
Morphogenesis as an Amorphous Computation

Arnab Bhattacharyya
Project on Mathematics and Computation

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139

abhatt@mit.edu

ABSTRACT
In this paper, we present a programming language view-
point for morphogenesis, the process of shape formation
during embryological development. Specifically, we model
morphogenesis as a self-organizing, self-repairing amorphous
computation and describe a framework through which we
can program large-scale shape formation by giving local in-
structions to cell-like objects. Then, using this program-
matic perspective, we specify some example developmental
processes and discuss the characteristics that make them
suitable candidates for evolutionary variation and selection.
Consistent with the theory of facilitated variation from evo-
lutionary biology, we find that variation in developmental
processes can be introduced and conserved due to the hier-
archical organization of growth specification.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Simulation Languages,
Model Development; I.6.8 [Simulation and Modeling]:
Types of Simulation–Discrete event

General Terms
Experimentation, Languages

Keywords
Amorphous Computing, Morphogenesis, Emergent Order

1. INTRODUCTION
Embryological development is a magnificent demonstra-

tion of how complexity can arise from initial simplicity. A
single egg cell contains most of the information needed to
position the millions of cells in a human body; moreover,
the construction process is remarkably robust in that it can
recover from a large number of cell deaths and malfunc-
tions. Even after the initial construction is completed, the
living system remains in a dynamic equilibrium, constantly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’06, May 3–5, 2006, Ischia, Italy.
Copyright 2006 ACM 1-59593-302-6/06/0005 ...$5.00.

replacing dead cells, healing tiny ruptures, and so on. More-
over, in some organisms, even large-scale regeneration oc-
curs. Urodeles, like newts, are famous for regrowing entire
limbs in such a way that the regenerated parts merge seam-
lessly into the preexisting tissue.

From the perspective of a computer scientist, studying
such processes could bring novel insights into solving other
problems, such as programming “smart matter” or directing
a swarm of robots. But, even leaving aside these benefits,
studying morphogenesis from a computational perspective is
important for its own sake: expressing ideas computation-
ally through a programming language forces disambiguation
of ideas and provides a powerful tool for examining impli-
cations of new hypotheses. A good language in which to
express morphogenetic processes will be an invaluable tool
to verify plausibility of formal models and to discard in-
consistent conjectures. Thus, in the following, the goal is
to identify an effective computational framework and a set
of morphogenetic primitives through which we can simulate
interesting developmental processes.

In section 2, we describe a framework that enables pro-
gramming of global topological changes through local cell-
level instructions. We enumerate a set of basic developmen-
tal patterns that performs the role of primitive operations
in our language for morphogenesis. Then, in section 3 we
present three example developmental mechanisms, reminis-
cent of ones occurring in nature, and show how they can be
implemented in our framework. Finally, we discuss the fact
that each of these mechanisms possesses a lot of potential
for variation and adaptability and how we can unleash these
variations by making small changes to our programs.

2. A COMPUTATIONAL FRAMEWORK FOR
MORPHOGENESIS

2.1 Requirements
The central challenge in modeling biology is managing the

huge amount of concurrent, largely decentralized, behavior
exhibited by the cells. How do you program a massively
distributed, noisy system of components? This problem is
formalized in the study of amorphous computing. An amor-
phous computing medium, as introduced by Abelson et al.
in [1], is a system of tiny, computationally-limited elements
scattered irregularly across a surface or a volume. These ele-
ments, which we shall call organizers, have a limited range of
communication1, can retain some local state, and can repli-

1It might be interesting to apply the framework of [5] to



cate and kill themselves. The goal of the amorphous system
is to attain some desired global state. So, while the orga-
nizers are only locally interacting, their collective behavior
results in complex global behavior. Moreover, we want the
amorphous computation to be robust; that is, the compu-
tation should still proceed in the face of random organizer
death/failure.

Here, we apply the above computational paradigm to the
creation of shapes from amorphous elements. Our goal, as
stated above in the Introduction, is to be able to model the
essential elements of biological developmental processes with
amorphous programs. The amorphous scheme should have
the following properties:

• an initially small group of organizers should replicate
repeatedly until a desired shape is attained

• organizers should be allowed to move during the course
of development

• the shape development should be robust in the face of
organizer death and malfunction

However, notice that a trivial development scheme that con-
tains three gradient fields to provide a global coordinate sys-
tem in a three-dimensional world and that deterministically
instructs each organizer to grow another organizer in a par-
ticular direction based on the coordinate system can satisfy
our criteria. Clearly, there is some other aspect of biologi-
cal development that is not captured by the above criteria.
This, we discuss next.

2.2 Variation and Exploratory Behavior in
Morphogenesis

Multicellular organisms have a small number of genes (only
about 25,000 in humans) and a large fraction of these genes
is conserved across species. In this context, the sheer vari-
ety of organisms in terms of their shapes is extraordinary.
How can the relatively small differences between the mor-
phogenetic programs of organisms create so much diversity
of anatomy and physiology? Kirschner and Gerhart, in their
book, The Plausibility of Life [6], show that much of the di-
versity in form arises from the exploratory nature of the
developmental processes themselves. The argument is that
the morphogenetic program prescribe the means to develop,
not the outcome of the development.

Kirschner and Gerhart’s book provides a wonderful exam-
ple to illustrate the point: the role of microtubules in giving
shape to individual cells. In a typical cell, long thin fila-
ments called microtubules grow from the nucleation center
to the cell membrane providing stability to the cell struc-
ture. However, these microtubules are not static; instead,
each filament grows out for a short period and then shrinks
back toward its point of origin, getting spontaneously re-
placed with a new one which grows in another random di-
rection. This normal lifecycle of the filament is interrupted
if a stabilizing signal is sensed at the cell membrane. If
the stabilizing signal is sensed, the microtubule persists and
does not depolymerize. Hence, by this adaptation process,
the microtubules automatically cluster themselves toward
the stabilizing region of the cell membrane, giving the cell a
particular shape. The key insight is that for the cell’s shape

formalize and reason about collective knowledge in such a
setting.

to change, the growing mechanism of the microtubule need
not change; only the location of the stabilizing signal has to
change. Many different cell shapes can be generated from
exactly the same exploratory process of microtubule assem-
bly under different stabilizing agents acting peripherally.

This observation is crucial to explaining the diversity of
morphological forms in nature. A single genotypic change
can create different morphological changes in many parts
of the organism, not because the other parts also simulta-
neously and improbably experience the right genetic muta-
tions, but because these parts are created by adaptive ex-
ploratory developmental processes that undergo selection.
A characteristic of developmental mechanisms in Nature is
that they contain the potential for rapid variation. We
should require the same for the mechanisms that are ex-
pressed in our programs. More generally, Kirschner and
Gerhart advocate a theory of facilitated variation to explain
how variation is introduced and conserved in evolution. In
the next section, we will show how our programming con-
structs correspond to the tenets of this theory.

2.3 Programmable Components in the
Framework

2.3.1 The Universe
In order to be able to support shape development, the

universe in which the organizers are embedded must have
some geometric structure. We restrict our universe to be
a bounded Euclidean space. Although all the simulations
described here will be in a two-dimensional space, the same
programs also work in a three-dimensional universe. Note
that the universe is not discretized in any sense.

In addition to being the substrate in which the organizers
are embedded, the universe also serves as the communica-
tion medium. There are two distinct types of signals that
can be transmitted through this medium. The first type is
morphogenic signals, short-range signals emitted by orga-
nizers. A morphogen is a signal secreted by a local source
that decreases in concentration2 as distance from the source
grows ([8, 10]). In our context, the decrease in concentra-
tion of the morphogen is implemented very simply; when
an organizer centered at position x emits such a signal at
concentration v, then the concentration at the surrounding
points is given by the following scalar field f :

f(z) =



v if |z− x| ≤ 2d

0 otherwise

where d is the organizer diameter. As described in section
2.3.2, organizers can respond to a positive concentration
of ambient signal. A morphogenic gradient can be estab-
lished if organizers sensing a concentration v of a signal itself
start secreting the same morphogen at a lower concentra-
tion. Such gradient fields enable differentiation and regional
specification of embryonic cells and will do the same in our
framework.

The second type of signaling the underlying medium sup-
ports is background fields. A background field is a static
field that can be present at all points in the universe, pro-
viding global positional information to each organizer. The

2“Concentration” here simply means a measure of the sig-
nal strength. One can think of morphogens coming in pack-
ets; then the concentration of a morphogen is the size of its
packet.



background fields represent the input from the environment
in which the organizers grow. For example, cell polariza-
tion occurs during development in response to interactions
with the extracellular matrix. Background fields are also
similar to the Bicoid morphogenic field in Drosophila which
establishes the fruit-fly embryo’s anterior-posterior axis at
the earliest stages.

2.3.2 Organizers
In our model, organizers are hard spheres with a fixed

diameter d. For an organizer, all sense of directionality and
position is based on the ambient background fields and the
morphogenic signals received. For instance, an organizer can
specify that it replicate only along the direction of increasing
concentration of a background signal. In this case, when
the organizer replicates (by the process described in 2.3.3),
it samples a large number of random directions and places
its descendant in the direction of the greatest concentration
increase. Such a mechanism enables growth patterns such
as the one shown in Figure 1. Here a background signal is
secreted by a source near the middle of the rightmost edge of
the universe. The organizers grow toward it, going around
the gray obstacle because there is no background field inside
the obstacle.

Figure 1: Organizers growing around obstacle to-
wards the indicated source.

Each organizer has receptors to sense local morphogenic
fields. The morphogen signals are permissive, that is, the
complete response to the signals are already built into the
organizers. The signal concentrations themselves do not en-
code instructions for the cell’s response, which would be the
case if the signals were instructive. Thus, from an evolu-
tionary standpoint, it is easy for cell behavior to change
because it is possible for some cells to repress their reaction
to the signal without affecting the other cells’ responses. If
the signals were instructive, changing the cellular behavior
would involve changing the instructive signals which could
potentially affect all receiving cells. The use of permissive
signaling to effect easily mutable regulatory connections is
termed weak regulatory linkage in [6] and is one of the key
tenets in the theory of facilitated variation.

To make weak regulatory linkage work, it is crucial that all
the organizers are not identically programmed. In an adult
vertebrate, there are about three hundred differentiated cell
types, each with several subtypes. Moreover, during devel-
opment, there exist many more types of cells that are tran-

sient but are required for proper morphogenesis. Each of
these cell types has different responses to morphogens, dif-
ferent adhesivities, different lifetimes, different clock speeds,
and so on. Such categorization of cells into different types
provides evolutionary advantage. It allows each type of cell
to evolve independently and parallelly. Thus, it avoids the
pleiotropy problem where positive changes in cells in one
region of the organism result in negative changes for cells
in another different region. There exists strong biochemi-
cal evidence to support the existence of such a design. In
the 1990s, biochemists discovered that during the phylotypic
stage of development, the embryo divides itself into com-
partments, each of which responds in a particular way to
signaling morphogens and has different conserved core pro-
cesses. Remarkably, many features of the compartment map
are common to a wide range of phyla; this conservation sug-
gests that compartments provide a flexible scaffold on which
to build the rest of the organism’s anatomy.

To implement these concepts in our programmatic frame-
work, we use a static type system. We impose a type envi-
ronment in which each organizer has a type, and organizers
of the same type share the same developmental program.
So, the collection of organizers of the same type may be
thought to form a compartment. Organizers are called so
because it is their job to organize the growth of the com-
partment they belong to. Usually organizers of the same
type form a physically contiguous region, and if some of the
organizers in a compartment die, the rest can usually quickly
regrow the missing region. Subtyping is used to implement
compartment subtypes.

2.3.3 Growth and Regeneration
In our setting, growth occurs through a process function-

ally similar to directed asymmetric mitosis ([9]). A mother
organizer checks if it is possible to grow in some direction
(that is specified with respect to the background field gradi-
ents or the direction of incoming morphogenic signals) and
if so, generates a daughter organizer in that direction. True
to our goals of regeneration, an organizer usually never ex-
plicitly records the fact that it has already grown in a direc-
tion; instead, it continually keeps searching for a direction
in which it can grow. Thus, in the event that the daughter
organizer dies (and growth of the mother organizer is not
repressed), the mother organizer can regenerate the missing
part.

An important issue in this regard is the interaction be-
tween growth and organizer type. Can an organizer generate
organizers only of a specific type or can it grow organizers of
many types? Our answer is that all organizers are pluripo-

tent, that is, capable of growing any type of organizer in the
system. But each organizer is usually inhibited from grow-
ing a large fraction of the types. Change in inhibitions can
be instigated from various causes such as sensing a differ-
ent concentration of a morphogen or sensing of a different
background field gradient3 or aging.

More explicitly, our programmatic framework has the no-
tion of a grower. A grower is a program embedded inside
an organizer which, when invoked, generates a daughter or-
ganizer of a specific type. Pluripotence means that all or-
ganizers in the amorphous system have access to the same
fixed set of growers. But an organizer typically does not ex-

3Although the background fields are unchanged in time, the
organizers might move.



press all its growing capabilities. Each organizer can inhibit
or activate some of its growers and can put a priority or-
dering on its activated growers. Also, among the activated
growers, some may not lead to a new daughter because of
environmental conditions such as if there is no space to grow
in a particular direction; let us call growers that do lead to
new growth potent. On each time-step, the organizer finds
the most preferred activated potent grower and, if there ex-
ists one, invokes that grower to create a daughter organizer.
Note that the decoupling between growers and organizers is
a fundamental part of the design of our framework. Given
the right environment, any organizer can produce any other
type of organizer.

Such a scheme is consistent with our goal to facilitate
the exploration described in section 2.2. A large amount
of variation can be introduced without touching the main
framework of growth described above at all. Changes of
concentration of morphogen secretions can inhibit or acti-
vate growers in different organizers. More modularly, a par-
ticular type of organizer can change the criteria according
to which growers are inhibited. For example, an organizer
type can lower the age at which it begins to stop inhibiting
a grower, or it can increase the morphogen concentration re-
quired for inhibiting a grower to such a level that the grower
is never inhibited. Such variations are suitable targets for
evolutionary pressure.

2.3.4 Death
An important part of development is cell death or apop-

tosis. For example, during the formation of the digits, a
hand plate initially forms and, then, the interdigital mes-
enchyme cells die. As described by Bard in [2], cell death is
especially responsible for sculpting the finer details of tissue
organization. In our framework, apoptosis is implemented
very simply. An organizer can kill itself at any point. The
space in the universe previously occupied by the organizer
is freed. Also, in the simulation, the computer frees all re-
sources related to the dead organizer.

A common problem that arises when implementing apop-
tosis is that organizers surrounding the dead ones often try
to grow to reclaim the vacated space. One way to prevent
this is to have dying organizers release a signal that sterilizes
the live organizers bordering the empty space.

2.3.5 Movement
Cellular mobility is a crucial ingredient in development,

especially in vertebrate development where the migration of
neural crest cells results in the formation of a large num-
ber of tissues. Also, from an evolutionary standpoint, the
process of migration is particularly conducive to exploratory
behavior, since changes in the cellular environment change
the locations where migrating cells choose to settle. It is
worth noting that all cells have the molecular apparatus to
move, although few do during development because most
are inhibited by the physical contact with other cells ([2]).

What prevents most cells from moving is the adhesive en-
vironment of their neighbors. At the same time, what causes
movement of most cells is adhesion to other moving cells.
Thus, cell mobility is a competitive balance between the
motile forces exerted by the cell’s cytoskeleton and the ad-
hesive forces exerted by the cell’s neighbors. A more formal
analysis is presented in Chapter 5 of [2]. In our framework,
we simplify the situation by requiring that any motile force

stronger than usual overrides the adhesive forces. So, an
organizer can, at will, move in any direction, provided that
the destination is not occupied. Moreover, any organizer
adhering to the moving organizer will also feel additional
motile force, causing it to move in the same direction in
synchrony with the original moving organizer or until it is
blocked. Thus, mass movement of organizers can be initi-
ated and controlled through a process akin to chemotaxis,
the biological mechanism by which cells move relative to a
background field gradient.

The adhesivity of an organizer is dynamically maintained
and is not fixed across a compartment. Also, properly speak-
ing, each organizer does not have a single adhesivity prop-
erty; instead, an organizer adheres differently to different
types of organizers. When an organizer is attracted to two
moving organizers of different types, its movement will be
biased in the direction of the organizer it more strongly ad-
heres to.

2.4 The Simulator
The execution model for each organizer is simple. At each

time-step, the organizer’s transfer function is called. The
transfer function is responsible for carrying out the following
actions:

• Increase age

• Refresh background field value measurements

• Receive morphogens

• Based on the results of the above actions, do if appli-
cable:

– Emit morphogens

– Inhibit or activate growers

– Invoke the most preferred active potent grower

– Die

The organizer’s age is a local clock count maintained at
each organizer4. The computer simulator asynchronously
executes the organizers’ transfer functions. The simulator
has six threads and each one cycles through 70% of the or-
ganizers in random order. Priority is given to organizers
in whose neighborhood growth or death has most recently
taken place. Simulation of development is accelerated with
this “most-recently-grown” caching strategy. The primary
benefit of using such a nondeterministic execution strategy
is that it forces the morphogenetic scheme to be indepen-
dent of the exact order in which the transfer functions of
the organizers are executed.

2.5 An Implementation of the Framework
We implemented the above framework in the Java pro-

gramming language. The language to express morphogenetic
schemes is described briefly here, since we will use it to spec-
ify some developmental processes in the subsequent section.

4The rate at which the organizer ages might vary by com-
partment. Intracellular clock mechanisms are well sup-
ported by experiments; in several cases, cells removed from
their normal environment before the initiation of morpho-
genesis undergo in vitro and roughly on schedule some of
the changes that accompany the initiation of morphogenesis
in vivo ([2]).



In the Java implementation, organizer types are imple-
mented as classes, and particular organizers as instantia-
tions of these classes. To create a new organizer type, the
programmer has to subclass the Organizer class and pro-
vide an implementation of the transfer function shared by
all organizers of that type. For example, Figure 2 shows the
description of a simple organizer. Organizers of type StdCell

have receptors for two morphogens, sterile and poison; this
is specified by the call to registerReceptor 5. When
a StdCell organizer detects a concentration level6 of poison

that is between 1 and ∞, it kills itself. Notice how this
is implemented: the morphogen does not carry any special
instruction causing the organizer to die; instead, the orga-
nizer has a thunk that is a built-in response to poison that is
activated upon the morphogen’s receipt. Similarly, receipt
of the sterile morphogen causes all growers to be inhibited.
Thus, the morphogens form a weak regulatory system, as
discussed earlier.

A programmer can implement a grower in this framework
by subclassing the abstract class Grower. All concrete sub-
classes of Grower must implement the grow method which
returns a new daughter organizer and its orientation relative
to a parent organizer. Figure 3 shows the implementation
of a simple grower, named StdGrower. When an organizer
invokes a StdGrower, the grower chooses a random direc-
tion and if there is not already another organizer adjacent
in that direction, it grows a new daughter StdCell organizer
in that direction. The orientation is specified as a Vector
object. (The global coordinates used inside a Vector object
are invisible to programmer-created growers and organizers.
So, access to a Vector does not imply access to a global
coordinate system.)

By default, an organizer inhibits all its growers. So, in or-
der to grow, an organizer must explicitly activate its grow-
ers, either in the constructor or inside thunks that are ex-
ecuted upon receipt of certain morphogens or detection of
some level of background fields or attainment of some age
or some combination of these events. Also, as described in
section 2.3.3, an organizer must put a priority ordering on
the growers. Figure 4 shows how these are done in the con-
text of a specific example, a FillerCell. During construction
of a FillerCell, the StdGrower is registered, meaning that
StdGrower is higher than any other grower in the priority
ordering for this organizer. If a second grower were to be reg-
istered after StdGrower, it would have lower priority than
the StdGrower but higher priority than any other grower.
In other words, the lexical order of the registerGrower
statements determines the priority ordering; thus, evolution
can select for the best ordering by permuting these state-
ments in the program text. The FillerCell organizer acti-
vates its grower when it reaches the age of 10. So, if we start
with a single FillerCell organizer, eventually its descendants
will fill the entire universe.

The examples above have not illustrated some other im-
portant features of the general framework, such as mor-
phogen broadcasting, background field measurements, cell
movement, and adhesivity. But the grammar for expressing

5The second argument to registerReceptor specifies
whether the organizer should keep track of the maximum
concentration of the morphogen received by any of its re-
ceptors or the minimum.
6In this implementation, concentration levels are always
nonnegative integers.

these concepts in our implementation is easy to understand,
given the previous discussion and examples.

3. FACILITATED VARIATION
In this section, we describe what it means for morpho-

genetic schemes to be “evolutionarily feasible.” An evolu-
tionarily feasible developmental scheme has two characteris-
tics: robustness and variation. Many mechanisms in nature
are intrinsically very robust to external change. The mi-
crotubule example in section 2.2 illustrates this. Another
example is the growth of capillaries in mammals. Capillar-
ies seem to branch out randomly to explore their surround-
ings, and their rate of branching increases when they reach
oxygen-starved tissue and decreases when they reach tissue
with enough available oxygen. Thus, the capillaries auto-
matically adapt to any change in the external tissue mor-
phology. If the capillary branching system was not adaptive,
then a change to the tissue structure would need to be ac-
companied by changes to the capillary branching mechanism
for the organism to remain viable. But instead, evolution is
a more conservative process: the system remains functional
even while the individual components change. This is why
genotypic changes can be conserved through evolution. But
if changes to the genotype are restricted to those which keep
the system functional, how does all the phenotypic diversity
in life arise? For example, it is conjectured that the pro-
tostomes had a deuterostomic ancestor. But protostomic
and deuterostomic embryogenesis are so very different; how
did the evolution from deuterostomes to protostomes oc-
cur in a “homotopic” fashion? The answer is that develop-
mental mechanisms are designed so that a small genotypic
change leads to a large phenotypic change. And this geno-
typic change can often be conserved because the unchanged
mechanisms are robust enough to retain the organism’s via-
bility. Thus, developmental processes in nature intrinsically
facilitate evolution by making individual components very
susceptible to variation while requiring that they adapt to
variations in other components.

We would like the developmental processes we create to
similarly facilitate evolution. Below we sample a few types
of morphogenetic processes, expressed using our framework
from section 2, that exhibit robustness and variation.

3.1 From a circle to an ellipse
Here is a very simple scheme for developing a solid sphere.

The morphogenesis starts off with a single starter organizer
which emits a morphogen called a at a fixed concentration
level. The starter organizer continually produces organiz-
ers of type ball uniformly in all directions through the Std-

Grower grower from Figure 3. Each ball organizer records
max, the maximum concentration of a that it receives, and
itself emits a at concentration max − 1. Also, each ball or-
ganizer uses the StdGrower grower to produce more of its
own type in random directions, unless it detects that the
concentration of a is below some threshold in which case,
the grower is inhibited. Such a mechanism creates a solid
sphere, because the growing process is completely unbiased
in any direction. For convenience, suppose the single starter

organizer is generated from another organizer of type pre-

cursor. The precursor organizer generates the single starter

organizer, which moves randomly for some time and then
starts creating the ball. Development starting from such a
setup is shown in Figure 5.



import framework.Organizer;

public class StdCell extends Organizer {

public StdCell() {
registerReceptor("sterile",true); // track maximum concentration of sterile

// among all of the receptors
registerReceptor("poison",true);

addMorphogenAction("sterile",1,Double.MAX_VALUE,
new Runnable() {

public void run() {
inhibitAllGrowers(); // do this when sterile conc. ≥ 1

}
});

addMorphogenAction("poison",1,Double.MAX_VALUE,
new Runnable() {

public void run() {
die();

}
});

}
}

Figure 2: Description of a very simple organizer

import framework.Grower;

public class StdGrower extends Grower {

public OrganizerVectorPair grow(Organizer org, Universe uni) {
Vector gdir = uni.getRandomDirection(org);

// grow StdCell if not blocked
if(!uni.isOccupied(org,gdir,Organizer.class)) {

return new OrganizerVectorPair(new StdCell(), gdir);
}

return null;
}

}

Figure 3: Description of a simple grower that grows a new StdCell in a random direction

public class FillerCell extends StdCell {

public FillerCell() {
super();

registerGrower(new StdGrower(),true);
addAgeAction(10, Integer.MAX_VALUE,

new Runnable() {
public void run() { // do this when age ≥ 10

activateGrower(StdGrower.class);
}

});
}

}

Figure 4: Description of a growing organizer



Figure 5: A solid sphere. The starter organizer at
the center of the ball is colored red.

Next, consider what happens when the precursor orga-
nizer generates two of the starter organizers. Such a setup
is shown in Figure 6(a). Even when the balls generated
from the two starter cells overlap, the balls are maintained
independently. Each ball organizer effectively measures the
distance to the closest of the two starter organizers (by ob-
serving the local concentration of a) and decides whether to
grow or not based upon this information. Although a little
trivial in this case, one should note that the entire struc-
ture of the final shape has been changed without changing
the code of the starter or ball organizers. Also, the change
in the description of the precursor organizer is syntactically
very small: the grower generating the starter cell is invoked
twice instead of once.

Next, consider what happens when the two starter orga-
nizers are not exactly identical. In particular, suppose that
one emits morphogen a and the other emits a different mor-
phogen b. Also, instead of having the ball cells inhibit their
growers if the local concentration of a is below some thresh-
old, suppose that it is the case that the ball cells inhibit their
growers only if the sum of the local concentration of the a

morphogen and the local concentration of the b morphogen
is below some threshold7. (In fact, this could have been the
case in the earlier examples also. In those cases, the concen-
tration of b was always zero.) This developmental scheme
now specifies an ellipse, as shown in Figure 6(b). Appendix
A shows the code (in terms of the Java implementation of
section 2.5) for these examples. As annotated there, figures
5, 6(a), and 6(b) all come about through changes in the last
line of the description of the precursor organizer. Duplica-
tion followed by speciation of the grower activated by the
precursor organizer leads to a change from a circle to an
ellipse in the final shape.

3.2 Imitating microtubule growth
The example in this section is reminiscent of the cytoskele-

ton assembly process described in section 2.2. Because there
are no subcellular structures in our framework, we will am-
plify the entire process to the tissue level: our desired struc-
ture consists of a hollow ball of organizers that is supported

7A physical motivation for considering the sum might be
that a and b are indistinguishable inside the organizer al-
though they are distinguishable by the receptors

by filaments growing from a structure at the center of the
hollow ball to the surface. Each filament consists of a chain
of organizers that decays away unless a stabilizing signal is
received. This example will show some of the expressiveness
and robustness inherent in the hierarchical compartmental-
ization of organizers.

Here is a possible developmental mechanism for growing
such a structure. The morphogenesis starts off with a sin-
gle initiator organizer. The initiator replicates repeatedly
to form a solid ball (via the mechanism described above in
section 3.1), which we will call the nucleation center. Next,
these organizers in the nucleation center replicate (via an-
other invocation of StdGrower) to form a solid ball con-
centric with the nucleation center, as shown in Figure 7(a).
Some of the organizers in the larger sphere die, such that we
get a shell with the nucleation center in the middle, as in Fig-
ure 7(b). Meanwhile, the organizers in the nucleation center
have begun generating filaments that extend from the center
in random directions. The way a straight line of organizers
can be grown is by invoking a special grower, described in
Figure 8, that grows a daughter organizer in the direction
opposite to the direction of any adjacent organizer. The fil-
ament organizers are intrinsically unstable; they die after a
short time (as measured by their internal clocks). However,
some special organizers on the shell can emit a stabilizing
signal that prevents the filament organizers from dying. In
this way, the filaments dynamically cluster toward the side
of the shell that is stabilizing, as shown in Figure 7(c).

Although in an artificial context, this example illustrates
the robustness of morphogenesis. The organizers emitting
the stabilizing signal could be involved in some other compli-
cated morphogenetic process and their location could vary
randomly but the filaments would still cluster towards them.
No change in the code for describing the filament organizers
is needed. A second important point is that the organizers
in the nucleation center essentially use randomness in or-
der to locate the stabilizing region of the shell. This is an
example of the “exploratory growth” notion in [6].

3.3 Imitating neural crest cell migration
Until now, none of the examples has significantly involved

cell movement8. But, as mentioned before, cell migration is
an important part of development, especially in vertebrates
where the neural crest cell (NCC) migration is responsible
for structures ranging from horns to hoofs. It is especially
interesting that variation in the outcome of NCC migra-
tion is a major source of phenotypic variation among the
vertebrates. The result of NCC migration is specified by
the adhesivities and type of the surrounding cells. We will
model a formal analog of NCC migration to understand the
evolutionary feasibility of such a scheme.

Consider the following developmental mechanism. The
morphogenesis starts (as usual) with a single organizer of
type initiator. The initiator organizer invokes the StdGrower

to generate a ball of organizers of type ball. The ball orga-
nizers in the center undergo apostosis, so that a shell of
ball organizers is left. There exists an organizer type ncc,
a subtype of the ball type, to which belongs some of the
organizers lying on the inner surface of the shell. These ncc

8Note that without movement, it is mostly easy to regener-
ate missing regions in our framework. But when cells can
move, regeneration becomes a very difficult goal to ensure
in general. We have not tried to tackle this problem here.



(a) (b)

Figure 6: (a) shows growth of two solid spheres. In this case, both starter organizers are emitting the same
morphogen. (b) shows growth of an ellipse. Here, the starter organizers, present at the foci of the ellipse,
are emitting different morphogens. In both parts, the starter organizers are colored red while the precursor

is colored blue. Note that all these structures are regenerative; the shape automatically reforms if some of
the organizers die.

(a) (b) (c)

Figure 7: Simulation of the microtubule development mechanism. There is a background field which increases
uniformly from left to right. Organizers on the shell which sense the background field value to be greater
than some threshold emit the stabilizing signal; these are colored cyan above. The stable filament organizers
are colored blue and the unstable ones yellow. The grey region is the nucleation center.

public class MicrotubuleGrower extends Grower {

public OrganizerVectorPair grow(Organizer parent, Universe uni) {

// get direction of the parent relative to sender of
// the m morphogen
Vector gdir = parent.currentReception("m").dir;

if(!uni.isOccupied(parent,gdir,Organizer.class)) {

// grow a new filament organizer in the direction
// opposite to the receiving direction
return new OrganizerVectorPair(

new FilamentCell(),
gdir);

}

return null;
}

}

Figure 8: Grower for growing a line of filament organizers.



organizers now start taking random walks biased towards
the radially inwards direction. An ncc organizer can stop
moving due to one of two reasons: (i) It come into contact
with an organizer that is very adhesive to it, (ii) It comes
into contact with a physical boundary. (Both these cases are
well-motivated biologically. See Chapter 5 in [2].) As the
ncc organizer stops, it releases a morphogen that depends
upon the local concentration of other morphogens and back-
ground fields. Thus, effectively, the ncc differentiates differ-
ently based upon where it lands9. Finally, the specialized
morphogen interacts differently with the surrounding orga-
nizers to activate or inhibit specialized growers.

It is evident that such a scheme is a rich source of varia-
tion. The differentiation of the ncc organizers can change,
the adhesivity of the environment can change, the activa-
tion/inhibition of growers due to the morphogens released
by the ncc organizers can change, and so on. The more in-
triguing question is robustness. Because the ncc organizers
are taking random walks, the order in which the ncc cells
differentiate is not unique and could lead to different growth
patterns from the same genotype. Here, evolution must have
selected the most robust, viable set of growers, complemen-
tary to the way robustness helps conserve variation.

4. CONCLUSION

4.1 Previous Works and Contribution
There has been some important work in the past to under-

stand development from the perspective of amorphous com-
putation. Two of the most important ones are [4], Coore’s
Ph.D. thesis on specifying spatial patterns using a devel-
opmental language, and [7], Kondac’s work on biologically-
inspired self-assembly of two-dimensional shapes. Also rel-
evant is [3], the work by Nagpal and Clement on extending
Coore’s work to regenerative spatial patterns. The endeavor
here is to be able to convert a globally-specified output spec-
ification into a local program that can be executed in a dis-
tributed manner by cells in an amorphous medium. [4] and
[3] develop this paradigm for spatial patterns, while [7] de-
velops it for replicating cells.

The main contribution in this paper is a hierarchical or-
ganization of growth specification. With a hierarchy, code
reuse becomes possible and it becomes possible to under-
stand that growth leading to dramatically different struc-
tures might arise from the same grower under different en-
vironmental conditions. In general, the growing programs
become more modular and robust, and regeneration almost
comes automatically for many morphogenetic schemes ex-
pressed in our framework. Another fundamental difference
between the previous works cited and the present paper is
that we are trying to understand biology from a compu-
tational perspective instead of applying biological ideas to
create algorithms. So, it becomes more important to study
actual biological experiments and think about how they fit
into the given framework.

4.2 Future Directions
The present study can be extended in many different ways.

Here are a few:

9This simulates the biological conjecture that NCC differ-
entiation is determined by the extracellular matrix.

• Present evolution as an explicit source-to-source trans-
form on the organizer type descriptions. Then, it might
be possible to understand some intriguing evolutionary
selections and test taxonomical hypotheses.

• Test conjectures of morphogenetic mechanisms. For
example, we are considering a possible morphogenetic
mechanism that might explain why protostomes and
deuterostomes are closely related evolutionarily, while
their embryogenesis schemes are so widely different.

• Formalize the notion of facilitated variation and self-
assembly in more complexity-theoretic terms.

4.3 Acknowledgements
I would like to thank Gerry Sussman greatly for intro-

ducing me to these problems, teaching me a lot of develop-
mental biology, and giving me fruitful ideas and directions
to pursue. Also, many thanks to Hal Abelson for critically
reviewing an earlier version of this paper and for his many
insightful comments and suggestions. Finally, thanks to my
brother, Shamik, for helping me understand some of the bi-
ology.

5. REFERENCES
[1] H. Abelson, D. Allen, D. Coore, C. Hanson,

G. Homsy, T. Knight, R. Nagpal, E. Rauch,
G. Sussman, and R. Weiss. Amorphous computing.
Communications of the ACM, 43, May 2000.

[2] J. Bard. Morphogenesis. Cambridge University Press,
Cambridge, UK, 1992.

[3] L. Clement and R. Nagpal. Self-assembly and
self-repairing topologies. Workshop on Adaptability in

Multi-Agent Systems, RoboCup Australian Open, 2003.

[4] D. Coore. Botanical Computing: A Developmental

Approach to Generating Interconnect Topologies on an

Amorphous Computer. PhD thesis, MIT, February
1999.

[5] J. Y. Halpern and Y. Moses. Knowledge and common
knowledge in a distributed environment. Journal of

the ACM, 37(3):549–587, 1990.

[6] M. W. Kirschner and J. C. Gerhart. The Plausibility

of Life. Yale University Press, 2005.

[7] A. Kondacs. Biologically-inspired self-assembly of
two-dimensional shapes using global-to-local
compilation. International Joint Conference on

Artificial Intelligence, 2003.

[8] C. Nüsslein-Volhard. Gradients that organize embryo
development. Scientific American, August 1996.

[9] I. Salazar-Ciudad, J. Jernvall, and S. A. Newman.
Mechanisms of pattern formation in development and
evolution. Development, 130:2027–2037, 2003.

[10] J. Slack. From egg to embryo. Cambridge University
Press, Cambridge, UK, 1991.



APPENDIX

A. GROWING AN ELLIPSE

Listing 1: A standard grower from the library
package growers;
import framework.Grower;

public class StdLumpGrower extends Grower {
private Class<? extends Organizer> cls;

public StdLumpGrower(Class<? extends Organizer> c) {
cls = c;

}

public OrganizerVectorPair grow(Organizer org, Universe uni) {
Vector gdir = uni.getDirection(org);
if(!uni.isOccupied(org,gdir,Organizer.class))

try {
return new OrganizerVectorPair(

cls.newInstance(),
gdir);

} catch (Exception e) {}
return null;

}
}

Listing 2: Description of the starter organizer type with parametrized morphogen name
package examples.ellipse;

import java.awt.Color;
import organizers.StdCell;

public class EllipseStarter extends StdCell{
public EllipseStarter(final String chem) {

super();
color = Color.red;
registerGrower(new EllipseCellGrower(),false);
addAgeAction(0,40,new Runnable() {

public void run() {
moveRandomly();

}
});
addAgeAction(60,60,

new Runnable() {
public void run() {

activateGrower(EllipseCellGrower.class);
}

});
addGeneralAction(new Runnable() {

public void run() {
broadcast(chem,8);

}
});

}
}

Listing 3: A starter organizer releasing morphogen a

package examples.ellipse;

public class EllipseStarter_a extends EllipseStarter {
public EllipseStarter_a() {

super("a");
}

}

Listing 4: A starter organizer releasing morphogen b



package examples.ellipse;

public class EllipseStarter_b extends EllipseStarter {
public EllipseStarter_b() {

super("b");
}

}

Listing 5: Description of the ball organizer type
package examples.ellipse;
import organizers.StdCell;

public class EllipseCell extends StdCell {
public EllipseCell() {

super();
registerGrower(new EllipseCellGrower(),true);
registerReceptor("b",true);
registerReceptor("c",true);
addGeneralAction(new Runnable() {

public void run() {
if((currentReception("b").level +

currentReception("c").level) < 5)
inhibitGrower(EllipseCellGrower.class);

}
});
addGeneralAction(new Runnable() {

public void run() {
if((currentReception("b").level +

currentReception("c").level) >= 5)
activateGrower(EllipseCellGrower.class);

}
});
addGeneralAction(new Runnable() {

public void run() {
broadcast("b",currentReception("b").level-1);

}
});
addGeneralAction(new Runnable() {

public void run() {
broadcast("c",currentReception("c").level-1);

}
});

}
}

Listing 6: The crucial Precursor organizer type
package examples.ellipse;
import java.awt.Color;
import growers.SingleTimeGrower;
import organizers.StdCell;

public class Precursor extends StdCell {
public Precursor() {

super();
color = Color.blue;
registerGrower(new SingleTimeGrower(EllipseStarter_a.class),true);

// For figure 5, comment out next line of code
// For figure 6a, change next line of code to class EllipseStarter_a
// For figure 6b, leave next line of code as is
registerGrower(new SingleTimeGrower(EllipseStarter_b.class),true);

}
}


