
An Implementation of Distributed Unconnected
Graph Determination in Sensor Networks

Joshua Lifton, Michael Broxton, and Joseph Paradiso

MIT Media Lab, Responsive Environments Group, 1 Cambridge Center 5FL,
Cambridge, MA 02142 USA

{lifton, mbroxton, joep}@media.mit.edu
http://www.media.mit.edu/resenv/

Abstract. This paper details recent progress toward implementing and
testing in hardware an unconnected graph determination algorithm for
distributed sensor networks. Specifically, we address the question of en-
abling a distributed sensor network to determine if it was been frag-
mented into two disjoint networks due to a large scale event. We present
the problem, propose a solution, and detail the progress toward realizing
our proposed solution in hardware.

1 Introduction

The defining features of a distributed sensor network are:

– a large number of independent constituent nodes
– the ability of each node to sense and react to the world
– the ability of each node to communicate with some subset of other nodes in

the network

Recent efforts to realize distributed sensor networks in hardware (as opposed
to the numerous simulations already developed) typically make room in the
hardware design for each of these three characteristics, but in practice rarely
exhibit all three simultaneously. Our goal in this work is to demonstrate a real
distributed sensor network comprised of approximately one-hundred nodes run-
ning simple sensing algorithms that require all three features listed to operate
successfully. In addition, we will summarize a number of practical concerns when
dealing with hardware realizations of distributed sensor networks.

1.1 Pushpin Computing

This work uses the Pushpin Computing hardware and software platform as its
distributed sensor network [1]. The Pushpin platform consists of approximately
100 identical nodes (Pushpins). At the core of each Pushpin is a 22 MIPS 8051-
based microcontroller unit (MCU) imbued with 32KB flash, 2.25 KB RAM, and
a host of analog and digital peripherals. An infrared communication module
permits communication with neighboring Pushpins within approximately six



inches at a data rate of up to about 300kbps, but currently set at 92kbps.
Two pins of unequal length extrude from the bottom of each Pushpin in order
to make contact with power and ground planes when inserted into a layered
corkboard-like substrate which acts as the power source for all Pushpins. Each
Pushpin draws up to 30mA at 3V, but typical operating current is less than
half that amount and sub-milliampere operating modes are possible as well. A
sensing and actuation module contains a five-element multi-colored LED display
and a light intensity sensor. The MCU has a built-in temperature sensor as well.
Eight other analog channels are reserved for future use.

A small operating system runs on each Pushpin and includes, among other
things, a random number generator and seed, an interrupt-driven variable-length
packet-based subsystem for communication with immediate neighbors, a simple
memory manager, and the facilities for remotely updating the the entire OS
and propagating those changes along to neighboring Pushpins. A single Push-
pin tethered via a serial cable to a desktop computer allows the user to query,
monitor, and update other Pushpins using a compiling, debugging, monitoring,
and control software package designed specifically for the Pushpins.

Full details of the Pushpin hardware platform as well as a previous, but re-
lated version of the current software platform are available online [1, 2]. Butera’s
Paintable Computing [3] simulation work inspired the Pushpin hardware real-
ization and provides much background information otherwise omitted here.

1.2 Prior Art

The majority of work within the realm of distributed sensor networks is simulation-
based. However, hardware platforms are slowly proliferating. Most prominent
among these platforms is the Intel Berkeley ‘motes’ hardware platform [4] and
its associated TinyOS software platform [5]. Briefly, each mote contains a 4MHz
MCU imbued 128KB of program memory and 4KB of RAM, a 512KB cache
of EEPROM, a 917MHz radio capable of 50kbps, and expansion ports for nu-
merous sensors and actuators. A recent demonstration of the motes included an
impressive 800 nodes used to build up a network routing tree [6].

Madden, Franklin, Hellerstein, and Hong [7] put forth the Tiny AGgregation
(TAG) service for using SQL-like queries in a network of motes running TinyOS.
Although they clearly demonstrated a useful and much-needed concept (an effi-
cient mechanism for making high-level queries of a distributed sensor network),
their prototype implementation amounted to only 16 motes answering a “how
many nodes are there in the network?” query.

Mainwaring, Polastre, Szewczyk, and Culler [8] have deployed small networks
of motes amid environmentally harsh conditions at two nature reserves in order
to monitor specific habitats. Sensor-rich real-time data from the sensor networks
were made available on the Internet by routing compressed data to a satellite
uplink. Their work implements a relatively simple data collection application
in order to gain valuable practical knowledge on integrating complex systems
operating in harsh environments with limited energy resources.



Liu, Cheung, Guibas, and Zhao [9] developed a centralized computational
geometry approach in dual space to track a half-plane shadow moving across
a random but fixed grid of 16 motes. As with the Pushpins, all nodes received
power from a central source for the sake of convenience. All computation and
actuation took place on a PC communicating with the network vis a tethered
mote.

2 Statement of Problem

2.1 The DUGD Problem

The distributed unconnected graph determination (DUGD) problem can be
stated as follows:

Definition 1. Consider a distributed sensor network that can be modeled as a
connected directed graph G = (V,E) of vertices V and edges E, where each vertex
represents a sensor node in the network and each edge represents a communi-
cation channel between two nodes. Given a subset of vertices N ⊂ V and the
subset of edges M ⊂ E associated with N , find an algorithm for each sensor
node to execute such that each sensor node can determine whether the graph
G = (V −N,E −M) is still connected.

In other words, given a network in which all nodes can communicate with
all other nodes either directly or through intermediary nodes, is it possible for
the network to know if it has been split into two disjoint networks due to the
removal of some of the nodes.

2.2 Relevance of the DUGD Problem

At first glance, the DUGD problem seems unsolvable in the sense that there is no
algorithm that will correctly solve the problem in every instance. For example,
if all but one node in a network are removed, the remaining node has no way of
determining by means of processing and communication alone that all the other
nodes were removed and not just the remaining node’s immediate neighbors. The
implicit assumption here, however, is that the subset of nodes to be removed
are actually removed before the algorithm is run. However, this is not in the
statement of the problem, a fact that makes the problem much more tractable.

The danger, of course, is that without the implicit assumption the nodes are
actually removed before the algorithm is run, the DUGD problem may become
either uninteresting or trivial or both. We argue that the problem is still inter-
esting (useful) and non-trivial. First, consider an energy constrained distributed
sensor network in which a subset of the nodes are low on energy reserves. Al-
though these nodes will eventually shutdown and effectively be removed from
the network, they will typically foresee their departure from the network and
may have enough time and energy to coordinate with the rest of the network to



determine the post-shutdown network topology. This is a useful when, for ex-
ample, information required by the entire network (and the subsequent disjoint
networks if the network is in fact bisected) is expensive in terms of time, energy,
and/or memory to distribute to every node in the network. In this case, knowing
that the network will soon be split in two allows time for the critical information
to be distributed such that both subsequent networks maintain copies and can
continue functioning independently.

The DUGD problem is non-trivial in that, while many solutions exist, not
all are both robust and resource efficient. For example, one solution is simply
to establish a multi-hop communication link between two nodes on opposite
sides of the network and then constantly passing ping messages back and forth.
If the communication link is broken and cannot be rerouted then a bisection
is presumed to have occurred. Although robust, this solution is not resource
efficient. (Note however, that this is essentially the only recourse to even partially
solving the DUGD problem if the nodes are removed immediately.)

3 Experimental Setup

We set out to solve the distributed unconnected graph determination problem
on an ensemble of approximately 100 Pushpins. In our experimental setup, the
Pushpins are randomly1 inserted into the substrate and cover approximately a
one square meter area. See Figure 1. Once powered (either as they are inserted
or all at once by power cycling the substrate), a flashlight is used to pass a well-
defined patch of light over the ensemble. Those nodes sensing above a certain
threshold of light are defined to be those that will soon be removed from the
network. The goal then is for each Pushpin in the network to both know if the
network would be unconnected if the illuminated nodes were removed and, if so,
which of the disjoint networks that particular Pushpin would belong to.

This setup was chosen explicitly so that any scalable, robust, and resource
efficient solution to the problem stated above would necessarily utilize all three
salient features of a distributed sensor network – large number of nodes, ability
of the nodes to sense the world, and the ability of the nodes to communicate
locally.

4 Progress & Results

Our solution to the DUGD problem is not yet complete as of this writing. How-
ever, we’ve made significant progress on several fronts toward realizing a general
solution.

1 Random in that a graduate student placed them by hand without any preconceived
notion of a pattern. This essentially results in a space-filling distribution.



Fig. 1. An ensemble of Pushpins.

4.1 Additions & Improvements

Much of our effort focused on improving and adding to the Pushpin platform
as a whole so as to facilitate building and testing applications in general. Most
of these improvements and additions came about as a result of hard learned
lessons from the first iteration of Pushpins. The most significant improvements
and additions are detailed here.

IR-to-RS232 Tethered Pushpin: Previously, we had no way to communicate
directly between a PC and the Pushpins. We developed and built a communica-
tion module to convert between serial and infrared to solve this problem. This
converter allows the PC to passively monitor Pushpin communication and to
issue user commands by means of the Pushpin integrated development environ-
ment (IDE).

OS Updater: Previously, there was no way to update the Pushpin operating
system (Bertha) aside from physically connecting to the Pushpin with a MCU



programmer and re-burning the flash memory with new code. Given that repro-
gramming all the Pushpins takes on the order of 2 hours, not having any other
way of updating the OS made debug cycles prohibitively long. We developed a
remote updating system whereby the binary image of the new operating system
can be propagated throughout the network through the usual Pushpin commu-
nication channels. Updating the OS is now a matter of simply pushing a button
in the IDE and pointing the tethered Pushpin at one of the other Pushpins. It
will then propagate to all neighbors. Version control is included so that multiple
copies of the same operating system can be inserted into the network without
redundantly overwriting themselves on a single Pushpin.

Scheduled Communication: A messaging layer was added on top of the
packet layer of the communication subsystem. Multiple (currently ten) messages
can be queued for transmission. The number times the message is to be trans-
mitted and the interval between transmissions can be specified when the message
is queued. This feature was added after realizing just how much lossy commu-
nication effects algorithm design. In essence, this type of message queuing helps
the programmer to acknowledge and design around an imperfect communication
channel.

Elimination of Process Fragments: The previous implementation of pro-
cess fragments was not at all efficient with communication bandwidth and did
not recover gracefully from communication failures. In particular, it relied on
transferring relatively large pieces of binary code as well as regular exchanges of
internal state between neighboring Pushpins. A cleaner code interface and the
ability to more easily update the operating system allows the programmer to
compile applications into a smaller operating system and quickly distribute the
new operating system among the Pushpins.

4.2 Proposed DUGD Algorithm

We have designed and implemented a distributed unconnected graph determi-
nation algorithm. The implementation of the algorithm complete, but still being
tested at the time of this writing.

Some colorful political terminology helps when explaining and understanding
our algorithm. An ENLIGHTENED Pushpin is one which has sensed a light above
its threshold. ENLIGHTENED Pushpins correspond to those Pushpins that will
ostensibly be removed from the network and in doing so potentially cause the
network to become two disjoint networks. The ELECTORATE is comprised of all
Pushpins within a certain hop count (typically 2 or 3) of an ENLIGHTENED one.
This usually corresponds to the Pushpins immediately surrounding, but not
included within where the light passed. A PLEBE is a Pushpin that is neither
ENLIGHTENED nor a member of the ELECTORATE. These are typically Pushpins
distant from the path the light took. A high-level description of the algorithm
is then:



1. Set affiliation to PLEBE.
2. Calibrate light sensor and set ADC to automatically sample and compare

against calibration + noise.
3. If light > calibration + noise, set affiliation to ENLIGHTENED, turn on the

green LED and initiate a n-hop count gradient.
4. All PLEBEs within n hops set affiliation to ELECTORATE, turn on the red

LED and generate a random 16-bit number. Broadcast this random number
(‘nomination’) to all neighboring Pushpins.

5. All members of the ELECTORATE replace their own nominations with any
lower nomination received from neighboring Pushpins. Rebroadcast the new
nomination.

6. After the nominating has died down, the ENLIGHTENED ones request votes
from the ELECTORATE.

7. Upon receiving a request for a vote, members of the ELECTORATE broadcast
their current nomination.

8. The ENLIGHTENED ones collect all nominations and share them amongst
themselves. The lowest of all nominations they have collected is selected
as the winner and broadcast to the ELECTORATE.

9. If a member of the ELECTORATE’s nomination is greater than the winner se-
lected by the ENLIGHTENED ones, then that member of the ELECTORATEshould
turn off its red LED, turn on its yellow LED and broadcast a yellow message
to the PLEBEs. Otherwise, it should broadcast a red message to the PLEBEs.

10. All PLEBEs should do as instructed and turn on the appropriate LED upon
receiving either a yellow or red message.

The typical steady-state behavior of this algorithm is that all Pushpins will
have only one LED turned on. Those which have sensed light should have their
green LED turned on. All others should have either their red or yellow LED
turned on. If the light event did not bisect the network, then only red and
green LEDs should be on. See Figure 3. If the network was bisected, then yellow
LEDs will appear as well. See Figure 2. Furthermore, the union of red and green
Pushpins forms a connected network disjoint from all yellow Pushpins. Likewise,
the union of yellow and green Pushpins forms a connected network disjoint from
all red Pushpins.

4.3 Current Status

As already noted, the algorithm just described has been implemented, but has
not yet been tested enough to warrant the reporting of any results. If everything
goes smoothly (as it appears to be), initial results may appear within a week
or two. The OS update mechanism and other improvements and additions to
infrastructure used by the algorithm have already been tested.

5 Discussion

The key design points of our algorithm are:



Fig. 2. Desired final state of the proposed DUGD algorithm in the case where the
network is fragmented into two disjoint networks. The gray swath represents the path
the light took. Green nodes have sensed the light. Red and yellow nodes are disjoint.

– Distributed: All Pushpins run the same application code. No Pushpin is
singled out as different than the others except for a 16-bit random seed, its
sensor readings, and a small amount of clock skew which is inconsequential
for our purposes.

– Resource efficient: The default state of each Pushpin is to do nothing. An
interrupt is generated when the light sensor’s value is above a threshold de-
termined by a calibration routine at startup. No other resources are required
until this interrupt occurs or communication is initiated by another Pushpin.

– Scalable in Space: Only Pushpins in the immediate vicinity of the where the
light passed over need to be active. All other Pushpins remain in the default
state until a message informing them of the result of the algorithm is re-
ceived. Thus, the algorithm is independent of the size of the network. This
contributes appreciably to the resource efficiency mentioned above. Further-
more, it is independent of the size of the initiating event (patch of light) as
well.



Fig. 3. Desired final state of the proposed DUGD algorithm in the case where the
network remains connected despite the green nodes not participating. The gray swath
represents the path the light took. Green nodes have sensed the light.

– Scalable in Time: Our algorithm adapts gracefully to changes over time in
the initial conditions. Namely, it accommodates for Pushpins being activated
by the light source over a period of time, be it milliseconds or minutes. This
is an important trait in general for sensing applications since the time scales
of the events to be sensed not necessarily fixed.

As mentioned earlier, the success of this algorithm relies crucially on the
fact that the nodes to be removed from the network aren’t actually removed
until they have had a chance to coordinate with their neighbors. Without this
property, the design points listed are no longer valid.

Rather than solving the DUGD problem, we had initially intended on demon-
strating a distributed shape recognition algorithm capable of distinguishing a
patch of light by its shape, either circle, square, or triangle. In collaboration with
Bill Butera, we developed a corner counting algorithm to solve this problem. Bill
implemented the algorithm in the Paintable Computing simulator with signif-
icant success at high densities of nodes. As expected, lower densities of nodes
caused the algorithm to fail more often. The key distinction between the dis-



tributed unconnected graph determination algorithm and the distributed shape
recognition algorithm is that the former tries to answer a question about net-
work connectivity whereas the latter tries to answer a question about physical
shapes. That is, one is grounded in the network and the other is grounded in the
physical world. The reason the distributed shape recognition algorithm worked
at high densities of nodes is that, given a physical scale length of interest and a
communication radius that is linear with the inverse of node density (i.e., each
node has a constant number of neighbors, regardless of density), network prox-
imity becomes more tightly correlated with physical proximity as node density
increases. Even with 100 Pushpins within a square meter, the correlation of net-
work proximity and physical proximity is poor at best. This phenomenon comes
across clearly in simulation and would only become more apparent when sub-
jected to the non-ideal communication channels of the real world. The DUGD
problem does not suffer from such hardships and posed itself as more tractable
and arguably more useful.

6 Future Work & Conclusions

Future work is happening now. Final conclusions regarding our proposed DUGD
algorithm will have to wait until concrete results have been realized.

Medium-term goals for the Pushpin work include designing an infrared com-
munication module with improved spatial uniformity with regard to both trans-
mission and reception, better characterizing average network behavior, and de-
veloping data aggregation and distributed feature extraction algorithms which
adapt to the scales of interest of the phenomenon being sensed.

Long-term goals are centered on the idea of a ‘sensate skin’ composed of
many nodes at millimeter−1 or centimeter−1 scale densities. Such densities have
two important practical consequences. First, radio communication as we know
it will not be applicable. That is, the near-field will dominate over the far-field.
Inductive, capacitive, optical, and other methods of communication may perform
better at such small scales. Second, the common assumption that all distributed
sensor networks are energy constrained is no longer necessary. This is due in part
to the decreased distance across which communication must take place, and in
part to the potential for manufacturing processes to deliver power throughout
the sensate skin to all nodes.

Finally, a general lesson learned from this project is that many of the details
glossed over (by necessity) in many simulation environments are exactly those
which dictate the most important algorithm design rules. Lossy communication,
asynchrony, and events spread over long periods of time are all fundamental
aspects of distributed sensor networks and should be treated as such. For sensor
networks to succeed when the number of nodes becomes large, they must self-
organize. That is, the global behavior of the system must emerge from many
instances of local behavior. Engineering such self-organization requires getting
the local behavior right first.



Acknowledgments

Special thanks to Bill Butera the members of the fall 2002 class of MIT’s 6.978:
Biologically Motivated Programming Technology for Robust Systems for their
support and constructive critique.

References

1. Pushpin Computing website: http://www.media.mit.edu/∼lifton/Pushpin/
2. Lifton, J.; Pushpin Computing: a Platform for Distributed Sensor Networks, MIT

Media Laboratory, master of science thesis, 2002.
3. Butera, W.: Programming a Paintable Computer, MIT Media Laboratory, doctoral

dissertation, 2002.
4. motes website: http://www.xbow.com/Products/Wireless Sensor Networks.htm

5. TinyOS website: http://webs.cs.berkeley.edu/tos/
6. 800-mote demo summary: http://webs.cs.berkeley.edu/800demo/
7. Madden, S.; Franklin, M.; Hellerstein, J.; Hong, W.: TAG: a Tiny AGgregation

Service for AD-Hoc Sensor Networks, Intel Research, IRB-TR-02-011, 01 August
2002.

8. Mainwaring, A.; Polastre, J.; Szewczyk, R.; Culler, D.: Wireless Sensor Netorks for
Habitat Monitoring, Intel Research, IRB-TR-02-006, 19 June 2002.

9. Liu, L.; Patrick, C.; Guibas, L.; Zhao, F.: A Dual-Space Approach to Tracking and
Sensor Management in Wireless Sensor Networks, PARC technical report P2002-
10077, March 2002.


