
Amorphous Infrastructure for Language
Implementation

Ryan Newton Jake Beal

December 10, 2002

Abstract

We propose a method for the robust implementation of simple graphical au-
tomata on an amorphous computer. This infrastructure is applied to the imple-
mentation of purely functional programming languages. Specifically, it is used
in conjunction with data-flow techniques to implement a toy language homolo-
gous to recurrence equations, exploiting control-flow parallelism through parallel
operand evaluation. Also, data parallelism is explored in a separate implemen-
tation, in which a simple mark-up syntax enables Scheme programs to perform
spatially-distributed tree-walking without modifying their semantics. This addi-
tion enables an idiomatically expressed interpreter to be trivially instrumented,
producing a spatially distributed universal machine, and once again achieving
control flow parallelism in the interpreted language.

Motivation

While amorphous computing ([1] [5] [6] [8]) has experienced success in fields for
which there are strong biological precedents, such as pattern formation, regeneration,
and morphogenesis, little work has been done to date on how to accomplish more tra-
ditional tasks on an amorphous computer. Specifically, how can we execute programs
written in traditional programming languages?

The most obvious explanation for the lack of amorphous back-ends for compilers is
that serial programming languages are incompatible with the massively parallel amor-
phous substrate. This statement is more or less true. However, we argue that imperative
features are primarily at fault. Hence, while it would be preferable to address the whole
class of “traditional programming languages”, we tackle the smaller problem of ad-
dressing purely functional ones. Our approach proceeds by building virtual hardware
in amorphous space; by targeting purely functional languages, we remove awkward
synchronization constraints on the virtual hardware. In contrast, imperative languages
make ordering of events critical, thereby demanding a synchronized flavor of virtual
hardware. Further, effects eliminate the possibility of systematically re-instantiating
subcomputations—a large potential source of robustness to hardware failure.

While functional languages fit the substrate better than imperative, the fit is far from
“natural”. A much more efficient treatment is possible for problems with a morphology
more closely matched to an amorphous computer. Nonetheless, if amorphous comput-
ers become a physical reality, there exist situations in which one would want to run

1

‘normal’ programs on an amorphous computer. We theorize that it may be desirable to
embed pieces of well-understood traditional logic to monitor and orchestrate the oper-
ation of a large amorphous system. Further, there may be contexts in which amorphous
computers are the only alternative, because a properly utilized amorphous computer
can provide certain physical benefits over its traditional counterparts: surviving tears
and punctures and squeezing into any conceivable form factor.

In addition to these niche applications, language implementation provides a de-
manding context to explore various amorphous machines and tools—native tools which
can equally well serve in the implementation of distributed-programming languages,
or, more poignantly, may serve as primitives in the creation of uniquely amorphous
languages.

1 Introduction

We will show how a data-flow graph formed from completely asynchronous collec-
tion of nodes, communicating with unreliable messages, is capable of implementing
pure languages. The data-flow approach captures the limited parallelism implicit in
evaluation of operands, which can be exploited by some algorithms but by no means
constitutes a platform for distributed computing. However, our techniques for robust
data-flow graphs apply equal well to the the implementation of other graphical au-
tomata. Hence they are likely capable of answering the more important question: How
can we use established distributed algorithms straight out of the box on an amorphous
computer? Whether or not this method is effective is not treated here. (But Appendix
B relates our model to existing automata.)

Our data-flow abstraction is restricted to a static graph; nodes are neither created
nor destroyed at runtime. Therefore, the implemented language has no heap and is not
capable of allocation. To explore dynamism we propose a method for instrumenting
ordinary Scheme programs, such that, when run on the HLSIM [10] platform, they
construct and traverse spatially distributed data structures—in parallel.

This tool for spatial distribution can be combined with the robust-graph mecha-
nisms presented in next section. These tools are the primary contribution of this paper,
and provide reusable components at multiple granularities:

� The technique for implementing graphical automata used in this paper may be
adapted to provide infrastructure for a variety of computations.

� The independent amorphous widgets discussed herein are general-purpose, and
the spatial distribution system is similarly portable.

Since we are automatically compiling hardware (of a sort) our approach is vaguely
related to the application-specific hardware efforts of the Phoenix group at CMU [3].
But, because they follow the imperative paradigm, their intermediate language as well
as their compilation target differs greatly from ours [4]. On the other hand, since we use
a mark-up language to enable implicit parallel programming, our approach has weak
connections to projects such as the Jade language [9], but again, only weak connections.

2

2 Tools for Robustness

Here we consider the tools necessary to effectively build and maintain collections of
spatial entities capable of communicating with each-other through dedicated channels
(wires) constructed on an amorphous computer. The first result of this inquiry will be a
number of modules implementing various tools. The second, complementary piece is
a compiler to transform graph descriptions into amorphous programs that utilize said
modules—programs suitable to be run in parallel on a multitude of identical computing
elements.

The ActiveGradients Module

The ActiveGradient module has some new facilities which merit mention, above and
beyond the active gradients used in previous work.1 First is the introduction of ver-
sioned gradients, where a lower hop-count may be superseded by a higher hop-count
if the higher count has a higher version number—important when you’ve got mov-
ing sources for a gradient. Second is that gradients can carry an arbitrary boundary
test function with them (examples include bounding by hop-count, presence of another
gradient, or hop-count past the boundary defined by another bounding function) and
this function can be changed by a new version of the gradient.

The PersistentNode Module

The purpose of the PersistentNode module is to make self-repairing blobs that scootch
away from congestion, damage, and network edges. To do this, the node calculates a
”pull” of good processing resources in each direction and moves towards the best. Any
given node is created with a name and a radius, and forms a region of that size bearing
that label.

A node operates on a 4-stroke cycle of inward and outward data-flow. First, a
gradient of size

���
is sent out by the first member of the node to timeout (this may be

thought of as a ”leader” node). Second, every node within � � of the center calculates
its heuristic value by summing the heuristic values of its successors, adding one, and
dividing by its system load (estimated any way you want; the default estimator counts 1
load point for being in a node and 0.5 points for being within hearing range of a node’s
step 1 gradient). This then gives a higher heuristic value in the direction of regions with
greater local density, less voids, and lower congestion. Third, the nodes compete as to
which has the best heuristic value and wait for the numbers to converge; in most cases,
the initiator of the gradient will be the high value. Finally, the winner designates its
highest-valued neighbor to send the new gradient, and that node’s timeout is advanced
to ensure that it is most likely to send the new gradient.

Under this system, nodes drift at a rate of one hop approximately every ��� ��� �	�
����������

cycles, and tend to space themselves with � � hops of separation.

1side note: these basicalaly send and maintain a gradient. When a processor stops hearing from lower
hop-counts, it marks itself as ”dead”. When a dead processor stops hearing from higher dead hop-counts, it
deletes the gradient. Thus life and death flow outward and deletion flows inward.

3

The PersistentWire Module

The biggest challenge in building the persistent wire module comes from the fact that
its endpoints can move. The default endpoint which this module is supplied with are
persistent nodes, but any predicate can be chosen to determine endpoints. The difficulty
arises when the communication lag between two endpoints rises to the order of the
frequency at which those endpoints are expected to move. So if a round-trip between
two points takes 20 hops, and the endpoints move every 20 hops, then the information
used to build the connection is out of date and may be useless or misleading.

To handle this difficulty, the wire-building process is directional and proceeds from
both endpoints (if the wire is initiated at a single endpoint, then the first process initiates
its mirror upon contact with the other endpoint). Going forward, an endpoint sends out
a distance-limited versioned gradient which updates to new versions on a regular bases.
Initially, we choose an arbitrary starting expected distance within which to search for
its neighbor. If no contact is reported within the expected lag time, it doubles the
distance and resets its wait. This is a continuous process, so wire-building adapts
transparently to disruptions and loss of contact. Once the search process reaches the
other endpoint, it sends the hop-count back down along a chain of predecessors to the
source—although the source may have moved, the new versions of the gradient provide
updated predecessor information. This chain of predecessors, and everything distance�

becomes part of the wire.
Since new versions of the gradient are being sent out on a regular basis, the wire

may change routes often (though the chain of predecessors will avoid changing when
it can). In fact, the whole wire will sometimes appear to have regular ripples moving
in both directions, as both endpoints update. Even though the wire may be globally
disconnected, however, information traveling along the wire will find that it is locally
connected, since the breaks are traveling as well.

Code-Gas

The Code-Gas module is designed to store data distributed widely across the network,
so that any catastrophe has only a low probability of killing a given piece of data. Each
unique piece of data added to the code-gas module becomes a species of particle in
a gas-like medium. Particles randomly walk from node to node. The probability of
going to a given node is inversely proportional to the number of neighbors that node
has, which equalizes the expected concentration of particles in any given node.

At each step, any given particle has a chance of cloning itself or of dying. The
probability of reproducing is allocated so that locally rare particles are more likely to
reproduce than common ones: ���������
	��� ������������������������������ � ��� , where �� is a con-
stant and � � is the number of particles of a given species at the node. The probability of
dying ����������	��� � � � , where �� is a constant and � � is the number of other particles
at the node. Thus, the expected density of particles per node is �!�"���� , and the number
of particles in a species will tend to equalize and spread evenly across the network.

A particle of data in a processor may be fixed by that processor. It is expected that
a processor will do this when it wants to use that data. A piece of data which is fixed
may not die or leave the node (though it may reproduce, and additional copies of its
species are not affected)

4

In many ways, this system is similar to the holistic storage techniques used by
Butera [5] with the exceptions that the code-gas calculations use only local information,
and regulate the number of copies of a piece of data, so that changing the number of
species of data stored by the system does not change the load per node, but rather
changes the degree of redundancy afforded each piece of data.

Compilation to amorphous program

The compiler for graph structures is thus quite straightforward. Code-gas is used to
distribute seeds for each node in the graph. Thus, it is likely that enough information to
reconstruct the entire graph will exist in any proportionally large region of the network.
A starting seed is elected to develop into its respective node. (Minimum Id is one
method for selection.) Once established, this node summons its neighbors from their
slumber (by triggering the development of a single seed for each); they, in turn, awaken
their neighbors, and so on.

Robustness

Each tool presented here has its own method of robustness. Wires heal breaks and
reroute around large disruptions. Nodes can regenerate from even a single surviving
processor. In section 4 we will see that, in the construction of data-flow machines, these
components can be synergistically combined to further augment each other’s resiliency.
Namely, wires, the more spatially distributed entity, will take on a large share of the
job of storing state.

3 A Tool for Spatial Distribution

Consider an arbitrary Scheme program running on an individual processor in an amor-
phous matrix. This program may easily overflow the small memory of its host. It
would hence be desirable to utilize the memories of nearby processors as remote stor-
age. We look at a method of automatically transforming Scheme programs to display
this behavior, with the assistance of a small manual mark-up.

The graphical machines implemented in the last section are essentially static. Their
implementation is dynamic in a number of ways: nodes may die off, replacements
grow from seeds, and the parts of the system are physically active: wires maintain and
reroute themselves, nodes drift to alleviate congestion. However, the abstraction is not
capable of dynamically adding or removing nodes. Since we will apply this machine to
language implementation, this will mean that our language will be incapable of alloca-
tion (with the exception of its call-stack, which will take the form of data accumulating
in the wires). In contrast, this section aims solely at developing a general-purpose pro-
tocol for dynamically sequestering memory from the surrounding amorphous media.

The simplest general purpose method to utilize foreign memory is to form a chain
of processors trailing out from the current one, and allow the original processor to oper-
ate on a virtual address space formed from the concatenation of the physical memories
of the processor chain (minus the memory used for establishing this abstraction). This

5

is an undesirable method for a number of reasons [5, pg.166]. The first and most ob-
vious improvement is to use a tree to index the virtual memory, making access time
logarithmic in the size of the memory, rather than linear. Second, some sort of ro-
bustness to failure of individual processors is a mandatory requirement for practical
amorphous algorithms.

A high-level approach

A high level solution to the problem is to redefine cons, car and cdr, such that cons
has the potential to create cells on neighboring processors, returning some sort of point-
ers which car and cdr can follow. We operate on a subset of Scheme wherein pairs
are the only non-immediate datatype, and � cons, car, cdr, set-car!, set-cdr! �
are reserved names. These scheme programs are allowed to contain side-effects, but
we will end up giving cons a lazy (but speculative) semantics, so the user is warned
not to depend on any side effects that occur inside an operand expression of a cons. If
one feels this results in too sloppy of a dialect, they are free to either abstain from the
use of side-effects altogether, or to modify cons to wait for its operands to complete
their evaluation. We prefer to harness some of the power of lazy evaluation, while not
giving up entirely the power of mutation. Finally, before we handle the programs, we
assume they have already been processed with the following standard transformations:

� Assignment conversion: variables are no longer mutable, having been converted
to mutable pairs.

� Closure Conversion and Lambda-lifting: procedures have no free variables, all
procedures are top-level.

� As well as the nonstandard conversion:
Cons-lifting: Every call to cons in the source code is wrapped in a procedure and
lifted to top-level. Free variables becoming formal parameters. Hence all cons
calls become viable entry points. The procedures resulting from this lifting are
called with a special syntax: (cons-call ��� � ��� ��� � � �
	 ���� 	 ...)

A fixed heap size is assigned, which limits how many cons cells each processor
can hold. Since every processor has a randomly assigned Id (unique with arbitrar-
ily high probability), such a cons cell may be referred to by a pointer of the form
��� � �
������ � ��� � ����� � � ��� 	 .

As the running Scheme process, we wish to foist cons cells off onto our neighbors,
referring to them by their pointer. However, the job of referencing an arbitrary pointer
is an awful one; an arbitrary processor in an amorphous network can only find another
by releasing a gradient with radius greater than or equal to the minimum hop-count
between the two processors. Indeed, this is what is done in the case of “lost pointers”.
But establishing a system of locally organized pointers can minimize or eliminate this
occurrence.

For the purpose of dereferencing pointers, we build a network as follows. Nodes
in the network are isomorphic to processors in the computer. Links in the network

6

represent the directional knowledge of one node about the location of another. All
processors know (or can acquire) the Id’s of their immediate neighbors, which amounts
to sufficient knowledge of their location: their names and the fact that they are “next
to me”. Hence in the starting network, all processors are bidirectionally linked to their
neighbors. This local knowledge forms the bedrock. If a pointer residing in a cons
cell within the heap of a given processor is to be dereferencable using this baseline
network, its � � �
���� must refer either its own processor or to an immediate neighbor.
For now we require that all pointers be dereferenceable in such a fashion; later we will
allow the building of non-local links in the network enabling some access of pointers
with distant hosts.

Next we discuss a communication infrastructure which supports the actions alluded
to here, allowing accesses, writes, and the allocation of adjacent memory. After that,
with our tools for allocation, access and mutation in hand, we will come to this ques-
tion: how to build a useful structure of pointers across the network of links? Local
allocation by the root processor is clearly insufficient; it only provides access to mem-
ory available in the immediate vicinity of the root. The obvious solution would be
allocating to further remote sites. We find this inefficient, and will instead pass on the
allocating process itself.

The communication system
� allocate(cons-name, values-for-free-vars):

� access(path, heap-address)

� write(path, heap-address, value)

� call(path, heap-address, name, actual-parameters)

We now introduce a communication system for distributing and retrieving cons
cells, consisting of the four messages shown above, and a handful of implicit helper
messages. The messages above assume underlying infrastructure which allows proces-
sors to send messages to specific neighbor, that is, other neighbors ignore the message.
Further, the messages are introduced in conjunction with an implicit receipt system,
which allows the receivers response to be channeled back to the original message-
sending thread on its host processor (which blocks until it receives this response). We
assume the presence of a standard thread system in the programming platform of the
amorphous computer (or simulator). Operators and operands will be evaluated on sep-
arate threads in the host processor.

Generally speaking, a storage network is grown with the allocate message. All
processors in the amorphous matrix are either part of the network or outside of it. All
processors with cons cells in their heaps are inside it. The allocate message is directed
at processors outside of the network, bringing them into it. access and write travel
through the interior of the network, retrieving and modifying data respectively. The
call-child message will be addressed below.

All the messages aside from alloc take path and heap-address arguments. The
heap-address argument refers to a location in the heap of the processor receiving the
message, indicating a cons cell. This cons cell acts as a root node, and the path argu-
ment denotes a tree index (through cars and cdrs) relative to it.

7

Handling access and write messages is thus straightforward. If the path is null, we
operate on the cell in our heap. Otherwise we refer to the pointer in the car or cdr
field of the cell (depending on the first symbol in the path). We take the processor-id
and heap-address from this pointer, and broadcast a new message to this processor id
with the heap-address from this pointer and the original path argument minus its first
character. We wait on the receipt to this message before formulating our own.

Our notion of pointer is here revised to include a third field, the path—implemented
as a string of ’a’ and ’d’ characters signifying car’s and cdrs. The first and second fields
of the pointer indicate a cons cell with a known location, the path allows other cons cells
in the subtree of the known cell to be reached. The Scheme process running at the root
of this tree can access and modify any cells stored in its own heap, and hence any cells
in their subtrees. When access returns its response if the response is itself a pointer, its
path field is updated as it moves up the tree, and when it is returned through car or
cdr, it is annotated with a correct path field.

When a processor wishes to create a new cons cell, it searches for a volunteer,
first in itself and then immediate neighbors. A processor “volunteers” in response
to a request when the predicate function available? returns true. For now, the
available? function simply returns true when heap is non-full, but improvements
are certainly possible (Appendix A). The search for volunteers among neighbors is
done by broadcasting the request-alloc messages—a helper to alloc. When a volunteer
is found, allocation is initiated with the alloc message.

Cons: lazy vs. strict evaluation

Scheme is a strict language. Consider the program: (cons 1 (cons 2 (cons
(cons 3 ()) (cons 4 ())))) which produces the list (1 2 (3) 4). With
a call-by-value semantics, the first cons to actually be evaluated will be (cons 3
()) or (cons 4 ()). This calling-convention has disastrous effects for our spatial
allocation. The leaves of the tree are allocated first, and are allocated next to the root
processor! Consider figure 1. For ease of visualization, we consider a heap-size of 1
such that cons cells can be equated with their processor hosts. Dotted lines represent
the pointers, and solid arrows represent the action of allocating from a processor to a
neighbor. The diagram on the right shows the sloppy sort of layout we achieve with
this approach. The diagram to the left shows the layout that results from the following
strategy.

Spatially, we want our trees to grow away from the root. The solution has two com-
ponents: we must give cons a lazy semantics, and we must pass its operands (delayed
computations) to child nodes. Hence a call to cons returns immediately, while a call
to car may have to wait. Within the lazy semantics, we are use speculative evaluation.
That is, the recepient of an alloc message doesn’t need to wait on a car or cdr to
begin evaluating the computation its received; it begins immediately.

This method will create the desired layout shown on the left of figure 1. However,
the task of passing a subcomputation to a child amounts to the task of marshaling an
arbitrary function across a boundary. Here we take the approach of transmitting the
code for the function, along with the values of its free variables at the time when it is
transmitted. This approach critically depends on the absence of mutation in variable
bindings; the only mutation allowed is within cons cells, which are shared globally

8

4 /

1

3 /

2

4

2
1 3

/

/

Figure 1: Lazy evaluation allows proper layout (left). Strict evaluation results in leaves
being emitted before their parents (right). Dotted lines represent the pointers, and solid
arrows represent the action of allocating to one processor from another.

on the network by all running computations. One might worry about ordering the ac-
cesses and writes coming from different computations in different locations; the rather
convenient answer is that we don’t have to; Scheme semantics does not guarantee a
specific order of evaluation for operands, and parallel computations will only result
from evaluation of separate operands.

As mentioned prior, all lambdas and cons have been lifted, and had their (for-
merly) free variables converted to explicit parameters. When call-cons is used,
it either begins evaluating the cons locally, or it passes the cons off to a neighbor
by means of the alloc message. Now we see the meaning of the values-for-free-vars
component of the alloc message; these are the parameters for the top-level procedure
named by cons-name. The receiver of an alloc message makes a dispatch to the named
procedure with the given arguments.

One problem which arises once we have code executing on foreign processors,
is that lost-pointers now become a possibility. A program executing on one branch
of a tree may wish to access data laterally across from it on another branch, or in
another, disconnected tree entirely. One solution to the former problem would be to
track references to a cell (bidirectional pointers) so that an access can move up the tree
as well as down. Our solution is to handle both cross-branch and inter-tree references
by forming a gradient, and connecting the two processors with a wire (as seen in the
PersistentWire module). car and cdr are responsible for updating the path fields of
the pointers they return. Now when alloc (and later call-child) carry a pointer down the
tree, they must invalidate its path field, setting it to a distinct no-path value.

Call-child

We have painted a picture of a system that allows allocating procedures to travel over
the matrix to doing their allocation. Further, we stipulated that, in the transformed
program, operands and operators are be evaluated by separate threads. Thus allocating
procedures can branch out over the matrix and operate in parallel.

The problem that remains concerns recursive procedures which access the these
data-structures. A procedure doing only accesses would be left down at the root, reach-
ing out to its data with a longer and longer arm. Or worse, consider the common pattern
of a function walking over a tree to produce a new tree. Such a process would start off
at the root, then begin off on a branch of its own (since cons migrates), possibly get-
ting further away from the tree its accessing, and resulting in a stream of lost-pointer

9

references.
In this section we talk about the fourth message, call-child, which can ameliorate

this situation. This message is similar to the alloc message, in that it contains the name
of a top-level procedure (not a cons-lifted procedure in this case), along with actual pa-
rameters to instantiate it. We provide a single mark-up syntax, possible-branch.
One places this in their source within definitions section of a lambda, as follows:

(lambda (x y z)
(possible-branch y)
...)

By this, the user means that this procedure is doing a recursion over the data-
structure referred to by argument y. This mark-up generates a chunk of code that
checks to see if y is a pointer, if it is, call-child is used to pass off the procedure call
to the host of the pair pointed to by y. This enables recursive procedures—such as
one summing the numbers in a tree—to travel over the tree structures on which they
operate, both getting closer to the data being accessed, and branching in a divide-and-
conquer fashion.

The responsibility for this mark-up presently falls on the user. Automating the
placement of this mark-up is a tricky problem not treated here. Multiple arguments may
have pair values some or all of the time. Only one argument should be marked with
possible-branch (otherwise an insane bouncing back and forth occurs). Deciding
which one would likely require a combination of run-time and static analysis. Consider
the procedure subst for replacing subexpressions: (subst ls new old). It is
clear to us that while both ls and old might be lists, we want the procedures control
flow to follow ls. Or in the case of the copy procedure in Appendix C, no mark-up
is desired at all.

With the system described here, tree walks that produce new trees will produce
them approximately in place, alongside the tree being walked. Since the cons cells we
have dealt with do not migrate between processors to relieve crowding (which would
reap havoc on the pointer system) this case remains inefficient. But the punch-line
is: since this mechanism is framed in terms of processors and communication links
between them, it is feasible substitute the robust nodes and wires of the prior section
for the fragile processors and links of this one. (This would require a dynamic graph,
unlike the data-flow graphs to be used in section 4.) Were this accomplished, new trees
allocated alongside old ones could potentially drift apart so as not to crowd each other.

Garbage Collection

A final note should be made about the task of garbage collection within this framework.
As is standard within amorphous computing, we cause parts we don’t want to die by
cutting them off from a life-giving feed. In this case, we have the root node send pulses
of liveness-preserving through its pointer tree. Cons cells not ‘pinged’ in this way for
a certain length of time, die off.

10

� program
	�� �

(letrec ((� identifier
	 � proc

	
)*) � exp

	
)

� proc
	�� � (lambda (� identifier

	��
) � exp

	
)

� exp
	�� � � number

	
� � identifier

	
�
(if � exp

	 � exp
	 � exp

	
)�

(� primitive
	 � exp

	 � exp
	
)�

(� identifier
	 � exp

	
*)

� primitive
	�� � +

�
*
�
-
�
=

Figure 2: Grammar for targeted mini-language

(Letrec ((fact
(lambda (n)
(if (= 0 n) 1

(* n (fact (- n 1)))))))
(fact 6))

Figure 3: Source code for figure 4

4 Applications: Data-Flow Machine

Our first approach to the problem of language implementation takes a data-flow per-
spective: given a program to execute, we generate a visible graph of variables and
operations in the amorphous matrix that, when run, simulates the execution of the pro-
gram. In this approach we implement the language of figure 2. This grammar defines a
highly restricted, syntactically Scheme-like language for computing recursive numeric
functions, and has the anticipated semantics.

Compiling a Data-flow Graph

The first step in our compilation, prior to generating code for the amorphous processors,
is to convert input programs into a data-flow intermediate language. As an example,
consider the code of figure 3, and the resultant graph in figure 4.

There are six kinds of nodes in this language: variable, constant, primitive,
lambda, call, and if as well as a dummy node named output. In the diagram, all
data-pipes drawn with arrowheads are restricted to one-way transmission; those drawn
with dots as endpoints can support two-way communication (merely a shorthand for
separate to and fro pipes). The message passing semantics is quite lenient: messages
may be duplicated or lost, in fact, they can even be defferred (the wire serves as a
buffer until the node wishes to consume the message), but they may not be garbled or
delivered to the wrong destination.

11

Figure 4: Data-flow graph generated from code of figure 3

� constant
	�� � � input

	 � output
	

� variable
	�� � � input

	 � output
	
*

� primitive
	�� � � input

	 � input
	 � output

	
� lambda

	�� � � bidirectional
	
* � output

	
* � input

	
*

� call
	�� � � input

	
* � bidirectional

	 � output
	

� if 	�� � � input
	 � input

	
* � output

	 � output
	

Figure 5: Grammar describing the pipe structure of nodes

The Analogue to the Stack Frame

Typically the instantiation of a new procedure call elicits the allocation of a new stack
frame in which to store values of local variables along with a return pointer. In our
data-flow languag, new procedure calls result in the creation of a new, unique call-tag.
All values in the system are transmitted in conjunction with their call-tag (i.e. ��� � � 	
and � � ����	

are potential messages). The call node is responsible for allocating new
call-tags.

Messages bounce around in the pipes until the receiving node chooses to consume
them. Hence, pipes serve as registers as well as a transmission mechanism.2 In fact,
accumulation of data in pipes is the only form of run-time allocation that this system
supports. For example, a non-tail recursive function might go through an � ,

�
and �

call before terminating, in which case messages with all three of these tags will coexist
in the function’s graph. This mechanism has an added benifit, not only can these tags
coexist, multiple calls of the same function can happen simultaneously from separate
call sites without interfering with eachother. This will become more clear with the
elucidation of the node semantics.

2In standard graphical automata, the state held in our wire would probably be modeled by “port buffer”
state within the nodes.

12

Node Semantics

All nodes operate asynchronously according to the following rule:

When the desired inputs are available, with a common call-tag � , fire, discharging one
or more � -tagged messages into the appropriate outgoing pipe(s).

The semantics of each node are as follows:

� constant

Accepts a single input, produces on its output some number of messages (possi-
bly over a period of time) tagged with the call-tag of the input, but with the value
of the constant.

� variable

Accepts a single input containing appropriately tagged values for the formal pa-
rameter. It produces some number of output messages on all of its outgoing
pipes, each output message identical to the input message.

� primitive

Accepts two inputs and produces a single output. When messages ��� ����	 and
��� ��� 	 are waiting on the input pipes (respectively), the primitive produces
some number of output messages of the form ��� ����	 , where

�
is the result of

computing that particular primitive for
�

and
�
.

� lambda

lambdas have an arbitrary number of bidirectional pipes correlating with the
number of call-sites for that lambda. The input portion of this pipe provides
incoming actual parameters, which must have formal parameter names (or in-
dices) for disambiguation. Together with the call-tag, an actual parameter is of
the form ��� � � � ���� ��� � �
	 . The output portion of this pipe serves the role of a
return address.

In addition to these bidirectional pipes, lambdas have an arbitrary number of
additional outputs which instantiate the body. There will be one of these pipes
to each of the leaves (constant and variables) in the body. On each call,
variable nodes are sent the appropriate actual parameters, and constants
are sent a dummy value with the appropriate call-tag. This enables the constant
to begin broadcasting some appropriately tagged values.

Finally, an arbitrary number of additional input pipes bring values returned from
the body to the lambda. A message on any of these pipes results in a dispatch
to the return addresses.

� call

A call node possesses an arbitrary number of inputs (actual parameters), a sin-
gle bidirectional pipe, and a single output pipe. When all inputs ��� � �	�
	�
�
�
 ��� � ���	
are present, they are tagged with a new call-tag and with the appropriate formal
parameter names, becoming ��� � � ��� ���
	�
�
�
 ��� � � �� ���	 , and are all sent down

13

the bidirectional pipe (presumably to a lambda node). Again, each may be
sent multiple times with some temporal pattern of the nodes choosing. When
a response, ��� � ��� � �
	 is heard on the bidirectional pipe, messages of the form
��� � ��� � �
	 are issued to the single output port.

� if

An if node receives an input representing the test, it has two outputs represent-
ing the consequent and alternative. The consequent and alternative, will both
have been converted to lambda nodes (see below for explanation). It should
be noted that “bidirectional pipe” is just a notational shorthand for “one input
+ one output pipe”. In the case of the consequent and alternative lambdas The
actual-parameter pipe will come from the if, but the return-address pipe will go
to the if’s return address.

The if has an arbitrary number of input pipes coming from variable nodes, in
this manner it collects values for the free variables of its consequent and alterna-
tive expressions. if waits until it receives a boolean on its primary input, then
it transmits the free-var values to the appropriate branch, triggering a call of its
lambda.

Now to explain the introduction of extra lambda nodes that is seen in figure 4.
Parts in our machine operate asynchronously. Yet it is unacceptable to execute proce-
dure calls in un-taken branches of ifs. Thus, some constraint upon control flow for
branches must exist. This is accomplished by wrapping the consequent and alternative
branches of if-expressions with lambda-expressions. These anonymous lambdas need
no call nodes; the if instantiates them with the current call-tag. The purpose is to
deprive un-taken branches of the value messages they would require to compute. Be-
cause the leaf nodes in the if branches (constants and variables) now depend
on the the inner lambdas for instantiation, this goal is accomplished. The motivation
for this technique was to maintain asynchronous firing, without the need for explicit
activation wires (as are used in other graphical intermediate languages). We realize
that this decision could reasonably be reversed, and activation wires could be added
only to call nodes, which would save the extra wires needed to pipe variables values
through if nodes.

Construction and Execution of the Amorphous Program

The tools of section 2 make implementation of the data-flow intermediate language
straightforward. Seeds for each node in the graph are distributed through a Code-gas.
At least one seed of each type (for each node in the graph) is coaxed into budding.
Because of our message passing semantics, it woudl even be acceptable if duplicate
physical nodes exist for a given abstract node.

Robustness

When this data-flow language is implemented with the tools of section 2, the system’s
acquires a baseline robustness (to small-scale cell deaths) that comes from robustness
in the primitives that make it up. In the case of large-scale, regional cell-deaths, our
system still has means for perseverance.

14

Figure 6: Execution of (lambda (x) (+ x 3)). The green node is a lambda, the yellow
nodes are primitives and constants, the turqoise node is an operator, and the
red node serves as a helper extension to broadcast lambda’s message to the variables
and constants.

Figure 7: Execution of ((lambda (x) (+ (+ x x) (+ x x))) 1). The cons cells are
drawn � � ��� � 	�
 � ��� � 	 � . The cell (.1) is the root of the computation.
This snapshot was captured right after 1 was substituted
for the occurrences of ‘x’ within the lambda’s body.

15

Consider losing an entire node to hardware failure. The code-gas contains dis-
tributed seeds for each node in the graph: any sufficiently large area of the matrix
should contain a full description of the graph. Since the nodes themselves contain no
internal state it is acceptable to replace a lost node with a new copy grown from a
seed. If part of the wires attached to the lost node survive, and manage to reconnect
to the new node, we may salvage the messages that were in transit. If not, hopefully
the source of the messages is still broadcasting them. If not, then we may yet be able
to restart the computation at from the call node for the procedure which sustained
damage (once the function is regenerated). This is a perk of a purely functional sys-
tem; if we know the function � was called with arguments ����� � 	�
�
�
 ��� �� 	 before
it sustained damage, we can simply repair the function and call it again with identical
arguments.

5 Applications: Distributed Interpreter

Here we build an interpreter that dynamically spreads out its storage and control flow
across the surface of an amorphous computer. Using the tool for implicit spatial distri-
bution from section 3 makes this is exceedingly straightforward. In fact, the code from
Appendix C does the job: an idiomatic interpreter with two possible-branch’s
included. A visualization of the result can be seen in figure 7. (Note, these computing
elements are not sparse, the view is merely zoomed.) In this picture, a heap-limit of one
is used, such that each processor hosts a maximum of one cons cell. The cons cells are
drawn � � ��� � 	�
 � ��� � 	 � , where � ��� � 	 and � ��� � 	 are symbols, numbers, or the null string,
which denotes a pointer. This snapshot was captured right after 1 was substituted for
the occurrences of ‘x’ within the lambda’s body.

Behavior of the interpreter

The two significant functions in this interpreter are eval-exp and subst. This
evaluator works by beta-reduction; eval-exp uses subst to perform applications by
substituting operand expressions for references to formal parameters within a lambda’s
body. Both of these functions do tree walks over a list structure. subst is destructive,
walking over a parse tree and mutating portions of it. eval-exp is mainly a gatherer,
crunching numbers together and bringing them back.

This interpreter processes a call-by-value version of the
�

-calculus, augmented with
numbers, primitives and if. As an effect of executing this interpreter with the spatial-
distribution system, evaluation occurs in parallel on operands and operators.

6 Conclusions

Purely functional languages can be implemented on an amorphous substrate reason-
ably effectively. The same is not necessarily true of imperative languages, but this
question has yet to be answered. A related and potentially promising area is the imple-
mentation of graphical automata used in distributed algorithms. Such implementations
have the potential to be robust and possibly efficient. We have provided general tools
to enable such an effort. However, even if amorphous computers effectively subsume

16

traditional distributed algorithms, the reverse is not necessarily true. Purely compu-
tational tasks should be specified in a way that abstracts over the spatial details of an
amorphous computer, but there are a number of spatially dependent amorphous tasks,
such as the the formation of specific two-dimensional shapes. Hence, uniquely amor-
phous languages need to incorporate an element of spatial control. We remain blind to
what form these future amorphous languages will take, but we hope that some of the
primitives discussed here are helpful to their formation.

References

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal,
E. Rauch, G. Sussman, and R. Weiss. Amorphous computing. MIT AI Memo,
1999.

[2] Paul C. Attie and Nancy A. Lynch. Dynamic input/output automata, a formal
model for dynamic systems. In Proceedings of the twentieth annual ACM sympo-
sium on Principles of distributed computing, pages 314–316. ACM Press, 2001.

[3] Mihai Budiu. Application-specific hardware: Computing without cpus. SOCS-4,
October 2001.

[4] Mihai Budiu and Seth C. Goldstein. Pegasus: An efficient intermediate represen-
tation. CMU CS Technical Report, May 2002.

[5] W. Butera. Programming a Paintable Computer. PhD thesis, MIT, 2002.

[6] D. Coore. Botanical Computing: A Developmental Approach to Generating In-
terconnect Topologies on an Amorphous Computer. PhD thesis, MIT, 1999.

[7] Stephen J. Garland, Nancy A. Lynch, and Mandana Vaziri. IOA: A Language for
Specifying, Programming, and Validating Distributed Systems, 1997.

[8] N. Radhika. Programmable Self-Assembly using Biologically-Inspired Multia-
gent Control. PhD thesis, MIT, 2002.

[9] Martin C. Rinard and Monica S. Lam. The design, implementation, and eval-
uation of jade. ACM Transactions on Programming Languages and Systems
(TOPLAS), 20(3):483–545, 1998.

[10] High Level Simulator. http://www.swiss.ai.mit.edu/projects/amorphous/.

Appendix

A Notes: limitations of current implementations

Data-flow compiler

The current implementation uses Beal’s Java version of the HLSIM simulator. It sup-
ports all of the widgets described in section 2, with the exception that PersistentNode’s

17

centers are assumed never to die, thus eliminating the third stage of their four stage
cycle. The call and if nodes remain incomplete; the demos operate by manually
instantiating a lambda node. Further, the ability to restart function applications is not
yet operational in the current implementation.

Distributed interpreter

The current implementation uses the HLSIM platform [10]. Garbage collection is in-
completely implemented, but messages to support dependency by the tree on the root
are in place, and are used for the deletion of misallocated cells (as well as the inhibiting
further allocation by misallocated cells). Misallocated cells occur when a child man-
ages the volunteer handshake to accept an allocation, but receipt to the allocation fails
to get back to the parent, and the parent takes its allocation elsewhere.

Thin, simple wires are in operation, as well as transmission of messages using them.
When the interpreter performs a beta substitution involving a procedure as argument, it
needs to copy the code of the input procedure into one or more locations in the the code
of the body. This is a lateral subtree copy across the branches of the tree, and should
be supported transparently through “lost pointers”, but is not working presently. Thus,
the interpreter cannot handle first class procedures.

Possible Improvements

� The available? predicate presently returns true if there’s any space at all in
the heap, and false otherwise. However, completely saturating up the heap of a
given processor is highly undesirable. A simple improvement would be to make
available? probabalistic, such that, it returns true with higher probability
when the heap is mostly empty, and lower probability when it is mostly full.

� Messages which bounce around in wires should switch into a slow-mode if not
consumed for some period of time. Then a node could issue ‘flush’ commands
when it wants to retrieve This makes wires more closely resemble registers.

� The spatial distribution mechanism should spill over into neighboring processors
for an overflowed stack as well as an overflowed heap.

B Input/Output Automata

There exist many formalisms for distributed computing. However, it has been claimed
that such models fail to provide “a comprehensive descriptive framework with the for-
mal power of Turing’s work” [5, pg.167].

This paper deals with building node-and-wire machines on an amorphous substrate.
As such, it is inevitable to ask how established models of distributed computation might
inform our efforts.

State machine models such as I/O Automata [7] typically incorporate a determin-
istic message passing semantics. The model that we use in our data-flow implemen-
tations instead use a nondeterministic semantics wherein messages can be duplicated,

18

lost, and reordered, but not garbled. Thus our data-flow model could be framed as a
nondeterministic I/O Automata.

We chose not to incorporating message-preserving abstraction because, as will be
shown, it is unnecessary for our data-flow application and merely adds overhead. On
the other hand, the interpreter of section 5 relies on guaranteed message delivery as well
as dynamic extensions: the ability to spawn and delete nodes at run-time. Thus this
could be cast as a Dynamic I/O Automata as defined by Lynch and Attie [2]. However,
it should be noted that in our actual spatial-distribution system implementation we
liberally break the abstraction to use cheap, fast non-guaranteed messages, essentially,
we make use of both the UDP and TCP protocols.

C Code for a simple interpreter

Note, the following grammar and interpreter use a compressed form for representing
programs, which saves cons-cells by using improper lists.

� expr
	�� � � number

	
� � identifier

	
�
(lambda . (� var

	
. � exp

	
))�

(if . (� exp
	
. (� exp

	
. � exp

	
)))�

(� primitive
	
. (� exp

	
. � exp

	
))�

(� exp
	
. � exp

	
)

;; This is a destructive substitute:
(define subst

(lambda (body new old)
(possible-call-child body)
(cond
((integer? body) body)
((symbol? body) (if (eq? body old)

(copy new)
body))

(else
(let ((ar (car body)) ;; Be careful with c*rs,

(dr (cdr body))) ;; they’re expensive now.
(cond
((eq? ar ’lambda)
(let ((v (car dr)))

(if (not (eq? v old))
(set-cdr! dr (subst (gcdr dr) new old)))

body))
((primitive? ar)
(set-car! dr (subst (gcar dr) new old))
(set-cdr! dr (subst (gcdr dr) new old))
body)

(else
(set-car! body (subst ar new old))
(set-gdr! body (subst dr new old))
body)))))))

;; This is a beta-reducing valuation function:

19

(define eval-exp
(lambda (expr)
(possible-branch expr)
(if (integer? expr) expr

(let ((ar (car expr)) (dr (cdr expr)))
(cond
((primitive? ar)

(let ((op1 (eval-exp (car dr)))
(op2 (eval-exp (cdr dr))))

(apply-primitive ar op1 op2)))
((eq? ’if (car expr))

(if (eval-exp (car dr))
(eval-exp (car (cdr dr)))
(eval-exp (cdr (cdr dr)))))

((eq? ’lambda (car expr)) expr)
(else

(let ((rator (eval-exp (car expr)))
(rand (eval-exp (cdr expr))))

(let ((formal (car (cdr rator))))
(eval-exp (subst rator rand formal)))))

)))))

;; Copy does not use possible-branch because doing
;; so would create a large number of lost pointers.
;; further, it forces evaluation of cons’operands.
;; Thus a maximum of one lost-pointer (and subsequent
;; wire build, should occur as a result of copy).
(define copy

(lambda (t)
(if (pair? t)

(let ((ar (copy (car t)))
(dr (copy (cdr t))))

(cons ar dr))
t)))

(define (primitive? p) (memq p ’(+ - * =)))
(define (apply-primitive prim op1 op2)

(case prim
((+) (+ op1 op2))
((-) (- op1 op2))
((*) (* op1 op2))
((=) (= op1 op2))))

20

