self contained executables with public handles for 
5 required functions. In addition to these functions, the pfrags must carry 
as payload sufficient scratch space for any internal calculations and any 
necessary private routines. The exception to this being those subroutines 
explicitly supported by the OS.
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Install On successful transfer into a particle, a pfrag is assigned a starting 
address in the RAM by the OS. The OS then copies the fragment out of the 
bassinet and signals it to complete its part of the installation with a one time 
call to the fragment’s Install routine. Typically a pfrag places an initial post 
into the HomePage and runs some internal initializations. If in the course of 
negotiating its transfer, a pfrag requested scratch memory, that memory is 
also assigned during the Install.

DeInstall The complement to the Install handle is the DeInstall handle. If 
DeInstall is called with no parameters, the pfrag must immediately begin to 
erase any of its posts on the HomePage, de-queue any transfer requests and 
finally mark itself for erasure by the OS. The DeInstall can also be called 
with a single parameter, which is interpreted as a grace period during which 
the pfrag can secure permission to transfer to a neighbor. If the grace period 
expires and the pfrag has not exited, the OS will typically issue a DeInstall 
with no parameters.

Transfer-Granted  Pfrags apply for a transfer to a neighboring particle by 
queuing a transfer request. When the neighboring particle can accommodate 
the transfer, the OS informs the pfrag with a call to Transfer-Granted. In 
response to this call, the pfrag copies itself over to the Launch Pad (outgoing 
FIFO). If the fragment’s intent was to transfer to the neighboring particle, 
the pfrag will then DeInstall itself from the current particle. Alternatively, 
the pfrag could choose not to DeInstall, with the end effect that the fragment 
propagates a copy of itself.

Transfer-Refused  In the case where the neighboring particle can not 
accommodate the transfer, the OS at the current particle informs the frag-
ment with a Transfer-Refused message. The fragment must then de-queue 

the request14.

Update  The basic vehicle for process scheduling on a paintable is the 
Update handle. Once a pfrag has been installed, the particle’s OS will inter-
mittently call the Update routine to allow the pfrag to adapt to changes in its 
environment. Ideally, all pfrags in a given particle would appear to be simul-
taneously interacting with each other while reacting to changes in the envi-

14.In the current spec, transfer requests do not time out. It is up to pfrag to de-queue the 
transfer request after receiving an answer from the OS.
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ronment. In practice, the particles use time sharing among the pfrags to 
emulate this group dynamic. 

On the periodic calls to Update, the pfrag senses the state of the environ-
ment via reads from the I/O space, compares that to its internal state and 
selects one of a set of predefined behaviors. Possible responses include add-
ing or removing posts to the HomePage, transferring to a neighbor, deleting 

itself15, spawning a copy of itself, or just doing nothing.

If Update is called with no parameters, it runs to completion before return-
ing control to the OS. If a single integer parameters is supplied, it indicates 
the length of the time slice allotted to it by the OS, measured in clock ticks. 
In contrast to traditional time-share systems, this value is only a suggestion. 
The Update always runs to completion. Yet, it can be helpful for the pfrag to 
know that it has very limited time and to adapt its processing accordingly.   

15.Process fragments can call their own DeInstall () functions.

 
TABLE 3-1. OS Commands that all Process Fragments must support

Commands Description

Install  (addr OS)

Install  (addr   OS,
             addr  scratch)

Install the process fragment 
OS → trap address for OS supported functions
scratch → one time scratch memory bound to
                   the pfrag

DeInstall  ()

DeInstall  (int  Time)

DeInstall a process fragment
Time → period of notice measured in clock ticks

TransferGranted  (addr  FIFO) Requested transfer has been allowed
FIFO → address of output buffer for transfer

TransferRefused  () Requested transfer has been refused

Update  ()

Update  (int Time)

Execute a round of adaptation. 
Read the state of the environment from the I/O space 
and select an internalized behavior in response.
Time → maximum allowable time before
                    returning (measured in clock ticks)
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OS

Control of each particle’s resources is vested in a real-time operating system (OS) 
embedded into every particle. As with most single-processor architectures, the 
paintable OS regulates the flow of information, services event driven interrupts, 
schedules the processing of local executables and allocates shared resources.

The operation of the paintable OS can be grouped into four categories: general 
housekeeping, the interface to the network subsystem, the strategy for calling the 
pfrag handles, and the pfrag toolkit. The general housekeeping tasks include func-
tions like intermittently de-fragmenting the RAM and the I/O space. The remaining 
three function groups are discussed below. Note that this discussion is pfrag-centric 
in that it only presents the level of detail necessary to author a pfrag. 

Network Interface. Particles contain three segments of shared memory that are 
used by both the pfrags and the network subsystem. These are the 2 pfrag transfer 

FIFO’s16 and the I/O space. Access to this memory is synchronized by the OS 
which uses separate control strategies to synchronize the pfrags and the network 
subsystem.

On the pfrag side, the OS employs a toolkit approach to maintain indirect synchro-
nous control over the pfrags. Rather than accessing the memory directly, all pfrags 
must use OS-supplied toolkit functions for reads/writes to the shared memory, 
effectively inserting the OS as a proxy.

On the network subsystem side, the OS must be signalled whenever a new Pfrag 
has arrived in the Bassinet, when a transfer from the Launch Pad is complete, or 
when updates for the I/O space have arrived. Likewise, the OS must inform the net-
work subsystem when a pfrag is queued in the Launch Pad, the Bassinet is cleared 
and/or new posts have appeared on the local HomePage.

While the details of the interaction will be implementation dependent, the OS must 
have the ability to block network access to shared memory in order to guarantee 
several crucial elements of the processing environment:

• Any change in the number of neighboring particles17 must be reflected in the 
number of mirrors in the I/O space.

16.The Bassinet and the Launch Pad.

17.This includes I/O ports posing as particles.
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• Yet, when a pfrag begins its Update cycle, the entire I/O space must remain sta-
ble for the duration of the cycle.

• Pfrag posts to the HomePages of all the neighboring particles must ultimately be 
mirrored in the I/O space.

• Pfrag posts to the local HomePage must likewise be broadcast to the neighbors.

Pfrag Handles. The OS influences the behavior of the pfrags through calls to the 
five required pfrag handles (table 3-1 above). Two criteria guide the scheduling of 
these calls; mobility and adaptation. The mobility criterion derives from the need to 
maintain an amount of free RAM space sufficient to support a constant flow of 
migrating pfrags. The adaptation criterion seeks to model an environment where 
multiple pfrags interact concurrently.

Maintaining a sufficient amount of free RAM is the "Grim Reaper" component of 
the OS design. The designer must define cost functions to decide how much RAM 
to keep open, and to decide which pfrags to DeInstall when free space becomes too 

scarce18. Both these cost functions can vary from simple to complex. And both take 
advantage of the statistics that the OS can gather as it arbitrates transfer requests, 
shepherds the pfrags through the FIFO’s and proxies the pfrags’ access to shared 
memory.

The OS strategy for maintaining adaptation is traditional time sharing. The OS 
sequences through all the resident pfrags, dispensing a time slice with a call to the 
pfrag’s Update command. Update commands run to completion and therefore 
define the temporal granularity of the time sharing. The OS can pass to the pfrag a 
suggested time limit and monitor compliance. But unless the pfrag triggers a trap 

condition19, the pfrag designer can expect every Update call to complete without 
interruption. Be nice kiddies.

Pfrag Toolkit. The OS bundles a suite of services into the Pfrag Toolkit (table 3-
2).The minimum set provides support for reading and writing the HomePage, read-
ing the I/O space, requesting inter-particle transfer, and assorted maintenance func-
tions (random number generation). Beyond this required minimum, the OS can 

18.Pfrags frequently call their own DeInstall function in the course of their normal opera-
tion. And in many applications involving a closed set of pfrags, the "Grim Reaper" com-
ponent of the OS is obviated.

19.The OS must anticipate a number of coding pathologies (eg. infinite loops) monitor 
against them, and signal a trap condition when one is found. 
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offer a suite of commonly used library routines (eg. a math package), with the 
caveat that the pfrags must respond predictably in particles where the requested 
function is not available.

  

TABLE 3-2. Minimum suite of Pfrag Toolkit functions

Commands:  Pfrag Toolkit
HomePage: Write

boolean  postEntry  (pfragId,  length,  post) Post a single entry on the HomePage. 
Returns boolean flag for success/failure.
pfragId → integer ID number assigned to Pfrag
length → number of bytes in post.
post → array containing post (length bytes)

boolean  repostEntry  (pfragId,  lenOP,  oldPost, 
lenNP,  newPost)

Alter an existing post 
Returns boolean flag for success/failure.
pfragId → integer ID number assigned to Pfrag
lenOP → number of bytes in current post.
oldPost → array containing current post
lenNP → number of bytes in updated post.
newPost → array containing update post

boolean  removeEntry  (pfragId, length, post) Remove a particular entry from the HomePage.
Returns boolean flag for success/failure.
pfragId → integer ID number assigned to Pfrag
length → number of bytes in post.
post → array containing post (length bytes)

int  removeAllEntries  (pfragId) Remove all the posts linked to the given pfrag,
Returns the number of posts removed.
pfragId → integer ID number assigned to Pfrag

HomePage: Read

int  getHpSize  () Return the number of posts in the local HomePage

int  getEntryLen  (entryId) Return the number of bytes in a given post
entryId → index to the selected post

boolean  getEntry  (entryId, post) Read a post from the HomePage. Returns boolean success flag
entryId → index to the selected post
post → array to hold post contents

I/O space: Read

int  getIoSize  () Return the number neighboring HomePages mirrored in the 
I/O space
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int  getIoHpSize  (hpId) Return the number of posts in the selected mirrored HomeP-
age
hpId →  index to the selected HomePage in the I/O space

int  getHpEntryLen  (hpId, entryId) Return the number of bytes in a given post
hpId →  index to the selected HomePage in the I/O space
entryId → index to the selected post

boolean  getHpEntry  (hpId,  entryId,  post) Read a post from the HomePage. Returns boolean success flag
hpId →  index to the selected HomePage in the I/O space
entryId → index to the selected post
post → array to hold post contents

Process Fragment Transfer

boolean  queueTransfer  (pfradId,  hpId,  pfragSize) Request a transfer to the neighboring particle corresponding 
to the selected HomePage from the I/O space.
pfragId → Pfrag ID originally assigned by the OS
hpId →  index to the selected HomePage in the I/O space
pfragSize →  total size of Pfrag (in bytes)

boolean  queueTransfer  (pfradId,  hpId,  pfragSize,
scratchSize)

Request a transfer to the neighboring particle corresponding 
to the selected HomePage from the I/O space.
pfragId → Pfrag ID originally assigned by the OS
hpId →  index to the selected HomePage in the I/O space
pfragSize →  total size of Pfrag (in bytes)
scratchSize → additional scratch space required by Pfrag

boolean  queueTransfer  (pfradId,  hpId,  pfragSize,
type,  prio)

Request a transfer to the neighboring particle corresponding 
to the selected HomePage from the I/O space.
pfragId → Pfrag ID originally assigned by the OS
hpId →  index to the selected HomePage in the I/O space
pfragSize →  total size of Pfrag (in bytes)
type → ID for Pfrag type (see glossary)
prio → transfer priority relative to Pfrags of same type

boolean  queueTransfer  (pfradId,  hpId,  pfragSize,
scratchSize,  type,  prio)

Request a transfer to the neighboring particle corresponding 
to the selected HomePage from the I/O space.
pfragId → Pfrag ID originally assigned by the OS
hpId →  index to the selected HomePage in the I/O space
pfragSize →  total size of Pfrag (in bytes)
scratchSize → additional scratch space required by Pfrag
type → ID for Pfrag type (see glossary)
prio → transfer priority relative to Pfrags of same type

TABLE 3-2. Minimum suite of Pfrag Toolkit functions

Commands:  Pfrag Toolkit
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External I/O (revisited)

All data exchanged between particles consist of pfrags in transit, updates for posts 
on the I/O space, or OS ↔ OS arbitration for pfrag transfer. I/O devices gain access 
to the particle ensemble by masquerading as particles, and must therefore dress 
there external I/O as either migrating pfrags or HomePage posts.

I/O portals necessarily script their wireless interactions to maintain the illusion that 
they have a HomePage, and protocol support for pfrag transfer. While indistin-
guishable at the signalling level, portals can still differentiate themselves from par-

ticles by posting "portal ID" posts to their pseudo-HomePage20. Pfrags in the 
vicinity sense these posts and interpret them as either a general announcement that 
the ’particle’ is actually a portal, or as a message directed to selected pfrag types.

Input portals pass data either by posting to their pseudo HomePages or by stream-
ing pfrags. Portals stream pfrags by flooding the neighborhood with transfer 

void  clearTransferQueue  (pfragId, hpId) Clear the transfer request.
pfragId → Pfrag ID originally assigned by the OS
hpId →  index to the selected HomePage in the I/O space

Maintenance

boolean  copyMem  (pfragId, fromAddr, toAddr, len) Copy a continuous segment of memory
pfragId → Pfrag ID originally assigned by the OS
fromAddr → source address
toAddr → destination address
len → number of bytes

int  getTime  () Returns the system time (in clock ticks).

boolean  markForGC  (pfragId) Mark the Pfrag for deletion by the OS.
pfragId → Pfrag ID originally assigned by the OS

double  getRandomDouble  () Return a sample of a uniformly distributed random variable in 
the range [0.0  1.0]

20.A tag specifically for this purpose is defined in the simulator’s development environment.

TABLE 3-2. Minimum suite of Pfrag Toolkit functions

Commands:  Pfrag Toolkit
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requests, following up every Transfer-Granted with a pfrag. Transfer requests from 
the neighboring particles to the portal are acknowledged but immediately refused. 

Output portals receive data by either reading posts from neighboring particles, or 
by inducing migrating pfrags to transfer in. Pfrags can be attracted either by 

directed messages posted on the portal’s pseudo HomePage, or by Gradient fields21 
radiating outward from the portal. Information in the HomePage posts of the Gradi-
ent pfrags can trigger selected pfrags to walk the gradient field back to the source — 
in this case, the portal.

Chapters 4 and 5 show examples of the portals performing the following functions:

• streaming of packetized data embedded as payload in pfrags

• sequencing the insertion of pfrags to direct the formation of structures.

• parallel image capture via an array of sensors scattered among the particles.

Run Time Example

Summarizing, process fragments wander among the particles, sensing the environ-
ment through the visor of the I/O space. and reacting in accordance with a set of 
internalized strategies for interaction and migration. Interaction is restricted to 
posts on the HomePage. Migration is via requests for transfer to neighboring parti-
cles. Migration becomes propagation when pfrags transfer copies of themselves.  

This section illustrates the runtime behavior with an example of six pfrags interact-
ing to execute a parallel data flow algorithm. The processing substrate is a series of 
particles regularly spaced along a line (fig. 3-8a). At one end is a single I/O portal, 
while the opposite end extends to infinity (read: is not relevant). The communica-
tion radius is sufficient for each particle to communicate with its two nearest neigh-
bors.

In this illustration, the entry of the six pfrags is sequenced in such a way that they 
assemble into a processing structure which supports the 3-way concurrent process-
ing of fig. 3-8b. Input vector data is streamed from a common source, analyzed 
concurrently by three processes, with the scalar results passed up to a fourth pro-

cess for comparison22. This structure emerges from the interaction of three groups 

21.Gradient fields are an elemental instance of pfrags that replicate and self organize into 
structures. They are described in detail in Chapter 4.
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22.This architecture is well suited to general problems of classification and modeling, where 
a stream of sampled data is concurrently compared against multiple models. For each 
model, a scalar error metric is accumulated and passed along to an arbiter process for 
comparison.

FIGURE 3-8. Architecture and 
Algorithm

(a) Processing substrate consisting of parti-
cles arranged in a line. At one end is an I/O 
portal with capable of mimicking a particle. 
The communication radius supports com-
munication between adjacent particles. 

(b) Data flow in concurrent process. Vector 
data is streamed from a common source to 
three concurrent processes. Each produces a 
scalar value as a result and passes that value 
along to an arbiter

(a)

(b)
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of pfrags: BreadCrumb, NearSightedMailman, and the KnittingClub23. Bread-
Crumb builds a scaffold. NearSightedMailman delivers the input data to the several 
members of the KnittingClub, which perform the analysis.

BreadCrumb.  BreadCrumb assigns to each particle a unique BreadCrumb-rela-
tive address. It operates by first depositing a copy of itself into every particle and 
then negotiating with its neighbors to arrive at a unique ID.This ID is posted to the 
HomePage and updated dynamically as needed. The goal is a sequence of addresses 
which is monotonically ascending.

This global behavior is easily implemented as a series of strictly local operations. 
On entry into a particle, BreadCrumb runs its Install handle. Install posts to the 
HomePage a post consisting of two words: a tag common to all BreadCrumb pro-
cess fragments, and a crumb number (CrumbNr).  

On subsequent calls to Update, BreadCrumb scans the I/O space and uses its con-
tents to select one of three behaviors: propagation, adaptation, or removal (fig. 3-9). 
BreadCrumb selects the propagation mode if the I/O space indicates that one of the 
neighbors does not yet contain a BreadCrumb. Here, the pfrag requests a transfer to 

23.A perk associated with doing novel work is the liberty to apply a warped sense of humor 
to the naming conventions.

FIGURE 3-9. BreadCrumb pfrag: dynamic behavior

BreadCrumb pfrag spreads virally, installing a single copy of itself on 
every particle. It then interacts with the neighbors to build an ascending 
series of addresses. Note how posts to the local HomePage are mirrored 
in the I/O space of the neighbors
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the empty neighbor and returns. Until the transfer request is answered with either a 
Transfer-Granted or Transfer-Refused, ensuing calls to Update will simply confirm 
that the transfer is still pending and return. If the transfer is granted, BreadCrumb 
creates a copy of itself and queues that copy for transfer. Before releasing its copy, 
the originating BreadCrumb sets the CrumbNr. of the duplicate to be one greater 
than its own.

When both the neighboring particles contain BreadCrumb’s, the pfrag examines the 
CrumbNr’s from the neighboring posts and selects the smallest one. If this neigh-
borhood minimum is greater than or equal to its own CrumbNr, BreadCrumb inter-
prets this as a termination condition and removes itself by calling its own DeInstall 
handle. Otherwise, BreadCrumb adjusts its own CrumbNr to be one greater than 
the neighboring minimum, altering the local HomePage post as necessary.

The end effect of this strategy is that BreadCrumb erects a scaffold, with the 
CrumbNr’s indicating the position. 

Even a process fragment as rudimentary as BreadCrumb illustrates several charac-
teristics essential to the programming model.

• Adaptation: Adaptation is a form of information transmission. The information 
processing tasks best suited for a paintable are those which map well to asyn-
chronous agencies interacting locally to adapt to their environment. In this con-
text, efficient adaptation is best served by short Update handles which execute 
smaller increments of adaptation but more frequently.

• Exit strategy: An important component of adaptation is the ability to void the 
particle ensemble of computations that are no longer relevant. Paintable pfrags 
often do this by incorporating a dependency chain capable of triggering a mass 
extinction if broken. In BreadCrumb’s case, the dependency is the requirement 
that every pfrag always have at least one other pfrag in sight with an address 

smaller than its own24.

• Active data: All posts to a HomePage are associated with a process fragment 
that is currently installed in the particle. Conversely, process fragments can not 
leave behind HomePage posts after they are DeInstall’ed.

As instances of tagged data, posts have the expressive richness typically associ-
ated with data directed processing. However in the paintable architecture, the 

24.The BreadCrumb with CrumbNr 0 is presumably nothing more than a post at the originat-
ing I/O portal.
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intent is that the tagged data also exhibit reactive behavior — that they alter their 
content and position in response to a changing environment. Binding each post 
to the originating pfrag is the vehicle by which the posts are given a procedur-

ally defined behavior.25

NearSightedMailman. The NearSightedMailman pfrag (NSM) is the prototypical 
message carrier. Prior to entry into the particle ensemble, it receives a packet of 
data as payload and a target address for delivery. Once in the ensemble, it proceeds 
to the destination, delivers the data packet in accordance with local instructions, 
and then deletes itself.

This function is realized as a pfrag with three behaviors; transport, delivery, and ter-
mination. Periodic calls to Update always begin with a scan of he I/O space. If no 
BreadCrumb posts are found, NSM interprets this as a termination condition and 
the pfrag calls its own DeInstall.Otherwise, if the CrumbNr. in the local HomePage 
does not match the destination address, NSM seeks a transfer to the neighbor with 

the closest match26. On arrival at the destination, NSM searches the I/O space, 
looking for posts containing coded instructions from client pfrags in the adjoining 
particles. It responds to these posts by either posting descriptive information about 
its payload, posting its payload, idling, ar DeInstall’ing itself.  

All communication with the NSM pfrag is through HomePage posts. Any pfrag on 
one of three particles is a potential client. All the tags, formats and protocols must 
be known a priori by the clients. 

KnittingClub. KnittingClub maps the parallel data flow of fig. 3-8b to the opera-
tions on the 1D particle ensemble. Input vector data is read in from a common 
source, analyzed concurrently by three processes, with the scalar results passed up 
to a fourth process for comparison. This organization naturally suggests an imple-
mentation as four pfrags. These pfrags must maneuver to the correct location, 
assemble into formation, solicit their input, and regulate their internal data flow. As 
necessary, they must also sense and respond to termination conditions.

The pfrags of KnittingClub are the "Hostess" and three "Members". Each of the 
Members implements one of the three analysis routines, passing the results along to 

25.The best contemporary analogy would be consider the posts as windows to the instance 
variables of objects in an objected oriented language like C++ or Java.

26.The monotonic progression of the CrumbNr’s insures that NSM will ultimately arrive at 
its destination.
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the Hostess for comparison. The Hostess also regulates the flow of input data from 
the NSM and monitors the progress of each of the Members. Signalling among the 

pfrags is via posts to the HomePages. Pfrags within sight of each other28 abuse the 
mutually visible HomePage as a broadcast packet network, using posts to announce 
their presence, report their state and receive their instructions.   

Prior to entry into the particle ensemble, the Hostess must be told the ID of the 
NSM that it is looking for, and the codes for signalling with it. Once the Hostess 

and Members are passed into the particle chain27, they collectively execute one of 
four operating modes: transport, formation, processing, and termination. In trans-
port, all four pfrags orient themselves to the BreadCrumb trail. The Hostess walks 
the trail searching for the target NSM. The Members simply walk the BreadCrumb 
trail single file, stopping only when either the Hostess or another Member is in 

sight28.

27.Hostess first

28.Pfrag A is "in sight" of a pfrag B if a post from the pfrag A is anywhere in the I/O space 
of the particle containing pfrag B.

FIGURE 3-10. NearSighted Mailman

NearsightedMailman carries a data packet (embedded as payload) to a desti-
nation particle designated by a target CrumbNr. Once there, it scans the I/O 
space for posted instructions directing the disposition of its payload. In this 
figure, it has arrived at its destination and is idling while waiting for direc-
tions from client pfrags (which have yet to arrive).
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Once the Hostess arrives at the particle containing the targeted NSM, it signals the 
formation mode. Members then position themselves such that no two Members 

share a particle, but that every Member can see the Hostess29 (fig. 3-11). The pro-
cessing mode commences when the Hostess signals the NSM for the first install-
ment of the input data. NSM delivers the requested data via HomePage posts, 
removing one installment only after the Hostess has requested the next one. Mem-
bers likewise employ HomePage posts to signal their status and pass their results. 
Processing continues in this vein until all the members have passed their end results 
to the Hostess.

29.An example of a Member rule set that produces this formation would be: 
1) walk up the address chain until you "see" the Hostess.
2) record the CrumbNr. address of her particle (call it x)   
3) walk to the particle which has the greatest address in the range [(x-1), (x+1)] 

and which is currently unoccupied.

FIGURE 3-11. KnittingClub in formation

The Hostess (KC0) takes up position in the same particle as the Near-
SightedMailman. The Members (KC1-3) spread themselves evenly 
over the neighborhood. Note that posts by NSM to its local HomePage 
are visible on all three particles.
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Discussion & Related Work

This completes the definition of the programming model. And while many points 
remain open, it is not too early to revisit the criteria for success laid out in 
chapter 2. Two points are worth noting:

• The minimalist definition of a pfrag favors simplicity. Yet it is also complete. 
The OS toolkit commands are sufficient to construct pfrags that can maneuver 
among the particles, exchange data, procreate and die.

• The programming model is inherently scale agnostic. The processing environ-
ment within a given particle is not affected by changes in the particle topology 
outside its communication radius. 

The HomePage mirroring technique of the paintable shares commonalities with 
established techniques for inter-process communication. Three representative 
examples are blackboards systems, tuple spaces, and reflective memory.

Blackboard Systems. Blackboard systems 
(BBS) are a technique for structuring the interac-
tion of multiple agents popular within the AI 
community[15]. Defining elements are the 
blackboard, a controller, and a heterogeneous 
collection of experts. Input data, partial solu-
tions, questions and notes, are aggregated into a 
single publicly viewable database — the black-
board. Experts incorporate domain knowledge 
and diverse strategies for attacking sub-parts of a 
problem. The controller gates access to the 
blackboard, enforces consistency and monitors 
the progress toward a solution.

Scheduling is opportunistic. Experts (alone or in groups) petition the controller for 
access to the blackboard. Those granted access execute their processing, adding 
their results to the blackboard for use by succeeding experts. The overall solution 
strategy is incremental and naturally favors problem domains, such as image analy-
sis, where the excessive combinatorics frustrate fixed procedural approaches[17].

It is natural to compare the blackboard and experts to the paintable’s I/O space and 
pfrags. However the BBS experts are unbounded in size and complexity. Further, 
they enjoy a global view of the entire blackboard. Scheduling is likewise managed 
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with a controller with a global extent. Data deposited on the blackboard is static in 
that, once posted, it is independent of the fate of its originating expert.

This contrasts with the paintable PM where interaction between pfrags is restricted 
to simple posts, where the posts are temporally bound to the originating pfrag, 
where each interaction space is localized to the HomePages of a few particles, and 
where the pfrags are necessarily small and of bounded complexity.

Tuple Spaces. Tuple spaces were 
originally developed as the commu-
nications mechanism for a dedicated 
distributed processing language [19], 
and later integrated into a distributed 
extension of Java[36]. Messages are 
passed between independent pro-
cesses operating asynchronously. A 
sending process tags a message with ID information and inserts it into a tuple space 
— a computational abstraction which functions as a publicly accessible repository. 
Messages are generative in that, once deposited into the tuple space, they exist 
independently of the sender. Both the message ID and format must be known a pri-
ori by the receiver. Receivers can request a specific message by name or use wild 
card descriptions to request a range of messages. Process membership in a tuple 
space is freely variable and each process can belong to multiple spaces.

While multiple tuple spaces can emulate the networking of a paintable, the genera-
tive nature of the messages is a fundamental difference. Tuples can outlive the 
sending process, remaining in the space indefinitely until picked up by a receiver. 
By contrast, posts to the paintable’s HomePage are temporally bound to the origi-
nating pfrag. Further, when a receiving process extracts a message from the tuple 
space, it is no longer available to other receivers. Pfrag posts, on the other hand, 
have unrestricted availability for the duration of the post. 

Reflective Memory Systems. In reflec-
tive memory systems, networked process-
ing nodes communicate via writes to a 
segment of shared memory. Conceptually, 
the shared address space points to a single 
segment of physical memory. In practice, 
copies of the shared memory are main-
tained locally at every node, with dedi-
cated hardware maintaining 
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consistency30. Numerous variations on the basic theme derive from alternate 
approaches to consistency management[31]. Advantages are extreme fault toler-
ance, constant access times, and wide commercial availability. While the funda-
mentals inherently resist scaling, at least three implementations have been reported 
which promise network node counts into the thousands (Merlin[52], Sesame[53], 
and Shrimp[1])

Of the three techniques reviewed, reflected memory systems are the more distant 
cousin to the paintable PM. In reflected memory systems, locations in the shared 
address space are subject to writes from multiple sources, necessitating overhead to 
arbitrate collisions and insure synchrony in bounded time. By contrast, memory 
locations on the paintable HomePages are written to by one and only one processor 
node, and explicitly eschew bounds on the latency of the mirroring. It is self assem-
bly from chaos, or nothing.

30.Reads from the virtual shared memory are free, writes trigger a round of ’reflection’ to the 
remaining local copies.
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Simulation Environment

Development and test of the process fragments was performed on Psim — a dedi-
cated simulation environment written both for data gathering and as a pre-develop-
ment tool for design of actual particle hardware. 

  

Psim is organized functionally into five Java packages; the simulator, I/O ports, 
pfrags, viewer and GUI/controller.

Simulator Particles are modeled functionally by instances of a template 
Java object. Particle objects are arranged in a 2D ensemble where the 
degrees of freedom include the number of particles, the communication 
radius and the placement variance relative to a regular lattice. The ensemble 
runs as a single thread which randomizes the order and duty cycle of time 

sharing among the particles31.

FIGURE 3-12. Psim Overview

Particles are modeled as Java objects organized in an ensemble of 
selectable size, density and dispersion. I/O devices run as a separate 
thread and serve as portals for the pfrags. A viewer assigns an icon 
for each particle and color codes the icon to reflect the contents of 
the particle’s HomePage.
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I/O Ports  All pfrags running on the simulator must enter the ensemble 
through an I/O portal. These portals are extensions of the Particle object, 
with added support for sequenced insertion of pfrags. At any point in a sim-
ulation, an I/O portal can be positioned graphically and integrate itself into 
the network of nearby particles.

Three types of portals are available; ports, devices and arrays. Single I/O 
ports can stream pfrags to/from a file. I/O devices consists of multiple ports 
whose behavior is coordinated by a shared state machine. Port arrays are 
larger ensembles of ports, with a density comparable to the particles and a 
single shared controller. Port arrays are well suited for parallel input to the 
ensemble (eg. image sampling via array of photo sensors).

Viewer  Particles and I/O portals are assigned an icon by the viewer — a pas-
sive visualizer with access to each particle’s HomePage and RAM space. 
The viewer periodically reads the HomePages and color codes the particle’s 
icon under control of a programmable display function. An optional movie 
recorder can stream snapshots of the display into a file.

GUI/Controller  Simulator functionality is assembled into a set of menu 
options. Menu items provide interactive control of execution 
(Run/Step/Stop), icon color coding, query of particle’s state, movie author-
ing, and placement of the I/O portals. Subsets of the particles can be selected 
graphically with the mouse. Particles outside the selected region are deacti-
vated by turning off their clocks. Additional selection/deselection can occur 
at any point in a simulation (fig. 3-13).  

Pfrags  Program files for the process fragments are grouped a single Java 
package. Each file defines a pfrag ’type’ — a pfrag with the instantaneous 

state initialized to a common default value32. Pfrags are authored as Java 
objects with the required pfrag handles implemented as public methods. 
Every pfrag type is assigned a unique numeric ID. These ID’s are cataloged 
in a single publicly readable file which is also stored in this package.

31.The simulator thread loops through calls to the ensemble-update, which in turn loops 
through the particles. The order in which the particles are called is randomized for every 
loop pass. Additionally, there is a nonzero probability that a particle will skip an update 
on a given loop pass.

32.Pfrags consist of the coded instructions which define their behavior, and their instanta-
neous state stored internally in a state vector. Two pfrags are of the same type if they use 
the same procedures to define their behavior.
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Experiments in this report were run on Psim version 0.6 — an interim implementa-
tion of the programming model with a number of restrictions:

• The OS on the particles does not enforce a minimum of free RAM space. Pfrags 
must monitor the available RAM and, in the case of impending overcrowd, 
transfer out or DeInstall themselves. The OS continually monitors RAM usage, 
but responds to congestion only by signalling an error.

• No OS-specific garbage collection. Version 0.6 falls back on the garbage collec-
tor native to Java.

• The pfrag handle Update always runs to completion, as opposed to being inter-
rupted by the OS at the end of an allotted time slice.

• Inter-particle transfer proceeds directly, bypassing the FIFO’s. On completion of 
the transfer-request / transfer-granted arbitration, a transferring pfrag is moved 
directly from the source particle to the destination particle. The latency is ran-
domized by the simulator.

FIGURE 3-13. 2D particle ensemble: 
Initial distribution and subsets with I/O portal

Left: initial distribution of particles over a 2D rectangle. Viewer assigns 
icon to each particle and color codes it to reflect HomePage contents 
(blue → empty) Right: two subsets of particles are selected graphically 
via freehand sketch with the mouse. An I/O portal is positioned in one 
subset (blue → selected)
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These restrictions were brooked in the interest of flexibility and speed of execution 
on contemporary workstation-class hosts. The subset implementation is well suited 
for exploring self-assembly in a regime where the pfrags naturally limit their den-
sity to small fraction of the available particle RAM — thus obviating the need for 
"grim reaper" component of the OS’s function.

Pfrags written for the Psim environment assume the availability of the functions in 
the Java Math package. This implies that any hardware realization of the particles is 
likely to either run a lightweight Java VM, or support a subset of the functions in 
the Java Math library. 

Summary

The purpose of this dissertation is to explain how to usefully program a paintable 
computer. This chapter distilled insights from material self-assembly into a detailed 
definition of a programming environment, a reference description of the computing 
hardware, and simulator suitable as a development environment. 

Table 3-3 itemizes the key points of this chapter, organized by section. 
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TABLE 3-3. Key Elements in the System Architecture for a Paintable

Hardware Reference
Platform

• Standard fetch-decode-write execution core operating on local memory. 
typically a low power microprocessor operating on memory with an address 
space of 50K-200K words.

• Data exchange to neighboring particles via write/reads to virtual portals 
maintained by networking subsystem.

• Number of portals is automatically adjusted to account for changes in number 
of neighboring particles within a communication range.

• Inter-particle messages are error-free, but exhibit probabilistic transit times.

• Power and communication subsystems support at least partial latitude in 
placement of the particles.   No precision placement or interconnects.

• Pushpin configuration as an exemplar of this architectural class.

• 1 cm3 size scale with pins contacting planes of layered composite.

• Low technology threshold.

Programming
Model

• Model based on three cornerstones: a particle internal OS, and two 
abstractions for program organization and shared memory.

• All executables organized as process fragments (pfrags); mobile, autonomous 
program components.

• Internalized procedures can be arbitrarily complex, but exposed interface is 
limited to 5 required methods and optional posts — messages encoded as 
key/value pairs.

• Inter-process communication via posts to HomePage — reserved areas of local 
memory whose contents are eventually at mirror sites on the neighboring 
particles.

• Posts from neighboring particles are assembled into the I/O space — a read 
only bulletin board-style area of local memory.
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Programming
Model

(continued)

• Each particle has embedded OS that performs resource management and 
process synchronization.

• OS coordinates access to memory pages and FIFO buffers that are shared with 
the networking subsystem. 

• OS proxies pfrag access to particle resources through a suite of "Toolkit" 
commands 

• OS uses method calls to pfrags to emulate time-sharing among pfrags.

Simulator

• Simulation environment written for code development and data gathering, and 
as a pre-design step for actual hardware.

• Written in Java 1.1.7 and grouped into five packages: particle simulator, 
viewer, GUI/controller, external I/O, and pfrag library.

• Simulator models each particle by separate instance of template Java object.

• Objects arranged in 2D ensemble of selectable size, density, dispersion and 
communication radius.

• All pfrags enter the ensemble via I/O ports — particle objects extended to 
support the insertion/removal of pfrags. Ports come in three flavors:

• I/O portals are single ports for streaming pfrags between the ensemble and file 
storage.   Useful for sequenced (but unsynchronized) insertion of pfrags.

• I/O devices are portals that can be grouped and controlled centrally by a finite 
state machine.   Useful for pfrag insertion coordinated over multiple ports.

• I/O arrays are dense arrays of I/O ports, also centrally controlled by finite 
state machine. useful for dense sampling of physical stimulus (i.e. an array of 
photo sensors for image capture).

• Visualization supported by a viewer package.

• Each particle is assigned an icon which is color coded to reflect the contents 
of the HomePage.

• Optional movie generation by streaming snapshots of the viewer to a file.

• GUI control over execution (Run-Stop-Step), placement of I/O ports, and 
color map for viewer icons.

• Subsets of the ensemble can be selected graphically and enabled/disabled.

• Graphical selection of single particles for query of HomePage contents.

TABLE 3-3. Key Elements in the System Architecture for a Paintable
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CHAPTER 4 Essential Process Fragments

Software with the principal role of interacting with the physical world must, of 
necessity, acquire some properties of the physical world

- Edward A Lee,  U.C. Berkeley.

This chapter illustrates the design and operation of process fragments with six 
examples. In three examples, single pfrags propagate and coordinate to estimate 
distance and to diffuse packet data uniformly throughout a particle ensemble. In the 
remaining three examples, small sets of pfrags interact to tessellate a surface, build 
a communication channel, and construct a 2D coordinate system. In each of these 
examples, we define the task, lay out the implementation, and answer four ques-
tions: Does it work?  Does it scale?  What are its limits?  Why is it important?

Along the way, we see examples of pfrags organizing into stable structures, direct-
ing data exchange within the structure, and doing so with a useful degree of scale 
invariance. Two basic programming abstractions are introduced: the vfrag and an 
operator. Vfrags are single pfrags that support virtual emulation of multiple pfrags. 
An operator is a set of interacting pfrags that has been grouped into a function mod-
ule with a well defined interface to the external world. The pfrags presented here 
form the building blocks for the applications in the next chapter.

A final note to the nomenclature; process fragments are often named after the phys-
ical phenomena that they emulate. For clarity, process fragments are capitalized, 
while the corresponding physical phenomena is lower case. For example: The Gra-
dient process fragment radiates a gradient field outward from an anchor point...
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Gradient

The Gradient pfrag posts to the HomePage 
of every particle an estimate of the dis-
tance d between the particle and a fixed 

point of reference1. These reference points 
are necessarily few in number and are typi-
cally the I/O portals of external devices. 
The estimate should be both robust to unit 
failure in the particles and adaptive to 
broad changes in ensemble’s topology. The operation should also be reversible in 
the sense that, when no longer needed, the Gradients release the particle’s resources 
and are purged from the ensemble

The Gradient enters the particle ensemble at the I/O portal as a single pfrag and 
propagates virally, ultimately installing a copy of itself in every particle in the 
ensemble. At any given point in the ensemble, copies of this process fragment com-
municate locally, building an estimate of the distance from the portal as a byproduct 
of their interaction.

The life cycle of a Gradient process fragment proceeds in four distinct stages; 
installation, propagation, adaptation, and removal.

Installation. In the installation phase, a gradient enters a particle and scans the 
local HomePage. If a post from another Gradient is found, the newcomer immedi-

ately marks itself for removal2. Otherwise, the Gradient posts to the HomePage a 
message consisting of five numbers (table 4-1).

1. This distance is normalized to communication radius

2. Asynchronies in the inter-particle networking can result in a situation were a Gradient 
process fragment enters a particle that was uninfected at the time the transfer was 
requested, but was infected during the interim.
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The PfragID is an identifier common to all Gradient pfrags. The two ID values are 
fixed by the originating portal and inherited unchanged among the propagating 
Gradients. In HomePages containing posts from overlapping fields, the ID’s are 

used to associate a distance with a given source3. The hop count and distance esti-
mate are constantly re-evaluated to automatically reflect local changes.

Once installed, the Gradient receives intermittent calls to its Update handle. It 
begins every call to Update by scanning the neighboring HomePages for posts from 
other Gradients with similar ID’s. Based on the search results, it selects one of the 
three remaining phases.

Propagation. If the process fragment finds a particle whose HomePage is absent of 
a post from a Gradient, it applies for a transfer to the uninfected neighbor. If the 
transfer is granted, it creates a replica of itself with an incremented hop count and 
passes the replica onto the transfer, with the end effect that the Gradient blankets 
the ensemble (fig. 4-1).  

3. External devices can interface to the ensemble through multiple portals. In this case, ID 
#1 is naturally a device specific ID, while ID #2 can specify a channel.

  
TABLE 4-1. Generic post from Gradient

Post Name

Gradient Pfrag ID ID #1 ID #2 HC
(integer)

distance
(real)

PfragID tag signifying that the Pfrag is of type Gradient

ID #1, #2 ID values assigned to initial Gradient and inherited by 
every copy.

HC hop count = distance from source portal measured in 
units of "communication radii" and rounded to the 
nearest integer.

distance distance estimate (real value average of all the proxi-
mal hop counts).
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If there are no uninfected particles in view, the process fragment reads the hop 
counts from all the neighboring posts, selecting the smallest (HCmin). It then com-
pares that value to the hop count value that it currently maintains in it post (HCt) 
Based on the result of the comparison, a Gradient either adjusts the HCt portion of 
its post, DeInstalls itself, or does nothing.

Adaptation.  In adaptation, the values for the 
hop count and real distance are recomputed (for-
mulas) and compared against the current values. 
The local post is updated as necessary to reflect 
any changes.

Removal. If the scan of the neighboring posts 
fails to produce at least one post with an hop 
count smaller than its own, the Gradient treats 
this as a termination condition and calls its own 
DeInstall function. 

FIGURE 4-1. Gradient Propagation

A single copy of a Gradient enters through a portal and spreads through viral 
replication. Neighboring Gradients then interact to estimate distance from 
portal.

The group of highlighted particles in the upper left illustrate the number of 
particles in a single neighborhood. Particles with no pfrags are shown in blue. 
Green particles contain Gradient pfrags, with intensity of green inversely pro-
portional to estimated distance to portal.
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This continual re-evaluation affords the Gradient process fragment some ability to 
adapt to changes in the environment, such as a change in the shortest path back to 
the portal. Fig. 4-2 illustrates this adaptation. The simulator graphically selects an 
initial subset of the particle ensemble. In the steady state, a copy of the Gradient 
resides in each of the active particles and builds an estimate of the shortest path dis-
tance. When the remaining particles are reactivated, the Gradients automatically 
spread outward to the remaining particles, updating the distance estimates to reflect 
the new minimum length paths. 

Note that the portal through which the original Gradient passed contains the only 
instance of a Gradient with a hop count of zero. Removal of the portal therefore 
triggers a mass extinction of the Gradients, whose dependencies all trace back to 
the post on the portal’s pseudo HomePage (fig. 4-3). 

The accuracy of the estimate is dependent on the density of the particles, and the 
anisotropy of the local communication region. The performance of gradient based 
distance estimates has been investigated by Nagpal [40], who showed that analytic 
results from work in packet radio networks could be employed to establish limits 
on accuracy of the estimates.

FIGURE 4-2. Gradient adaptation to change in topology

(a) steady state distance estimate on sub-region of particles.
(b) transient response to reactivation of remaining particles.
(c) new steady state

(a) (b) (c)
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Distance estimates are of obvious import to any system relying on the relative 
placement of mobile components. In this work, we use distance estimates from the 
Gradient for both scaffolded and thermodynamic positioning. In both cases, the ini-
tial condition is a particle ensemble with multiple I/O portals at fixed locations, 
each emanating a Gradient (eg. fig.4-4). Pfrags seeking to position themselves rela-
tive to these fields, read the distance estimates from the I/O space and apply some 
internal decision function to select the next particle to transfer to. This process 
repeats until the pfrag has found the optimal match to its predefined rest position.  

In scaffolded positioning, the wandering pfrag reads from the local posts both the 

distance and the absolute position for each portal4. Simple geometric constructs 
(eg. triangulation) are used to estimate an absolute position for each neighboring 
particle. The neighbor closest to the pfrag’s target position becomes the destination 
for the next transfer. The runtime illustration from the last chapter (our good friends 

4. This presupposes that the assigned absolute positions are consistent.

FIGURE 4-3. Gradient Removal

All Gradients ultimately rely on the ability to continually locate at least one neigh-
bor with a hop count whose value is one less than its own. Failing this, the Gradient 
marks itself for deletion. This implied dependency chain traces back to the portal, 
which contained the only instance of a hop count of zero. The disappearance of the 
portal point triggers a mass extinction. Particles where the Gradient have DeIn-
stall’ed are colored blue. 
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BreadCrumb, NearSightedMailman and the KnittingClub) were toy examples of 
scaffolded positioning, with BreadCrumb building the scaffold.

In thermodynamic positioning, no absolute coordinates for the portals are required. 
The wandering pfrag uses the distance estimates to compute forces in a conserva-

tive field5. Two examples of these forces are the spring force, and the Coulomb’s 
force for a point charge. 

•Spring Force

•Coulomb’s Law

The pfrag then directs its migration towards the particle with the local minimum in 
free energy. As an example, consider the instance of a pfrag trying to position itself 

5. This approximation is only valid as long as the shortest uninterrupted path between the 
portal and the particle is a straight line.

FIGURE 4-4. Multiple portals radiating overlapping Gradient fields

Three portals each radiate a Gradient field with a unique ID. In the steady state, every 
particle contains a Gradient for each portal. Intensity is inversely proportional to the 
distance to the closest portal.
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equidistantly from the three anchor portals of fig 4-4. The pfrag could interpret 
each distance as a spring force and migrate toward that particle with the minimum 
potential energy

•Potential Energy

Drawbacks. While Gradients adequately support a core functionality, there are 
some onerous practical limitations. When positioned in a particle, each Gradient 
consumes space on the HomePage (for posts) and in the particle’s RAM (for the 
process fragment). For every portal that radiates a Gradient, space is consumed on 
every particle in the ensemble. This approach has a hard scaling limit and is only 
tractable for applications where a small number of external portals are actively 
emanating Gradients.

This is also impractical in the case where an arbitrary process fragment would ema-
nate a gradient field at irregular intervals from a changing position. Any non-Gradi-
ent pfrag that would radiate a Gradient about its current position must essentially 
carry around a full copy of the Gradient pfrag as baggage. If such a process frag-
ment were of the type that migrated frequently, the excess baggage would translate 
to excess demands on inter-particle communication bandwidth.
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MultiGrad

MultiGrad is a single pfrag that mimics the behavior of an arbitrary number of Gra-
dients. A single MultiGrad can be passed into the particle ensemble at any point. It 
then spreads virally, ultimately depositing a single copy of itself into every particle. 
Conceptually, this thin layer of MultiGrads can be regarded as an omnipresent 
ether. Other process fragments can radiate a gradient into this ether by simply post-
ing a message to their local HomePage. MultiGrad treats this message as a point 
source and propagates a field. The degrees of freedom include the range of the gra-
dient field and the contents of a message that the field radiates as payload

The implementation of MultiGrad starts with two observations:

1. Like all process fragments, Gradients communicate via posts to the local Home-
Page.

2. All the state data necessary to distinguish one Gradient from another is con-
tained in these HomePage posts.

MultiGrad exploits this by introducing the concept of a "vfrag" — a pfrag which 

uses time sharing to emulate the behavior of multiple pfrags6. In this case, the Mul-
tiGrad vfrag is emulating a variable number of Gradients. Each Gradient is repre-
sented by a vGradient, which can be regarded as a Gradient post without the 

associated Gradient pfrag7

Ideally, there would be no difference between a vGradient and the posts from a real 
Gradient. However two implementation details confound adherence to this ideal:

1. We need a mechanism to unambiguously signal to the vfrag. This is required for 
vfrag ↔ vfrag communication, and for pfrag ↔ vfrag communication.

2. The vfrag "has a life of its own" in that, independent of any pfrags that it might 
emulate, the vfrag must also be able to diffuse into the particle ensemble, propa-
gate, operate, and ultimately be expunged.

6. Vfrag is short for "virtual pfrag". The definition of a vfrag as time shared emulation of 
multiple pfrags is inspired by the tradition of a "virtual machine" — a concept ubiquitous 
to the design of multi-user operating systems.

7. This may at first appear to violate a rule set forth in the previous chapter; namely that all 
posts are associated with a pfrag that endows the post with reactive behavior. In the case 
of a vGradient, the associated behavior is managed by the MultiGrad vfrag. If the vfrag is 
DeInstall’ed, all the associated posts go with it.
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The actual operation of MultiGrad is reflected in its four posts, shown in table 4-2. 
Three of the these posts are written and managed by MultiGrad. The fourth post — 
the MultiGradCenterPost — is sourced by other pfrags as a means of signalling to 
the MultiGrad’s.  

MultiGradPresent. On entry into an unoccupied particle, MultiGrad posts a Mul-
tiGradPresent message into the particle’s HomePage. This single word post indi-
cates to local process fragments that there is support for transmission and reception 
of gradient fields.

MultiGradExiting. Unlike the Gradient pfrag, a Multigrad does not have any 
implicit dependencies that can be employed to trigger a mass extinction. This is a 
necessary artifact of its support for the creation and removal of multiple vGradi-
ents. MultiGrad therefore employs an explicit messaging technique for mass 
removal from the particle ensemble. 

 
TABLE 4-2. Four posts used by MultiGrad

Post Name

MultiGradPresent Pfrag ID

MultiGradExiting Pfrag ID

MultiGradCenterPost Pfrag ID CD Fs  sFlag payload
length

payload
...

MultiGradPost Pfrag ID CD Fs  sFlag payload
length

payload
...

PfragID tag signifying that the Pfrag is of type MultiGrad

CD count down := field strength normalized in communication radii 
and rounded to the nearest integer. greatest at the source.

Fs field strength := remaining amount of distance that the gradient 
field will propagate before terminating. (real number normal-
ized to communication radius)

sFlag stability flag := boolean variable indicating the settling of the Fs 
value. TRUE → Fs unchanged for the last 5 update cycles.

payload length number of words in the attached payload

payload variable length attachment to post
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From any particle in the ensemble, a MultiGradExiting message can be posted to 

the local HomePage8. Once a MultiGrad senses this post on a neighboring HomeP-
age, it removes all the vGradients that it is servicing and puts up a MultiGradExit-
ing post on its local HomePage. Once every neighboring HomePage contains this 
post, the MultiGrad marks itself for deletion.

MultiGradCenterPost. This is the vehicle by which pfrags initiate the propagation 
of a vGradient. Any pfrag can signal the creation of a vGradient by posting a Multi-
GradCenterPost on its local HomePage. The count down (CD) indicates the desired 
range of the vGradient in units of communication radii. The field strength (Fs) is 
initial strength of the field. (In a MultiGradCenterPost, Fs is just a real number ver-
sion of CD). The variable length payload is propagated along with the vGradient as 
a means of uniquely disambiguating it from other vGradients.

Because the MultigradCenterPosts are written by other pfrags, MultiGrad treats this 
post as read-only. Removal of the MultiGradCenterPost automatically triggers the 
removal of the associated vGradient.

MultiGradPost. This post is both a vehicle for signalling between MultiGrads on 
neighboring particles, and a means by which other pfrags can detect and read a 
vGradient. MultiGrad propagates the vGradients in the MultiGradPosts. In a parti-
cle within the range of one or more fields, each field is represented by a single Mul-
tiGradPost. As the field propagates outward from the source, both the CD and the 
Fs values in the post are decremented. 

Pfrags within sight of a MultiGradPost can read the post to answer two questions: 
"How far away am I?" and "From what?. The Fs value in the post indicates the dis-

tance of the current particle relative to the source of the field9. The payload can be 
read to receive a message from the pfrag that initiated the field. The payload data 
also serves as a unique ID for the field.

The accuracy of the distance estimates in the vGradients is, by definition, identical 
to that of the Gradient. However MultiGrad offers substantially improved scale 
invariance, albeit at a higher initial cost in particle resources. Table 4-3 compares 

the RAM usage10 and the HomePage requirements11 for the two pfrags. This table 

8. In this work, the MultiGradExiting post is always introduced in a I/O portal.

9. This is not strictly true. In addition to the field strength (Fs) a querying pfrag must also 
know the original field strength at the source. This omission was a design error which is 
usually compensated for by including the original Fs in the payload.
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separates the costs for a single gradient field from the incremental costs for addi-
tional fields. 

The relative requirements favors the Gradient in cases where the number of 
overlapping fields is small. However, as the number of fields rises, the MultiGrad 
becomes more attractive and the limiting resource becomes space on the 
HomePages.

  

The real import of MultiGrad is that it empowers any pfrag to radiate a gradient 
field over a selectable distance. This functionality plays a key role throughout the 
remainder of this report ... including the next section.

10.RAM usage for a pfrag is estimated by disassembling the Psim java code for the pfrag. 
This figure is a coarse estimate based on unoptimized code.

11.HomePage usage is estimated by counting the words in the posts of tables 4-1 and 4-2 
and assuming a length of 5 words for the variable length payload of MultiGrad.

 
TABLE 4-3. Resource usage for Gradient and MultiGrad  (in units of words)

first field additional fields

RAM HomePage RAM HomePage

Gradient 450 5 450 5

MultiGrad 2200 20 0 9
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Tessellation Operator

The Tessellation operator groups the particles into the Voronoi regions about a uni-

formly distributed set of anchor points12.The density of the anchors is selectable. 
The anchor distribution and particle region assignment automatically adapts to 
intermittent unit faults and global changes in the topology.

The paintable tessellation operator is realized as a combination of Centroids and 
MultiGrads. Centroid is a pfrag that searches for the particle which is equidistant 
from its immediately neighboring Centroids. In the absence of a MultiGrad, the 
Centroids must migrate blind, with no knowledge of the world outside their imme-
diate neighborhood and no way to infer distance or orientation for the other Cen-
troids that it can see. 

The inclusion of MultiGrad affords each Centroid an opportunity to radiate a field 
containing ID information and an estimate of field strength that is linearly propor-
tional to the distance. Centroids interpret the field strength from their neighbors as a 
repulsive spring force and seek the position which minimizes the potential energy 

 is the field strength of Centroid

 in the set of neighboring Centroids in sufficient proximity for 
their fields to be read.

For any given particle, the region membership can be computed from the Multi-
Grad posts in its HomePage. The message payload of a MultiGrad post lists a 
unique ID value for originating Centroid. Pfrags in intervening particles can find 
the MultiGrad post with the strongest field strength and adopt the associated Cen-
troid ID as a region label.

12.In traditional classification, a tessellation operator applies a few basic shapes to tile a con-
tinuous space into a regular pattern. We abuse the word "tessellation" to include Voronoi 
cells of varying shape that spaced about uniformly distributed centroids.

U
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While this procedure performs adequately in the abstract, a number of subtleties 
must by observed to insure stability. 

• MultiGrad settling time  On Entry into a particle, a Centroid posts a MultiGrad-
CenterPost which initiates a radiating field. The suitability of the new position 
is only apparent after the Centroid has an opportunity to affect its neighbors and 
sense their response. To this end, the Centroid idles for several update cycles 
before evaluating the neighborhood for a possible move.

This is coarsely analogous to physical systems undergoing reversible change, 
where thermodynamic equilibrium must be approximately maintained during all 
stages of the change.

• Enforced Randomness  The number of skipped update cycles is randomly per-
turbed about some fixed baseline. For the experiments shown here, ± 2 cycles 
was added to a baseline of 5. This breaks up any regularities that might other-
wise cause cyclic behavior.

• Viscosity  Large moves cause field fluctuations which can impede the settling 
into a local minimum, especially when the system is in the vicinity of that min-
ima. Centroids avoid this hazard by favorably weighting moves over short dis-
tance, a technique that amounts to subjecting the moving particles to viscous 
drag.

Information for determining the relative distance between particles is not 
natively supported by the particle’s hardware but can be recovered from the 
MultiGrad posts.

As is the case with single pfrags, the dynamics of the dual-pfrag tessellation pro-
ceed in three distinct stages: installation, evaluation, transfer. Table 4-4 illustrates 
the activity of Centroid and MultiGrad in each of these stages.



77

Tessellation Operator

   

The performance of the tessellation operator was qualified by tests run on the simu-
lator. The 2D particle ensemble was defined consisting of 1030 particles. The com-
munication neighborhood contained an average of 15 neighbors. As an initial 
condition, a contiguous subset of these particles was selected, with the clocks on 
the remaining particles turned off.

Into this sub-region, a set of 30 Centroids were diffused through a single input port. 
In the absence of the MultiGrads, these Centroids simply wandered about ran-
domly, each seeking a position from which no other Centroids can be seen (fig. 4-
5a). 

TABLE 4-4. Tessellation: Interaction between Centroid and MultiGrad

Installation

 

Evaluation

Transfer

Centroid MultiGrad

• Post MultiGradCenterPost

• Skip n Update cycles 
where n = W + ∆

W = 5
∆ = random number
       in the range [-2, 2]

• Field radiating

• Evaluate all neighbors 
(including current particle)

• If best location is in neighbor-
ing particle, apply for transfer

• Field stable

• Remove MultiGradCenterPost 

• Transfer to selected 
neighbor

• Field decaying
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A single MultiGrad was introduced at a second input port and spread throughout 
the ensemble. On sensing the presence of a MultiGrad, a Centroid would radiate 
field strength with a center value of 3, search for field data from other Centroids, 
and migrate towards the position which minimized the free energy. The Centroids 
ultimately arrived at the stable configuration shown in fig. 4-5b.  

With this configuration as a starting point, the previously inactive particles were 
reactivated. The MultiGrad’s are the first to react to this by virally spreading among 
the newly activated particles. The Centroids then follow (fig. 4-6a) ultimately arriv-
ing the new stable configuration (fig. 4-6b).  

As the figures suggest, this simple dual-process fragment operator only weakly 
approximates the patterned regularity typically associated with tessellation. It is 
perhaps more analogous to a collection of spheres packed into a container. And 
while it is demonstrably adaptive, this rudimentary implementation of a tessellation 
operator has some limitations worth noting:

• Like all operations involving gradient fields, field data radiated via MultiGrad 
has a resolution which is statistically bounded by the number of particles in an 
average communication radius. This affects the positional accuracy, and by 
extension, the resolution of the estimate for potential energy.

• A pitfall unique to this implementation is the dependence on static values for 
initial field strength. Centroids radiate a field by posting a MultigradCenterPost 
as a signal to the neighboring MultiGrads. This post specifies an initial field 
strength which, together with the communication radius, determines the total 
distance that the field will radiate. In this bare-bones version of Centroid, that 
initial field strength is hard coded into the process fragment, resulting in a finite 
field range. This limitation on the field strength imposes both an upper and 

lower bound on the density13 of the Centroids. Too many Centroids, and their 
associated fields exhaust the space on the HomePages (table 4-3). Too few Cen-
troids, and their field strength is insufficient to blanket the entire ensemble (fig. 
4-7). Nevertheless, for densities within these scaling bounds, the performance is 
independent of the total number of particles.

13.The ratio of number of Centroids to number of particles.
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(a)

(b)

FIGURE 4-5. Tesselation operator applied to sub-region

(a) 30 Centroids (red) enter through a portal and randomly diffuse among a 
subset of the particles. (b) inclusion of MultiGrad enables tessellation. the 
intervening particles color coded according to field strength.
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(a)

(b)

FIGURE 4-6. Tessellation: Adapting to expanded ensemble size

(a) Previously deactivated particles are reactivated (light blue). MultiGrads 
begin to propagate outwards (dark blue), followed by the Centroids (red). 
(b) New steady state distribution
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Several corrective options are available, all coming with a price. One option 
would be an extension to MultiGrad to support radiating fields with unbounded 
range. This would support true scale invariance, but at a price of overcrowded 
HomePages and an attendant limitation on the number of Centroids. A more 
attractive option is the inclusion of a third process fragment that estimates rele-
vant global statistics of the ensemble which the Centroids, in turn, use to adap-
tively adjust the field range.

  

The import of the tessellation operator is its utility as a basic tool. It employs ther-
modynamic self organization to provide the scale resilient grouping operations that 
are fundamental to constructing complex structures. For example, in systems of 
heterogeneous particles, it is particularly well suited for tasks such as property 
assignment.

FIGURE 4-7. Tessellation: Insufficient field range

Fields radiating outward from the Centroids can have an insuffi-
cient range to collectively blanket the particle ensemble.
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Diffusion

Diffusion is a single process fragment that functions as a carrier. It accepts a packet 
of data as a payload and employs a migration strategy for transporting the payload 
throughout the particle ensemble. The migration strategy is an ongoing shuffle 
driven by local disparities in the pfrag density. A group of Diffusions carrying a 
sequence of packets position the packets in such away that the packet density is 

uniform14, and the position is constantly randomized.

The life cycle of a generic Diffusion is open ended. Typically, a serial stream of 

Diffusions enters the particle ensemble at a single point of entry15. Once in the par-
ticle ensemble, the pfrag hops from particle to particle. For every particle, Diffu-
sion proceeds through three phases; installation, evaluation, and transfer.

Installation. On entry into a particle, a Diffusion places a single post on the Home-
Page. This post announces the pfrag’s presence and provides sufficient state data for 
multiple Diffusions to coordinate their activity. Table 4-5 lists the four words of the 
post. Three of these words, the PfragID, the StreamID and the Timer are symbols 
passed between Diffusions to coordinate their behavior. The fourth, Index, is for 
visualization only.     

14.With a local variation of ± 1 packet.

15.For example, an I/O portal.

PfragID the identifier common to all Diffusions

StreamID identifier unique to a stream of packets

Index identifier for individual packet within a stream

Timer counter indicating the number of update cycles this pfrag has 
been in the current particle.

  
TABLE 4-5. Diffusion post

Post Name

Diffusion PfragID Stream ID Index Timer
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The Stream ID enables separate treatment of multiple streams of data (i.e. a given 
Diffusion pfrag will only interact with other Diffusions posting the same stream ID) 
The Index is a label for the payload The Index and the streamID combine to 
uniquely identify the payload. The Timer supplies an approximate indication of 
how long a process fragment has been in a particle. The unit of time is an Update 
cycle — the time required for the particle’s OS to cycle through the Update handle of 

all of its process fragments16.

Evaluation. Throughout its tenure in a particle, Diffusion’s sole activity is to be 
looking for the next destination and to keep its place in line. On calls to its Update 
handle, Diffusion counts the number of other Diffusions in the current particle, and 
take a census of the local neighborhood. If no neighbor is has a lower occupancy 

than the current particle17, or if there is a Diffusion in the current particle with a 
higher Timer count, the pfrag increments its own Timer value by one and returns. 
Otherwise, Diffusion requests a transfer to that neighbor with the lowest occu-

pancy18. Fig. 4-8 illustrates this dynamic with the case of three Diffusions operat-
ing in a single particle.

The destination selection behavior differs somewhat for the process fragments 
located in an I/O portal. In the process of streaming a Diffusion into the particle 
ensemble, an I/O portal will create the diffusion in its RAM, and wake it up with a 
call to its Update handle. The only indication that the pfrag has that it is not in a 
particle is the presence of a IOPortal post in the local HomePage. In this case, it 
randomly searches the neighborhood applying for a transfer to the first particle it 

finds with an occupancy below a predefined threshold19.    

Transfer. After negotiating permission to transfer to a neighboring particle, the 
Diffusion removes its own post, and marks itself for removal to the transfer queue.

16.This unit of time is necessarily variable and is only suited for comparisons between 
Diffusions co-located in the same particle.

17.The occupancy count includes only those Diffusion process fragments with identical 
StreamIDs

18.Ties are broken by random selection, using a random number requested from the parti-
cle’s OS.

19.This is but one of several possible approaches for streaming pfrags through an I/O portal. 
But in all cases, the pfrag’s behavior as seen from the neighboring particles must be well 
defined.
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FIGURE 4-8. Diffusion: Rules for the Selection phase

Three Diffusions share RAM space in a single particle. On calls to their 
Update handles, each pfrag reads the Timer counts from posts on the local 
HomePage. The pfrag with the maximum Timer count searches the I/O 
space for the neighboring particle with the smallest number of Diffusion 
posts. If the minimum post count is smaller than the local post count, that 
Diffusion applies for a transfer. The remaining two Diffusions simply incre-
ment their Timer count and return.

Diffusions interpret an IOPortal post as a sign that the would-be particle is 
actually an I/O portal and disregard it as a possible transfer destination.
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Diffusion pfrags as a group exhibit two behaviors; the transient behavior when the 
group is streaming into the particle ensemble, and the steady state behavior after the 
streaming is complete. Fig. 4-9 shows an instance where a sequence of Diffusions 
is streamed through a single portal. In this test configuration, each of the 660 parti-
cles is communicating with 10 to 16 of its immediate neighbors. Each particle is 
represented by an icon that is color coded to reflect the resident Diffusion with the 

greatest Index value20. A single I/O port passes into the particle ensemble a stream 
of 1500 Diffusions with Index’s numbered linearly from 1 through 1500.   

In the transient phase, data streaming in through the I/O port creates a density 
imbalance centered at the I/O port, putting a uniform outward pressure on all the 
pfrags. The result is that the distance of any given pfrag from the I/O port is propor-
tional to the elapsed time since the process fragment passed through the port. The 
closer a pfrag is to the beginning of the stream, the farther it is from the port. In the 
transient stage, the distribution approximates concentric rings (fig. 4-9a) while the 
density is radially monotonic and centered at the portal (fig. 4-9b).

When all the data has passed through the I/O port, the transient phase yields to the 
steady state. The concentrated disparity in density vanishes and is replaced by 
pockets of localized residual disparity (fig. 4-9c and 4-9d). This residual disparity 
drives random motion among the process fragments. In the steady state, a small 
percentage of the process fragments are always moving and the position of any 
individual Diffusion is randomized in both space and time. This technique is com-
parable to a deck of cards undergoing a continual shuffling. 

Diffusion suffers from the obvious upper bound on its scaling. Too many Diffu-
sions fill the particle ensemble, at which point the I/O portal becomes congested 
and the shuffle responsible for randomizing the position breaks down. A more sub-
tle pathology can occur when the number of pfrags equals an integer multiple of the 
number of particles. Recall that the ongoing shuffle is driven by local disparity in 

the density. If that disparity vanishes, the shuffling stops21. 

Diffusion is useful in applications involving heavy data transport. In its basic form, 
it is a very light weight carrier. In practice, this simple form is used as a template 
for the design of a more complex functionality. We will see this in the first applica-
tion of the next chapter.

20.Comparable to ink staining the pfrags for in vivo observation.

21.Consider the case of 10 particles; 8 particles with 3 pfrag, 1 particle with 4 pfrags and the 
remaining particle with 2. Pfrags from 9 particles will apply for transfer into the ’hole’.
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(a) (b)

(c) (d)

FIGURE 4-9. Diffusion: Transient and Steady State Behavior

Transient behavior: As the group of Diffusions stream in through I/O portal, the 
pfrag density falls off with distance from the portal (a). The Index number of 
the pfrag also varies smoothly with distance from the portal (c).

Steady State behavior: with streaming complete, the density homogenizes (b) and 
the position becomes random (c).

0 1500
Index number

4 3 2 1 0
Pfrag count
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Channel Operator

The Channel operator uses three pfrags to construct a dedicated bidirectional com-
munication channel between two I/O portals. Messages are transported as payload 
in carrier pfrags whose migration strategy uses the channel posts as guides. Chan-
nels position themselves dynamically. Multiple channels use short range gradients 
to inhibit (or at least discourage) overlap. Removal of either I/O portal triggers the a 
mass extinction of the pfrags.

The Channel operator employs three process fragments: Gradient, Tracer, and Halo. 
A channel is defined as an indexed sequence of Tracer posts spaced at pseudo regu-
lar intervals among the particles that separate the portals. Tracers enter the particle 
ensemble at the source portal, orient themselves to the Gradient from the destina-
tion portal and propagate to traverse the path between the portals. Halos likewise 
enter through a portal and propagate to build a sheath-like shell about the trail of 
Tracers (fig 4-10).

On entry into a particle, a Tracer writes to the HomePage a post consisting of 6 
words (table 4-6). The ID’s for the source and destination portals are constant 
throughout the channel. The hop count is determined dynamically. The Tracer frag-
ment that originally enters the particle ensemble has the hop count set to zero. Sub-
sequent copies of the Tracer have their hop count incremented by one, resulting in 
an incremental progression of hop counts along the trail of Tracers. 

On calls to its Update handle, Tracer searches the local neighborhood for posts 
from other Tracers. In the equilibrium case, a given Tracer will find two posts with 
hop counts that differ from its own by +1 (the successor Tracer) and -1 (the prede-
cessor Tracer). If no successor is found, the Tracer assumes that the path is still 
being grown. It then produces a replica of itself with a hop count equal to its own 
plus 1, and directs the replica to transfer to the neighboring particle that is the short-
est distance from the destination. If no predecessor is found, the Tracer interprets 
this as a termination condition and calls its own DeInstall handle.
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The Halo pfrag creates a near-field gradient radiating outward from the Tracers. 
Functionally, the Halo field is equivalent to the superposition of a collection of 

MultiGrad fields each radiating outward from a Tracer22. Table 4-7 shows the for-
mat of the Halo post. Once installed in an I/O portal, the Halo fragment propagates 
first to the particles occupied by Tracers and then disperses outward to the interven-
ing particles. The range of the Halo is selectable. Unlike MultiGrad, Halo limits its 

propagation to those particle within the field range23.    

Fig. 4-10 shows a completed channel. A Gradient field from one portal is read by a 
second, which answers by sequencing the insertion of a Tracer and the Halo. The 
propagating Tracers walk the Gradient field back to its source. The Halo follows 
along, defining the channel’s extent. Tracers from other channels treat this Halo as a 
repulsive force with a strength proportional to the proximity to the radiating Tracer.  

22.The consolidation into a single pfrag saves space in both the HomePage and the RAM.

23.Recall that MultiGrad spreads to all the particles following the analogy of an omnipresent 
ether. Halo’s limit their presence to those particles in range of the field. Like Gradient, 
Halo puts all its state data in the post. It would therefore be straightforward to create a 
"MultiHalo" vfrag as an additional efficiency.

PfragID the identifier common to all Tracers

Source ID #1 first identifier from source portal

Source ID #2 second identifier from source portal

Dest ID #1 first identifier from destination portal

Dest ID #2 second identifier from destination portal

HC hop count = integer position of this pfrag in the 
sequence of pfrags which constitute the chain.

  
TABLE 4-6. Tracer post

Post Name

Tracer PfragID Source 
ID #1

Source 
ID #2

Dest
 ID #1

Dest
 ID #2

HC
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PfragID the identifier common to all Halos

Source ID #1 first identifier from source portal

Source ID #2 second identifier from source portal

Dest ID #1 first identifier from destination portal

Dest ID #2 second identifier from destination portal

HC hop count = integer number of hops to the nearest Tracer.

Field Strength real average of the proximal hop counts.

  
TABLE 4-7. Halo post

Post Name

Halo PfragID Source 
ID #1

Source 
ID #2

Dest
 ID #1

Dest
 ID #2

HC Field 
Strength

FIGURE 4-10. Channel connecting two portals

A Gradient propagates outward from a portal (green). A Tracer enters from the 
other portal and walks the Gradient field to its source (white). A Halo follows, its 
propagation guided by the trail of Tracers to form a sheath about the Channel
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The routing of packet messages through dedicated paths is an elemental functional-
ity for distributed systems. While practice will produce numerous variations on the 
basic theme, the simple Channel operator highlights characteristics that will be 
common to them all:

• Bandwidth  The transmission efficiency of any channel is bounded by that 
point along the path where the communication between particles with Tracers is 
the slowest.

The upper bound on signalling capacity is defined by the material characteris-
tics of the medium in which the particles are suspended. Assuming that commu-
nicating particles can allocate that capacity as needed, the communication 
bandwidth between any pair of neighboring particles will naturally suffer when 
multiple pairs load the same patch of medium. The degradation will depend on 

how many pairs are competing for the local slice of bandwidth24. 

This highlights the sensitivity to crisscrosses between the channels as well as a 
native problem with duplex service over a single Channel. In cases where band-
width matters, 2-way means 2-Channel.

• Latency  The most obvious scaling dependency is message latency. Increased 
channel length means more hops means greater latency. While the throughput 
remains constant, longer channels lengths, make the Channel operator less 
attractive for synchronous communication requiring intermittent acknowledg-
ments.

• Broadcast Excess  A secondary scaling effect derives from the use of a broad-
cast Gradient to orient the propagating Tracers. Gradients consume resources on 
every particle in the ensemble. And as the size of the ensemble grows, the cost 
of operating a Channel becomes disproportionately high. However, this is less a 
fundamental hurdle than it is an implementation bug which can be compensated 

for25.

Channel is important as both a template and a proof of principle. While it is too 
rudimentary to be applied "as is", it is a useful template upon which additional fea-
tures can be layered. 

24.This situation is comparable to the case of multiple pairs of communication units compet-
ing for bandwidth on a contention based packet network such as the Ethernet.

25.Consider a variant of the Gradient with a 2 stage termination condition. One termination 
condition which expunged the pfrag everywhere except particles occupied by a Halo. The 
second condition being a general termination.



91

Coordinate Operator

Coordinate Operator

The Coordinate operator uses two pfrags and a Channel operator to constructs a 
Cartesian coordinate system on a planar particle ensemble. Position is estimated 
relative to two I/O portals with known absolute position. The spatial extent is 
selectable, and dependencies are incorporated to void the operator’s pfrags from the 
ensemble on command.

Operationally, copies of a Coord pfrag 
are deposited into all the particles in a 
selected region. These pfrags estimate 
the host particle’s position using a 
combination of information that they 
carry and information that is read 
locally. The algorithm is a two stage 
estimation procedure (fig). Distances 
from the two I/O portals (d1, d2) are 
read from the local posts and combined 
with the distance separating the I/O 

portals26 (dp) to produce the partial 
estimate

The origin is portal #2 and the  axis 
lies along the line connecting the two 
portals. The distance from a third ref-
erence point is used to break the sym-
metry along the  axis and generate 
the final estimate. 

The third reference point is a Buoy pfrag that enters the particle ensemble through a 
portal and positions itself relative to the fields from the I/O portals. It computes its 

position27 and radiates a field with the location and ID data embedded. Note that 
distance estimates relative to the Buoy are doubly influenced by the bounded accu-

26.dp is embedded in the Coord pfrag at the originating I/O portal.

27.Uses the positioning algorithm and assuming the positive value for 
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racy of the gradient fields. Use of the Buoy field is therefore restricted to symmetry 
breaking.

The Coordinate operator combines the Channel operator together with two new 
pfrags; a Buoy and the Coord. The coordinate system is constructed by sequencing 

the insertion of the pfrags through the two I/O portals28. On contact with the 
ensemble, each portal radiates a Gradient. portal #1 reads the estimate of distance 
from portal #2 and stores this value for insertion into outgoing pfrags. Portal #1 
issues a Buoy that migrates toward a preferred position, radiating a MultiGrad field 
on arrival. Portal #2 then issues a Channel operator which walks the Gradient field 
back to portal #1. The Halos from this Channel serve as an upper bound on the 

extent of the coordinate system29. On arrival of the Channel, portal #1 then issues a 
Coord pfrag which spreads using the Halo as a propagation guide. Once installed, 
each Coord estimates the position of its host particle and posts this estimate to the 
local HomePage (table.4-8).    

28.The requisite coordination between the portals can be maintained either through a exter-
nal link or by using the Gradient ID information to assume roles and sequencing their 
activity on the arrival of pfrags propagating outward from the other portal.

29.Analogous to the use of a "primer coat" of paint to define a region and prepare it for the 
ensuing layers.

PfragID the identifier common to all Coords

Enable Flag boolean to indicate that the computed position of the 
pfrag is within a prespecified range..

X, Y Position estimate (relative to portals).

Source ID #1 first identifier from source portal

Source ID #2 second identifier from source portal

Dest ID #1 first identifier from destination portal

Dest ID #2 second identifier from destination portal

  
TABLE 4-8. Coord post

Post Name

Coord PfragID Enable

Flag

X Y Source 
ID #1

Source 
ID #2

Dest
 ID #1

Dest
 ID #2
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Coordinate Operator

Two of the stages of this process are shown in fig. 4-11. In fig. 4-11a, the Buoy is in 
place and gradient fields are radiating from both the I/O portals and the Buoy. In 
fig. 4-11b, the Coords have been dispersed over the selected region and have posted 
their coordinates.  

The limitations of the Coordinate operator derive from its sensitivity to noise in the 
gradient-based distance estimates, and by extension, to the density of the particles. 
The symmetry breaking scheme involving the Buoy is similarly error prone, with 
the result that the sign bit for  in the range  is unusably noisy for 
thresholding on .

The import of the Coordinate operator extends to several domains. In general, pla-
nar surfaces with a highly resolved coordinate reference would have wide applica-
tion outside the domain of self-assembly. For example, small devices can be placed 
on a table and use their table-relative coordinates to define their interaction in posi-
tion-dependent ways.

For self-assembling systems, a Coordinate operator affords an ideal scaffold for 
local orientation of migrating pfrags, which themselves can constitute the building 
blocks of more complex structures. Support for both limited-extent and overlapping 
coordinate systems broadens the application domain even further.

x 0.5– x 0.5< <

x 0=
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(a)

(b)

FIGURE 4-11. Construction of Coordinate System

Two external portals radiate Gradient fields. The fields guide the positioning of a 
Buoy (red particle bottom center) which itself radiates a third field (a). A Channel 
operator defines a region between the two portals. Coord pfrags blanket this 
region and interact to estimate their 2D coordinates relative to the portals.
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Summary

Process fragments (pfrags) are the reactants that fuel self assembly on a paintable. 
The definitions of chapter 3 admit pfrags with a wide variety of size, complexity, 
and behaviors. This chapter presented a detailed description of six representative 
pfrags. These six examples both illustrate the principles of pfrag design, and form a 
foundataion pfrag library for the applications of the next chapter. Table 4-9 summa-
rizes their functionality and lists references to related work.

Two forms of self-assembly were demonstrated: scaffolded and thermodynamic. 
Both produced structures that were stable, adaptive and in bounded compliance 
with a set of prescribed global criteria.   

Self-assembled program structures are inherently adaptable. Pfrags insure this by 
perpetualizing the generative processes that gave rise to the structures in the first 
place. For example, in thermodynamic assembly, the component parts of a structure 
are positioned in accordance with a minimization function applied to some environ-
mentally dependent variable(s). In effect, the structure is an equilibrium state of an 
energy functional. In a system that is constantly checking these input variables and 
recomputing the minimization, adaptation is a natural byproduct. As long as the 
environment remains stable, the structure should too. Changes in the environment 

are reflected in the automatic progress toward a new minimum30. The degree of 
change can range from small perturbations to localized extinction followed by 

regeneration from the survivors31.

Abstraction and modularity are cardinal elements of program design. This chapter 
introduced the constructs of a vfrag and an Operator as prototypical examples of 
abstraction and modularity in process self-assembly. Any pfrag that includes all of 
its state in its HomePage posts is a candidate for emulation by a vfrag. This makes 
vfrags an attractive programming artifice in applications where the particle RAM 
space is a limiting resource. Operators are collections of pfrags organized after the 
metaphor of biological cells, each specializing and clustering to form "organs". 

30.In a centralized architecture, this excess would be difficult to justify. It would amount to 
binding the value of variable Z to the sum of X and Y, and then continually re-adding X 
and Y just to insure that Z's value is current.

31.consider an example from the Channel operator. If a particle containing a Tracer pfrag 
dies, the downstream Tracers have their dependencies broken and DeInstall. The Tracer 
just upstream of the fault assumes that it is still in growth mode and propagates a new 
downstream Tracer in an identical manner to when the Channel was initially grown.
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TABLE 4-9. Summary:  six examples of pfrag self assembly

Component 
Name

No. of 
pfrag 
types

Description Related
Work

simple pfrags

Gradient 1

For each particle, Gradient estimates the shortest distance back to a fixed 
anchor point — usually an I/O port. Gradients spread virally and interact 
locally to build fractional distance estimates. Resolution limited by particle 
density. Perhaps the simplest of all pfrags. Smallest too (appr. 500 bytes).

 [28] [37] [40] 
[43]

Diffusion 1

Basic "carrier" pfrag. Each Diffusion accepts a data packet as a payload. 
Once in the particle ensemble, interacting Diffusions seek to position them-
selves to minimize disparity in local pfrag density. This drives a continuous 
shuffle that decorrelates the pfrag’s position in both space and time.

course textsa

vfrags

MultiGrad 1

Archetype "virtual pfrag". One Multigrad can emulate the behavior of 
multiple Gradients. Arbitrary pfrags can radiate fields over a selectable 
radius by simply posting a "center point" to the local HomePage. This center 
point is read by MultiGrad which then channels the field.

specific to this 
programming 

model

Operators

Tessellation 2

Groups the particles into Voronoi regions about a set of uniformly distributed 
anchor points. Uses two pfrags. MultiGrads channel fields radiating from 
mobile Centroids. Centroids interpret neighboring fields as repulsive spring 
force and adjust their spatial position to minimize free energy.

course textb

Channel 3

Defines a bidirectional communication channel between two anchor points. 
Uses three pfrags. A stream of Tracer pfrags propagate a trail from one 
anchor following the Gradient field radiated by the other anchor. Halo pfrags 
build a mini-gradient field centered about each of the Tracers, effectively 
forming a repulsive sheath around the channel

[14] [37] [43] 
[44]

Coordinate 5

Constructs 2D coordinate system from two anchor points. Uses Channel 
operator plus two additional pfrags. Buoy breaks axial symmetry of anchors. 
Coordinate pfrag spreads over region defined by Channel and triangulates off 
of Gradients from two anchors and Buoy.

[37] [41] 

a. Diffusion is seldom applied directly in distributed computing systems. For analogous physical behavior, see work on 
diffusion limited aggregation and techniques for mathematical modeling [20]. 

b. Also seldom applied directly in distributed computing, See the treatment of Thermodynamics from intro physics texts
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Summary

Operators are a weaker form of program abstraction in that their inner workings are 

partially visible32. Yet, an Operator can present a well-defined interface to the 
external pfrag environment, independent of the Operator’s inner workings. A case 
in point is the Coordinate operator, where the external interface is the Coord posts. 

Finally, this chapter explicitly extended the notion of inter-pfrag signalling. In 
chapter 3, signalling between pfrags was limited to posts placed on mutually view-
able HomePages. This naturally limited the range over which pfrags could commu-
nicate to a single communication radius. This chapter described the device of a 
carrier pfrag which accepts a message as payload and implements a migration strat-
egy which (ultimately) transports the messages to its destination. As a solution to 
messaging congestion, the Channel operator was described as a means for dynami-
cally creating a structured path for the carriers.  

32.Signalling between the Operator’s pfrags is via HomePage posts which are externally 
visible.
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CHAPTER 5 Applications

The system is optimal, we just don’t know what for.

- Gerald Jay Sussman   (remark at a group meeting)

This chapter combines the foundation pfrags of chapter 4 to simulate four represen-
tative applications: Audio Streaming, Holistic Image Storage, Surface Bus and 
Image Segmentation. 

In the first two applications, the particle ensemble functions primarily as a single 
unit of continuous memory. Use of the ensemble’s native compute ability is limited 
to dynamic positioning of the data, and — in the case of Holistic Data Storage — sig-
nal processing for frequency domain transformation. The Surface Bus application 
explores peer-to-peer communication between devices that are arbitrarily posi-
tioned on the periphery of a table. Peers are defined as any computational artifact 
that can exchange data; laptops, PDA’s, keyboards, displays, etc. The particle 
ensemble — embedded in the surface of the table — acts as both a communication 
medium and as a computational resource for these devices. In the Image Segmenta-
tion application, I/O to the particle ensemble is extended to include parallel I/O 
from a dense array of photo sensors embedded among the particles. Sensors sample 
the image on an irregular raster and then propagate the pixel data to the neighboring 
particles via near-field MultiGrad gradients. A popular algorithm for supervised 
classification is implemented as a competition among "expert" pfrags, each selec-
tive for a particular image attribute.
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Collectively, the applications demonstrate support for storage, communication, and 
signal processing. More significantly, they all point to practical instances where the 
paintable architecture and process self-assembly scale beyond the operational com-

plexity limits of contemporary computing systems1.

Streaming Audio

This section considers the general problem of streaming media data on a paintable, 
with a focus on audio as illustrative example. The important subproblems are the 
transmission of the data to and from the particle ensemble, the storage characteris-
tics of the ensemble, and the performance of the retrieval. Mass storage on a paint-
able is complicated by the fact that there is no functional equivalent to a global 
address generator. It is therefore incumbent on the data packets themselves to 
"know where to go" — and to make this decision dynamically in response to the 
instantaneous topology of the particle ensemble.

The goal of this application is to store packetized audio data in the memory of a 
particle ensemble. Data is exchanged with the particle ensemble via streaming 
through arbitrarily positioned I/O portals. On input, the audio packets should dif-
fuse outward, quickly distancing themselves from the input portal. Once the input 
streaming is complete, the packets should uniformly distribute themselves through-
out the ensemble’s collective memory. In the process, they should also randomize 
their position, effectively decorrelating the time codes of the packets from their 
spatial position. Finally, on output, the packets should reestablish their original 
sequential ordering prior to streaming out through an output portal

Representation. The solution advanced here is to encapsulate each audio packet in 
a separate Carrier process fragment. During pre-processing, analog audio is sam-
pled and diced into packets (fig. 5-1). Each packet is embedded into a Carrier as 
payload. The Carriers also record a stream-relative time code for the packet. Once 
the Carriers are streamed into the particle ensemble, the transport behavior of the 
audio packets is defined by the migration strategy of the Carrier. At the start of 
every Update cycle, each Carrier selects one of two modes; the diffusion mode for 

storage or the call-back mode for retrieval2. 

1. As distinct from the formal measures of algorithmic complexity, the phrase "operational 
complexity" is used as an informal reference to the cost of constructing and maintaining 
an engineered system — component purchase, design, manufacture, test, support, service, 
and liability insurance.  
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Storage. In the diffusion mode, the emergent behavior is the quasi-uniform distri-
bution of the Carriers over the entire particle ensemble, and a spatial shuffling of 
the Carriers. The rule set for this mode is identical to that described in chapter 4 for 
the Diffusion pfrag. This is the default mode and is active during storage.

2. Each of these modes is defined by a simple rule set encoded in the Carrier’s 
Update handle

FIGURE 5-1. Representation of audio for use in a paintable. 

The analog waveform (a) is sampled and organized into packets (b). Each 
packet is enveloped by a pfrag (c) along with descriptive data for the packet. 
Embedded in the pfrag is a migration strategy that directs the pfrag’s motion 
within the particle ensemble.
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Retrieval. Carriers enter their call-back mode when they see posts from a Call-

BackGradient pfrag. On contact with the particle ensemble, an output portal3 
inserts a CallBackGradient pfrag which radiates a gradient field. The posts from 
this gradient field contain estimates for the distance back to the output portal, an ID 
for the requested audio stream, and a range of time codes which are ’active’; i.e. 
those that should soon be queued for playback. When a Carrier sees the post from 
the CallBackGradient, it does one of three things; 

1. If its time code falls within the range of active time codes, it proceeds directly 
toward the output portal.

2. Else if it too close to the portal, it moves away from the portal, thus increasing 
the bandwidth efficiency in the vicinity of the portal.

3. Otherwise, it builds a local average of time codes, and adjusts its position rela-
tive to this average using the gradient field for orientation.

Experimental Results. The performance was examined on the simulator using a 
configuration of 660 particle, each communicating with 10 to 16 of its immediate 
neighbors. A segment of audio was divided into 1500 packets, each embedded in a 

Carrier along with a corresponding time code4. 

As the process fragments stream in, dispersive pressure tends to impose a spatial 
order (fig 5-2). A process fragment’s distance from the input portal tends to be pro-
portional to the order in which the process fragment entered the ensemble, with the 
earliest entries being furthest away.  

3. The "Output portal" is part of an external device that is requesting audio data. 

4. Apologies to the alert readers. Yes this is indeed the same simulator configuration used to 
demonstrate the basic operation of the Diffusion pfrag. Strictly as a convenience, the 
author used the figures from this streaming experiment in the write up for Diffusion. 
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FIGURE 5-2. Distribution of process fragments — streaming stage

Process fragments, each carrying an audio packet as payload, are diffused into 
the particle ensemble at a single point of entry. Initially, the packets most 
recently diffused into ensemble tend to group around the input port. while those 
diffused in earlier are pushed out to the periphery. 

Particles are color coded according to the highest time code present in the parti-
cle. Light blue represent particles with no Carriers. Packet #1 is mapped to a 
deep blue, packet 1500 to deep red, and packet 750 to deep green, with the color 
for interim packets defined as a blending between these anchor colors.

0 750 1500

Packet No.
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Once the last of the fragments is in, outward dispersive pressure gives way and the 
fragments seek to uniformly distribute themselves throughout the memory. Each 
Carrier selects its next transfer destination with an eye toward minimizing any dis-
parity in the local density. The end effect is that global distribution of Carriers tends 
toward uniformity and the spatial ordering of the Carriers is randomized.   

Retrieval is initiated when an output portal makes contact with the particle ensem-
ble and radiates a field of CallBackGradients. The posts from the CallBackGradient 
specify a range of active time codes, which the I/O portal updates as the streaming 
progresses (fig. 5-4). If a Carrier finds that its time code falls within that range, it 
proceeds directly toward the output port. Otherwise, the Carrier repositions itself so 
as to restore a spatial ordering where the Carrier’s distance from the portal is pro-
portional to its time code.

FIGURE 5-3. Distribution of process fragments — steady state

Ultimately, after all the code segments have been diffused into the particle 
ensemble, the diffusive mechanism dominates and the position of the pfrags 
becomes randomized.
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FIGURE 5-4. Retrieval

early stage (a) An newly positioned I/O port first radiates a "call back gradi-
ent" (not visible). Shortly afterward, the carriers begin to align themselves 
into concentric rings, with radial distance increasing with the time codes.

late stage (b) As the carriers arrive at the I/O port and deliver their packet 
payloads, the remaining carriers reposition themselves relative to the output 
port and the port issues updated range values for the active time codes.

(a)

(b)
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Discussion. This application is a modest extension of the Diffusion pfrag. And yet 
it is noteworthy that an application can be built around even so simple a pfrag and 
still support useful functionality. In the case of streamed storage of audio, the 
attractive properties are: 

• shuttle mode playback  At any arbitrary position in the ensemble, a local 
region of suitable size will contain samples of the entire audio stream taken at 
pseudo random intervals.

• ubiquitous table of contents  At any arbitrary position in the ensemble, the 
local region will contain pfrags from all the audio sequences currently stored in 
the particle ensemble.

• fault tolerance  Failure of all the particles within an arbitrary closed region will 
result in sporadic dropouts during play back. Such drop out can often be par-

tially masked or corrected5.

• no topology dependence  Pfrags will evenly distribute themselves over any 
collection of particles which can be described by a connected graph — regardless 
of the graph’s topology.

On a more basic level, this application gives a first indication of the power of this 
architecture to challenge convention — in this case, the belief that networks need 
routers. Although much of the audio packet’s behavior involves what we tradition-
ally regard as networking, this system is absent of any dedicated routing device. 
Control over channeling and transport which typically has been vested in separate 
routers has been exclusively deeded to the behavior emerging from local interaction 
among packets in a strictly homogeneous computing environment.

5. This is similar to the popular data shuffling and strifing method of error protection 
employed on consumer audio CDs
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Holistic Data Storage

In this application, we again treat the collective memory of the ensemble as a 
monolithic slab of memory, but this time with the unique characteristic that it stores 
images and sound holistically - arbitrary subsets of the memory yield reduced 
images of reduced resolution, in a manner reminiscent of a hologram. 

Essential Holistic Storage. The concept is comparatively new to the digital stor-
age community. Fig. 5-5 summarizes the essentials. Given a digitized image and a 
memory element embodied as a 2D planar surface, the goal is to select a representa-
tion for that image such that it can be stored into the memory plane. If the contents 
of the memory are read out and decoded, the reconstructed image should be identi-
cal to the original ... yawn. However if the memory surface is arbitrarily frag-
mented in such a way that the majority of the stored image data is lost, leaving only 
a fraction of the data available, the decoded images should be low resolution ver-
sions of the originals. In other words, loss of data should manifest itself as loss of 
sharpness.  

Several techniques for holistic image representation are available [8]. This example 
employs a cascade of hierarchical wavelet transformation, duplication of the lowest 
frequency transform coefficients, and a pseudo-random ’diffusive’ scattering of the 
transform samples throughout the memory. The net effect is that small sub-areas of 
the memory are more likely to contain a nearly complete complement of the lowest 
frequency subbands, which ensures at least a blurred image on reconstruction.

However, as the size of the memory patches decreases, there is an increased possi-
bility that the recovered data will be missing some samples of the low frequency 
data, resulting in holes in the reconstructed image (fig. 5-5e). Small concentrations 
of these holes can be compensated for by interpolation. But as the memory patch 
size continues to shrink, the image just breaks apart (fig. 5-6). Given an undersam-
pled image, data from additional fragments of the memory add constructively to 
yield a progressive refinement.  

Implementation. On a paintable, holistic image storage is implemented as the 
interaction between two pfrag types: Carriers and Transforms. Prior to entry into 
the particle ensemble, an image is divided up into blocks. Each block is embedded 
in a separate Carrier along with descriptive parameters such as the image-relative 
coordinates. The Carriers are streamed into the particle ensemble where they spread 
via diffusion.
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(c)

(e)

(d)

(b)

(a)

FIGURE 5-5. Essential holistic image storage

An original image (a) is sampled, encoded and stored in memory (shown in (b) as 
2D planar surface). The original image can be reconstructed from the complete 
contents of the memory (c). However, when the memory element is damaged and 
only a small portion of the originally stored data is available (darkened portion of 
(d)), the reconstructed image is a low resolution copy of the original. 
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FIGURE 5-6. Essential holistic image storage:  progressive refinement

An example of progressive refinement using images taken from preliminary simulations of holis-
tic image storage. "Holistically" encoded image data is mapped to a rectangular array of memory. 
Lossless reconstruction of the image requires recovery of the data from the entire memory array. 

Data extracted from a subsets of the memory array (darkened areas of (a) ) decode to an image 
(b) that is a random sampling of the space and spectrum of the original. Additional fragments of 
the memory ( (c) and (e) ) combine constructively to yield a progressive refinement of the recon-
structed image ( (d) and (f) )

(a)

(b)

(c)

(d)

(e)

(f)
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A single Transform process fragment is streamed into the ensemble and propagates 
a copy of itself to every particle. Transforms read the image data from Carriers, and 
apply a block frequency transformation. The transformation uses a 2-tap Haar ker-
nel recursively applied to produce a 3-level pyramid (fig 5-7). The output of this 
transformation is 10 subbands, each of which isolates energy at a selected orienta-
tion and frequency 6. The subbands are read by the Carriers which then replace 
their image payload with the transform data. 

Once a Carrier has replaced its space domain payload with a frequency domain 
payload, it splits itself up into 9 small mini-Carriers. The payload for each mini-
Carrier consists of two subbands: a copy of the lowest frequency subband together 
with one of the 9 remaining higher frequency subbands. The nine mini-Carriers 
then diffuse evenly among the particles. The 8x replication of the lowest frequency 
subband corresponds to a 12.5% signal redundancy7 for storage.

Experimental Results. Experiments were conducted with the simulator configured 
for 1200 particles. Two color images with dimensions 320 x 240 are broken up into 
blocks with dimensions 32 x 24 pixels, inserted into Carrier pfrags and diffused 
into the particle ensemble where they interacted with the Transform pfrags and 
spawned the mini-Carriers (fig. 5-8). The positioning and the timing for the inser-
tion of these two images were arbitrarily displaced. With the input streaming opera-
tion complete and the density approaching the steady state, a subregion was 

6. This application admits a variety of frequency transformation techniques. The two-tap 
Haar kernel [+1  -1] is the simplest example of a transformation that is both reversible 
and complete. Transforms are reversible if the original image can be losslessly re-synthe-
sized from the complete set of transform samples. Transforms are complete if the total 
number of transform samples is identically equal to the total number of pixels in the 
image. For an excellent general reference, see [46].

The 1D kernel is separably applied in 2D to produce four subbands — subsampled, band-
passed versions of the original image data. Each of the four subbands has dimensions 
equal to one half of the dimensions of the original image block. One subband is a low fre-
quency subband, corresponding to a 2x decimated version of the image. The remaining 
three high frequency subbands contain edge detail oriented in the horizontal, vertical and 
diagonal (respectively). 

At the first two levels of the three level pyramid, the entire transformation is recursively 
applied to the low frequency subband from the previous level. The original image block 
is therefore losslessly represented by 10 subbands, three high frequency subbands from 
each of three levels, plus the low frequency subband from the last level.

7. The low frequency subband contains 1/64th the size of the original image.
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FIGURE 5-7. Building the holistic image representation 

The image is subdivided into blocks of 24 x 32 color pixels. Each block is embedded 
in a separate Carrier which notes the block’s original spatial position. Carriers are 
diffused into the particle ensemble where they encounter Transform pfrags (a). 
Transforms receive the space domain image data from the Carriers and return 10 sub-
bands from the three level pyramid transformation of (b).

On reception of the transform data, each Carrier spawns 9 mini-Carriers and then 
DeInstalls itself. Each mini-Carrier contains two sets of Transform data: one of the 9 
high frequency subbands and a redundant copy of the lowest frequency subband.

Carrier

Transform

Transform
Operation

(a)

(b)
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selected and the Carriers occupying that subregion were diffused out through a sin-
gle output portal (fig. 5-9). The payload data from the Carriers was extracted, syn-
thesized back to the space domain pixel blocks, and reassembled back into the 
images.

The dark rectangular regions of the reconstructed images correspond to image 
blocks for which no Carriers were present in the selected subset of particles.     

FIGURE 5-8. Holistic Storage: Streaming input

Snap shot of two images diffusing into the particle ensemble from separate potals. 

Images (b) and (c) with dimensions 320 x 240 are divided into blocks, inserted into 
Carriers pfrags, and streamed into the particle ensemble (a). Particles are color coded 
to reflect the number of Carriers they contain, with increasing gray level correspond-
ing to more Carriers (blue particles contain no Carriers). 

The images are inserted into the particle ensemble at different times. Streaming of 
image (c) through the portal on the lower right is almost complete and the Carriers 
have largely dispersed. Streaming of image (b) through the portal on the upper left has 
just begun and the Carrier concentration near the portal is still high.

(a)

(b) (c)
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FIGURE 5-9. Holistic Storage: sample output

An arbitrary subset of the particle ensemble was selected and the Carriers were 
diffused out through an output portal. The transform data was extracted from the 
Carriers and decoded to recover the image blocks. 

The particle ensemble (a) is shown during the read out. Blue are particles already 
void of Carriers,. The distribution of the remaining Carriers is shown by the gray-
levels.

The two images (b) and (c) are the cumulative results of reconstructing all the 
Carriers after read out is complete. Black areas of images correspond to blocks 
for which no low frequency data was available.

(a)

(b) (c)
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These simulations confirmed several essential characteristics:

• The position of the image packets can be successfully decorrelated from the 
spatial organization of the particles. In other words, nothing in the shape of the 
selected subset of particles suggests the positioning of the dropouts in the recon-
structed images.

• Recovery of additional packets results in a progressive refinement of the recon-
structed images.

• The technique scales upward to include multiple sources from multiple I/O por-
tals.

Discussion. A few additional points are worth noting:

• Passing image data on the HomePage was a disaster. It is slow and unnecessar-
ily loads the networking subsystem with useless updates. This application 
makes clear that the programming model will have to be amended to support a 
more direct mode of data transfer between pfrags which are co-located in a par-
ticle. The expectation is that the setup and handshaking will be comparatively 
low bandwidth and can proceed through HomePage posts. Support for a direct 
memory-to-memory transfer between pfrags will likely be a natural extension to 
the OS supported Pfrag Toolkit.

• Additional intelligence can be incorporated into the Carriers to enhance adapt-
ability. For example, while the memory capacity of any particle ensemble will 
be limited, this inherently hard limit can be made to appear soft. In saturation, 
the Carriers can cooperate to eliminate those carrying the high frequency sub-
bands as a means for making room for additional incoming images. This creates 
the illusion of a memory with a tiered set of limits.

• The range of data types suitable for holistic representations can include some 
non-obvious examples. Consider bank account data. One might initially con-
sider a financial portfolio with data such as the number of accounts, specific 
balances, and service authorizations to be ill suited for a hierarchical representa-
tion. But this data can in fact be categorized at multiple levels. For example, at 
the coarsest level, an individual might be thought of as rich, poor, or middle 
class. Subsequent levels of refinement would create an increasingly detailed 
picture of the individual’s net worth and financial activity. While typical transac-
tions require the most detailed information available, some in fact do not (an 
ATM can safely allow the purchase of $30.00 worth of gas by some one who was 
’rich’ last night — with a blackout zone centered at Las Vegas).
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Surface Bus

Imagine an instance of a tabletop populated with a collection of randomly posi-
tioned objects and where the table itself provided the network connectivity. When-
ever a new object is placed onto the table, the table automatically adapts the 
network configuration to incorporate the new device. Yet in contrast to similar sce-
narios involving near-field RF, transmission paths through the table also supply 
computation capacity as a byproduct of the message passing. Devices positioned on 
the table pass both messages and coded procedures to apply to those messages. This 
section describes "Surface Bus" — a technique for employing a paintable computer 
to jointly supply capacity for both transmission and computation, and to afford the 
external devices some ability to adaptively reconfigure these resources as needed.

Problem Domain. The target platform is a 2D particle ensemble embedded in a 
planar surface such as a conference room table. A typical example would be a sheet 
of plywood with the ensemble of computing elements laminated into one of the lay-
ers. Over the course of a meeting, multiple compute-enabled devices (laptops, 
PDA’s, cameras, etc.) will be randomly placed on the periphery of the table. These 
device will often wish to communicate and share data. In contemporary scenarios 
involving near-field RF, the devices are integrated into pico-nets built on short 
range wireless links. Membership in that network requires a single transceiver 
device drawing enough power to speak to the most distant point in the local net-
work (nominally 2 or more meters). In the alternative case of a paintable, external 
devices would be fitted with (perhaps multiple) transceivers similar to those on the 
paintable particles. These transceivers, positioned on the bottom of the device, 
would make contact with those particles in their immediate vicinity, essentially 
assuming the role of portals between the particle ensemble and the external device.

In this scenario, the two natural questions are:

1. Can we employ the ad hoc communication between the particles to support 
communication between the external devices?

2. Can we take advantage of the compute capacity inherent in the particles which 
pass messages to actually perform directed computation on the data as well.

Approach. The approach taken in this section is to partition the particle ensemble 
into two non-overlapping regions. The particles located near the periphery of the 
table form a communication-only region. The remaining particles in the table s 
interior constitute the second region that jointly supports communication and ancil-
lary processing. Devices placed on the tabletop assume the role of peers in a multi-
hop communication network. These peers use Channel Operators to build links to 
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selected neighboring peers. The links, in turn, aggregate into a ring network posi-
tioned near the periphery of the table. The particles belonging to this ring network 
delineate the communication-only region. The particles enclosed by the ring form 
the second region, where particles perform directed processing in addition to com-
munication. Peers treat the particles in this second region as a shared, reconfig-
urable processing resource. Once access to this resource is negotiated, any two 
peers can initiate processing using a suitably augmented Channel Operator.

The presentation in this section is organized as a series of building blocks. Peers are 
defined as a collection of portals arranged in a fixed geometry. The Buoy pfrag is 
introduced and its role in channeling is illustrated. Peers, augmented with Buoys, 
use Channel Operators to grow peer-to-peer links. The assembly of links is 
sequenced to construct an adaptive ring bus. Finally, a method for constructing sec-
ondary links capable of concomitant processing is described.

Single Peer. The elemental building block of a Surface Bus network is the peer. 
Randomly positioned along the periphery of the table, each peer establishes direct, 
multi-channel links with one or two of its spatial neighbors, thus forming a multi-

hop network organized in a ring topology8. Peer devices are addressable via unique, 
device-specific IDs that are either pre-stored at time of manufacture or dynamically 
assigned. On contact with the table, a newly introduced peer issues a signature Gra-

dient9, senses the relative position of the existing peers, and signals to its immedi-
ate neighbors in order to negotiate its role in construction of a multi-channel link.

Surface Bus peers are defined as a group of portals arranged in a suitable geometry. 
Materially, the portals will typically be low power transceivers embedded in the 
bottom of the peer device’s outer casing. Four criteria define a geometry as "suit-
able":

1. A footprint that is small enough to accommodate portable, pocket-sized devices.

2. Any peer can estimate the relative position of all the other peers based on signa-
ture Gradients that the other peers emit.

3. Links with up to two neighboring peers can be constructed from Channel Oper-
ators that do not overlap.

4. There is likewise an unobstructed path between any two peers (not just those 
that are spatially proximal) that can be used to open a temporary connection.  

8. The ring can be open or closed

9. A "signature Gradient" is one whose post contain information suitable for identifying or 
characterizing the source.



117

Surface Bus

In this experiment, peers are represented as five portals arranged in the shape of a 
"Y" (fig. 5-10). The stem of the "Y" is defined by three portals that form contact 
points for the ring bus. The remaining two portals serve both the connections to 
peripherals and the auxiliary connections to other peers. Reviewing this geometry 
against the four criterion listed above:

1. For an ensemble with a particle density of 15 per in2, and an average neighbor-
hood size of 15 particles, the footprint of the peer would be 3.4 × 1.9 in  com-

parable to that of a slim PDA10.

2. The relative position of another peer can be expressed as a distance and an 
angle, both of which can be estimated from a Gradient emanating from the 

external peer11.

3. Recoursing to the ergonomics of the situation12, peers are restricted in their ori-
entation such that the line defined by the three stem portals is approximately 

perpendicular to the nearest table edge 13. This insures each ring bus portal an 

10.and average density of 15 particles / in2 together with an average neighborhood size of 15 
particles yields a communication radius of 0.56 in. Referring to the dimensions of figure 
5-10 ( normalized to units of communication radii ), the peer’s dimensions come to 3.27 
in. × 1.69 in. with no allowance for borders.

FIGURE 5-10. Portal geometry

In the experiments that follow, peers 
are represented by 5 portals (num-
bered 0→4) that are arranged in the 
shape of a "Y". Dimensions normal-
ized to communication radii. Portals 
0→2 anchor the 3-channel links that 
form the ring bus. The axial symmetry 
along the line through portals 0→2 is 
broken through separate control of 
portals 3 and 4.

Orientation of the peer is restricted in 
such a way that the links constituting 
the ring bus approach from the east 
and west, and that portals 3 and 4 
always face inward toward the center 
of the ring.
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unobstructed path to the corresponding portal of the closest neighboring peer on 
either side.

4. The restricted orientation likewise insures that the two auxiliary portals (portals 
3 & 4 of fig. 5-10) of every the peer face inward toward the center of the ring. 

Each peer’s behavior is governed by a separate finite state machine (FSM), which 
can access the peer’s portals individually. The input space to the FSM consists of 
data from the pfrags that migrate into the portals, and the mirrored posts from the 
HomePages of the neighboring particles. The FSM output space likewise consists 
of posts to the pseudo-HomePages of the portals and pfrags launched from the por-
tals. The line through the stem portals divides the peer into two symmetric sides. 
The FSM uses individual control over portals #3 and #4 to break the symmetry and 
independently direct the activity on each side of the peer. 

Extending the Peer with Buoys. Early implementations of Surface Bus confirmed 
that straight line connections between the ring bus portals suffice to construct ring 
busses. However, they also highlighted the need for a finer degree of positional 
control in the immediate vicinity of the peers, where the congestion from the con-
verging Channels tended to block the two auxiliary portals, making additional net-
working with the peer problematic.

The solution adopted here employs Buoy pfrags14 to delineate a series of approach 
paths in the vicinity of the peer. Prior to establishing external links with its neigh-
boring peers, a newly introduced peer first deploys a set of Buoy pfrags. Buoys are 
migrating pfrags that take up position relative to the fields radiating from selected 

11.The incoming Gradient deposits posts in the pseudo-HomePages of the portals. The dis-
tance to the source can be read directly from these posts. The angle can be estimated by 
comparing the distance in the posts at any two portals. The final value is the weighted 
sum of these pair-wise estimates, with emphasis given to those portals pairs that are most 
incidental to the gradient field.

12.This orientation is a frequent consequence of users who sit flush against the table and 
who position their appliances directly in front of them.

13.Empirical evaluation suggest that the orientation of a peer can vary by as much as 30 
degrees.

14.As the name suggests, Buoys pfrags are functionally analogous to the buoys which mark 
the sea lanes in and around a harbor.
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portals (fig. 5-11). The Buoys position themselves in such a way as to direct traffic 
away from the directional portals (#3, 4), leaving them clear to service auxiliary 
connections to other peers. Once in position, a Buoy radiates its own MultiGrad 

field that the pfrags of Channel Operators use to taylor their approach15.   

Peer-to-peer Links. At the next level up, where Buoy deployment is treated as a 
single step, two peers cooperate to construct a multi-channel link. Initially, each 
peer radiates a single signature Gradient as a vehicle for signaling to the other. Por-
tals sample distance values from the complementary signature Gradients in order to 
establish the peer’s relative position. ID information embedded in the Gradient 
posts allow the two peers to assign themselves roles for the sequenced construction 
of the link; with one peer issuing the "homing" Gradients and the other peer stag-
gering the launch of a Channel Operator from each of its three portals. Fig. 5-12 
provides additional detail on this sequencing and illustrates the final result.  

Ring Bus Formation. At the next level up, where construction of the link is treated 
as a single step, multiple peers coordinate to construct multi-hop ring busses. On 
contact with the particle ensemble, a peer emits a signature Gradient and reacts 
accordance with the number of other peers that it detects. If no other peers are 
present, the new peer simple idles. If only one other peer is present, the two peers 
construct a single connection, corresponding to an open ring. Otherwise, the peer 
integrates itself into the existing ring structure. This involves reading angle and dis-
tance for each existing peer, selecting the two peers that constitute the nearest 
neighbors on the ring, and coordinating with them to replace their existing link with 
two new ones. Fig. 5-13 illustrates the ring structure that results from the sample 
placement of four peers. Note how the Buoys direct the Channel positioning in such 
a way that two auxiliary portals maintain an unobstructed path toward the center of 
the ensemble.  

15.In this experiment, the Buoys initiate fields via MultiGradCenterPosts whose payload 
contained identifiers for the peer, the portal, the direction (east / west) and the "step" 
(number of Buoy-hops along the approach). The Channel Operator of chapter 4 are 
adapted to take advantage of this info. In the process of connecting a portal of one peer 
(the "source") to the corresponding portal of another peer (the "destination"), the Tracers 
of the adapted Channel Operator sequentially orient themselves to the Buoy from the 
source, the Gradient from the destination, the Buoy from the destination and finally the 
Gradient from the destination.



Applications

120

FIGURE 5-11. A Peer and associated Buoys

When a peer makes initial contact with the particle ensemble, the portals all radiate a gra-
dient field via MultiGradCenterPosts. The payloads of these fields contain both the peer-
specific ID and a channel (portal) -specific ID. Once the fields have settled, portals 0→2 
deploy Buoy pfrags, which initially orient themselves to the fields from portal 3 or 4 (in 
order to break the local symmetry), and then migrate to preferred positions, triangulating 
off of the fields from selected portals. Once in position, the Buoys radiate their own fields 
which include the additional ID info for the "path" (east or west) and a "step" (the number 
of Buoy-hops along that path). Incoming Channels orient themselves to these fields in 
order to fine tune their approach. 

In this figure, Buoys take up staggered positions to define six approaches — three in each 
direction — each consisting of a single step. Particles containing the westward Buoys are 
shown in green. Those containing the three eastward Buoys are shown in red. The high-
lighted particles in the upper right illustrate the size of a single network neighborhood. 
Each Buoy orients itself to the fields from three portals. For each Buoy, the table below 
lists the three anchor portals and the Buoy’s preferred distance from each anchor (italics 
in units of communication radii ).

Channel
ID number

Anchor 
Portal 1

Anchor
Portal 2

Anchor Portal 3
east  Buoy west  Buoy

0 0       3.0 2       5.0 3      2.34 4      2.34
1 1       5.0 2      5.39 3      5.17 4      5.17
2 2       7.0 0      8.06 3       8.0 4        8.0
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FIGURE 5-12. Peer-to-peer Link

A link connecting two peers is constructed from three Channel Operators that grow con-
nections between the corresponding portals of the two peers (See Channel Operator  on 
page 87.). Once in place, Channels grow mini-Gradient fields that act as a sheath and 
repulse neighboring Channels, thus inhibiting overlap between the Channels.

Link construction is sequenced as follows (numbers matched to those in figure).

1, 2: Peers make initial contact with the particle ensemble, deploy their Buoys and radiate 
a signature Gradient from their respective portal #0. By sampling the Gradient distance 
at multiple portals, a peer estimates the angle of the originating peer and uses this angle 
to decide which side to build the link on. Peers also compare ID info embedded in the 
posts of each other’s Gradients in order to assign themselves the role of "transmitter" or 
"receiver". In this figure, peer #1 is the "transmitter" and peer #2 is the "receiver". 

3: Transmitter peer initiates a Channel Operator that connects the two portal #0’s.

4: Receiver peer radiates "homing" Gradients from its portal #1 and #2 (concurrent with 
step #3)

5: On arrival of the homing Gradient for portal #1, the Transmitter initiates a Channel 
Operator to connect the two portal #1’s

6: After a selectable delay, the Transmitter initiates a Channel Operator to connect the 
two portal #2’s



Applications

122

FIGURE 5-13. Ring Bus formation

Four peers construct a multi-hop network in the shape of a ring. Signature Gradients 
radiated by each peer enable the peers to establish their relative position, select their 
nearest neighbor on each of two sides, and construct the multi-channel links.

In this figure, the placement supports a closed ring. For the case when a peer finds no 
neighbor on one of its sides (east or west), only one link is constructed and the ring is 
open.
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Concomitant Processing. A natural advantage of message passing on a paintable 
is the option for concomitant processing — processing that is executed on the mes-
sage data as a side-effect of the transmission. This functionality can assume many 
forms. A simple proof-of-principle embodiment is that of a plug-in replacement for 
the 2-port communication-only Channel Operator. In this 2-port Process-Channel 
Operator, data is likewise streamed through the end points, enveloped in Carrier 
pfrags as payload. However the intervening particles are overlaid with a distributed 
procedure that operates on the propagating data in a manner reminiscent of data 
flow architectures.

Given an unobstructed straight-line path between the two portals, a simple imple-
mentation of a Process-Channel Operator can be built around the Coordinate Oper-
ator of chapter 4 (pp. 91):  

In the ring topology of Surface Bus, the particles in center of the ring constitute a 
shared processing resource. Any two peers can engage this resource by connecting 
through a Process-Channel Operator. In order to avoid spatial overlap, pairs of 
peers must first confer over the ring bus with the other peers in order to arbitrate 
their access. On completion, the resource can be released by signaling a termination 
to the Process-Channel Operator.

Discussion. This presentation of this section is illustrative on three distinct levels. 
At the most abstract level, this application is an emblematic of those applications 
that structure the processing based on an estimate of the local geometry. Encom-
passed as a subclass are those applications that first use patterning techniques to 
erect a scaffold and then express a distributed procedure as a collection of mobile 

• Use the Coordinate Operator to establish a local 2D 
coordinate system between the two portals.

• Map the selected procedure to a 2D planar graph, 
overlay a graph-relative coordinate system, and 
express the nodes of the graph as (perhaps multiple) 
mobile pfrags with assigned 2D coordinates (fig. at 
right)

• Diffuse the pfrags into the particle ensemble where 
they orient themselves to the coordinate system estab-
lished by the Coordinate Operator.
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fragments that are selective to positions on that scaffold. With its reliance on accu-
rate distance estimates, this class of applications is explicitly dependent on the 

average number of particles falling within a communication radius16. By contrast, 
in the previous two applications (Steaming Audio and Holistic Data Storage), the 
core functionality was diffusive scattering and did not require precision place-

ment17. Likewise in the next application (Image Segmentation), the geometry is 
implicit in the input image and need not be explicitly estimated

The crucial observation of Surface Bus is that the growing expertise in the genera-
tion of complex patterns can be used to direct a similarly complex flow of control 
and data within a distributed process. With this in mind, the objective of Surface 
Bus was not to demonstrate virtuosity at emergent patterning, rather to illustrate 
how even simple geometry estimation can underlie a broadly useful functionality.

At the second level of abstraction, Surface Bus addresses the general problem of 
dynamically partitioning a particle ensemble into distinct functional regions. In this 
context, the paintable is an early exemplar of a "computing substrate whose com-

putational architecture emerges from the information that passes through it".18  In 
Surface Bus, the emergent architecture is that of a dynamic communication net-
work connecting multiple clients who in turn coordinate to share a pool of reconfig-
urable processing. The utility of this architecture extends to the general instance of 
any particle ensemble contained in an arbitrary surface or volume, and a set of cli-

ents that interface to the ensemble along its periphery19.

16.The accuracy of gradient-based distance estimates, as a function of both density and posi-
tional randomness, has been treated analytically [40]. Resolution in the distance estimate 
has been shown to be asymptotic in the size of the communication neighborhood, with 15 
as a commonly accepted number for the point of diminishing returns.

17.Even the call-back functionality was robust against noisy distance estimates in the Call-
BackGradients.

18.This paraphrases a particularly insightful remark by H. Shrikumar and Neil Gershenfeld. 
[Personal communication]

19.Consider an instance of a particle ensemble encased in an arbitrary 2D slab — comparable 
in size to a white board — and clients (peers) that interface via tethered, male multi-pin 
connectors.
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Finally, at the lowest level of abstraction, we consider Surface Bus as a distinct, 
well-defined application in which thousands of micros are embedded into a tabletop 
and communicate wirelessly with multiple devices scattered about the tabletop’s 
periphery. In this context, Surface Bus spotlights looming issues in both product 
design and system’s engineering. 

The infusion of fine grain computing into environmental mainstays such as furni-
ture opens up a fresh design space with heightened potential — and peril. By 
ingraining gigaFLOPs of compute capacity into some of man s oldest domestic 
artifacts, designers run the risk of promulgating unnerving complexity deeper into 
the personal sphere. Surface Bus illustrates a representative solution based on past 
practice20. Here, the conventions and gestures commonly associated with a table 
provide a ready vocabulary for management of a communication network. For 
example, a peer s membership in the network is signaled gesturally by placing the 
artifact on the table. Similarly, removal of the artifact is a natural signal for its 
exclusion from the network21. The size of a peer is suggestive of the amount band-
width the corresponding multi-hop node can support. And latency likewise maps to 
physical distance, with a cluster of physically proximal peers enjoying low latency 
interconnects. The size of the table is an immediate visual queue for the raw pro-
cessing capacity available from the table. And crucially, in an instance when that 

20.Personal computing has always been a challenge for product design. The design mantras 
of observability, consistency, robustness, and conceptual transparency are perennially at 
odds with the nature of computing hardware, whose operation is inherently complex, 
opaque, seemingly arbitrary and fatally sensitive to errant behavior on the part of the user. 
Designers, applying a mature set of guidelines, seek to bridge this gap on a case-by-case 
basis [42]. Early success with VisiCalc validated the strategy of casting the computer as a 
chameleon — hiding the computing behind an image or form whose commonly under-
stood affordances proffer a rich, intuitive set of guidelines to aid the user. VisiCalc used 
the then-novel interfaces of a mouse and a bitmapped display to project the appearance of 
a spreadsheet that could automatically adjust the entire document to reflect changes made 
to any single entry. Widespread familiarity with traditional hard-copy spreadsheets pro-
vided a detailed mental model to bootstrap the use of the programmable extension. As 
ever increasing compute power outstripped the representational capacity of the standard 
interfaces, researchers began exploring the use of "Tangible Interfaces" -— ordinary arti-
facts such as bottles, clocks, fans and even projected weather patterns whose commonly 
understood conventions are extended and mapped to the behavior of the computing envi-
ronment [48] [49] [21]

21.The gesture of placing an object on the table is an age-old signal for the object s release to 
a larger group. Consider the instance when an architect "puts the plans on the table".
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capacity eclipses the compute capacity of the individual peers, the computational 
limitation on any single peer is decoupled from the peer s internals. In other words, 
the conversation between a key chain and a fountain pen can be (almost) as compu-
tationally rich as the conversation between two laptops.

On the systems engineering side, the noteworthy topics are: 

• alternate approaches for functionally partitioning the particle ensemble.

• possible refinements and extensions to this particular approach

• basic engineering limitation for Surface Bus as described.

The overall goal of functionally partitioning the particle ensemble can be served by 
a variety of techniques. These techniques are differentiated by the degree to which 
the partitioning is centrally directed. At the extreme of centralization, a Coordinate 
Operator first establishes a spatial ordering in which each particle is uniquely 

addressable. A single agency22 then dictates the layout and construction of the links 

between the peers, using a program that searches for a global optimum23. At the 
opposite extreme of decentralization, the network topology is an emergent property 
of the strictly local interactions among mobile pfrags that mimic the trail-laying 
behavior of ants. Simulated pheromones couple the optimality of the overall link 
topology to the frequency with which the constituent paths are traversed. The 
resulting network topology is both dynamic and usage dependent. Similar tech-
niques for adaptive routing have been proposed for load balancing in telecom net-
works [44].

The Surface Bus approach of this section falls in the middle ground. The spatial 
regions for communications and processing are segregated a priori into regions 
whose performance can be analized separately. However this segregation is 
expressed as an emergent behavior. The resulting system represents a trade-off 
between centralized control (which is antithetical to this research) and unbounded 
emergence (whose performance can be difficult to bound analytically).

Surface Bus, as presented here, can be improved in at least two ways:

22.Possibly a permanently attached peer or single connection to a larger computing resource.

23.Similar to the programs used for auto-layout of PC boards and IC logic circuits.
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• Use a more sophisticated composition of fields to confine the communication 
ring to the outer most periphery of the table. This would maximize the number 
of particles that would be free for use a reconfigurable processing resource.

• Extend the Coordinate Operator so that the coordinate system between any two 
points can be conformally warped, supporting a more efficient use of the parti-

cles in the table center24.

These refinements not withstanding, the core engineering limitations are latency 
and throughput. In a fine-grain multi-hop network like Surface Bus, transmission 
latency is a linear function of the path length. The shorter the link, the smaller the 
latency. For throughput, the fundamental limit is the bandwidth of the inter-particle 
communication. This limit can be somewhat relaxed through use of links built on 
multiple channels. But available surface area of the peers will typically confine this 
gain to a single digit linear scale factor.

24.Consider the case where the straight-line path between two portals is tightly confined, 
while a curved path would incorporate many more particles.
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Image Segmentation

The golden rule in massively parallel computing is to match the topology of the 
machine to the natural topology of the problem. In this section, we use image seg-
mentation as an example of a task that is well matched to a common topology of a 
paintable — namely that of a 2D plane.

The structure of this section follows that of the previous three. A working introduc-
tion to the theory — in this case supervised classification via experts — is followed 
by the details of an implementation on a paintable. The algorithmic refinement of 
the segmenter is kept purposefully minimal to keep focus on the basics. Experi-
ments illustrate the segmentation behavior on a natural image with four distinct 
color groups. A review discussion highlights crucial attributes.

Segmentation. In image segmentation, individual pixels are assigned to a region 
corresponding to an object. Here the term ’object’ can range in complexity and 
semantic depth from simple surface discolorations to composite devices consisting 
of many moving parts. Segmentation techniques likewise range in sophistication 
from simple foreground / background separation via pixel thresholding, to human 
assisted paint programs for colorizing monochrome film stock.

Image segmentation is an instance of the general problem of classification. Fig 5-14 
illustrates two important canonical forms. Novel, unclassified input data is repre-
sented as an observation vector . Observations are transformed into a feature vec-
tor , as a means of reducing the dimensionality and/or highlighting salient 
characteristics. Feature vectors are passed to a classifier where a discriminant func-
tion assigns  to one of a number of possible output classes, and reports the selec-
tion as a scalar i

In the supervised classification techniques of interest here, the number of objects is 
known a priori and training data is analyzed offline to construct a separate model 
for each object. Given a novel feature vector, the classifier uses these models to 

estimate the likelihood that the input observation belongs to the associated object25. 
For simple objects and a suitable feature space, the grouping in feature space is 
explicit and the single-model-per-object configuration is sufficient to support 
classification (fig. 5-14a). As the complexity of the objects increases, the 

25.For example, a model can be a statistical description of feature space, in which case the 
classifier uses hypothesis testing as a discriminant function.

X
Y

X
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(a)

(b)

FIGURE 5-14. Supervised Classifiers: two canonical forms

Classifiers assign input data to labelled groups. Raw input data, organized into obser-
vation vectors , are transformed into a feature space as a means of reducing the 
dimensionality or highlighting relevant attributes. Feature vectors  are passed to 
the classifier where a discriminant function assigns them to one of a number of possi-
ble classes, returning the scalar index i 

In supervised classification, training data is used to construct pre-computed models 
as an aid to delineating the feature space. For simple objects where the grouping in 
feature space is distinct, a single model per object suffices (a). As the complexity of 
the objects increase, single models yield to ’experts’ capable of employing multiple 
models and elaborate strategies for estimating likelihood (b).

X
Y
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representational capacity of the models is outpaced, and the models are replaced by 
heterogeneous ’experts’ (fig. 5-14b). Experts typically employ multiple models and 

arbitrarily complex analysis strategies26 to estimate the likelihood that the input 
observation  belongs to their associated object.

In the experiments conducted here, each object is represented by a single expert. 
Classification is scripted as a competition among these experts. Each expert 
embodies one or more precomputed models. The models use parameterized density 
functions to describe the clustering in feature space. For each incoming feature vec-
tor , an expert employs each of its models to separately estimate the likelihood of 

. The greatest likelihood is returned as the expert’s input to the classifier, which in 
turn uses a simple max() as a global discriminant function.

For clarity, the feature space is limited to a single image attribute — color. Input 
observations are single pixels and their coordinates in the 3D feature space is 
defined directly by the values their color components. For a restricted class of sim-
ple images, objects naturally cluster in this 3D space (example; fig. 5-15). The con-
ditional probability density for the individual color components is estimated using 
gaussian mixture models. Joint 3D density is computed as the product of the com-
ponent densities, which are assumed to be statistically independent. Given an 
unclassified input pixel and a model, the conditional likelihood is computed via 

MAP hypothesis testing 27 (see panel of fig. 5-16 for detail). This definition for the 
individual models closely follows recent work on human-assisted image segmenta-
tion [10][11]. Extensions to heterogeneous experts were treated formally in [32] 
and [54] and experimentally studied in [9].   

Implementation.  While image segmentation naturally maps to processing on a 2D 
particle ensemble, implementation presents three challenges:

• delivering the input image data in parallel

• distributing the processing

• compensating for the irregular particle lattice.

26.Including the hierarchical application of other experts.

27.Maximum a posteriori (MAP) hypothesis testing: compute the conditional probability of 
a novel input feature vector given that the input belonged to a given object.

x

Y
Y
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The first problem is the distribution of the image pixels among the particles. The 
pixel positioning should be image-topic in that pixels that are spatially adjacent in 
the image should occupy particles that are themselves proximal. The presentation 
of the previous sections suggest the following approach:

• use pfrags diffusing from two anchor points to construct a coordinate system.

• envelop the pixels in Carrier pfrags designed to transport the pixel to the correct 
position on the coordinate system.

• diffuse the Carriers into the particle ensemble through multiple portals.

The drawbacks of this approach are the bandwidth bottlenecks at the portals, and 
the large variance in latency between the moments when the first and last pixels 
arrive at their position.

FIGURE 5-15. A natural image that is easy to segment

With minimal exceptions, a feature space built on color alone is sufficient to seg-
ment the image into four distinct objects: sand, water, sky and tree. Ambiguity 
occurs only where the waves break on the beach. Here, the saturated pixel values 
are indistinguishable from those of the clouds.
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The basic component of a mixture model is a gaussian described 
by three parameters: the mean , the variance , and a weight . x σ
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Expectation maximization is used to fit multiple gaussians to the 
histogram of training data. The resulting mixture model can be used 
to estimate the likelihood of a new scalar observation x

Given an unclassified M-dimensional feature vector , the likeli-
hood of  is estimated by the product of the likelihoods of the M 
scalar components 
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FIGURE 5-16. Mixture Models for Feature Discrimination
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An attractive alternative is to employ simulated photo sensor particles — pseudo-
particles whose size is comparable with the generic processing particles and whose 
networking behavior mimics that of the particles. Sensor particles are pseudo-ran-
domly distributed among the processor particles, with a density consistent with the 
desired average sampling resolution.

Image capture would proceed in parallel using the hypothetical apparatus of fig. 5-
17. A suitably bandlimited image would be projected onto the plane containing the 
particle mixture. Sensors should sample the local intensity, encode the pixels as 
MultiGradCenterPosts and post them to their pseudo-HomePages. MultiGrad 
pfrags in the neighboring processor particles propagate this data outward from the 
sensor in the form of mini-Gradient fields, which carry the pixel data as payload. 
The radius of these fields is selected such that the HomePages of processing parti-
cles will contain between 5 and 15 such posts, each containing both pixel data and 
an estimate of the distance to the originating sensor.   

FIGURE 5-17. Proposed apparatus for parallel image sampling

A projector positions an image on a plane containing a mixture of photo sensor (red) and 
generic processor particles (blue). Pixel values radiate locally from each sensor, carried 
as payload in a MultiGrad gradient field. The range of the fields are specified such that 
every processing particle contains pixels from multiple sensors.
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Segmentation is scripted as a competition among "experts", each estimating the 
MAP likelihood that a pixel belongs to a particular object. Each expert is embodied 
as a pfrag which enters, multiplies and diffuses to position a copy of itself in every 
particle neighborhood. Experts report the likelihood in HomePage posts. The dis-
criminant function is a simple max().

Experimental Results. Segmentation performance was illustrated qualitatively on 
the simulator. Fig. 5-18 shows the test configuration. 1800 sensor particles are 
pseudo-randomly scattered among 5000 generic processor particles. Training data 
was drawn from the beach scene in fig. 5-15 to create four experts, each selective 
for one of the four basic object groups in the image: sand, water, sky, and tree. Each 
expert used the training data to synthesize one or more mixture models for the 
probability density in RGB feature space.  

FIGURE 5-18. Image Segmentation: Initial state

1800 sensor particles (red icons) are pseudo-randomly scattered among 5000 
generic processor particles (blue icons). Both particle types have identical 
communication range. Processing particles have, on average, 14 neighbors 
and are in contact with 5 sensors.
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Experts propagate copies of themselves to every particle in the ensemble. Once in 
place, experts examine the pixel data in the particle HomePage, select the pixel 
from the closest sensor, estimate the likelihood that the pixel belongs to the object, 
and posts this likelihood as a score on the HomePage (fig. 5-19). For each particle, 
the viewer scans the HomePage, and color codes the particle icon to reflect the 
expert with the highest score.  

FIGURE 5-19. Image Segmentation: pfrags and data

In the steady state, all processor particles contain 5 pfrags: a MultiGrad and a copy of the 
four object expert pfrags. MultiGrad posts contain pixel data radiating outward from the 
nearby sensors. Experts pick the pixel from the closest sensor, and apply their internalized 
models to estimate the MAP likelihood that the pixel belongs to the associated object. 
Note that, although this test examines the RGB feature space only, the pixel data in the 
MultiGrad HomePage post contain sufficient data to include texture as a feature as well.
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Fig. 5-20 illustrates the operation and shows the end result. The original beach 
image is projected onto the heterogeneous particle ensemble where the sensors 
sample the intensity. In fig. 5-20a, the pixel data has been distributed and the 

viewer color codes each particle with the pixel value from the nearest sensor28. In 
figs. 5-20b through 5-20e, the experts are diffused sequentially into the ensemble. 
With the arrival of each expert, the segmentation monotonically improves. In fig. 5-
20b, the only expert present is the sky expert, which wins every competition by 
default. In fig. 5-20c, the tree expert dominates over the tree and water portions of 
the image, In figs. 5-20d and e, the remaining two experts arrive and stake their 
claim.  

Discussion. The approach described here is purposefully simple and would benefit 
markedly from even moderate engineering refinement. Classification robustness 
would improve with the inclusion of more features. For example, from the data 
already available in the particle HomePages, experts could estimate image texture. 
And with support from additional pfrag types, the feature space could be further 
expanded to include motion and position.

Yet even in this simple form, this application underscores a number of crucial prop-
erties that are fundamental to this genre of computing:

• Raw price/performance gain for a distributed architecture.

• The advantage of proximal computing — 
positioning the computing near the sensing devices.

• The utility of pfrags as a vehicle for knowledge representation.

Fig. 5-21 coarsely estimates computing performance assuming some representative 
values for clock speed, power, and number of processor particles. The dearth of 
detailed designs for the various particle subsystems limit the accuracy of these fig-
ures, admitting errors in the exponents on the order of ± 2. However concern over 
the accuracy of the estimates masks the larger point that the compute capacity of 
this architecture is simply huge, vastly outweighing foreseeable generational 
progress in contemporary architectures.

28.As read from the distance value in the HomePage posts.
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FIGURE 5-20. Image Segmentation: 
region assignment among experts

(a)  The particles are color coded to show pixel from nearest sensor. 
(b) — (d)  Ensemble state after sequential introduction of experts for sky,

tree, and water (respectively). 
(e)  Final assignment after all four experts are present.

(a)   Initial state (image captured, no experts)

(e)   Sky + Tree + Water + Sand

(b)  Sky

(c)   Sky + Tree

(d)    Sky + Tree + Water

Sky

Tree

Water

Sand
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Equally important is that image segmentation as a problem domain makes effective 
use of this capacity. By varying the relative ratio of sensor to processor particles, 
designers can deliver an average per pixel compute capacity in the range of 50 to 

500 MIP’s29  

System Specs:

No. of particles 4.8 x 105 

Clock rate 50 x 106 Hz
Ensemble dimensions 2m x 1.5m
No. particles per neighborhood (ave) 15
No. sensors per neighborhood (ave) 5
cost per processing particle $0.03

power dissipation per particle 1 x 10-2 W

Total Power Consumption: 4.8 x 103 W
(No. of particles) x (power dissipation per particle)

Areal Power Density: 1.6 x 10-1 W/cm
(power dissipation per particle) / (areal size of ensemble)

Total Compute Capacity: 2.4 x 1013 inst/sec
(No. of particles) x (particle clock rate)

Total Cost: $14,400
(No. of particles) x (cost per processing particle)

FIGURE 5-21. Image Segmentation: 
Sample specs and estimated performance

Performance figures for an image segmentation system are derived from rudimentary 
estimates for the particles specs and the layout of the 2D ensemble. Lack of working 
hardware (particles) frustrates detailed calculations and forced the use of conservative 
figures as a stand-in. Nevertheless, the final result of US$14,000 for 24 teraFLOPS of 
utilized compute capacity could sustain small digit errors in exponents and still be 
compelling
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Approaches to image understanding often treat pixel-based region assignment as an 
early stage of visual cognition. From this perspective, an implementation based on 
autonomous pfrags interacting in an open competition is intriguing. In his now per-
vasive theory of cognition and perception, Minsky[39] modeled intelligence as 
aggregate behavior of a heterogeneous society of numerous simple agencies acting 
in concert to solve difficult problems. Reduction to practice has always posed two 
challenges: a representation of knowledge based on distinct agencies, and a set of 
organizing principles to govern their interaction. Proposed solutions to these two 
questions must jointly address problems of adaptation and scaling — both basic 
necessities for growing the society in a dynamic environment.

In the classification technique advanced here, knowledge is represented by autono-
mous experts programmed with flexible strategies for migration, grouping and 
interaction. Organization and regulation is based on an open competition structured 

around the fundamentals of the problem domain30. This approach supports several 
important properties. 

• Experts can be trained separately by different people at different times to be 
selective for different objects. 

• Novel experts can be streamed into the ensemble at any time and from any point 
of contact. They diffuse throughout the ensemble, and position themselves in 
accordance with competitive pressure. 

• Finally, the introduction of a new expert effectively makes the ensemble selec-
tive for a new object. And with each new expert, the overall classification per-

formance improves monotonically31.

29.Varying between 1 and 10 the average number of processor particles proximal to each 
sensor.

30.In this case, the physics of image formation and the statistical relationships between sam-
pled intensity data.

31.This is only true in the statistical sense. Given additional experts selective for objects not 
in the scene, the likelihood of misclassification actually increases.
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Discussion

This chapter focused on two questions: "can this programming model do anything 
useful?"  and  "if so, can it do any of those things particularly well?" To the first 
question regarding practical utility, the answer is an unambiguous "yes". Even dis-
counting the implementation details from all four examples, this chapter has dem-
onstrated the programming model’s basic support for storage, communication and 
signal processing — building blocks which are necessary and sufficient for a wide 
variety of important applications. And while the limits of the application space 
remain unexplored, the results from this chapter suggest that candidate applications 
can be as novel as the architecture itself (e.g.. Holistic Data Storage).

To the second question regarding optimality, the answer is more subtle. On first 
inspection, the picture is not promising. In their nominal configurations, all the 
examples of this chapter can be more efficiently implemented using conventional 
designs. Both storage applications could be efficiently realized with centralized 
address controllers directing access to monolithic memory and engaging simple 
signal processing as needed. Likewise, the Surface Bus application offers no com-
pelling advantage over near-field RF coupled with pipelined processing on the 
buffered messages. And while a 24 TeraFlop machine would be nice, their scarcity 
has not impeded the proliferation of desktop image segmentation tools.

So when does process self-assembly on a paintable become the optimal choice? 
And is it ever the only practical choice? The answers hinge on two observations:

• Complexity, in one form or another, determines the scaling limits of engineered 
systems.

• Self-organization is a powerful tool for managing complexity.

Taken together, these two items suggest that the cross-over point where process 
self-assembly becomes efficient is that point where rising complexity overwhelms 
conventional techniques. 

As an illustration, consider the operation of Holistic Data Storage (HDS). Here, the 
task is to transform the input data into a hierarchical representation and to position 
the transform samples "holistically" within the memory. In the example of this 
chapter, both the transformation and the positioning were byproducts of the interac-
tion among migrating pfrags. A functionally equivalent system could be con-
structed from monolithic memory driven by a memory controller consisting of 
dedicated logic for address generation and pipelined signal processing for signal 
transformation (fig.5-22a).
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In this application, operational complexity can be regarded as a semi-continuous 
space defined by several axes:

• number of input sources

• variability in these sources (both in instantaneous number and in bandwidth)

• size of the memory (i.e. address space)

• variability in the memory topology (both intentional and unintentional)

• statistical likelihood of fault (or conversely, the minimum required reliability)

Associated with each point in this complexity space is a cost for constructing and 
maintaining the system — component purchase, manufacture, test, servicing, sup-
port, and liability insurance.

Fig. 5-22 portrays the memory controller at two extremal points in operational 
complexity space. In the simple configuration (fig 5-22b), statically configured 
memory is storing data from a single source streaming at a fixed bandwidth. Trans-
form hardware is optimized for the tightly bounded operating range. Constraints on 
input format together with the fixed memory space allow the address generation 
logic to deterministically compute the addressing that distributes the data "most 
holistically". In this low complexity regime, the dedicated memory controller 
enjoys a dominant cost advantage over the paintable.  

With increasing operational complexity, the situation changes. In the extreme of 
fig. 5-22c, the topology of memory has become time varying. The number of input 

sources varies randomly with time, as do their individual duty cycles32. Stringent 
reliability criteria now necessitate both design for the worst case load and addi-
tional redundancy for tolerance to fault. Variance in the input load and memory 
capacity combine to make it impractical to design an address generator that deter-
ministically computes addresses that are always "holistically" optimal. With rising 
operational complexity, we ultimately arrive at a point where the diffusion model of 
address generation becomes attractive. At this point, it is the redundant array of 
costly memory controllers that is emulating the behavior of a paintable, rather than 
the other way around.

32.Examples of inputs with variable duty cycles: microphones that only go on when people 
speak, cameras that only go on when objects move, mechanical strain sensors that only 
transmit when the readings depart some allowed nominal range
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FIGURE 5-22. Conventional memory controller design at 
opposing extremes of operational complexity

In the conventional equivalent of HDS, a memory controller transforms 
incoming sequential data into a hierarchical representation and directs the 
placement of the transform samples into external memory. The utility of the 
this approach depends on the complexity of the operating environment.

(a) Functional illustration of a single controller unit. The transform block 
generates a hierarchical representation of the incoming data, buffers the hier-
archical data for output and passes storage requirement data on to the address 
generator. Dedicated address generation logic arranges the data holistically 
in static memory.

(b)  Simple configuration: Single input source streaming with constant band-
width. Static memory configuration. Modest reliability requirements.

(c)  Configuration at a complexity threshold: Multiple input sources, each 
with highly variable bandwidth. Memory with time varying topology (possi-
bly due to ongoing material failure). Component redundancy necessitated by 
stringent reliability requirements.

(a)

(b) (c)



143

Discussion

The questions surrounding practical applications of Holistic Data Storage on a 
paintable can be reduced to this: "Is there a point in operational complexity space, 
corresponding to a commercially viable application, where HDS on a paintable 
exhibits a dominant cost advantage?". Definitive answers must wait for perfor-
mance analysis on real systems. But a good starting point would be extensions to 

existing applications that are operating near their complexity limits33.

While the above details are unique to the HDS application, this exposition under-
scores a dynamic that is more universal, namely as systems scale upward in com-
plexity, designs based on centralized computing hit their limit. Often, these limits 
yield to an implementation based on finely distributed computing — thus enabling 
another round of scaling.

In Surface Bus, the scaling features of interest are the number devices on the table, 
their physical size and available power. The conventional node count limitation for 
near-field RF pico-nets is obviated by the expandable ring bus of the paintable 
implementation. Likewise the 5 cm communication path between a peer and the 
nearest paintable particles lowers the minimum power requirements for the peers, 
thus admitting smaller devices traditionally devoid of serviceable battery storage 
(pens, key chains, shot glasses, small books).

In the image segmentation application, the considerations are straightforward. The 
important scaling features are the sampling density, the number of experts and the 
throughput. These trace back to a single system attribute; the average compute 
capacity per pixel. In conventional designs, the upper bound on performance is set 
by the compute capacity of the processor divided by the number of pixels. In the 

33.Consider the case where HDS is employed as a substitute for the "black boxes" of an air-
plane. In the HDS alternative, ensembles of particles are embedded into the airframe and 
wings. The conventional input space (e.g.. voice data from the flight deck) is expanded to 
include mechanical and chemical sensors that have likewise been embedded through out 
the aircraft in physical proximity to portions of the particle ensemble. Bandwidth from 
this sensor ensemble varies from a slow trickle under normal conditions to an avalanche 
of data in a moment of catastrophic failure.

In the tragic instance of the plane crashing in an environment that naturally hinders the 
recovery, initially recovered parts (e.g.. a fragment of a wing) will yield a muffled record-
ing of audio from the flight deck and summary readings from the sensors. With each 
additional part recovered, the record of events would come into sharper relief.
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paintable implementation, both the number of pixels and the total compute capacity 
can be selected by varying the number and density of both particle types. This strat-
egy is ultimately bounded by the mechanical limitations of weight, packaging den-
sity and power dissipation.

Summary

This chapter was devoted to exploring the application domain of a paintable com-
puter. The foundation routines of chapter 4 were extended and combined to create 
four representative applications: Audio Streaming, Holistic Data Storage, Surface 
Bus, and Image Segmentation. Criteria that guided the selection of these four appli-
cations were that they:

• develop the algorithms and software for a practical application (either an 
entirely new application or a novel extension of an pre-existing one).

• demonstrate one or more elemental capabilities (communication, storage, signal 
processing).

• highlight important properties of the paintable architecture (price performance, 
compute capacity, fault tolerance).

• illustrate ways in which even contemporary applications can take on new 
dimensions when mapped to densely distributed hardware.

Each application was developed, tested and characterized on the Psim simulator. 
Target functionality was verified, both numerically and visually (using Psim s 
movie record option). A concluding discussion argued that, while each application 
could be efficiently implemented using conventional designs, the paintable-based 
implementation will be come commercially attractive at the point where rising 
operational complexity renders the alternatives impractical.

Table 5-1 summarizes the results of this chapter. For each application, there is a 
functional description of the application, an overview of the software implementa-

tion, a tally of noteworthy results34 and an indexed list of the constituent pfrags.    

34.The tallied results are printed in italics.



145

Summary

TABLE 5-1. Summary review of four applications

Application Constituent
Pfrags Functional description  /  Implementation  /  Results

Audio
Streaming

Gradient

Carrier  

Storage and retrieval of ordered data (using audio as example). Collective mem-
ory of particle ensemble is treated as a single monolithic memory unit, into which 
packetized data can be streamed. through a serial port. In storage, data is spatially 
and temporally decorrelated. On retrieval, data reestablishes a linear order prior to 
output trough a single serial port.

Packetized data and associated time codes are inserted as payload into Carrier 
pfrags and streamed in through a single portal. In storage mode, Carriers emulate 
Diffusion pfrag and position themselves randomly. Retrieval is signaled by call-
back Gradient radiated from output portal. Carriers then compare time codes, and 
reorder themselves using callback Gradient for orientation.

Simplest of four applications, yet already demonstrates capacity for data storage, 
useful global behavior and topological independence. The example of a network-
with-no-routers is characteristic of the novelty inherent in this architecture.

Holistic Data 
Storage

Gradient

Carrier

Transform

Storage and retrieval of data augmented by "holographic" representation. Similar 
in context and usage to the audio streaming application, with the addition that 
arbitrary subsets of the stored data can be decoded back into low resolution ver-
sions of original input (behavior reminiscent of a hologram). Algorithm based on 
cascade of hierarchical wavelet transformation, duplication of the lowest fre-
quency transform coefficients, and a pseudo-random ’diffusive’ scattering of the 
transform samples throughout the memory.

Implementation based on still images as input type. Images are partitioned into 
blocks, inserted as payload into Carriers and streamed into the particle ensemble. 
There, Carriers interact with pre-loaded Transform pfrags, with the effect that the 
time domain image data stored in the Carriers is replaced with frequency domain 
data. Carriers then bifurcate into multiple mini-Carriers, each containing a subset 
of the transform data plus a redundant copy of the lowest frequency transform 
component. 

Graphical selection of subregions of the particle ensemble via free-hand drawing. 
Callback Gradient extracts mini-Carriers from subregions. Frequency domain 
data is extracted from mini-Carriers and decoded back into image data.

Experiments confirmed holistic reconstruction, progressive refinement, and 
robustness to changes in the number / position of input streams. Application dem-
onstrates paintable’s capacity for both storage and signal processing.
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Surface Bus

Gradient

MultiGrad

Buoy

Channel

Coordinate

Simulation of emergent network connectivity gated by physical contact with a 
table. Portable compute-enabled appliances (e.g. laptops, PDAs cell-phones digi-
tal cameras) are randomly positioned on the periphery of a table (represented in 
simulation by a 2D particle ensemble). Devices on table exchange pfrags with the 
particles embedded below. These pfrags propagate and self assemble into a ring 
bus that serves as primary messaging conduit for the devices on the table. 
Optional secondary connections support concomitant processing — directed pro-
cessing performed on the messages as a byproduct of transmission.

Implementation based on a sample definition of peer — any external device with 
five portals organized in a pre-defined geometry. On contact with the particle 
ensemble, peers exchange pfrags with neighboring particles and sequence the for-
mation of a multi-channel ring bus, with peers assuming the role of nodes in a 
multi-hop network. Optional secondary inter-peer connections with embedded 
local coordinate systems serve as scaffolding for distributed data flow routines.

Experimental results validated important guiding insight, namely that the growing 
expertise in the self assembly of complex spatial patterns can be used to direct a 
similarly complex flow of control and data within a distributed process.

Image
Segmentation

MultiGrad

Four Experts :
•Sand

•Water

•Sky

•Tree

Region classification via competition among "experts". Simulation of a still image 
projected onto a 2D particle ensemble. Embedded "photosensor particles" non-
uniformly sample the image and broadcast pixel data to nearby generic process-
ing, where the pixel values appear as HomePage posts. "Expert" pfrags, each 
selective for a particular image feature, use mixture models to compute the condi-
tional probability of the posted pixel value given the image feature. Experts report 
these probabilities as HomePage posts. Pixels are assigned to the region corre-
sponding to the greatest conditional probability.

Illustrative experiment conducted on natural image with four object classes (sand, 
water, sky and foliage). Four experts, each selective to one of these regions, where 
created using sampled training data. Segmentation performance was evaluated 
visually using simulator s viewer.

Incorporated parallel I/O into paintable computing environment. Additional pro-
gramming examples for signal processing. Preliminary analysis of system perfor-
mance placed this architecture in a price/performance regime beyond reach of 
contemporary centralized architectures, with the crucial caveat that the process 
flow in the application efficiently maps to a distributed environment. 

TABLE 5-1. Summary review of four applications

Application Constituent
Pfrags Functional description  /  Implementation  /  Results
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CHAPTER 6 Wrap up

Time to step back and take stock.

The preceding chapters have distilled the essentials of a distributed architecture into 
a hardware reference platform, defined a programming model based on relevant 
abstractions, illustrated the model with simple software components, and defended 
the model with four application-class examples. This chapter concludes the report 
with a discussion of related points, a review of the contributions and suggestions 
for future work.

Colloquy

Over the course of this work, several related themes were regularly revisited. While 
none of these topics was central to the investigation, they each contributed the addi-
tional perspective that kept the larger picture in focus. This section discusses four of 
these topics: proximal computing, ensembles with moving particles, computational 
universality, and one innovator’s yardstick for characterizing new models of com-
puting.
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The yardstick.  In his work on neuromorphic computing systems, Mead [38] 
characterizes novel computing systems at three levels: representation of informa-
tion, computational primitives, and organizing principles. When viewed through 
this lens, the work of this report can be described as follows: 

• representation of information: Data is binary coded.The basic unit of informa-
tion is the post on the HomePage. They are publicly visible key/value pairs 
capable of active/reactive behavior. The behavior is defined by an associated 
process fragment, which responds to adjacent posts by changing existing posts 
or issuing new ones.

A useful analogy for the posts and coded behavior is the objects in an object ori-
ented language. Here the coded pfrag behavior is analogous to object methods 
and the posts are analogous to publicly viewable object variables. The important 
caveats are that a post’s visibility is local and probabilistic, and that the pfrags 
are spatially mobile within the computing medium.

• computational primitives: All information processing proceeds on Turing 
equivalent computing elements. The computational primitives of a paintable are 
the same as those on commonly available variants of a von Neuman machine.

Ultimately, designers will step beyond the parochial reference platform of chap-
ter 3 and embrace alternative computing elements based on primitives which 
fundamentally depart from boolean logic. As long as the computing adheres to 
the organizing principles listed below, many of the results from this research 
will carry over.

• organizing principles: The organizational mantra — self-assembly of small sim-
ple components into large complex aggregates — is embodied in three con-
structs: 1) The atomic software component is the process fragments — 
autonomous, mobile program entities capable of sensing and reacting to their 
environment. 2) pfrags signal via broadcast through a medium which supports 
probabilistic reception over a local area. 3) Data exchanged between proximal 
pfrags is used to emulate the processes of thermodynamic and scaffolded self-
assembly. These processes in turn guide the positioning of the pfrags in the con-
struction of larger processing structures.

Proximal computing.  Rising performance and shrinking form factors have been 
hallmarks of commercial computing since its inception. And it was not long before 
computers were coupled to the physical environment through sensors and actuators 
for monitoring, analysis and closed-loop control. Shrinks in IC feature size has 
meant more computation in greater proximity to an expanding set of physical pro-
cesses. Viewed as the next step in this progression, it is natural to ponder the 
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paintable’s likely impact. What doors will it open? What rules will it change? What 
challenges will it present?

To the question of new applications, consider the perennial limiting resources for 
embedded computing; communication bandwidth, compute capacity, physical size, 
portability and reliability. Paintable-like ensembles, coupled with progress in 
MEMS, advances performance on all these fronts (save for reliability, perhaps). 
Three examples: 

• One class of embedded control that is primarily compute-bound is predictive 
control systems. These are systems where the time between the arrival of the 
stimulus from the sensors and onset of actuation is necessarily very short, per-

haps even negative (i.e. the system is anti-causal)1. The computing elements 
must maintain an updated model of the local physics. Control performance is 
bounded by the complexity of these models, which in turn is fixed by available 

compute2.

• An application domain that is currently limited by both scale and portability is 

the domain of "ingestibles" — ensembles of sub 1mm 3 modules that are ingested 
into a body where they coordinate to sequence through a set of functions based 
on chemical or mechanical actuation. Computing elements on the individual 
modules are necessarily modest. But a small reserve of residual capacity on 
each module could be aggregated to run larger procedures to direct global adap-
tation.

• The image segmentation app of chapter 5 is characteristic of distributed analysis 
techniques that are currently limited in scale, bandwidth and compute. The 
promise of these applications is their ability to ingest voluminous amounts of 
partial or ill-conditioned data, perform intensive early-stage analysis, and pass 
the compressed results downstream for further processing. The prototypical 
example from nature is the mammalian retina which builds robust, information-

1. This can occur in systems where the mechanical response of the actuators is very slow, or 
where actuation forces must be intense and prolonged.

2. Consider the case of a vehicle about to experience a destructive impact. In the instant 
prior to contact, a sensory enhanced central controller realizes that collapse of the frame 
will be unavoidable and decides how the individual members of the frame should direct 
their buckling. Coarse guidelines are broadcast to those components of the frame that 
contain fine grain embedded control, sensing and actuation. As the collision unfolds, 
these members adaptively fine tune their demise with the goal of minimizing injury to the 
vehicle occupants. In this invented extension of existing technology, the local computing 
elements play a fast but intense game of chess with the physics of the buckling structures.
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rich representations from dense photosensor data, and then passes these repre-
sentations along to the cortex with a 125× reduction in bandwidth.

In addition to more applications, there is broad consensus that increasingly proxi-
mal computing will drive fundamental changes in our programming methodologies 
[5] [27] [33] [38] [47]. Tennenhouse [47] sees humans assuming a supervisory role 
as ever faster closed-loop control systems make direct human intervention imprac-
tical. Networks of embedded controllers will communicate via packets with sto-
chastic transit times, necessitating new design approaches for embedding these 
networks into the feedback loop of control systems. Lee [33] calls for the applica-
tion of heterogeneous programming models — simultaneous operation of several 
programming models composed hierarchically within the framework of a finite 
state machine. In their work on "smart matter" Hogg and Huberman [27] describe 
organizations for multiple agents in distributed control of unstable physical sys-
tems.

The results from this report have much to contribute. The hardware reference plat-
form extends to networked millimeter scale computing elements and supports 
transparent program access to heterogeneous sensors and actuators. The program-
ming model exposes the aggregate memory and processing resources to collections 
of mobile program components that self-assemble into larger procedures spread 
over multiple particles. This suggests an intriguing scenario where the programs 

physically "walk" to the position of the relevant external stimulus3.

Further work will be needed before these models can be applied directly to feed-
back control systems. Specifically, the stochastic nature of the interaction among 
the pfrags currently frustrates the analytic treatment required to insure timeliness 
and reliability.

Self-assembly on moving particles. There is no evidence that process self-assem-
bly is suitable for the general case of ensembles where a subset of the particles are 
undergoing unconstrained motion. However there is a special case worth noting.

Recall that the positioning of the pfrags is guided by processes which are genera-
tive — which is to say that they are continually running and do not terminate when 
the pfrag becomes stationary. If the particles are moving at a speed which is slow 
compared to both the interparticle bandwidth and the internal clock speed of the 

3. Consider a wall where someone hangs a simple antenna and the digital broadcast receiver 
walks to the antenna and arranges its modules over neighboring particles.
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particles, then self-assembled structures will adapt and the computing should be 
robust. However real engineering challenges lie in the design of hardware which 
can deal with fluctuations in power and sporadic network connectivity as particles 
move along the perimeter of each other’s reception area.

Computational Universality. The concept of computational universality was 
advanced by Alonzo Church and Alan Turing who proved that, ignoring limitations 
of time and memory, any computer can be programmed to emulate any other com-
puter. The performance of any two of these universal machines can be related by a 
scalar prefactor. Paintable particles, with their universal computing elements inter-
faced to embedded local memory, are by definition computationally universal. Two 
basic problems with this observation are that:1) the compute capacity of an entire 
particle ensemble is bounded by the capacity of a single particle, and 2) emulation 
is limited to programs which can fit in the memory space of a single particle.  

The problem of limited memory can be alleviated through the use of three pfrag 
types. These pfrags interact to assemble the ensemble’s collective memory into a 
single linear address space, that can then be addressed by the CPU of a single parti-
cle. Reads/writes to selected memory locations are performed by light weight Mes-
senger pfrags which traverse the particle ensembles to traffic data between a CPU 
and a selected memory location in a distant particle. Fig. 6-1 describes the underly-
ing mechanisms using a 1D particle ensemble for illustration. 

Using this approach, a particle ensemble can be assembled into a universal 
machine whose compute capacity is equal to that of a single particle and whose 
memory is a large fractional multiple of the ensemble’s total memory. The perfor-
mance of this universal machine, relative to that of an arbitrary target machine, can 
be described by a prefactor. In the case of a paintable, these prefactors are program 
dependent, and group into three distinct categories. Each category is distinguished 
by the degree to which the executing program must recourse to Messenger pfrags to 
fetch instructions and data. Table 6-1 summarizes these three program groups and 
gives expressions for their associated prefactors.  

In this table, the prefactors are defined as linear combinations of three quasi-inde-
pendent prefactor components; an "architecture" prefactor (PA ), a "data fetch" pref-
actor (PD ) and an "instruction follow" prefactor (PI ). 

• PA  The architecture component captures the architectural differences between 
the computing engines. When comparing the paintable micro to the CPU of a 
high performance consumer PC’s, the differences reflect machine features such 
as clock speed, cacheing, pipeline depth, instruction set, and strategies for pre-
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FIGURE 6-1. Mapping a linear address space to the ensemble memory

The particles are arranged along a line, anchored at one end by an I/O portal, while the 
opposite end extends to infinity (read: is not relevant). The communication radius is 
sufficient for each particle to communicate with its two nearest neighbors 

The Address pfrag enters, propagates, and interacts to post a monotonically increas-
ing address to the HomePage of each particle.

The Memory pfrag follows, likewise propagating to every particle. On entry into a 
particle, Memory consumes most of the available RAM and manages it as a private 
memory partition. Using the local Address post, Memory computes a base offset as a 
prefix and then posts an ensemble-unique address range for its private memory parti-
tion.

Reads/writes to these addresses are dispatched by light weight Messenger pfrags that 
traverse the particle ensemble. On arrival at a selected memory location, Messengers 
use HomePage posts to communicate with the local Memory and effect the desired 
read/write operation.
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dictive execution. Assuming that the paintable micro was a 16 bit machine 
spec’ed down for small size, and power consumption, the expected value for the 
prefactors will lie in the range of 75-200. 

For instances when all the code — instructions, data, and scratch space — fit into 
a single particle, the prefactor is completely defined by the PA component.

• PD  The  "data fetch" component expresses the penalty incurred for access to 
memory in other particles. This component is relevant for programs where the 
instruction stream fits into a single particle, but the data must be stored in the 
memory of multiple particles — typical of a short program running on a large 
data set. In this case, data must be fetched by migrating Messenger pfrags that 
travel to the selected particle and negotiate access to the memory. Simple writes 
require a one way trip. Reads and acknowledged writes require a round-trip.

PD is computed as the product of three terms: the expected frequency of access 
to off-particle data, the average number of hops for the Messenger, and P/N — 
the ratio of the processor clock speed to the network bandwidth. Qualitative 
estimates for the terms would be 1/2 for the fraction of instructions involving 
memory access, Np (the number of particles in the ensemble) for the expected 

number of Messenger hops4, and a P/N ratio on the order of 103. 

TABLE 6-1. Program types and associated prefactors

for  programs  where ...
the expression for 
the prefactor is ...

• all instructions and data fit into a single particle. 
• no need for Messenger pfrags

PA

• all the instructions fit into a single pfrag.

• data is distributed through memory of neighboring particles
• Messenger pfrags fetch data

PA × PD

• both instructions and data stored in multiple particles
• Messenger pfrags fetch data
• execution "focus" moves among particles following

instruction stream

PA × (PD + PI )

4. Assumes round-trip Messenger travel, and access to data that is uniformly distributed 
over the memory space of a 1D ensemble of NP particles:   2  ×  (Np / 2).
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• PI   The "instruction follow" component estimates the penalty for transferring 
the execution of a program from the CPU of one particle to the CPU of another. 
For programs where the instruction storage spans multiple particles, an alterna-
tive to a steady progression of instruction fetches is to move program execution 
to the particle containing the current instruction. Transfer of the execution 
"focus" would be facilitated by a pfrag that encapsulated the processor state.

The frequency of this transfer-of-focus will depend strongly on the program 

structure. However, baring any unfortunate pathologies5, any program whose 
instruction stream exhibits reasonable spatial coherence will have a value for PI 
that is negligible compared to the value for PD.

 Using these expressions for the prefactor compo-
nents, we can coarsely compare the CPU of a single 
particle to a full featured CPU typical of a high end 
consumer PC. The target program has an instruction 
stream that fits into the memory of three particles 
and operates on 4 MB of data that is evenly distrib-
uted over 97 particles. Using the component esti-
mates to the right, the resulting prefactor is on the 

order of 107 !! 

Unless you are a pure theorist, this is depressing news. Two architectures consum-
ing roughly comparable amounts of silicon still exhibit a multiplicative perfor-
mance difference on the order of ten million. Two equally valid responses to this 
bad news are:

1. Fearless engineering. Close the gap by dividing the problem up into its root 
causes and addressing them individually.

2. Pragmatic morphology.  Admit that dolphins do not fly and that distributed 
hardware is only really suitable for distributed computing.

Our fearless engineer has grounds for optimism. The single biggest contributor to 
the prefactor is the disproportionately slow network bandwidth. Balancing the 

inter-particle transfer bandwidth with the CPU clock speed 6 would improve the 

5. Like an inner loop crossing a particle memory boundary

6. One possible approach would be to base the inter-particle communication on optical car-
riers — fitting the particles with components to emit and sense light and relying on the 
translucency of the medium to limit propagation.

PA 200=

PD
1
2
--- 100× 103

×=

PI PD«
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prefactor by an order of 103. Additional potential for improvement lies in the 
dynamic reordering of the data stored in the memory of the peripheral particles — 
those particles that are serving the memory accesses for the particle that is hosting 
the processing. Borrowing from conventional caching schemes, peripheral particles 
could be constantly exchanging their Memory pfrags looking to minimize the aver-
age number of particle hops for access to data. Finally, while it is actionable heresy, 
one could imagine confining the processing to CPU’s with enhanced capacity — 
either full featured CPU’s embedded in I/O portals that make network contact to the 
particle ensemble, or a collection of "super particles" that have been interspersed 
among the generic particles. Here, in exchange for his soul, the designer could 
expect up to 100× additional improvement in the prefactor, depending on when the 
networked data access became a bottleneck.

The morphologists face a more uncertain path. On the one hand, they know instinc-
tively that distributed hardware performs at near-full capacity on distributed com-
putation, and that the performance gains can be dramatic. On the other hand, there 
is still no such thing as a "universal distributed computer". Distributed computing 
still lacks a comprehensive descriptive framework with the formal power of Tur-
ing’s work. And to date, there is neither a generic architecture for universal distrib-
uted computing nor a statement of equivalence across architectures. Absent this 
framework, investigators recourse to the somewhat ad hoc algorithm selection of 
this research, and the more insightful approaches exemplified by Spears and Gor-
don [45] who studied the commonalities between distributed control and distributed 
computation in the context of "artificial physics".

Contributions

The contributions come in two flavors; those that are tangible, immediate and prov-
able, and those that are suggestive and need time to germinate. The tangible contri-
butions in summary are:

• Process self-assembly: a novel distributed programming methodology which 
maps existing techniques in material and virtual self-assembly to a broad class 
of dense ensembles of asynchronous, locally inter-networked computing nodes.

• A programming model built around a novel abstraction for inter-process com-
munication, and the construct of a "process fragment" as the atomic element of 
process self assembly.
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• The concept of a "vfrag" and "operators" as basic instances of abstraction and 
modularity in process self-assembly.

• Four applications that are both novel in their own right and that are representa-
tive of a broader class of useful algorithms.

The larger, hoped-for contribution has been an instance of consciousness raising 
within the engineering community. Although the situation is improving, self organi-
zation is not regarded yet a fully vested member of the engineers’ tool kit. This 
work has argued that some degree of self organization is necessary if one would 
engage the huge compute capacity of a paintable at its unique price point. To the 
degree that the applications have demonstrated compelling behavior with accept-
able performance bounds, this dissertation should lend credence to the use of self 
organization as an engineering tool.

Future Work

The field is young, ripe with promise and full of fun waiting to be had. Three fruit-
ful avenues for continued research are hardware, computational theory, and 
advanced applications.

Hardware. Simulation will only get us so far. And in development of parallel com-
puting systems, the immense speed differential between real hardware and virtual 
emulation can be extremely limiting. Fortunately, this does not mean that we have 
to wait for the paint to chip. Interim solutions involving pushpin-style hardware 
with approachable technology thresholds will provide an effective bootstrap for 
growing a community of early investigators. Near term development will focus on 
2D ensembles, with investigators ultimately progressing to 3D structures.

A related area, as important as the particles themselves, is the design of the I/O por-
tals, particularly ones with a size and form factor comparable to that of a particle. 
Particle-sized sensors and actuators will be key to exploiting the parallelism of a 
paintable, and for finely controlling the ratio of I/O to processing.   

Finally, there will be a frequent need for a display in which each particle can indi-
vidually address a small number of pixels. Work on the pushpins suggests an ele-
gant construct based on e-Ink [13] [30]. The planar composite is fitted with three 
additional layers: a second resistive sheet, a layer of e-Ink, and an outer layer of 
clear conductive material such as ITO (fig. 6-2). Pins issuing from particles assert a 
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potential on the second resistive sheet, where the material properties cause the 
potential to roll off sharply. Areas of nonzero potential result in a field across the e-
Ink plane, terminating in the outer layer which has been biased to ground. By regu-
lating the potential, particles can exercise gray level control over a small portion of 
the display.

Computation Theory.  Is there any way to formally relate the compute capacity of 
an error-free Turing equivalent machine to the aggregate capacity of networked 
nodes, where both the network and the nodes are subject to a nonzero probability of 
failure?

Through the mid 60’s, there were credible arguments that commercial manufacture 
of reliable computing elements exceeded basic engineering limits. During this 
period, Winograd and Cowan[51] began to develop the mathematical formalisms 
for describing the computation capacity of a collection of faulty nodes that commu-
nicated over a faulty network. In results with intriguing parallels to the information 
theoretic definition of channel capacity, they showed that increasing redundancy in 

FIGURE 6-2. Pushpins extended for e-Ink Display

The pushpin concept of figure 3-2 is extended to incorporate an additional pin for dis-
play. The display pin (longest) creates a local potential in a second resistive medium that 
supports a sharp ohmic drop off. This potential produces a field across e-Ink spheres that 
are biased to ground by a outer layer of clear conductive material (e.g. ITO).
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such a network produced threshold behavior in the reliability of program execution. 
In other words, the redundancy of the hardware could be raised to a point where 
program execution could be provably reliable even on an ensemble containing 
faulty nodes and interconnects. This promising research laid important ground-
work, but was prematurely undermined when its driving assumption proved untrue 
— namely when Univac, IBM, Control Data, and their ilk actually did make a going 
business out of building reliable machines.

Now, some forty years later, reliable high end computing elements can still be engi-

neered, but are becoming increasingly difficult to pay for7. The widening 

price / performance advantage of distributed computing on alternative substrates8 
increasingly motivates a revival of Winograd and Cowan’s approach. My hope is 
the research reported herein adds to this momentum.

Advanced Applications. The grand challenge of the paintable is the search for 
applications that make sensible use of its copious compute capacity. These 
advanced applications will come in three flavors:

• things that we can do now, but would like to do faster.

• things that we’ve always wanted to do, but that were never practical on a serial 
architecture.

• and things that (almost) no one has ever thought of.

The first group consists of distributed extensions of common serial algorithms. 
Examples include mainstay algorithms for control, classification and signal pro-
cessing. Here, extensions from serial machines to the paintable are guided by the 
oft-cited tenet of parallel computer design — for a parallel machine to be useful, the 
topology of the machine must be well matched to the natural topology of the prob-
lem. Given a mature algorithm with a well understood data flow topology, the com-
mon approach will be to employ self organization on the paintable to mirror this 

preferred topology in the data flow among the particles9.

7. The cost referred to here is the cost of fab for producing IC’s with the smallest feature 
sizes. US$ 2B  was a frequently cited estimate for the cost of constructing a fab from 
scratch for 0.18 micron chip manufacture.

8. Computing on biological, chemical, molecular and atomic substrates.

9. This basic strategy also guides compiler design for commercial parallel systems — usually 
those employing coarse grain parallelism such as VLIW machines.
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The second group consists of applications whose execution was first made practical 
by the advent of densely distributed hardware. Typical applications are those where 
the characteristics of the environment mandate the autonomy of the computing ele-
ments. Examples from this group are applications that involve dynamic estimation 
of node position, where the nodes use the position info to specialize their function 
and coordinate their activity. Two examples:

• recovery of 3D surface geometry  An object of arbitrary shape has nodes semi-
uniformly distributed over its surface. The nodes interact locally to estimate the 
3D shape. Algorithms for this have been proposed [23] but are still immature.

• sky art  Nodes, carried as payload in a fireworks shell, are exploded outward 
from the shell and distributed over a large volume of space. On the way down, 
the nodes estimate their relative 3D coordinates, use their coordinate to select a 
pixel intensity (based on a pre-stored image), and burn with the assigned 

color10.

The third type of application are those for which we still have few principled 
insights, but a vague awareness of a looming problem. These applications are by 
definition highly speculative, but often they are the ones that generate the fresh per-
spectives that are crucial to progress. As a parting indulgence, I would like to elab-
orate on an example that I regard as important; collaborative problem solving on a 
smart surface.    

In traditional collaborative problem solving, two or more people pool their skills, 
knowledge, and material resources to collectively arrive at a solution to the prob-
lem. While frustrated by corporal limitations, would-be collaborators seek to trans-
mit to their partners a snapshot of everything they know that might be of relevance 
to the problem. Many cultures capture this ideal of transparency in phrases like 
"putting your heads together".

In the smart surface variant, we would like the minds to meet in the table. The envi-

ronment is marked by meeting tables with teraFLOP embedded compute capacity11 
and wearable memory storage in excess of a terabyte.This memory is owner-cen-
tric, with portions of the data purposefully keyed in while other portions are gath-
ered automatically by on-body sensing devices — in many ways, an extension of the 

10.Few cities are as earnest about their July 4th observation as the city of Boston. Ideas like 
kilometer wide flags as sky-art seeded from firework shells come to you just by breathing 
the air here. I can’t wait to move to the suburbs.

11.Table dimensions: 5ft x 2ft Particle density: 14 particles / in2 Clock speed: 50MHz.
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owner’s biological memory. In collaboration, the goal is to use the processors 
embedded in the table to constructively combine the information from the disks. 
The problems are that there are too many particles to direct each individually, and 
that the size of the memory frustrates any taxonomic familiarity with its contents. 
In other words, we can’t select the data, and we can’t micro-manage the processing. 
A solution would be to somehow communicate a well posed problem to the table, 
randomly diffuse the contents of the disks into the table, let the elements of the data 
interact, and restrict the humans to a supervisory role for guiding that interaction in 
the search for a solution.

Science fiction? Hardly. In a restricted sense, engineers and scientists do this every 
day. Commercial software packages for symbolic mathematics (e.g.. Mathematica) 
use rule-based search techniques similar in spirit to the scheme outlined above. A 

FIGURE 6-3. Collaborative Problem Solving on a Smart Surface

Two people, each fitted with a terabyte of wearable memory, approach a table fitted 
with a teraFLOP compute in order to jointly search for a solution to a problem. Infor-
mation on their disks is represented as a collection of autonomous packets (i-packets). 
A high bandwidth channel from each person’s disk into embedded particle ensemble is 
gated via natural gestures such as the physical contact with the hand. Once in the 
table, the i-packets interact to progress toward a solution, with the human observers 
playing a supervisory role to guide the interaction.
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user types in a symbolic expression of near arbitrary complexity. The implied 
"problem" is to reduce the expression to its simplest form. In its eval loop, Mathe-
matica iteratively applies a set of rules to systematically reduce the complexity of 
the expression, halting either when the expression is in a canonical form or when 
further attempts at reduction fail. The crucial point is that all the rules are checked 
at each round of iteration, and that the rules are independent. While today the rule 
set is bundled with the software, it can be (and initially was) collected from a set of 
disparate sources.

The extension to the general case of collaborative problem solving on a paintable 
begs two questions:

1. Is the pfrag a useful representation of knowledge?

2. Can the organizing principles that guide the assembly of the pfrags also be used 
to create structures and representations that aid in problem solving?

These questions require much more additional research. Yet we need not wait until 
we can pattern a brain before we can make sensible use of this computing. Distrib-
uted problem solving by ecologies of cooperating agents has been extensively stud-
ied in artificial intelligence [18] [16], with strong progress made on those problems 
that can be expressed as searches through large problem spaces. In the special case 
of heuristic search operating on constraint satisfaction problems, Huberman, et.al. 
[12] [25] presented an analytic treatment of cooperative search and quantitatively 
established the performance gain as a function of the ecology’s size and diversity. In 
their application of machine understanding to news editing, Gruhl and Bender [24] 
demonstrated how a collection of disparate agents acting independently can already 
be used to catalog a large corpus of news feeds and perform efficient query-by-
example searches. Studies such as these are suggestive of the potential of a paint-
able-based application, but also underscore the difficulties lurking in the imple-
mentation.

So why the fascination with collaborative problem solving? Why not space explo-
ration, geophysics, cryptography or molecular biology? Because human-to-human 
communication underlies virtually all organized social behavior — with disastrous 
consequences when it fails. And if the processes of human communication ever do 
find expression in the formalisms of computer science, then I believe that collabo-
rative problem solving will emerge as one of the field s NP-complete problems.

And we all like a challenge. 
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APPENDIX  A Yield, Cost and Die Size

This appendix employs a simple numerical study to illustrate the dependencies 
between manufacturing costs, die size, and density of process failures. Two 
assumptions govern; 1) the manufacturing costs are linearly related to the total area 
of the wafer from which operable dies are harvested, and 2) process failures have 
limited spatial extent that are typically small compared to the area of a single die. 
When a portion of a die is affected by a process failure, the entire die is regarded as 
inoperable. Use of smaller dies naturally limit the financial loss incurred by each 
failure. This appendix quantitatively examines this dynamic using two models of 
process failure operating on three characteristic die sizes.  

Each test collects comparative data for three characteristic dies sizes; 1 cm2, 

25 mm2 and 1 mm2 (large, medium, and small). The dies are arranged in a rectan-

gular lattice over the active area of an 8-inch wafer1 (fig. A-1). The 14cm x 14cm 
rectangle contains space for 196 large dies, 784 medium dies and 19,600 small dies. 

1. Substantial liberty is taken with the term "active area". In practice, the active area of a 
processed wafer more closely approximates a circle. But the dies are still arranged on a 
rectangular lattice. Approximating the active area as a rectangle supports a reasonable 
examination of the failure dynamics while simplifying the calculations.
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In each test run, failures are randomly positioned on the wafer and the affected dies 
are tagged as inoperable. As failures accumulate, the total area of the operable dies 
is tabulated for each size scale. Tests are repeated 1000 times to account for the 
variance due the random placement of the failures.

FIGURE A-1. Relative die sizes

Three die sizes are considered in these tests: a 1cm2 die, a 25 mm2 die 

and a 1 mm2 die. In each test, the dies are assumed to be positioned in a 
rectangular lattice covering the 14 cm x 14 cm active area of a wafer. 
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Point Failures. The first test considers the case of 
process failures whose footprints are small com-
pared to the area of even the smallest dies. Defects 
are modeled as point failures which disable one 
and only one die at each scale. As the test proceeds, 
the failures are randomly positioned on a rectangu-

lar grid with a spacing of 0.5 mm2 and an initial 
offset of 0.25 mm (illustration). For each new fail-
ure, the position of the failure is used to determine 
which of the dies at each size scale has been ren-

dered inoperable3, those dies are removed from the 
pool of functioning dies and the fraction of opera-
ble wafer is retabulated for each die size.

Fig. A-2 plots the yield as a function of failure density for each of the three die 
sizes. Yield values represent the fraction of the wafer occupied by functional dies. 
The plot format is log-log. Predictably, the yield is independent of the die size at the 
extremes of failure density. However in the interim region where defects accumu-
late, the relation between yield and defect rate depends strongly on the die size. 

Table A-1 lists values for selected defect rates. Note that as the yield of the large 
dies passes through the 30 %, the yield of the small dies is still almost unity. Like-
wise, when the large die yield has dropped to the point where the wafer produces an 
average of only one functioning die, the difference in yields across die size 
approaches 200 fold.

2. Each 1mm2 area therefore contains four failure points.

3. large dies could already be inoperable due to a previous failure

TABLE A-1. Yields for selected defect rates

No. of Defects
(label from

plot of fig. A-2)

Yield
areal fraction   (number of functioning dies)

Small dies Medium dies Large dies

220 (x1) 0.989 (19,380) 0.755 (592) 0.326 (64)

600 (x2) 0.970 (19,006) 0.464 (364) 0.048 (9)

1060 (x3) 0.947 (18,560) 0.256 (201) 0.005 (1)
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Areal Failure. In this second test, process failures 
have a spatial extent, with each defect effecting an 
area of up to 1/4 the area of a small die. Defects are 
positioned on a 2D grid with a spacing of 0.5 mm 
and an initial offset of 0.25 mm (illustration). The 
errors are therefore represented as a lattice with 4x 
the density of the small die lattice and a relative off-
set. At the 1mm die scale, a quarter of the failures 
effect only one die, one half of the failures cross the 
boundaries of two dies and the remaining quarter 
affects four adjacent dies. This corresponds to an 
expected loss per failure of 2.5 dies at the small 
scale, 1.21 at the medium scale and 1.1 at the large 
scale.

As in the previous test, defects are positioned randomly on the grid. For each new 
failure, the position of the defect is used to select those dies that have been rendered 
inoperable. The area of remaining dies is used to tabulate the instantaneous yield. 
The procedure is repeated for each of the three die sizes. Fig. A-3 shows the data 
plotted against log-log axes. As before, the relationship between yield and defect 
density is a governed by the die size. Here the robustness of the small dies is some-
what reduced by the fact that single errors preferentially effect multiple dies at the 
smallest scale. However the worst case difference in yield still approaches 200 

fold4.

Discussion. The insights from these two tests are moderated by the fact that real 
process failures occur simultaneously in multiple modes, some of which are diffi-
cult to model. Nevertheless, the disparity in device yields as a function of die size is 
a first order effect that transcends the simplifications adopted here. This phenomena 
manifests itself every day in the relative price of small embedded controllers and 
high end CPU’s.

    

4. the 200x figure conveniently ignores the case where the defect rate is so high that wafers 
produce no working large dies.
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FIGURE A-2. Yields as a function of the density of point failures

Process yield is plotted as a function of the defect density for three die sizes: 

1 cm2, 25 mm2, and 1mm2. The yield corresponds to the fraction of the wafer 
that is occupied by functioning dies. The results were generated by averaging 
data from 1000 test runs (hence the yields corresponding to fractional dies 
sizes). The plot format is log-log. 

In the intermediary region of fractional defect density, sensitivity of the yield to 
the defect rate is strongly affected by the die size. An extreme of this occurs at 
the defect rate labelled x3 Here, the large die yield of 0.5 % corresponds to one 
working die. Yet the small die’s yield is 94.7 % — almost a 200x improvement.
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FIGURE A-3. Yields as a function of simple areal failures

In this test, process failures have a large spatial extent and are capable of dis-
abling multiple dies. The tests otherwise parallel the procedures followed in 
the tests on point failures, with comparable results.


