
Intelligent I/O (I2O)
Architecture Specification

Draft Revision 1.5

March 1997

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

Version 1.5 is being released with some missing details, so that vendors can start implementing sooner and participate in defining future
revisions of the I

2
O Architecture Specification. Missing Information is noted with TBD (to be defined) and some indication of the current thinking

is provided where practical.

The I
2
O Special Interest Group ("I

2
O SIG") retains the right to make changes to this specification at any time, without notice.

The I
2
O SIG disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information in this

specification. The I
2
O SIG does not warrant or represent that such implementations(s) will not infringe such rights.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

* Third party marks and brands are the property of their respective owners.

Copyright  I
2
O SIG 1995, 1996, 1997

Draft Version 1.5d March 7, 1997 iii

Table of Contents

1 Introduction.. 1-1
1.1 I2O System Conceptual Overview.. 1-1

1.1.1 Benefits ... 1-1

1.1.1.1 Reduced Driver Interfaces ... 1-1

1.1.1.2 Economy of Scale.. 1-1

1.1.1.3 Stacked Drivers ... 1-2

1.1.2 Features .. 1-2

1.1.2.1 Split Device Driver ... 1-2

1.1.2.2 I2O Interfaces ... 1-3

1.2 Objectives.. 1-5

1.3 Scope .. 1-5

1.4 Document Organization ... 1-6

1.5 I2O Include Files... 1-6

1.6 Audience.. 1-8

1.7 Definition of Terms .. 1-8

1.8 Conventions... 1-12

1.8.1 Text Conventions .. 1-12

1.8.2 Numeric Conventions .. 1-12

1.8.3 Message Naming Conventions.. 1-12

1.8.4 Interface Conventions ... 1-13

1.9 Related Documents ... 1-13

1.10 Acknowledgments ... 1-14

2 Technical Overview ... 2-1
2.1 I2O System Technical Overview... 2-1

2.1.1 Hardware Architecture... 2-1

2.1.2 Split Driver Model .. 2-2

2.1.3 Messaging Layer Architecture ... 2-3

2.1.3.1 MessengerInstance Architecture 2-6

2.1.3.2 Message System Interfaces .. 2-6

2.1.3.3 System Execution Environment 2-9

Intelligent I/O Architecture Specification

iv Draft Version 1.5d March 7, 1997

2.1.3.4 System Resource Manager ... 2-10

2.1.4 Configuring and Initializing .. 2-11

2.1.4.1 Initialization of the I2O System 2-11

2.1.4.2 Configuration of I/O Device Drivers 2-11

2.1.5 I2O Environment .. 2-12

2.1.5.1 Shared Memory Model .. 2-12

2.1.5.2 I/O Device Domains... 2-13

2.1.5.3 Accessing Adapters ... 2-14

2.1.5.4 Address Domains .. 2-14

2.1.5.5 Address Translation Unit ... 2-15

2.1.5.6 Address Translation... 2-16

2.1.5.7 Data Shipping .. 2-16

2.1.5.8 DDM Environment ... 2-17

2.1.6 Communication.. 2-18

2.1.6.1 Opening a Peer Connection .. 2-18

2.1.6.2 Closing a Connection .. 2-20

2.1.6.3 Sending Messages .. 2-20

2.1.6.4 Flow of Events ... 2-21

2.1.7 Configuring an I2O System .. 2-23

2.1.7.1 Architecture Variations .. 2-23

2.1.7.2 IOP Configuration .. 2-24

2.2 I2O System Operation Overview .. 2-25

2.2.1 OS Centric View of System ... 2-25

2.2.2 Peer-to-peer Capabilities ... 2-25

2.2.3 IOP Operational Overview... 2-26

2.2.3.1 Shell Interface.. 2-26

2.2.3.2 Core Interface .. 2-27

2.2.3.3 IOP Operations .. 2-27

2.2.4 DDM Operational Overview... 2-31

2.2.4.1 Module Structure ... 2-31

2.2.4.2 IRTOS Services ... 2-31

2.2.4.3 Messenger Service .. 2-31

2.2.4.4 Transport Service .. 2-32

2.3 Message Service ... 2-32

Contents

Draft Version 1.5d March 7, 1997 v

2.3.1 Conceptual Overview .. 2-32

2.3.2 Communication Model ... 2-32

2.3.3 Communication Architecture ... 2-32

2.3.3.1 Memory Environment... 2-33

2.3.3.2 Peer Communication ... 2-33

2.3.3.3 Protection and Marshaling ... 2-33

2.3.3.4 Message Header ... 2-33

2.3.3.5 Target IDs.. 2-33

2.3.3.6 Endian Support .. 2-33

2.3.3.7 64-Bit Addressing .. 2-33

2.3.4 Dependencies ... 2-34

2.4 Configuration Dialogue .. 2-34

2.5 Profile of an Intelligent I/O Platform ... 2-34

2.5.1 Data Movement ... 2-35

2.5.1.1 Concepts of Data Movement ... 2-35

2.5.1.2 Components of Data Movement 2-35

2.5.1.3 I2O Data Movement Components 2-37

2.5.2 Fundamental Elements.. 2-38

2.5.2.1 Processor .. 2-39

2.5.2.2 Permanent Store ... 2-39

2.5.2.3 IOP Local Bus.. 2-40

2.5.2.4 System Bus ... 2-40

2.5.2.5 System/Local Access Unit ... 2-40

2.5.2.6 DMA... 2-40

2.5.2.7 Message Queues .. 2-40

2.5.2.8 IOP Local Memory Partitions ... 2-41

2.5.3 Additional Elements... 2-42

2.5.3.1 Expansion Bus... 2-43

2.5.3.2 Slave I/O Adapter/Socket .. 2-44

2.5.3.3 Bus Master Adapter or Socket 2-44

2.5.3.4 Local DMA ... 2-44

2.5.3.5 Expansion Bus/System Access Unit 2-44

2.5.3.6 Expansion/Local Access Unit .. 2-45

2.5.4 Software Components ... 2-45

Intelligent I/O Architecture Specification

vi Draft Version 1.5d March 7, 1997

2.5.4.1 IRTOS - I2O Real Time Operating System..................... 2-45

2.5.4.2 IOP Memory Regions .. 2-45

2.5.4.3 Bus Objects ... 2-48

2.5.4.4 DMA Objects ... 2-48

2.5.4.5 Adapter Objects ... 2-48

2.5.4.6 API Transport Functions .. 2-48

3 Basic Requirements .. 3-1
3.1 Host Requirements .. 3-1

3.1.1 System BIOS... 3-1

3.1.1.1 BIOS extensions for I2O intelligent adapters (i.e., IOPs).. 3-1

3.1.1.2 BIOS extensions for other adapters 3-1

3.1.1.2 3-1

3.1.2 Host Messenger Instance.. 3-2

3.1.3 OS-Specific Modules ... 3-2

3.2 I/O Platform Requirements .. 3-3

3.2.1 Private Platforms ... 3-3

3.2.2 Open Platforms ... 3-3

3.2.3 IOP Design Considerations ... 3-3

3.3 Device Driver Module Requirements ... 3-3

3.3.1 General Requirements .. 3-4

3.3.2 Loadable Driver Modules... 3-4

3.4 Common Facilities and Structures ... 3-4

3.4.1 Message Structure and Definitions.. 3-4

3.4.1.1 Message Header ... 3-5

3.4.1.2 Message Payload .. 3-7

3.4.1.3 Function Codes ... 3-15

3.4.1.4 Utility Messages .. 3-16

3.4.1.5 Base Messages ... 3-16

3.4.1.6 Private Messages .. 3-16

3.4.2 Addressing Memory (Scatter-Gather Lists) 3-17

3.4.2.1 SGL Format ... 3-19

3.4.2.2 SGL Element Formats ... 3-21

3.4.2.3 SGL Element Definitions ... 3-25

3.4.3 Buffer Management Styles .. 3-35

Contents

Draft Version 1.5d March 7, 1997 vii

3.4.3.1 Request Messages: ... 3-36

3.4.3.2 Reply Messages .. 3-36

3.4.3.3 Transaction Reply Lists (TRLs) 3-36

3.4.4 Serial Numbers.. 3-39

3.4.5 Logical Configuration Table Entries... 3-40

3.4.6 Common Structures for Adapters .. 3-42

3.4.6.1 Bus Type ... 3-42

3.4.6.2 Physical Location... 3-43

3.4.7 Managing I2O Devices ... 3-44

3.4.7.1 Device Management Model ... 3-44

3.4.7.2 Basic Parameter Group Access..................................... 3-46

3.4.7.3 Reading Device Parameters .. 3-47

3.4.7.4 Modifying Device Parameters .. 3-55

3.4.7.5 Error Reporting .. 3-60

3.4.7.6 Generic Parameter Group Definitions............................ 3-63

3.4.8 User Interactive Configuration Dialogue .. 3-73

3.4.8.1 Configuration Dialogue Messages 3-73

3.4.8.2 Host-side Dialogue Components 3-73

3.4.8.3 TCL Scripts .. 3-75

4 I2O Shell Interface Specification ... 4-1
4.1 Overview of the I2O Shell Operation .. 4-1

4.2 IOP System Interface .. 4-2

4.2.1 Register-level Interface.. 4-2

4.2.1.1 IOP Message Unit ... 4-2

4.2.1.2 Message Queuing ... 4-2

4.2.1.3 Initializing the Queues ... 4-3

4.2.1.4 System Interrupt Generation ... 4-4

4.2.1.5 System Bus Extensions ... 4-5

4.2.2 Queuing Model .. 4-6

4.2.3 IOP State ... 4-7

4.3 Programming Model .. 4-9

4.3.1 Special TID Values .. 4-10

4.3.2 Host/IOP Communication .. 4-10

4.3.3 Peer Communication ... 4-10

Intelligent I/O Architecture Specification

viii Draft Version 1.5d March 7, 1997

4.4 Executive Messages and Structures ... 4-11

4.4.1 Replies to Executive Class Messages... 4-12

4.4.1.1 Default Reply ... 4-12

4.4.1.2 Transport Failure Reply ... 4-13

4.4.2 Utility Messages .. 4-13

4.4.2.1 Get Parameters ... 4-13

4.4.2.2 Set Parameters.. 4-14

4.4.2.3 Event Registration ... 4-14

4.4.3 Executive Base Class Messages .. 4-15

4.4.3.1 Adapter Assign .. 4-15

4.4.3.2 Adapter Read .. 4-16

4.4.3.3 Adapter Release .. 4-17

4.4.3.4 BIOS Information Set... 4-18

4.4.3.5 Boot Device Set ... 4-19

4.4.3.6 Configuration Validate ... 4-19

4.4.3.7 Connection Setup .. 4-19

4.4.3.8 DDM Destroy ... 4-21

4.4.3.9 Ddm Enable ... 4-22

4.4.3.10 Ddm Quiesce ... 4-22

4.4.3.11 Ddm Reset... 4-23

4.4.3.12 Ddm Suspend .. 4-24

4.4.3.13 Device Assign .. 4-24

4.4.3.14 Device Release ... 4-25

4.4.3.15 HRT Get .. 4-25

4.4.3.16 IOP Clear ... 4-28

4.4.3.17 IOP Connect .. 4-29

4.4.3.18 IOP Reset .. 4-30

4.4.3.19 LCT Notify.. 4-32

4.4.3.20 Outbound Initialize ... 4-33

4.4.3.21 Path Enable ... 4-35

4.4.3.22 Path Quiesce ... 4-35

4.4.3.23 Path Reset ... 4-36

4.4.3.24 Static Message Frame Create 4-36

4.4.3.25 Static Message Frame Release................................... 4-37

Contents

Draft Version 1.5d March 7, 1997 ix

4.4.3.26 Status Get.. 4-38

4.4.3.27 Software Download ... 4-41

4.4.3.28 Software Upload .. 4-43

4.4.3.29 Software Remove .. 4-45

4.4.3.30 System Enable .. 4-46

4.4.3.31 System Modify ... 4-46

4.4.3.32 System Quiesce .. 4-47

4.4.3.33 System Table Set .. 4-47

4.4.4 Modifying Parameters.. 4-51

4.5 I2O Behavioral Model ... 4-60

4.5.1 I2O System Initialization ... 4-60

4.5.1.1 System Initialization ... 4-61

4.5.1.2 System Re-Initialization ... 4-65

4.5.1.3 Abnormal System Initialization....................................... 4-65

4.5.2 BIOS Considerations ... 4-65

4.5.2.1 Bootstrap Process ... 4-65

4.5.2.2 Remote Boot.. 4-66

4.5.3 Runtime Considerations .. 4-66

4.5.4 Establishing Paths and Connections ... 4-67

4.5.5 Configuring the IOP ... 4-67

4.5.5.1 Managing the IOP.. 4-67

4.5.5.2 Installing, Loading, and Configuring Modules 4-68

4.5.6 System Recovery .. 4-69

5 I2O Core Specification ... 5-1
5.1 Conceptual Overview .. 5-1

5.1.1 Installing DDMs ... 5-2

5.1.2 Loading DDMs... 5-2

5.1.3 DDM Initialization... 5-2

5.1.4 Configuration Service .. 5-3

5.1.5 Message Service ... 5-3

5.1.6 Transport Services: Hardware and Bus Access 5-5

5.1.6.1 Bus Identification ... 5-5

5.1.6.2 Address Translation... 5-6

5.1.6.3 Transport Functions... 5-6

Intelligent I/O Architecture Specification

x Draft Version 1.5d March 7, 1997

5.1.7 OS Services .. 5-7

5.2 Principles of Operation .. 5-7

5.2.1 Installing DDMs ... 5-7

5.2.2 DDM Initialization... 5-7

5.2.3 IOP Initialization Example.. 5-8

5.2.4 DDM Configuration .. 5-13

5.2.5 Upgrading DDMs ... 5-14

5.2.6 Message Queuing ... 5-14

5.2.7 Accessing System Memory ... 5-14

5.2.8 Accessing Physical Adapters .. 5-14

5.3 Technical Reference.. 5-15

5.3.1 DDM Class Message Definitions ... 5-15

5.3.1.1 DdmAdapterAttach .. 5-15

5.3.1.2 DdmAdapterReconfig .. 5-16

5.3.1.3 DdmAdapterRelease ... 5-16

5.3.1.4 DdmAdapterResume ... 5-17

5.3.1.5 DdmAdapterSuspend .. 5-17

5.3.1.6 DdmDeviceAttach .. 5-17

5.3.1.7 DdmDeviceRelease ... 5-18

5.3.1.8 DdmDeviceReset... 5-18

5.3.1.9 DdmDeviceResume... 5-19

5.3.1.10 DdmDeviceSuspend .. 5-19

5.3.1.11 DdmSelfReset ... 5-19

5.3.1.12 DdmSelfResume ... 5-20

5.3.1.13 DdmSelfSuspend... 5-20

5.3.1.14 DdmSystemChange .. 5-20

5.3.1.15 DdmSystemEnable .. 5-21

5.3.1.16 DdmSystemHalt... 5-21

5.3.2 Technical Reference for Structures ... 5-21

5.3.2.1 DDM Physical Structure... 5-21

5.3.2.2 Module Parameter Block ... 5-26

5.3.2.3 System Configuration Information 5-27

5.3.3 Configuration Dialogue .. 5-27

5.3.3.1 TCL Scripts .. 5-27

Contents

Draft Version 1.5d March 7, 1997 xi

5.3.3.2 Module Script Table... 5-29

5.4 IRTOS: I2O Real-Time OS ... 5-30

5.4.1 Purpose ... 5-31

5.4.2 IRTOS Overview.. 5-31

5.4.2.1 IRTOS API Conventions .. 5-32

5.4.2.2 I2O Data Types .. 5-35

5.4.2.3 Objects .. 5-37

5.4.2.4 Events.. 5-40

5.4.2.5 Event Handlers .. 5-43

5.4.3 DDMs and Devices.. 5-45

5.4.3.1 DDM Initialization Function .. 5-45

5.4.3.2 DDM Management Functions .. 5-45

5.4.3.3 Device Management Functions 5-47

5.4.3.4 LCT Information ... 5-48

5.4.3.5 Assignment and Correlation of TIDs 5-49

5.4.3.6 TID Table ... 5-49

5.4.3.7 Ownership of Objects by Devices 5-50

5.4.4 Device Event Queues.. 5-51

5.4.5 Sharing Event Queues .. 5-51

5.4.6 Event Handler Functions and Dispatch Tables 5-52

5.4.7 Dispatching Incoming Messages ... 5-54

5.4.7.1 Dispatching Incoming Requests 5-54

5.4.7.2 Dispatching Incoming Replies 5-54

5.4.8 Sending Request and Reply Messages .. 5-55

5.4.9 Static Messages .. 5-57

5.4.10 Buses .. 5-58

5.4.11 Adapters .. 5-60

5.4.12 Memory Allocation ... 5-61

5.4.12.1 Memory Attributes ... 5-62

5.4.12.2 Memory Sets ... 5-65

5.4.12.3 Page Sets .. 5-67

5.4.12.4 Persistent Memory... 5-71

5.4.13 Interrupt Objects .. 5-73

5.4.13.1 Calling IRTOS Functions in an ISR 5-75

Intelligent I/O Architecture Specification

xii Draft Version 1.5d March 7, 1997

5.4.13.2 Controlling IOP Interrupts .. 5-76

5.4.14 Timer Objects .. 5-76

5.4.15 DMA Objects ... 5-78

5.4.15.1 Creating DMA Objects ... 5-80

5.4.15.2 Requesting DMA Transfers ... 5-80

5.4.15.3 DMA Completion Events.. 5-81

5.4.15.4 DMA Transfer Options ... 5-82

5.4.15.5 DMA Error Handling... 5-83

5.4.15.6 Canceling Transfers .. 5-83

5.4.15.7 Interpreting System Bus Addresses 5-84

5.4.15.8 Local-to-local Transfers ... 5-84

5.4.16 Threads ... 5-84

5.4.17 Busy Wait .. 5-86

5.4.18 Semaphores .. 5-86

5.4.18.1 Binary Semaphores ... 5-87

5.4.18.2 Counting Semaphores ... 5-87

5.4.18.3 Mutual Exclusion Semaphores 5-88

5.4.19 Pipes ... 5-89

5.4.20 IOP Information Functions ... 5-91

5.4.21 ANSI C Library... 5-92

5.4.22 64-Bit Integer Arithmetic .. 5-95

5.4.23 Floating Point Arithmetic.. 5-95

5.4.24 Configuration Support ... 5-95

5.4.24.1 Group Declarations.. 5-96

5.4.24.2 Event Notification Support ... 5-102

6 Class Specifications.. 6-1
6.1 General Requirements .. 6-1

6.1.1 Class Codes .. 6-1

6.1.1.1 I2O Standard Class Codes ... 6-1

6.1.1.2 Private Message Classes .. 6-2

6.1.1.3 Sub Class Information ... 6-2

6.1.2 Replies to Request Messages ... 6-3

6.1.2.1 Message Failure Reply .. 6-3

6.1.2.2 Normal Replies .. 6-4

Contents

Draft Version 1.5d March 7, 1997 xiii

6.1.3 Utility Messages .. 6-4

6.1.3.1 Abort Message .. 6-4

6.1.3.2 Claim Message .. 6-6

6.1.3.3 Claim Release Message.. 6-9

6.1.3.4 Configuration Dialogue Message..................................... 6-9

6.1.3.5 Device Release Message .. 6-10

6.1.3.6 Device Reserve Message.. 6-11

6.1.3.7 Event Acknowledge Message 6-12

6.1.3.8 Event Registration Message.. 6-12

6.1.3.9 Lock Message ... 6-15

6.1.3.10 LockRelease Message .. 6-16

6.1.3.11 NOP Message .. 6-16

6.1.3.12 ParamsGet Message ... 6-17

6.1.3.13 ParamsSet Message ... 6-18

6.1.3.14 Reply Message Failure Notification 6-19

6.2 Executive Class ... 6-19

6.3 Device Driver Class ... 6-19

6.4 Random Block Storage Class.. 6-19

6.4.1 Overview ... 6-19

6.4.2 Operational Model ... 6-20

6.4.2.1 Transaction Ordering ... 6-21

6.4.2.2 Clearing Error Conditions .. 6-21

6.4.2.3 Timing Out Requests ... 6-22

6.4.2.4 Reset Requests ... 6-22

6.4.2.5 Event Sensitivity .. 6-23

6.4.2.6 Managing Device State ... 6-23

6.4.2.7 Changing Hardware Specific Settings 6-24

6.4.2.8 Devices With Special Capabilities 6-24

6.4.2.9 Device Statistics .. 6-24

6.4.2.10 Block Storage Hierarchy .. 6-25

6.4.2.11 Initialization Hierarchy of a Block Storage Device 6-25

6.4.2.12 Service and Management .. 6-26

6.4.3 Device Addressing... 6-26

6.4.4 Block Storage Reply Messages... 6-26

Intelligent I/O Architecture Specification

xiv Draft Version 1.5d March 7, 1997

6.4.4.1 Block Storage Status Codes.. 6-26

6.4.4.2 Successful Completion .. 6-27

6.4.4.3 Aborted Operation ... 6-28

6.4.4.4 Progress Reports... 6-28

6.4.4.5 Error Reports ... 6-29

6.4.5 Support for Utility Messages.. 6-30

6.4.5.1 Lock ... 6-30

6.4.5.2 Lock Release ... 6-30

6.4.5.3 Events.. 6-30

6.4.5.4 Getting and Setting Parameters 6-31

6.4.6 Block Storage Request Messages .. 6-31

6.4.6.1 Block Read .. 6-32

6.4.6.2 Block Reassign .. 6-34

6.4.6.3 Block Write .. 6-35

6.4.6.4 Block Write and Verify ... 6-36

6.4.6.5 Cache Flush .. 6-37

6.4.6.6 Device Reset ... 6-37

6.4.6.7 Media Eject for Removable Media 6-38

6.4.6.8 Media Format .. 6-39

6.4.6.9 Media Lock .. 6-39

6.4.6.10 Media Mount for Removable Media 6-39

6.4.6.11 Media Unlock ... 6-40

6.4.6.12 Media Verify... 6-40

6.4.6.13 Power Management .. 6-41

6.4.6.14 Status Check ... 6-42

6.4.7 Modifying Configuration and Operating Parameters 6-43

6.5 Tape Storage Class ... 6-56

6.5.1 Operational Model ... 6-56

6.5.1.1 Sequential Media Access .. 6-56

6.5.1.2 Variable/Fixed Block Support .. 6-56

6.5.1.3 Compression and Write Density 6-56

6.5.1.4 File Marks, Set Marks, and Partitions 6-57

6.5.1.5 Error Types and Reporting .. 6-57

6.5.1.6 Tape Devices Only .. 6-58

Contents

Draft Version 1.5d March 7, 1997 xv

6.5.1.7 Timing Out Requests ... 6-58

6.5.2 Tape Storage Reply Messages ... 6-59

6.5.2.1 Tape Storage Status Codes .. 6-59

6.5.2.2 Successful Completion .. 6-61

6.5.2.3 Aborted Operation ... 6-61

6.5.2.4 Progress Reports... 6-62

6.5.2.5 Error Reports ... 6-63

6.5.3 Support for Utility Messages.. 6-63

6.5.3.1 Lock and Lock Release ... 6-63

6.5.3.2 Event Notification for Tape Storage Devices 6-63

6.5.3.3 Getting and Setting Parameters 6-64

6.5.4 Tape Storage Request Messages ... 6-64

6.5.4.1 Cache Flush Message ... 6-65

6.5.4.2 Compression Set Message.. 6-66

6.5.4.3 Data Erase Message ... 6-66

6.5.4.4 Data Read Message .. 6-67

6.5.4.5 Data Write Message .. 6-68

6.5.4.6 Data Write Verify Message .. 6-68

6.5.4.7 Density Set Message... 6-69

6.5.4.8 Device Reset Message.. 6-70

6.5.4.9 Marks Write Message .. 6-70

6.5.4.10 Media Eject Message .. 6-71

6.5.4.11 Media Load Message .. 6-72

6.5.4.12 Media Lock Message... 6-72

6.5.4.13 Media Position Message ... 6-73

6.5.4.14 Media Unlock Message ... 6-75

6.5.4.15 Partition Create Message .. 6-75

6.5.4.16 Power Management Message 6-76

6.5.4.17 Status Check Message.. 6-77

6.5.5 Managing Parameters of Tape Devices .. 6-78

6.6 SCSI Peripheral Class ... 6-85

6.6.1 Overview ... 6-85

6.6.2 SCSI Reply Messages... 6-86

6.6.3 Support for Utility Messages.. 6-90

Intelligent I/O Architecture Specification

xvi Draft Version 1.5d March 7, 1997

6.6.3.1 Events.. 6-90

6.6.3.2 Getting and Setting Parameters 6-90

6.6.4 SCSI Peripheral Request Messages ... 6-90

6.6.4.1 Device Reset ... 6-91

6.6.4.2 SCSI Control Block Abort .. 6-91

6.6.4.3 SCSI Control Block Execute .. 6-91

6.6.5 Managing SCSI Peripheral Parameters .. 6-93

6.7 Bus Adapter Class ... 6-97

6.7.1 Overview ... 6-97

6.7.2 Reply Messages .. 6-97

6.7.3 Support for Utility Messages.. 6-99

6.7.3.1 Events.. 6-99

6.7.3.2 Getting and Setting Parameters 6-99

6.7.4 Bus Adapter Class Request Messages ... 6-99

6.7.4.1 Reset Host Bus Adapter .. 6-100

6.7.4.2 Bus Quiesce .. 6-100

6.7.4.3 Bus Reset .. 6-101

6.7.4.4 Bus Scan ... 6-102

6.7.5 Modifying Configuration and Operating Parameters 6-102

6.8 IDE Adapter Class ... 6-106

6.9 Floppy Adapter Class .. 6-106

6.10 LAN Class.. 6-106

6.10.1 Overview ... 6-107

6.10.2 Sends .. 6-107

6.10.2.1 Processing Send Replies .. 6-108

6.10.2.2 Loopback of Transmitted Packets 6-108

6.10.3 Receives.. 6-108

6.10.3.1 Posting Buckets ... 6-109

6.10.3.2 Indicating Receive Packets 6-109

6.10.3.3 Processing Receive Replies 6-111

6.10.4 Batch and Error Control ... 6-111

6.10.5 Events ... 6-112

6.10.6 Messages .. 6-112

6.10.6.1 Packet Send .. 6-113

Contents

Draft Version 1.5d March 7, 1997 xvii

6.10.6.2 SDU Send.. 6-116

6.10.6.3 Post Receive Buckets.. 6-118

6.10.6.4 Receive Reply ... 6-118

6.10.7 LAN Configuration and Operating Parameters 6-119

6.11 WAN Class .. 6-135

6.12 Fibre Channel Class .. 6-135

Intelligent I/O Architecture Specification

xviii Draft Version 1.5d March 7, 1997

Tables

Table 1-1. Chapters in This Document .. 1-6

Table 1-2. I2O Shell Include Files ... 1-7

Table 1-3. I2O Core Include Files (for developing a DDM that runs under an IRTOS) 1-7

Table 1-4. Reader’s Guide ... 1-8

Table 1-5. Definitions .. 1-8

Table 1-6. Text Conventions.. 1-12

Table 1-7. Numeric Conventions ... 1-12

Table 3-1. Reply Status Codes... 3-10

Table 3-2. Detailed Status Codes... 3-11

Table 3-3 Message Failure Codes.. 3-14

Table 3-4. Relationship Between Message Type and Function Field ... 3-15

Table 3-5 SglFlags Field Definition .. 3-24

Table 3-6 Buffer Context Field Size .. 3-25

Table 3-7. Three Segments in a Buffer .. 3-27

Table 3-8. Serial Number Formats... 3-40

Table 3-9. Bus Type Code Assignments.. 3-42

Table 3-10: Parameter GroupNumber Ranges.. 3-45

Table 3-11: Parameter Access Messages .. 3-46

Table 3-12: Parameter Read Operations ... 3-47

Table 3-13: Parameter Modify Operations ... 3-55

Table 3-14: BlockStatus Codes and Error information... 3-61

Table 3-15: Group F000h - PARAMS DESCRIPTOR Group ... 3-64

Table 3-16: Group F001h - Physical Device Table .. 3-64

Table 3-17: Group F002h - Claimed Table... 3-65

Table 3-18: Group F003h - User Table... 3-65

Table 3-19: Group F005h - Private Message Extensions ... 3-65

Table 3-20: Group F006h - Authorized User Table.. 3-66

Table 3-21: Group F100h - Device Identity.. 3-66

Table 3-22: Group F101h - DDM Identity.. 3-67

Table 3-23: Group F102 - User Information... 3-67

Contents

Draft Version 1.5d March 7, 1997 xix

Table 3-24: Group F103h - SGL Operating Limits .. 3-68

Table 3-25: Group F200h - Sensors .. 3-69

Table 4-1. IOP State Definitions.. 4-7

Table 4-2. IOP State Table... 4-9

Table 4-3. Executive Class Messages .. 4-11

Table 4-4. EventIndicator Assignments for Executive Class .. 4-14

Table 4-5. EventData For Executive Class Events .. 4-15

Table 4-6 Software Module Types.. 4-43

Table 4-7. Executive Parameter Groups .. 4-51

Table 5-1. Initial Configuration Information ... 5-10

Table 5-2. Configuration Information after First Adapter Initialization .. 5-11

Table 5-3. Final Logical Configuration Table ... 5-12

Table 5-4. DDM Class Messages for Loadable DDMs .. 5-15

Table 5-5 Structure of Module Descriptor Header .. 5-22

Table 5-6 Module’s Major Capabilities ... 5-23

Table 5-7 DescriptorID Assignments .. 5-23

Table 5-8 Structure of Index Table ... 5-24

Table 5-9 Index Table Entry .. 5-24

Table 5-10 Structure of Adapter Table ... 5-24

Table 5-11 PCI Adapter Table Entry ... 5-25

Table 5-12 Structure of Device Table... 5-25

Table 5-13 Device Table Entry .. 5-25

Table 5-14 Structure of Obsolete DDM Table.. 5-26

Table 5-15 Obsolete Table Entry ... 5-26

Table 5-16 Structure of TCL Script Table .. 5-26

Table 5-17 Structure of Module Parameter Block ... 5-27

Table 5-18: Standard TCL Commands Supported by IRTOS .. 5-28

Table 5-19: Customized TCL Commands Support by IRTOS ... 5-28

Table 5-20 IRTOS Error Actions... 5-34

Table 5-21 IRTOS Status Pointer .. 5-34

Table 5-22 IRTOS Error Action Functions.. 5-35

Intelligent I/O Architecture Specification

xx Draft Version 1.5d March 7, 1997

Table 5-23 I2O_STATUS − IRTOS Status Values ... 5-35

Table 5-24 I2O Data Types... 5-35

Table 5-25 Classes of Objects Defined in IRTOS ... 5-38

Table 5-26 IRTOS Object Functions ... 5-39

Table 5-27 Event Queue Functions.. 5-41

Table 5-28 IRTOS Functions That Post Events... 5-42

Table 5-29 Event Handler Functions for IRTOS Objects .. 5-45

Table 5-30 DDM Management Functions ... 5-46

Table 5-31 Device Management Functions ... 5-48

Table 5-32 LCT Info Structure .. 5-49

Table 5-33 Dispatch Table Functions .. 5-53

Table 5-34 Array Elements for Dispatch Functions (I2O_FUNC_ENTRY): 5-53

Table 5-35 I2O Message Frame Functions .. 5-56

Table 5-36 Initiator Context Function .. 5-57

Table 5-37 I2O Static Message Functions ... 5-57

Table 5-38 Bus Functions ... 5-59

Table 5-39 Adapter Functions.. 5-61

Table 5-40 Memory Allocation Functions Summary .. 5-62

Table 5-41 Memory Access Attributes ... 5-63

Table 5-42 Memory Cache Attributes .. 5-64

Table 5-43 Cache Attributes of Various Cache Types .. 5-65

Table 5-44 IRTOS Variable Size Memory Allocation Functions ... 5-66

Table 5-45 Page Allocation Functions... 5-67

Table 5-46 Battery Backup Attributes .. 5-70

Table 5-47 Battery Backup Status Values .. 5-71

Table 5-48 IRTOS NVRAM Access Functions... 5-72

Table 5-49 IRTOS Interrupt Handling Functions .. 5-73

Table 5-50 IRTOS Functions That Can Be Called From an ISR... 5-76

Table 5-51 Maximum Timer Duration .. 5-77

Table 5-52 IRTOS Timer Functions .. 5-77

Table 5-53 IRTOS DMA Functions... 5-79

Contents

Draft Version 1.5d March 7, 1997 xxi

Table 5-54 DMA Creation Flags Values .. 5-80

Table 5-55 DMA Request Status Values .. 5-81

Table 5-56 DMA Completion Status Values .. 5-82

Table 5-57 DMA Transfer Flag Values ... 5-83

Table 5-58 DMA Cancel Modes .. 5-84

Table 5-59 IRTOS Thread Functions... 5-85

Table 5-60 IRTOS Thread Options.. 5-86

Table 5-61 IRTOS Busy Wait Function .. 5-86

Table 5-62 IRTOS Semaphore Functions .. 5-88

Table 5-63 IRTOS Semaphore Options ... 5-89

Table 5-64 IRTOS Pipe Functions... 5-90

Table 5-65 IRTOS Pipe Options .. 5-91

Table 5-66 IOP Information Functions .. 5-91

Table 5-67 IOP Configuration Info Structure .. 5-91

Table 5-68 ANSI Standard C Functions Included in IRTOS... 5-93

Table 5-69 ANSI Standard C Functions Not Included in IRTOS.. 5-93

Table 5-70 Configuration Functions ... 5-95

Table 5-71 Parameter Group Declartion Structure .. 5-97

Table 5-72 Basic Field Declaration Structure.. 5-97

Table 5-73 Key Field Declaration Structure ... 5-98

Table 5-74 Field Get/Set Function Return Values... 5-100

Table 5-75 Row Add/Delete Function Return Values ... 5-100

Table 5-76 GetKeysFunction Return Values ... 5-102

Table 5-77 GetKeysFunction Return Values ... 5-102

Table 5-78 Event Client List Structure .. 5-103

Table 5-79 Event Client Info Structure.. 5-103

Table 6-1. Class Code Assignments .. 6-2

Table 6-2. Utility Message Function Codes .. 6-4

Table 6-3. Device Reserve Reply Codes ... 6-11

Table 6-4. EventIndicator Assignments... 6-14

Table 6-5. EventData for Generic Events .. 6-15

Intelligent I/O Architecture Specification

xxii Draft Version 1.5d March 7, 1997

Table 6-6. Timeout Formula .. 6-22

Table 6-7. DetailedStatusCode for Block Storage Operations .. 6-26

Table 6-8. BSA EventIndicator Assignments .. 6-31

Table 6-9. EventData for Block Storage Events .. 6-31

Table 6-10. Block Storage Request Messages ... 6-32

Table 6-11. Block Read Control Flags.. 6-33

Table 6-12. Block Write Control Flags.. 6-36

Table 6-13. Block Write & Verify Control Flags .. 6-37

Table 6-14. Power Management Operation Values .. 6-41

Table 6-15. Power Management SCSI translation Matrix .. 6-42

Table 6-16. StatusCheck Replies .. 6-43

Table 6-17. BSA Parameters Group .. 6-43

Table 6-18. Timeout Formula .. 6-58

Table 6-19. Tape Position (TapePos) Field definition ... 6-59

Table 6-20. Tape Detailed Status Code ... 6-59

Table 6-21. Tape EventIndicator Assignments.. 6-64

Table 6-22. EventData for Tape Events ... 6-64

Table 6-23. Request Messages for the Tape Storage Class ... 6-65

Table 6-24. Media Positioning Modes ... 6-74

Table 6-25. Tape Power Management Actions... 6-77

Table 6-26. Status Check Replies ... 6-78

Table 6-27. Group 0000h - Tape Storage Device Information Parameter Group 6-79

Table 6-28. Tape Storage Device Types .. 6-79

Table 6-29. Device Capabilities .. 6-80

Table 6-30. Tape Storage Device State.. 6-80

Table 6-31. Group 0001h - Tape Storage Operational Control Parameter Group 6-81

Table 6-32. Group 0002h - Tape Storage Power Control Parameter Group .. 6-81

Table 6-33. Group 0003h - Tape Storage Cache Control Parameter Group... 6-82

Table 6-34. Group 0004h - Tape Storage Media information Parameter Group 6-82

Table 6-35. Group 0005h - Tape Storage Error Log Parameter Group .. 6-83

Table 6-36. Group 0100h - Tape Storage Historical Statistics Parameter Group................................... 6-84

Contents

Draft Version 1.5d March 7, 1997 xxiii

Table 6-37. Group 0101h - Tape Storage Runtime Statistics Parameter Group..................................... 6-84

Table 6-38. Group 0102h - Tape Storage Flexible Statistics Parameter Group 6-85

Table 6-39. SCSI Device Completion Status Codes.. 6-88

Table 6-40. SCSI Adapter Status Codes for Device Operations .. 6-89

Table 6-41. SCSI EventIndicator Assignments ... 6-90

Table 6-42. EventData for SCSI Events .. 6-90

Table 6-43. Request Messages for the SCSI Peripheral Class... 6-90

Table 6-44. ScbFlags Bit Definitions.. 6-93

Table 6-45. SCSI Peripheral Parameter Groups .. 6-94

Table 6-46. AdapterStatus Values (part of DetailedStatusCode) .. 6-99

Table 6-47. Request Messages for the Bus Adapter Class .. 6-100

Table 6-48. Bus Adapter Parameter Groups .. 6-103

Table 6-49. LAN Loopback Requirements.. 6-108

Table 6-50. Returned Bucket Format... 6-110

Table 6-51. Packet Descriptor Block ... 6-110

Table 6-52. LAN EventIndicator Assignments.. 6-112

Table 6-53. Base LAN Class Request Messages .. 6-112

Table 6-54. Definition of the TransmitControlWord field ... 6-114

Table 6-55. Packet Structures for Various Media.. 6-114

Table 6-56. DetailedStatusCodes ... 6-116

Table 6-57. Packet Structures for Various Media.. 6-117

Table 6-58. LAN Group 0000h - Device Information Parameter Group ... 6-119

Table 6-59. LAN Group 0001h - MAC Address Parameter Group... 6-120

Table 6-60. LAN Parameter Group 0002h - Multicast MAC Address Table...................................... 6-120

Table 6-61. LAN Parameter Group 0003h - Batch Control... 6-121

Table 6-62. LAN Parameter Group 0004h... 6-122

Table 6-63. LAN Parameter Group 0005h... 6-123

Table 6-64. LAN Connection Types... 6-124

Table 6-65. LAN Parameter Group 0006h... 6-124

Table 6-66. LAN Parameter Group 0007h... 6-125

Table 6-67. LAN Parameter Group 0008h... 6-126

Intelligent I/O Architecture Specification

xxiv Draft Version 1.5d March 7, 1997

Table 6-68. LAN Parameter Group 0100h... 6-126

Table 6-69. LAN Parameter Group 0180h... 6-127

Table 6-70. LAN Parameter Group 0181h... 6-128

Table 6-71. LAN Parameter Group 0200h... 6-129

Table 6-72. LAN Parameter Group 0280h... 6-129

Table 6-73. LAN Parameter Group 0281h... 6-130

Table 6-74. LAN Parameter Group 0300h... 6-131

Table 6-75. LAN Parameter Group 0380h... 6-132

Table 6-76. LAN Parameter Group 0381h... 6-132

Table 6-77. LAN Parameter Group 0400h... 6-133

Table 6-78. LAN Parameter Group 0480h... 6-134

Table 6-79. LAN Parameter Group 0481h... 6-134

Table 6-80. LAN Parameter Group 0500h... 6-134

Table 6-81. LAN Parameter Group 0580h... 6-134

Table 6-82. LAN Parameter Group 0581h... 6-135

Table 6-83. FilterMask... 6-135

Contents

Draft Version 1.5d March 7, 1997 xxv

Figures

Figure 1-1. Typical I/O Device Driver... 1-3

Figure 1-2. I2O Interfaces ... 1-4

Figure 2-1. Intelligent I/O Hardware Architecture .. 2-2

Figure 2-2. I2O Split Driver Model ... 2-3

Figure 2-3. Communication Service Model... 2-4

Figure 2-4. Communication Architecture ... 2-5

Figure 2-5. Message Service Model .. 2-6

Figure 2-6. I2O Interface Topology... 2-7

Figure 2-7. I2O Execution Environment.. 2-10

Figure 2-8. I2O System Topology ... 2-12

Figure 2-9. I2O Segment Example .. 2-13

Figure 2-10. Abstracted View.. 2-14

Figure 2-11. Memory Address Translation.. 2-16

Figure 2-12. Mechanisms for Transferring Data ... 2-17

Figure 2-13. Illustration of Peer Message Operation ... 2-19

Figure 2-14. Flow of I/O Operations ... 2-22

Figure 2-15. Various I2O Subsystems ... 2-23

Figure 2-16. Simple Form of an Intelligent I/O Platform ... 2-39

Figure 2-17. Typical Intelligent I/O Platform with Expansion Bus ... 2-42

Figure 2-18. Complex Intelligent I/O Platform .. 2-43

Figure 2-19 IOP Memory Regions.. 2-46

Figure 3-1. Message Frame... 3-4

Figure 3-2. Message Header Version 001... 3-5

Figure 3-3. Single Transaction Request Message Template... 3-8

Figure 3-4. Multiple Transaction Request Message Template ... 3-9

Figure 3-5. Single Transaction Reply Message Template .. 3-9

Figure 3-6. Multiple Transaction Reply Message Template .. 3-12

Figure 3-7. Reply Message for Message Failure ... 3-13

Figure 3-8. Reply Message for Transaction Error ... 3-15

Figure 3-9. Private Type Request Message Template .. 3-16

Intelligent I/O Architecture Specification

xxvi Draft Version 1.5d March 7, 1997

Figure 3-10 High Level Structure of a Multiple Transaction SGL.. 3-18

Figure 3-11. Physical Structure of a SGL Sequence... 3-19

Figure 3-12. Logical Structure of a SGL .. 3-20

Figure 3-13 Compressed Format.. 3-22

Figure 3-14 Short Element of Specified Length .. 3-22

Figure 3-15 Long Element of Specified Length .. 3-22

Figure 3-16. Bit Bucket Element Structure... 3-26

Figure 3-17. Chain Pointer Structure .. 3-26

Figure 3-18. Chain Addressing Mode Example.. 3-28

Figure 3-19. Ignore Element .. 3-28

Figure 3-20. Immediate Data Element Structure .. 3-29

Figure 3-21. Long Transaction Parameters Element Structure... 3-29

Figure 3-22. Page List Addressing Mode ... 3-30

Figure 3-23. Page List Addressing Mode Example .. 3-31

Figure 3-24. SGL Attributes Element ... 3-32

Figure 3-25. Short Transaction Parameters Structure ... 3-33

Figure 3-26. Simple Addressing Mode .. 3-33

Figure 3-27. Simple Addressing Mode Example 1... 3-34

Figure 3-28. Simple Addressing Mode Example 2... 3-35

Figure 3-29. Transport Element Structure .. 3-35

Figure 3-30 Transaction Reply List General Structure ... 3-37

Figure 3-31. TRL Control Word ... 3-37

Figure 3-32. Single Fixed Length Element ... 3-37

Figure 3-33. Single Variable Length Element .. 3-38

Figure 3-34. Multiple Fixed Length Elements.. 3-39

Figure 3-35. Format for Reporting Serial Number .. 3-40

Figure 3-36. LCT Entry Structure.. 3-41

Figure 3-37. Structure of Physical Location for a PCI Bus Adapter .. 3-43

Figure 3-38. Structure of Physical Location for a Local Bus Adapter .. 3-43

Figure 3-39. Structure of Physical Location for an ISA Bus Adapter ... 3-43

Figure 3-40. Structure of Physical Location for an EISA Bus Adapter... 3-44

Contents

Draft Version 1.5d March 7, 1997 xxvii

Figure 3-41. Structure of Physical Location for an MCA Bus Adapter ... 3-44

Figure 3-42. Structure of Physical Location for Other Bus .. 3-44

Figure 3-43: Model of a Scalar Group .. 3-45

Figure 3-44: Model of a Table Group ... 3-45

Figure 3-45: Operations List And Results List Structures ... 3-46

Figure 3-46. ResultBlock Template for Read Operations .. 3-48

Figure 3-47. Error Information Template ... 3-49

Figure 3-48: FIELD_GET Operation Block .. 3-49

Figure 3-49. FIELD_GET Operation ResultBlock ... 3-50

Figure 3-50. LIST_GET Operation Block .. 3-50

Figure 3-51. LIST_GET Operation ResultBlock... 3-51

Figure 3-52. MORE_GET Operation Block... 3-52

Figure 3-53. SIZE_GET Operation Block.. 3-52

Figure 3-54. SIZE_GET Operation ResultBlock... 3-53

Figure 3-55. TABLE_GET Operation Block .. 3-53

Figure 3-56. TABLE_GET Operation ResultBlock... 3-54

Figure 3-57. ResultBlock Template for MODIFY Operations ... 3-56

Figure 3-58: FIELD_SET Operation Block .. 3-56

Figure 3-59. SET VALUE Operation ResultBlock... 3-57

Figure 3-60. LIST_SET Operation Block.. 3-58

Figure 3-61. ROW_ADD Operation Block.. 3-59

Figure 3-62. ROW_DELETE Operation Block ... 3-60

Figure 3-63. TABLE_CLEAR Operation Block .. 3-60

Figure 3-64. Typical Host Configuration Dialogue Mechanism .. 3-74

Figure 4-1. Message Queue Example .. 4-3

Figure 4-2. Executive Class Reply Message Template ... 4-13

Figure 4-3. ExecAdapterAssign Request Message... 4-16

Figure 4-4. ExecAdapterRead Request Message ... 4-17

Figure 4-5. ExecAdapterRelease Request Message... 4-18

Figure 4-6. ExecBiosInfoSet Request Message... 4-18

Figure 4-7. Boot Device Set Request Message ... 4-19

Intelligent I/O Architecture Specification

xxviii Draft Version 1.5d March 7, 1997

Figure 4-8. ExecConfigValidate Request Message.. 4-19

Figure 4-9. ExecConnSetup Request Message.. 4-20

Figure 4-10. ExecConnSetup Reply Message ... 4-21

Figure 4-11. ExecDdmDestroy Request Message.. 4-22

Figure 4-12. ExecDdmEnable Request Message ... 4-22

Figure 4-13. ExecDdmQuiesce Request Message.. 4-23

Figure 4-14. ExecDdmReset Request Message.. 4-23

Figure 4-15. ExecDdmSuspend Request Message ... 4-24

Figure 4-16. ExecDeviceAssign Request Message .. 4-24

Figure 4-17. ExecDeviceRelease Request Message... 4-25

Figure 4-18. ExecHrtGet Request Message... 4-26

Figure 4-19. Hardware Resource Table Structure ... 4-26

Figure 4-20. HRT Entry ... 4-27

Figure 4-21. ExecIopClear Request Message.. 4-28

Figure 4-22. ExecIopConnect Request Message.. 4-29

Figure 4-23. ExecIopConnect Reply Message... 4-30

Figure 4-24. ExecIopReset Request Message .. 4-31

Figure 4-25. ExecIopReset Status Word Structure ... 4-31

Figure 4-26. ExecLctNotify Request Message ... 4-32

Figure 4-27. Logical Configuration Table Structure ... 4-33

Figure 4-28. ExecOutboundInit Request Message... 4-33

Figure 4-29. ExecOutboundInit Status Word Structure .. 4-34

Figure 4-30. Reclaim List Structure.. 4-35

Figure 4-31. ExecPathEnable Request Message ... 4-35

Figure 4-32. ExecPathQuiesce Request Message... 4-36

Figure 4-33. ExecPathReset Request Message ... 4-36

Figure 4-34. ExecStaticMfCreate Request Message... 4-37

Figure 4-35. ExecStaticMfCreate Reply Message .. 4-37

Figure 4-36. ExecStaticMfRelease Request Message ... 4-38

Figure 4-37. ExecStatusGet Request Message... 4-38

Figure 4-38. Status Block Structure ... 4-39

Contents

Draft Version 1.5d March 7, 1997 xxix

Figure 4-39. ExecSwDownload Request Message .. 4-42

Figure 4-40. ExecSwUpload Request Message... 4-44

Figure 4-41. ExecSwRemove Request Message .. 4-45

Figure 4-42. ExecSysEnable Request Message.. 4-46

Figure 4-43. ExecSysModify Request Message ... 4-46

Figure 4-44. ExecSysQuiesce Request Message .. 4-47

Figure 4-45. ExecSysTabSet Request Message.. 4-47

Figure 4-46 System Table Structure ... 4-49

Figure 4-47. System Table Entry ... 4-50

Figure 4-48. MessengerInfo for Memory Mapped Message Unit .. 4-50

Figure 4-49. Typical System Initialization .. 4-62

Figure 5-1. DDM Components ... 5-2

Figure 5-2. An IOP Physical Configuration... 5-9

Figure 5-3. An IOP’s Logical Configuration ... 5-13

Figure 5-4. DdmAdapterAttach Request Message Structure .. 5-16

Figure 5-5. DdmAdapterReconfig Request Message Structure .. 5-16

Figure 5-6. DdmAdapterRelease Request Message Structure .. 5-16

Figure 5-7. DdmAdapterResume Request Message Structure .. 5-17

Figure 5-8. DdmAdapterSuspend Request Message Structure ... 5-17

Figure 5-9. DdmDeviceAttach Request Message Structure .. 5-18

Figure 5-10. DdmDeviceRelease Request Message Structure .. 5-18

Figure 5-11. DdmDeviceReset Request Message Structure.. 5-18

Figure 5-12. DdmDeviceResume Request Message Structure .. 5-19

Figure 5-13. DdmDeviceSuspend Request Message Structure ... 5-19

Figure 5-14. DdmSelfReset Request Message Structure... 5-19

Figure 5-15. DdmSelfResume Request Message Structure ... 5-20

Figure 5-16. DdmSelfSuspend Request Message Structure .. 5-20

Figure 5-17. DdmSystemChange Request Message Structure .. 5-21

Figure 5-18. DdmSystemEnable Request Message Structure ... 5-21

Figure 5-19. DdmSystemHalt Request Message Structure ... 5-21

Figure 5-20 IRTOS Component Overview... 5-32

Intelligent I/O Architecture Specification

xxx Draft Version 1.5d March 7, 1997

Figure 5-21 Example of IRTOS Object Ownership.. 5-39

Figure 5-22 IRTOS Events and Event Queues ... 5-41

Figure 5-23 Hierarchical Event Queues... 5-43

Figure 5-24 TID Table and Devices ... 5-50

Figure 5-25 Example of Event Queue Sharing .. 5-52

Figure 5-26 Example of Sharing a Message Dispatch Table... 5-53

Figure 5-27 Flow of Request Message Dispatching .. 5-54

Figure 5-28 Flow of Reply Message Dispatching ... 5-55

Figure 5-29: Page Sets .. 5-69

Figure 5-30. Hierarchy of Parameter Group Declaration .. 5-96

Figure 6-1. Structure for ClassID... 6-1

Figure 6-2. UtilAbort Request Message... 6-5

Figure 6-3. UtilAbort Reply Message .. 6-6

Figure 6-4. UtilClaim Request Message .. 6-7

Figure 6-5. UtilClaimRelease Request Message ... 6-9

Figure 6-6. UtilConfigDialog Request Message... 6-10

Figure 6-7. UtilDeviceRelease Request Message ... 6-10

Figure 6-8. UtilDeviceReserve Request Message ... 6-11

Figure 6-9. UtilEventAck Request Message... 6-12

Figure 6-10. UtilEventAck Reply Message ... 6-12

Figure 6-11. UtilEventRegister Request Message ... 6-13

Figure 6-12. UtilEventRegister Reply Message.. 6-13

Figure 6-13. UtilLock Request Message .. 6-15

Figure 6-14. UtilLockRelease Request Message ... 6-16

Figure 6-15. UtilNOP Request Message.. 6-17

Figure 6-16. UtilParamsGet Request.. 6-17

Figure 6-17. UtilParamsSet Request Message ... 6-18

Figure 6-18. UtilReplyFaultNotify Request Message ... 6-19

Figure 6-19. Block Storage Abstraction .. 6-20

Figure 6-20. Successful Completion Reply Message for Block Storage Class 6-27

Figure 6-21. Aborted Operation Reply Message for Block Storage Class ... 6-28

Contents

Draft Version 1.5d March 7, 1997 xxxi

Figure 6-22. Progress Report Reply Message for Block Storage Class .. 6-29

Figure 6-23. Unsuccessful Completion Reply Message for Block Storage Class 6-29

Figure 6-24. BsaBlockRead Request Message... 6-32

Figure 6-25. BsaBlockReassign Request Message ... 6-34

Figure 6-26. BsaBlockWrite Request Message .. 6-35

Figure 6-27. BsaBlockWriteVerify Request Message .. 6-36

Figure 6-28. BsaCacheFlush Request Message... 6-37

Figure 6-29. BsaDeviceReset Request Message ... 6-38

Figure 6-30. BsaMediaEject Request Message .. 6-38

Figure 6-31. BsaMediaLock Request Message .. 6-39

Figure 6-32. BsaMediaMount Request Message .. 6-39

Figure 6-33. Load Flags for BsaMediaMount.. 6-39

Figure 6-34. BsaMediaUnlock Request Message ... 6-40

Figure 6-35. BsaMediaVerify Request Message .. 6-40

Figure 6-36. BsaPowerMgt Request Message ... 6-41

Figure 6-37. BsaStatusCheck Request Message .. 6-42

Figure 6.38. Successful Completion Reply Message for Tape Storage Class .. 6-61

Figure 6.39. Aborted Operation Reply Message for Tape Storage Class ... 6-62

Figure 6.40. Progress Report Reply Message for Tape Storage Class .. 6-62

Figure 6.41. Unsuccessful Completion Reply Message for Tape Storage Class 6-63

Figure 6.42. TapeCacheFlush Request Message ... 6-65

Figure 6.43. TapeCmprsnSet Request Message.. 6-66

Figure 6.44. TapeDataErase Request Message .. 6-66

Figure 6.45. TapeDataRead Request Message .. 6-67

Figure 6.46. TapeDataWrite Request Message ... 6-68

Figure 6.47. TapeDataWriteVerify Request Message.. 6-69

Figure 6.48. TapeDensitySet Request Message ... 6-69

Figure 6.49. TapeDeviceReset Request Message.. 6-70

Figure 6.50. TapeMarksWrite Request Message .. 6-71

Figure 6.51 TapeMediaEject Request Message.. 6-71

Figure 6.52. TapeMediaLoad Request Message.. 6-72

Intelligent I/O Architecture Specification

xxxii Draft Version 1.5d March 7, 1997

Figure 6.53. TapeMediaLock Request Message ... 6-72

Figure 6.54. TapeMediaPosition Request Message... 6-73

Figure 6.55. TapeMediaUnlock Request Message.. 6-75

Figure 6.56. TapePartitionCreate Request Message .. 6-75

Figure 6.57. Partition Data ... 6-76

Figure 6.58. TapePowerMgt Request Message ... 6-76

Figure 6.59. TapeStatusCheck Request Message.. 6-77

Figure 6-60. SCSI DDM Example .. 6-86

Figure 6-61. Reply Message Template for SCSI Peripheral Class ... 6-87

Figure 6-62. Unsuccessful Completion Reply Message for SCSI Peripheral Class 6-88

Figure 6-63. ScsiDeviceReset Request Message... 6-91

Figure 6-64. ScsiScbAbort Request Message ... 6-91

Figure 6-65. ScsiScbExec Request Message ... 6-92

Figure 6-66. Reply Message Structure for Bus Adapter Class ... 6-98

Figure 6-67. HbaAdapterReset Request Message.. 6-100

Figure 6-68. HbaBusQuiesce Request Message .. 6-101

Figure 6-69. HbaBusReset Request Message ... 6-102

Figure 6.70. HbaBusScan Request Message... 6-102

Figure 6-71. LanPacketSend Request Message ... 6-113

Figure 6-72. LanPacketSend Reply Message ... 6-115

Figure 6-73. LanSduSend Request Message .. 6-117

Figure 6-74. LanReceivePost Request Message ... 6-118

Figure 6-75. LanReceivePost Reply Message.. 6-118

Draft Version 1.5d March 7, 1997 1-1

1
Introduction

1.1 I2O System Conceptual Overview

The Intelligent I/O (I2O) Architecture Specification describes an open architecture for developing
device drivers in network system environments. The architecture is independent of the operating
system (OS), processor platform, and system I/O bus. This specification strives to standardize
development so that portions of the driver can be offloaded to an embedded processor on another
hardware platform.

The current trend for high-end networking and storage technology pushes more functionality down
to the low-level driver, while demanding higher performance. To meet these requirements,
hardware vendors are turning to intelligent products that contain their own I/O controller for
processing I/O transactions, such as RAID controllers for storage and ATM controllers for
networking.

1.1.1 Benefits
 Added intelligence at the hardware level provides many benefits. Using special processors to
complete I/O transactions reduces host CPU utilization. It also exports interrupts, which disrupt
application processing, to an environment that more efficiently handles I/O’s real-time
requirements. The goal of the I2O specification goes beyond just adding intelligence, however. It
is an effort to standardize on intelligent platforms for the benefit of all segments of the industry
and provides the following advantages:

1.1.1.1 Reduced Driver Interfaces
Today, each hardware vendor must supply multiple drivers for each piece of hardware. The
number multiplies with the different operating environments and markets. Both the OS and
hardware vendors must test and certify many versions of drivers.

The I2O specification enables the OS vendor to produce a single driver for each class of device and
concentrate on optimizing the OS portion of the driver. Furthermore, the hardware vendor needs
to produce only one version of that driver, which works for any OS that supports I2O. This enables
the hardware vendor to focus on its own technology, optimizing that single driver. It allows early
market penetration where proliferating drivers once restricted time to market or even prevented
entering it at all.

1.1.1.2 Economy of Scale
Besides the system interface for an intelligent I/O device, the I2O specification also defines an
operating environment for the I/O subsystem. This enables the system vendor to create an I/O
platform that can support a number of non-intelligent I/O adapters, providing economy of scale.
Where a single I/O adapter might not justify the additional cost of an I/O processor, combining a

Intelligent I/O Architecture Specification

1-2 Draft Version 1.5d March 7, 1997

number of these adapters under a single I/O platform can produce a cost-effective, intelligent
solution.

1.1.1.3 Stacked Drivers
Stacked drivers enable a third-party software vendor to provide value added expansion,
independent of both the OS and hardware. The I2O specification pioneers peer-to-peer capability.
Peer-to-peer allows data movement between I/O subsystems without affecting the host or taxing its
CPU.

To summarize, the benefits of the intelligent I/O architecture include:

• Reduced expense for intelligent I/O adapter card vendors developing and maintaining products
that support multiple operating systems.

• Reduced time for intelligent I/O adapter card vendors to bring their family of products to
market.

• Accelerated development of technology for I/O solutions, resulting in more innovative
solutions for the end user.

• Increased competition, reducing prices for the end user.
• Decoupled I/O adapter hardware and software development.
• Simplified testing during device driver development, because the split driver model isolates

functionality.
• Freedom to develop new technology instead of maintaining existing device driver software

across systems.
• Enhanced system availability and management, and improved fault isolation and recovery, due

to the physical and logical isolation of the I/O subsystem.
• Improved system performance because I/O-intensive functions of the OS are distributed to an

intelligent I/O subsystem.
• Extensible execution environment, accommodating new I/O technologies and

interconnections.

1.1.2 Features
The benefits of the I2O specification stem from two basic features:

1. its model for splitting device drivers

2. its standard interfaces between the device drivers, I/O platforms, and host OS.

1.1.2.1 Split Device Driver
A device driver interfaces a particular hardware device to a specific operating system. As shown in
Figure 1-1, the top portion of a device driver adapts the operating system calls into I/O
transactions. The bottom portion of the driver contains vendor-specific code, which adapts the
hardware level interface of the I/O adapter to the functions required for that particular class of
device. For example, all network adapters perform the same class-specific functions but have
varying register interfaces.

The I2O specification splits the device driver into two modules: one that contains all the OS-
specific code and the other for hardware-specific code. OS vendors need to produce only one OS-

Introduction

Draft Version 1.5d March 7, 1997 1-3

specific module for each class of I/O device. Likewise, hardware vendors have to produce only a
single version of the hardware device module for an I/O adapter.

The device driver can be split more than once, creating stackable drivers. This enables an
independent software vendor to support system expansion, independent of both the hardware and
the OS.

OM05975

OS/NOS Specific
Code Defined by
OS/NOS Vendor

I/O Class-specific
Code

Hardware-specific
Code Defined by

Hardware
Implementation

Device
Driver

OS or NOS

I/O Adapter(s)

Figure 1-1. Typical I/O Device Driver

1.1.2.2 I2O Interfaces
The typical I2O system consists of a host node and multiple I/O platforms with a variety of I/O
adapters. The specification provides standard interfaces for each piece of the system, as illustrated
in Figure 1-2.

Intelligent I/O Architecture Specification

1-4 Draft Version 1.5d March 7, 1997

OSD2193

OS Class Specific
Driver Module

OS Messenger

Shell Interface

Intelligent I/O
Subsystem

Core Interface

Loadable
Device
Driver
Module

Intelligent I/O
Subsystem

Core Interface

Loadable
Device
Driver
Module

Core Specification

Shell Specification

Figure 1-2. I2O Interfaces

The shell specification defines the interface that an I/O subsystem presents to the host. It specifies
the behavior of both the system and subsystem when initializing and managing intelligent I/O
subsystems. The shell interface provides both OS and I/O subsystem independence.

The core specification defines the interface between a loadable device driver and the I/O platform.
The interface provides an operating environment for device drivers that, like the shell interface, is
independent of both the OS and the I/O platform. This enables any real-time operating system to
host device drivers produced by third-party hardware vendors.

The message-based interfaces enable direct message passing between any two device driver
modules for a particular class of I/O (message class). I 2O specifies message classes for each of the
following:

• LAN ports, such as Ethernet or Token Ring controllers
• random block storage devices, such as hard disk drives and CD-ROM drives
• sequential storage devices and variable block-size devices, such as tape drives
• SCSI ports
• SCSI devices

Candidates for future message classes include the following:

• IDE controllers and devices
• Floppy disk controllers and devices
• Fibre Channel
• WAN ports, such as ATM controllers

Introduction

Draft Version 1.5d March 7, 1997 1-5

1.2 Objectives

The objectives of this specification include the following:

• To specify an architecture that is operating-system-vendor-independent and adapts to existing
operating systems.

• To define an environment that coexists with existing device drivers; legacy device drivers can
be ported to the new environment at the vendor’s discretion.

• To provide an architecture that isolates the intelligent I/O subsystem from the host operating
system. The execution environment created by the architecture enhances system performance
and functionality.

• To create an architecture that allows device drivers to scale across system platforms, from
high-end workstations to high-end servers.

• To enable device drivers to port across target processors; portability refers to the device driver
source code written in ANSI C.

1.3 Scope

Numerous vendors develop intelligent I/O adapters for a variety of platforms and system
interconnections. The I2O Special Interest Group (SIG) supports and encourages vendors to
develop advanced I/O approaches that meet the technological requirements of today’s computing
environments. The Intelligent I/O Architecture Specification neither prevents nor discourages
industry vendors from adding their own value to I/O systems. It focuses on a standard interface,
allowing I/O adapter vendors to develop device drivers more cost-effectively. System integration
and OS vendors will recognize opportunities to add value to products within the environment the
specification defines.

This document specifies an Intelligent I/O platform (shell specification) composed of the
following:

• a register-level interface

• host programming model

• I/O platform behavioral model

• messaging model

• messages specific to each class of I/O service.

This document also specifies an I/O platform internal interface (core specification) between driver
modules and the I/O platform. It enables a system vendor to provide a generic platform that can
host third-party driver modules. The core specification includes an event-driven model and a set
of APIs that provide:

• the operating environment

• a message interface

• a system abstraction

• data transport services.

Intelligent I/O Architecture Specification

1-6 Draft Version 1.5d March 7, 1997

1.4 Document Organization

Table 1-1 describes the other chapters in this specification.

The I2O SIG provides, for your convenience, supplemental information to this specification on our
Web site. Hardware-specific information is related to, but not part of, this document. Where it is
relevant, we will refer you to our Web site at http://www.i2osig.org/

Table 1-1. Chapters in This Document

Chapter Description

2 Overview of the I2O Architecture: Chapter 2 provides a technical overview of the
Intelligent I/O (I2O) Architecture by describing its concepts and structures. The overview
explains the split driver model, which takes advantage of the intelligence provided by a
processor in an intelligent I/O subsystem. This chapter also describes the inter-operation
of the components and interfaces of the architecture.

3 Basic Requirements: Chapter 3 defines the basic requirements for conformance and
common structures used throughout the specification.

4 Shell Specification: Chapter 4 defines the system interface for the intelligent I/O
subsystem, which provides a communication path between the operating system and the
I/O driver modules on the I/O platform. The shell specification describes the interface
between the host processor and I/O platform. It also specifies the platform-to-platform
interface for peer-to-peer operation between I/O platforms.

5 Core Specification: Chapter 5 specifies the operating environment within the I/O
subsystem for device driver modules and the operational interfaces of those modules.

6 Class Definitions: Chapter 6 describes the message definitions for each message class.
It also defines all class-dependent structures.

Appendix A Differences from Previous Version: Appendix A describes the differences from version
1.0 of this specification.

1.5 I2O Include Files

Table 1-2 describes the include files for this specification and their relationship to the appropriate
sections of this document. Include files, available in electronic format, help the driver developer
incorporate changes and upgrades.

Introduction

Draft Version 1.5d March 7, 1997 1-7

Table 1-2. I2O Shell Include Files

File Name Chapter-Section Description

i2oTypes.h n/a I2O data types

i2omsg.h 3.4 Message header definitions

i2oexec.h 4.4 IOP executive definitions

i2ocore.h 5.x DDM structure definitions

i2oirtos.h 5.4 IRTOS API function definitions

i2outil.h 6.1 Utility message definitions

i2omstor.h 6.4 Random block storage class message definitions

i2otstor.h 6.5 Sequential storage class message definitions

i2obscsi.h 6.6 SCSI adapter class and SCSI peripheral class message definitions

i2oadptr.h 6.7 Adapter class message definitions

i2olan.h 6.10 LAN class message definitions

Table 1-3. I2O Core Include Files (for developing a DDM that runs under an IRTOS)

File Name
Chapter-
Section Description

i2o.h n/a Generic IRTOS definitions

i2oPciLib.h n/a PCI definitions

i2oModule.h 5.3.2 Module Parameter Block and Header definitions.

i2oCfgLib.h 5.3.3 Configuration Dialog definitions

i2oBusLib.h 5.4.10 Bus definitions

i2oAdapterLib.h 5.4.11 Adapter definitions

i2oMemSetLib.h 5.4.12 Memory Set definitions

i2oPageLib.h 5.4.12.3 Page Set definitions

i2oIntLib.h 5.4.13 Interrupt definitions

i2oTimerLib.h 5.4.13 Time definitions

i2oDmaLib.h 5.4.15 DMA definitions

i2oThreadLib.h 5.4.16-5.4.17 Thread definitions

i2oSemLib.h 5.4.18 Semaphore definitions

i2oPipeLib.h 5.4.19 Pipe definitions

i2oErrorLib.h 5.4.2.1 Error Handling definitions

i2oObjLib.h 5.4.2.3 Object definitions

i2oEvtQLib.h 5.4.2.4 Event definitions

i2oIopLib.h 5.4.20 IOP Information definitions

i2oDdmLib.h 5.4.3-5.4.6 DDM and Device definitions

i2oFrameLib.h 5.4.8 Frame definitions

Intelligent I/O Architecture Specification

1-8 Draft Version 1.5d March 7, 1997

1.6 Audience

This document is intended for industry members, and the most relevant information for each can
vary, as shown in Table 1-4. All readers should begin with Chapter 2, the system overview, and
Chapter 3, which includes common material for all patrons of the I 2O specification. One must
read the entire specification to thoroughly understand the architecture.

Table 1-4. Reader’s Guide

If you are: You’ll be most interested in:

An independent hardware vendor

- for a non-intelligent card plugged into
an I/O platform

- for a standalone card with its own
processor and integrated controllers

Chapter 2, Technical Overview
Chapter 3, Basic Requirements
Chapter 6, Class Specifications

also read Chapter 5, I2O Core Specification

also read Chapter 4, I2O Shell Interface Specification, and, if the
card supports stackable drivers, read Chapter 5, I2O Core
Specification

A system vendor of an open intelligent
I/O platform

Chapter 2, Technical Overview
Chapter 3, Basic Requirements
Chapter 4, I2O Shell Interface Specification
Chapter 5, I2O Core Specification

An operating system vendor Chapter 2, Technical Overview
Chapter 3, Basic Requirements
Chapter 4, Executive Messages and Structures
Chapter 6, Utility Messages

An independent software vendor
of stackable device driver modules

Chapter 2, Technical Overview
Chapter 3, Common Facilities and Structures
Chapter 5, I2O Core Specification
Chapter 6, Utility Messages and messages for specific I/O classes

This specification assumes that you understand the environment of operating systems and the I/O
architecture of network systems.

1.7 Definition of Terms

This specification uses the following terms:

Table 1-5. Definitions

Term Description

Adapter A set of hardware whose operation accesses one or more I/O devices or ports.
An adapter is controlled by either exactly zero or exactly one hardware driver
module. An adapter can contain more than one port or function of the same or
different class. An adapter is identified by its physical location.

Assigned Adapter An adapter assigned to an IOP. The IOP controls it. The host accesses the
adapter and its devices through the I2O message service.

Introduction

Draft Version 1.5d March 7, 1997 1-9

Table 1-5. Definitions (continued)

Term Description

Application Processor A processing element of a host designed to process diverse application
programs.

Batch The collection of I/O transactions in one operation, such as the LanPacketSend
command of the LAN class. A batch is a concept, not a data structure. When
the IOP reports status on a batch basis, the status applies to all transactions in
the aggregation sent by one or more requests.

Bucket A data structure that can contain multiple data elements such as LAN packets.
The OS driver posts buckets to the IOP driver. A bucket is represented as a
region of memory. The IOP driver writes incoming packets into this region. The
entire bucket is returned to the OS driver at once, regardless of the number of
received packets written into it. It might contain 0 or many packets.

Configuring Setting up the software and hardware, including:

Adapter Hardware Configuration - Assigning physical addresses to adapters
and physical devices. The IOP is such a device.

DDM Configuration - Setting options that control how the DDM utilizes its
resources.

IOP Configuration - Setting options that control how the IOP utilizes its
resources.

IOP Driver Configuration - Matching uncontrolled adapters and devices to
DDMs that can control them, and sending messages assigning the adapter
of device to the selected DDM(s).

System Configuration - Assigning uncontrolled adapters to IOPs that can
control them.

Configuration Dialogue Messages between a module and the system that (1) allow the system to
display a configuration screen, prompt the user for input, and return that input
to the module, and (2) support reading drivers from and writing them to a floppy
disk.

Configuration Service A dialogue for installing or upgrading modules and initializing or modifying
configuration parameters.

Device An I/O object that refers to an I/O facility or service. Adapters are the objects of
hardware configuration, while logical devices are the objects of software
configuration.

Device Driver Module
(DDM)

A module that abstracts the service of an I/O device and registers it as an I 2O
Device. A DDM can be a hardware driver module, an intermediate service
module, or both. This specification refers to both types of modules as DDMs,
except where the distinction between the two is important. A DDM registers I 2O
devices of various classes as appropriate.

Driver Installation Importing a new or upgraded driver to an IOP. This function adds to or replaces
a current driver in the I/O platform’s DDM store.

Driver Load Adding a driver to the IOP operating environment. This function generally
copies a driver into the operating environment and then causes the module to
initialize.

Embedded I/O Platform See I/O Platform.

Embedded I/O Processor
(EP)

The processing element of an I/O platform.

Intelligent I/O Architecture Specification

1-10 Draft Version 1.5d March 7, 1997

Term Description

Embedded Kernel Layer The layer that abstracts OS kernel services for the device driver module (see I2O
Real Time OS).

Event Handler The service routine that processes the events, including messages addressed to
a particular Message Handler.

Execution Environment The environment within an I/O platform in which a device driver module
executes.

External Connection Table
(XCT)

A list of connections between DDMs across IOPs.

Hardware Device Module
(HDM)

A module that understands and controls a physical device or adapter interface.
An HDM is a type of device driver module (DDM). This specification uses the
more general term DDM, except where the distinction between HDMs and
intermediate service modules is important.

Hardware Resource Table
(HRT)

A list of adapters (including sockets or slots that can contain adapters) and their
configuration information, including the identity of the controlling HDM. This
table tells the host of any adapters the IOP controls, and thus that the host
should not touch, as well as adapters the IOP can control.

Hidden Adapter An adapter that is physically invisible to the host. This adapter is always
assigned to an IOP. The host cannot configure this adapter.

Host Node A node composed of one or more application processors and their associated
resources. Host nodes execute a single homogeneous operating system and
are dedicated to processing applications. The host node is responsible for
configuring and initializing the IOP into the system.

Host Operating System

(Host or OS)

The control program executing on the host. This may be the BIOS code, the
host bootstrap code, or the final operating system for application programs.
Also called the host or OS.

I2O Device An instance of an I/O service provided by a DDM.

I2O Real-Time OS (IRTOS) A special-purpose real-time OS designed to support high-speed, low-overhead
I/O operations.

I2O Sub-system One or more IOPs in a single machine controlling any number of adapters and
their devices. All IOPs share the same system environment and are treated as
peers.

I/O Platform (IOP) A platform consisting of a processor, memory, I/O adapters, and I/O devices.
They are managed independent from other processors within the system, solely
for processing I/O transactions. Also called embedded I/O platform or
embedded I/O processing node.

Inbound Queue A message queue of a particular I/O platform that receives messages from any
sender (host or another IOP).

Installation Transferring a software component into IOP permanent store.

Intermediate Service
Module (ISM)

A stacked module that sits between an OS service module and a hardware
device module, providing some specialized function. An ISM is a type of device
driver module (DDM), and this specification uses the more general term DDM,
except where the distinction between ISMs and hardware device modules is
important.

Load Transferring a software module into executable memory.

Introduction

Draft Version 1.5d March 7, 1997 1-11

Term Description

Logical Configuration
Table (LCT)

A list of logical devices whose services are abstracted by the I/O platform
(through a device driver module). The host and other IOPs query this table
about available resources.

Logical Device
(registered I2O device)

An individual function whose service is abstracted by a device driver module.
No direct correlation exists between physical devices and logical devices. That
is, one physical device can provide multiple logical devices (example: a four-port
Ethernet card) or, multiple physical devices can provide a single logical device
(such as RAID). An intermediate service module can combine multiple logical
devices into another logical device, such as a RAID (block storage) ISM.
Alternately, the module can divide a physical or logical device into multiple
logical devices, such as a Fibre Channel port with LAN and SCSI emulation.

Message Handler The service routine that processes received messages addressed to a particular
I2O device.

Messaging Layer The messaging layer provides the communication and queuing model between
service modules. The messages passed are in an OS-neutral format.

MessengerInstance The messaging layer running on a particular platform, initializing, configuring,
and operating its client modules. Each processor or SMP group has a single
MessengerInstance. Each IOP has a MessengerInstance.

Module Parameter Block A structure that contains the configuration information for a module and the
devices it controls. The size and structure of the data is defined by the device
driver module. The parameter block is saved by the I/O platform. The module
parameter block is supplied to the device driver module when it is initialized.

Module Header Each DDM contains a module header providing generic information that
identifies the driver’s abilities. Using the header, the IOP determines which
DDMs to load and which adapters and devices it assigns to the DDM.

OS Service Module (OSM) A driver module that interfaces the host OS to the I2O message layer. In the
split driver model, the OSM represents the portion of the driver that interfaces to
host-specific APIs, translating them to a neutral message-based format that
goes to a hardware driver module for processing.

Outbound Queue A message queue for a specific I/O platform for posting messages to the local
host, in lieu of the host’s Inbound Queue.

Peer Operation Sending messages between modules on different IOPs.

Peer-to-Peer Operation Transporting data and control structures between modules on different IOPs.

Physical Device A set of hardware that operates independent of any other physical device. A
physical device is controlled by either exactly zero or exactly one hardware
driver module.

Physical Location A set of attributes that uniquely identify an adapter or a physical device, such as
the bus or slot number, I/O or memory address, or the programmed device
number used to control the device.

reserved When a field is reserved, its value is set to zero when created, and ignored on
reception.

System Configuration
Table (SysTab)

A table built by the host that informs the I/O platform of the existence and
addresses of other IOPs.

Target ID (TID) Logical address of a service registered with the message layer. The target ID is
the address the message layer uses to deliver requests to a service module.

TBD To be determined.

Intelligent I/O Architecture Specification

1-12 Draft Version 1.5d March 7, 1997

Term Description

Transport Layer The abstraction of DMA and access to adapters.

Unassigned Adapter An adapter not assigned to or controlled by an IOP.

Visible Adapter An adapter the host can see, independent of whether the adapter is assigned
to an IOP. The host performs the bus configuration of these adapters.

1.8 Conventions

This document uses the following text, numeric, and interface conventions .

1.8.1 Text Conventions

Table 1-6. Text Conventions

Text Description Examples

italics variable, mnemonic, equated value, or first reference to
an I2O term

n, STATUS_OK, TRUE, Logical
Configuration Table

ALL_CAPS mnemonic, equated value STATUS_OK, TRUE, FALSE,

Helvetica I2O field name or structure name LCT, TargetAddress

Bold Italics I2O message names ExecIopReset
Bold w/() IRTOS API functions i2oDdmCreate()

1.8.2 Numeric Conventions
Numbers in this document are represented in three formats: binary, decimal, and hexadecimal, as
illustrated in Table 1-7.

Table 1-7. Numeric Conventions

Type Examples Description

Binary 0110b Numeric expression always ends with the suffix b. Valid digit values are
0, 1, and x. The symbol x indicates a do not care.

Decimal 21
64K
10,562

No suffix except for multipliers (K=1024; M=1,048,576;
G=1,073,741,824). Valid digit values are 0 through 9. For readability, a
comma (,) every third digit from the right separates long numbers.

Hexadecimal 0C40h
00-C3-5Fh
0C00-0000h

Numeric expression ends with the suffix h. Valid values for a digit are 0
through 9, A through F, and x. The symbol x indicates a do not care. For
readability, a dash (-) every second or fourth digit from the right separates
long numbers.

1.8.3 Message Naming Conventions
{class}{noun}{verb}

where:

class is the abbreviation of the message class

Introduction

Draft Version 1.5d March 7, 1997 1-13

noun is the abbreviation or name of the object

verb is the service to be performed on that object

Example:

DdmAdapterAttach

Ddm identifies a DDM class message

Adapter identifies the object of the operation

Attach describes the operation on the adapter

1.8.4 Interface Conventions
result = i2o{noun}{verb}(Parameters)

where:

noun is the abbreviation for the name of the object

verb is the function to perform on that object

Example:

void = i2oFrameSend (pFrame, &status)

Frame identifies an operation on the message frame

Send describes the operation on the message frame

1.9 Related Documents

This specification refers to the following documents by their codes:

[PCI] PCI Local Bus Specification, Revision 2.1, June 1, 1995, PCI Special Interest
Group.

[SCSI-2] SCSI-2 ANSI X3.131-1994, ISO/IEC 9316-1:1994.

[SCSI-3] SCSI-3 Primary Command Standards (SPC) X3T10/0995D.

Intelligent I/O Architecture Specification

1-14 Draft Version 1.5d March 7, 1997

1.10 Acknowledgments

This specification represents the collaboration of The I 2O Special Interest Group, which includes
representatives from the following companies:

Steering Committee:

• 3Com Corporation

• Compaq Computer Corporation

• Hewlett-Packard Company

• Intel Corporation

• Microsoft Corporation

• NetFRAME Systems Inc.

• Novell, Inc.

• Symbios Logic Inc.

Member Companies:

• Acer America Corporation
• Adaptec
• Advanced Risc Machines Ltd (ARM Ltd.)
• Advanced Telecommunications Modules,

Ltd.
• AMCC
• Amdahl, C.G.
• American Megatrends, Inc.
• Annabooks
• Applied Microsystems Corporation
• Asante Technologies, Inc.
• AST Research, Inc.
• Auspex Systems, Inc.
• Award Software International, Inc.
• BMC Software
• Bytestream Data Systems
• Cabletron Systems, Inc.
• California Polytechnic State University
• Cheyenne Software
• Cyclone Microsystems, Inc.
• Data General Corporation
• Dell Computer Corporation
• Digital Equipment Corporation
• Distributed Processing Technology

• Octopus/Qualix Technologies
• Olicom A/S
• Olivetti Advanced Technology Center, Inc.
• Phoenix Technologies, Ltd.
• PKWARE Inc.
• PLX Technology, Inc.
• QLogic Corp.
• RAMix Inc.
• Raptor Systems, Inc.
• SAIC Ideas Group
• Samsung Electronics Co., Ltd.
• Seagate Software
• Serano Systems Corp.
• Siemens Nixdorf
• Simpact, Inc.
• SMC
• Soliton Systems, KK
• Storage Dimensions, Inc.
• Storage Technology Corporation
• Super Micro Computer, Inc.
• Syred Data Systems
• SysKonnect
• Tandem Computers Incorporated
• Target Technologies, Inc.

Introduction

Draft Version 1.5d March 7, 1997 1-xv

• Dolphin Interconnect Solutions, Inc.
• Emulex Corporation
• Force Computers, Inc.
• Fujitsu, Ltd.
• Galileo Technology Incorporated
• Harris & Jeffries, Inc.
• ICP vortex Computersysteme GmbH

Adaptec, Inc.
• Industrial Technology Research Institute,

CCL
• Initio Corporation
• Integrated Systems, Inc.
• Intergraph Corporation
• Interphase Corporation
• Madge Networks, Ltd.
• Matrox Electronic Systems Ltd.

• Teknor Industrial Computers, Inc.
• Tekram Technology Co., Ltd.
• Telematics International
• Texas Microsystems Inc.
• The Santa Cruz Operation, Inc.
• Tiva Microcomputer Corp.(TMC)
• Topmax Corporation
• Tricord Systems, Inc,
• Tundra Semiconductor Corporation
• Tyan Computer Corp.
• Unisys Corporation
• V3 Semiconductor
• Veritas Software
• Western Digital Corporation
• Wind River Systems
• Xpoint Technologies, Inc.
• Znyx Corporation

Draft Version 1.5d March 7, 1997 2-1

2
Technical Overview

This chapter presents a technical overview of the I2O system. It assumes that you have read the
conceptual overview in Chapter 1.

2.1 I2O System Technical Overview

The intelligent I/O architecture defines an environment for creating device drivers that are
functionally divided between the host operating system and an intelligent I/O subsystem. The
communication model described in this specification is a message-passing protocol analogous to a
connection-oriented networking layer. The transport layer provides a hardware abstraction of the
I/O infrastructure to the architecture, leaving the message layer independent of the system
hardware.

This technical overview describes the device driver and explains how it is split to achieve platform
independence. It then describes the messaging layer that enables splitting the driver across
platforms. From the device driver viewpoint, two new interfaces are introduced:

1. the interface produced by splitting the driver

2. the interface to the messaging layer that provides the communication service between the
split components

2.1.1 Hardware Architecture
The I2O operation is optimized for a single host and an intelligent I/O subsystem containing a
number of I/O processors. A host is one or more application processors and their resources,
executing a single homogeneous operating system. Figure 2-1 shows a typical hardware
architecture, with a host entity and multiple embedded I/O processor entities. In this document, an
I/O processor entity is called an I/O platform (IOP), and is dedicated to processing I/O
transactions. It consists of a processor, memory, and I/O devices.

The I2O specification supports many variations, but the following are the two most common
implementations:

1. the I/O processor on the motherboard designed to control both I/O adapters on the system
bus and embedded I/O devices (including I/O adapters on its own expansion bus).

2. the I/O processor on a feature card (such as a LAN controller) designed to control its own
private functions.

A system I/O adapter is visible from the system bus and thus might be controlled by any IOP or
the host. The adapter can be built into the motherboard, or it can be an add-in feature card.
Classically, system I/O adapters are usually controlled by a driver executing entirely on the host,
so special provisions are required for an IOP to control a system I/O adapter. That is, not all
system I/O adapters can be controlled by an IOP. An example is that the interrupt signal from the
adapter must be routed to the IOP instead of the host.

Intelligent I/O Architecture Specification

2-2 Draft Version 1.5d March 7, 1997

A private I/O adapter is bundled with an I/O processor’s local system (such as I/O Platform 2 in
Figure 2-1) and its driver must execute on that processor. Because the host cannot directly access
the adapter, it is said to be hidden. The I/O platform and its private adapters can be on a typical
add-in feature card, or the I/O platform can have one or more expansion buses of its own, thus
accommodating additional feature cards.

System Memory/IO/Interrupt Bus Structure

System
Bridge

Local Memory/IOBus

AP APAP AP

System
Bridge

Local Memory/IOBus

EP

System
Bridge

Local Memory/IOBus

EP

Host Computer
Entity

Embedded IO
Platform 1

System
IO Adapters

Private
IO Adapters

AP= Application Processor
EP= Embedded IO Processor

Embedded IO
Platform 2

System
Memory

Memory Memory

Figure 2-1. Intelligent I/O Hardware Architecture

2.1.2 Split Driver Model
Splitting the device driver in the class-specific region and defining a standard message-passing
interface between the two resulting modules means that they can be physically separate. The
modules can execute on different processors and even in different operating environments. This
split driver model is illustrated in Figure 2-2.

Overview

Draft Version 1.5d March 7, 1997 2-3

OSD2106

Messaging Layer

Host

OS/NOS

OS Specific
Module
(OSM)

Hardware
Device
Module
(HDM)

=

OSM

I/O Platform

HDM

Hardware
Device(s)

Figure 2-2. I2O Split Driver Model

Splitting the driver as shown in the figure produces two modules:

1. OS-specific module (OSM). The upper module provides the interface to the operating system.
Typically, the OS vendor supplies this module, which contains no hardware-specific code.

2. Hardware device module (HDM). The lower module provides the interface to the I/O adapter
and its devices. The hardware vendor supplies this module, which contains no OS-specific
code.

Besides these two basic module types, this document uses two other terms for modules:

1. Intermediate service module (ISM). Splitting the device driver more than once, or adding
functionality between the OSM and HDM creates stackable drivers. This puts one or more of
these intermediate modules between the OSM and HDM. An independent software vendor can
supply ISMs.

2. Device driver module (DDM). HDMs and ISMs are often referred to collectively as device
driver modules or DDMs, because, in many aspects, their behavior is identical. This is
especially true from the viewpoint of the host OS. This specification uses the general term
DDM, unless it needs to distinguish between HDMs and ISMs.

For any class of I/O operation, only one version of an OSM is necessary for multiple DDMs of that
same I/O class. The OSM need not be preconfigured for a specific vendor’s DDM. An OSM can
locate and connect with each DDM using the facilities of the messaging layer.

2.1.3 Messaging Layer Architecture
Splitting the driver requires message definitions of the new interface between those modules. The
I2O communication layer is the messaging layer, which delivers I/O transaction messages from one
software module to another, anywhere in the I2O domain. The layer provides:

Intelligent I/O Architecture Specification

2-4 Draft Version 1.5d March 7, 1997

• message delivery between modules
• configuration registry
• abstraction from the physical platform

The messaging layer is a network of MessengerInstances, as illustrated in Figure 2-3. A
MessengerInstance is a collection of services that support initializing, configuring, and operating
its client modules. Each MessengerInstance is the messaging layer running on a single platform;
there is one instance per processor or Symmetric MultiProcessor group.

I/O Driver
Module

I/O Driver
Module

I/O Driver
Module

OSD2108

Messengerinstance

I O Resource
Manager

2

I/O Driver
Module

I/O Driver
Module

I/O Driver
Module

Messengerinstance

I O Resource
Manager

2

Underlying System Topology

Messaging Layer

Figure 2-3. Communication Service Model

The messaging layer provides the communication service for one module to send messages to
another. This postal manager is referred to as the messenger. The messaging layer only transports
the messages, and provides no I/O functionality. As illustrated by the split driver communication
model in Figure 2-2, the HDM (as the lower layer of the driver stack) provides service to the OSM
(the upper layer of the driver stack). The messenger is not concerned with this hierarchical
connection between modules, however. From the messenger’s point of view, the messaging layer
provides the same service for the HDM, ISM, and OSM, so these modules are considered peers.
As far as the message service is concerned, the messenger is the service provider, and the HDM,
ISM, and OSM, also referred to as service modules, are the service users. Figure 2-4 illustrates the
overall communication architecture correlating to the hardware architecture in Figure 2-1.

Overview

Draft Version 1.5d March 7, 1997 2-5

OSD2109

I
S
M

Messenger

I
S
M

H
D
M

H
D
M

Resource
Manager

Transport

I
S
M

Messenger

H
D
M

H
D
M

H
D
M

Resource
Manager

I/O Node 2

O
S
M

Messenger

O
S
M

O
S
M

O
S
M

Resource
Manager

Host Node 1

I/O Node 1

Operating
System

OSM
ISM
HDM

=
=
=

Operating System Service Module
Intermediate Service Module
Hardware Device Module

Figure 2-4. Communication Architecture

The messaging layer provides the configuration registry that enables modules to locate and
configure with other modules. Resource management is distributed among the messengers. An
executive resource manager in the host messaging layer oversees peer-to-peer connections between
IOPs.

For DDMs, the messaging layer provides the abstraction and adaptation between the DDM and all
of the system’s environment (RTOS, host OS, bus structure, and so forth). The only interface
between modules is through the messaging layer. The interface is a set of service APIs that
provide all the services for the module:

• transport services for accessing system memory, moving large blocks of data between
modules, and accessing I/O adapters;

• message services for locating and communicating with other modules;
• RTOS services for the execution environment, including memory allocation, task management,

and so forth.

Intelligent I/O Architecture Specification

2-6 Draft Version 1.5d March 7, 1997

Figure 2-5 shows a more detailed model of the MessengerInstance.

OSD2110

Transport
Services

OS
Services

Message
Services

Transport Layer

Service Layer

Service Modules

System Bus

Service
Module
API

Messengerinstance

Figure 2-5. Message Service Model

2.1.3.1 MessengerInstance Architecture
This document describes an open architecture for developing a communication platform, the
MessengerInstance. The architecture is independent of the operating system, processor platform,
and system I/O bus. This version of the specification defines a transport interface between
MessengerInstances for a shared memory environment, but does not preclude defining other
transport environments in future revisions.

The transport sublayer abstracts the system bus and thus provides the interface to the service
modules for accessing system resources. This mechanism transfers data between a module and its
I/O devices or system memory, and between modules. It also provides access to control registers
of devices residing on the system and expansion buses.

The messaging layer operation is independent of the module’s class of operation and the operating
environment of other platforms. A system includes:

• a host MessengerInstance
• a number of MessengerInstances abstracting I/O channels. These are called IOP

MessengerInstances, because each is the messaging layer on an IOP.

When this document uses the term MessengerInstance without clarification, it implies both host
and IOP MessengerInstances.

From a system perspective, the host is the primary user of the I/O services, and the modules on the
IOPs are the service providers. This specification also allows peer-to-peer operation between
modules on different IOPs.

2.1.3.2 Message System Interfaces
The physical and logical interfaces presented in the I2O environment are illustrated in Figure 2-6.
This document specifies the I2O core interface between an IOP and a loadable DDM, and the shell
interface between either two IOPs, or the host and an IOP. It also includes message-based

Overview

Draft Version 1.5d March 7, 1997 2-7

interfaces between an OSM and a DDM, or between two DDMs. The specification also includes
the configuration interface, where the IOP interacts with the system, and ultimately, the user,
during configuration and driver installation.

OSD2111

Loadable I/O
Driver Module

(OSM, ISM, HDM)

Message
Service

Transport
Service

Configuration
Service

OS Services

Messenger
Instance

Message Based Interface

Shell Interface

Message
Service

Transport
Service

Configuration
Service

OS Services

Messenger
Instance

Configuration Interface

I O Core Interface2

Integrated I/O
Driver Module

(OSM, ISM,
HDM)

System Resource Manager

Figure 2-6. I2O Interface Topology

2.1.3.2.1 Core Interface (Between IOP and DDM)

The interface between an I/O module (HDM or ISM) and the IOP MessengerInstance is the I 2O
core interface. This service interface is an operating platform for DDMs, including:

• an API, consisting of function calls
• a message-based interface where the I/O driver and the MessengerInstance exchange messages

to configure and manage the modules

This mechanism configures and initializes the DDMs, registers the I/O devices it controls, and
establishes a path to other modules for exchanging messages.

The core specification in Chapter 5 is particularly relevant to vendors writing device driver
modules for non-intelligent adapters that load onto a generic I/O platform. It provides for a
standard interface between the DDMs and the IOP. In this case, the MessengerInstance is
incorporated in an I2O real time operating system named IRTOS. The specification details how the
I/O platform provides the operating environment for its loadable device driver modules:
abstracting the system and I/O buses and the underlying operating system, and configuration and
registration management. This involves a collection of services, each of which represents an
abstraction of a component common to all drivers:

Intelligent I/O Architecture Specification

2-8 Draft Version 1.5d March 7, 1997

• Configuration services: The interface with the resource manager
 loading DDMs
 software initialization
 hardware configuration
 registering I2O devices

• OS services: The interface with the embedded kernel
 task scheduling
 memory allocation
 interrupt service
 timer service

• Message services: The interface with other modules
 connection
 message delivery

• Transport services: The abstract system bus, for moving control information and data across
bus topologies through a set of interfaces
 adapter access: an abstraction of the system memory and I/O bus.
 system memory access: a translation of memory references between system and direct

references.
 data transfer: an abstraction of DMA capabilities.

See Chapter 5, I2O Core Specification.

2.1.3.2.2 Message-based Interfaces Between Service Modules

When OSMs and DDMs exchange messages, they use a message-based interface.

Each I2O class has its own message-based interface designated by one of the message class
specifications. Each class includes messages and a protocol for replying to them. A set of utility
messages is common to all message classes. The messages specific to a particular message class
are called base class messages. For value-added functionality, this specification also supports
messages that extend the base class. These messages are considered private. They are defined by
individual organizations and are not included in the I2O specification. The defining organization
can keep the private extensions strictly internal, or it can choose to publish part or all of them. As
part of the I2O specification, each module identifies the extensions it supports.

Each class specification is completely independent of the operation of the messaging layer,
because the messenger is involved only in delivering messages. A MessengerInstance does not
require any knowledge of class specifications.

See Chapter 6, Class Specifications.

2.1.3.2.3 Shell Interface

Message delivery between platforms requires the I2O shell interface between those platforms. This
system interface contains:

• a register-level hardware interface for sending and receiving messages

• executive message definitions, and a protocol for exchanging those messages.

Overview

Draft Version 1.5d March 7, 1997 2-9

The physical portion of the shell interface specifies a single queuing model for shared memory
architectures. This queuing technique for transferring messages uses:

• One inbound queue for each IOP. The inbound queue of a platform receives messages from
all other platforms, including the host.

• One outbound queue for each IOP. The outbound queue of all IOPs collectively functions as
the input queue for the host. This allows each I/O platform to provide hardware support for
efficiently passing messages without requiring additional host hardware.

The queuing model is transparent to the operation of the DDMs.

The logical portion of the shell interface is the protocol between MessengerInstances for
establishing, maintaining, and releasing message paths. Each MessengerInstance communicates
by placing messages in the target’s inbound message queue. Thus, the operation of a
MessengerInstance is independent of the operating environment of other platforms.

Message protocol is based on a loosely-coupled request-reply pairing. Each I/O class defines its
own behavior. The reply behavior is specified by message. The reply can be synchronous or
asynchronous with the request, delayed or deferred, and each request can have less or more than
one reply.

See Chapter 4, I2O Shell Interface Specification and Chapter 6, Class Specifications.

2.1.3.3 System Execution Environment
The OSM executes in a specific host OS environment. The message-based interfaces, discussed in
section 2.1.3.2.2, provide direct communication between an OSM and a DDM. The other
interfaces, such as that between the OSM and the host MessengerInstance, are host-specific and
not part of this specification. The OS provides a single MessengerInstance for initializing the
system and providing the message service between its OSMs and any IOPs. In addition, the host’s
resource manager provides executive control over system resources and establishing connections
between IOPs.

The execution environment for the IOP has additional facilities for loading, initializing, and
managing DDMs. In general, these extended services are provided by a real-time OS or embedded
kernel, abstracted through the API interface specified in Chapter 5, I2O Core Specification. The
system execution environment is depicted in Figure 2-7.

Intelligent I/O Architecture Specification

2-10 Draft Version 1.5d March 7, 1997

R
E
S
O
U
R
C
E

M
a
n
a
g
e
r

C
O
N
F
I
G
U
R
A
T
I
O
N

M
a
n
a
g
e
m
e
n
t

OSD2112

Object
Repository

Application

Host Operating System

OS Server
Module (OSM)

Message
Services

Transport
Services

Host Driver Interface

Underlying Hardware Bus Topology

Notification Data

E
M
B
E
D
D
E
D

K
E
R
N
A
L

S
e
v
i
c
e
s

Message Services

Transport Services

Hardware
Device Module

(HDM)

Real-time
Operating
System

Figure 2-7. I2O Execution Environment

2.1.3.4 System Resource Manager
The host manages system resources. This interface is defined by the executive message class,
specified in Chapter 4. The resource manager initializes each IOP and provides it with the
information about other IOPs. An I2O system descriptor table lists the location of each IOP’s
inbound message queue. The system resource manager notifies all IOPs when it detects a change
in the system configuration.

The system resource manager also provides the configuration dialogue, information the IOP or
DDM displays on the system console and that prompts the user for input. The host dispatches the
configuration dialogue at its own discretion.

Overview

Draft Version 1.5d March 7, 1997 2-11

2.1.4 Configuring and Initializing
The various operating systems and industry standards offer many configuration facilities. The I 2O
configuration facilities do not compete with those systems, but rather provide a standard service
interface for controlling the configuration of I 2O components. The configuration model simplifies
resource management within the I2O environment by providing a sort of mezzanine approach. The
configuration behaves as a distributed repository of information on available resources, rather than
representing a hardware topology of where resources physically reside. The MessengerInstance
tracks available resources, their location and attributes, the relationship between modules and
physical devices, and so forth.

2.1.4.1 Initialization of the I2O System
The host must initialize the I2O system. Each IOP is responsible for its own initialization and
prepares its inbound message queue for messages from the host. The host locates each IOP, adds it
to the system configuration table, and initializes the IOP’s outbound message queue. The host then
provides each IOP with a list of all IOPs and the physical location of their inbound message queue.
When an IOP wants to connect to another IOP, it sends the request to the respective IOP’s inbound
message queue. The connection request and its reply convey information enabling the two IOPs to
establish a direct path for exchanging messages.

2.1.4.2 Configuration of I/O Device Drivers
Each IOP is responsible for configuring its own I/O device drivers.

2.1.4.2.1 Loading DDMs

An IOP must provide methods for storing and loading its own operating environment and DDMs.
The IOP also provides storage for module parameter tables used to initialize its devices.

The IOP’s executive service also supports downloading additional drivers from the host.

2.1.4.2.2 Configuration Services

The IOP must keep its configuration persistent from boot to boot. As part of the DDM
configuration, the IOP identifies adapters assigned to each DDM. The DDM initializes those
adapters. As the DDM brings an adapter on-line, it registers the service that the adapter provides,
creating one or more I/O devices. Each I/O device is assigned a message handle or target
identifier (TID), which is the logical address of the service. To use that service, an OSM must
send requests addressed to that TID. The device is listed in the IOP’s logical configuration table.
An OSM queries this table to learn which TID controls the particular resource/device it wants to
use. No restrictions are placed on the location of the adapters or devices that a module controls.

The configuration service also provides extended API calls for dynamically configuring and
replacing adapters, media, and I/O driver modules (see the configuration management messages in
Chapter 4.) This version of the specification does not accommodate dynamic upgrading from one
version of a DDM to another, but it does prevent installing or updating a driver that corrupts
operation.

Any time a new or replacement driver is installed on an I/O platform, it is tagged experimental.
The old driver is tagged obsolete and retained until the operation of the new driver is confirmed.

Intelligent I/O Architecture Specification

2-12 Draft Version 1.5d March 7, 1997

The next time the IOP is booted, it loads the experimental version of the driver, changes the
experimental status to suspect, and waits for the host to send a configuration validation message.
If the IOP does not receive a confirmation within a reasonable period, it may invoke a
configuration dialogue asking the user to accept, reject, or defer the suspect driver. If the user
accepts the new (suspect) version, the old (obsolete) version is removed from the IOP’s store and
the suspect status of the new driver is cleared. If the user rejects the suspect version, it is removed
from the IOP’s store, and the obsolete tag on the original version is cleared. If the IOP boots a
second time and the user neither accepts nor rejects the suspect module, their inaction constitutes
an implicit rejection. The suspect version is removed and the old version reinstated.

The initialization mechanism provides the basic primitives for binding IOPs to the host. Another
mechanism is used for loading DDMs. Neither mechanism enforces ordering; this allows the
initialization sequence to blend with that of the primary host OS.

The I2O environment does not require that the boot device be I2O compliant. Boot time I/O support
can occur through a BIOS or IPL component that understands the basic underlying hardware
architecture.

The system can bootstrap using one of two models. First, any legacy boot model in use today
works with I2O. The second model is based on providing an I2O service layer that allows I2O-
enabled systems to boot, using either I2O block storage devices or I2O remote boot devices. The
class definition for remote boot devices is not defined at this time.

2.1.5 I2O Environment

An I2O system contains one or more I2O segments bound by
an I2O bridging or a routing agent, as illustrated in Figure
2-8. Operation of bridging and routing agents is transparent
to the operation of the DDMs, OSMs, and IOPs. Bridging
provides I2O communication between coupled platforms,
that is, platforms sharing the same contiguous system bus
architecture and coherent memory. Routing provides
communication between discontiguous platforms.
Bridging primarily involves connection setup and allows an
IOP to send messages directly to an IOP in another
segment. Routing usually involves store and forward techniques translating between the address
domains. The definition of the bridging and routing agents is outside the scope of this version of
the specification. This document specifies operation solely within an I2O segment.

2.1.5.1 Shared Memory Model
Each I2O segment contains a host and one or more IOPs. The host configures and initializes the
components within the segment. On each host resides a system resource manager. Figure 2-9
shows how access is shared among the components in an intelligent I/O segment.

OSD2119

I O Bridge or Routing Agent2

I O
Segment

2 I O
Segment

2 I O
Segment

2

Figure 2-8. I2O System Topology

Overview

Draft Version 1.5d March 7, 1997 2-13

IOP
memory

IOP
memory

Host Platform

Physical
System
Memory

IO Device F

IO Device E

IO Platform 1 IO Platform 2

IO
Adapter

B

IO
Adapter

A

CPU
CPU

CPU
CPU

System Bus

CPU

Address
Translation

Unit

IO
P

 L
oc

al
 E

xp
an

si
on

 B
us

IO
Adapter

C

IO
Adapter

D

CPU

Address
Translation

Unit

IO
P

 L
oc

al
 E

xp
an

si
on

 B
us

IO
Adapter

G

IO
Adapter

H

A
da

pt
er

 B
us

A
da

pt
er

 B
us

IO Device J

IO Device I

Figure 2-9. I2O Segment Example

2.1.5.2 I/O Device Domains
Figure 2-10 illustrates the domains created by the example in Figure 2-9. I/O adapters A and B are
directly controlled by the host OS, while I/O adapters G and H are on the system bus and
controlled by I/O Platform 2. These four adapters are directly addressable from the system bus.
I/O adapters C and D, on the other hand, are directly accessed through IOP 1’s local bus and are
thus private to IOP 1. I/O adapters D and G contain devices accessible through their own bus (for
example, a SCSI adapter with SCSI devices).

I/O adapters A and B are controlled by the host OS and do not show up in the I2O configuration
table. All other adapters are controlled by an IOP and appear as an abstracted service (i.e., an I2O
device), as illustrated in Figure 2-10. A device appearing behind an IOP always appears abstracted.
The best example of this is the SCSI controller. The HDM for a SCSI controller detects and

Intelligent I/O Architecture Specification

2-14 Draft Version 1.5d March 7, 1997

registers devices on the SCSI bus. Those devices are accessible only through messages sent to the
SCSI HDM.

System
Memory

A
d
a
p
t
e
r

A

A
d
a
p
t
e
r

B

O
S
M

O
S
M

O
S
M

O
S
M

Host
Platform

Host Platform

IO Platform 1 IO Platform 2

System Bus

IOP IOP

D
e
v
i
c
e

G

D
e
v
i
c
e

H

D
e
v
i
c
e

C

D
e
v
i
c
e

D

D
e
v
i
c
e

E

D
e
v
i
c
e

F

D
e
v
i
c
e

I

D
e
v
i
c
e

J

Figure 2-10. Abstracted View

2.1.5.3 Accessing Adapters
Even though the outcome is a set of abstracted services (shown in Figure 2-10), Figure 2-9
illustrates adapters accessed directly within the IOP’s domain (like adapters C and D) and others
on the system bus (like adapters G and H). In addition, an IOP can contain secondary I/O buses
where adapters can reside. The IOP must enable a device driver to access the adapter by providing
a transport layer that abstracts system and expansion bus access.

The IOP provides a generic interface for DDMs by abstracting all its transport capability. That is,
all transport services for accessing an adapter are generic API functions, independent of the
physical topology. This interface supports I/O transactions, memory transactions, and
configuration access.

2.1.5.4 Address Domains
The system is typically composed of the host and a number of IOPs bound together by the system
memory-I/O infrastructure. Each IOP contains and manages its own local memory-I/O system,
independent of the others.

Overview

Draft Version 1.5d March 7, 1997 2-15

The host and an IOP view memory differently: The host sees system memory and memory of
memory-mapped adapters as a single address domain. On the other hand, an IOP’s address
domain is its own local bus and does not access system memory directly. An IOP must have some
local memory mapped into the system domain so that the host (or any other bus master adapter)
can directly access that memory via the system bus. This is called physically shared memory.

The memory available to each IOP falls into one of three categories, depending on how the
memory can be accessed:

1. System memory. This memory can be accessed only via the system bus, and thus a memory
location can be specified only by a system memory address reference. The IOP utilizes a
DMA mechanism to move data between system memory and its local memory.

2. IOP private memory. This memory can be accessed only via the IOP’s local bus, and thus a
memory location can be specified only by a local memory address reference.

3. Shared memory. This portion of an IOP’s local memory can be accessed via either the system
bus or the IOP’s local bus, and thus a memory location can be specified by both a system
memory address and a local memory address.

Shared memory relative to one IOP is only system memory relative to another IOP, and thus both
shared and system memory are accessible to other IOPs. This is not true for private memory,
which is available only to the local IOP. Since modules operate in the IOP’s local address space,
each IOP must be able to translate the address of a shared memory location from a local reference
to a system reference, and vice versa.

2.1.5.5 Address Translation Unit
Shared memory is a portion of the IOP’s local memory that the rest of the system accesses by an
address translation unit (ATU). The ATU maps a portion of the IOP’s local memory into the
system memory domain; a system memory access to that area translates to a corresponding access
cycle to the IOP’s local memory (see Figure 2-11). This translation allows each IOP its own
address space, independent of the system address space, but still lets the host and other IOPs
access some of the IOP’s local memory. The portion of the IOP’s local memory that can be
accessed through the system bus is the IOP’s shared memory. The ATU maps the IOP’s shared
memory into the system address space so that the system views it as part of system memory.

Intelligent I/O Architecture Specification

2-16 Draft Version 1.5d March 7, 1997

IOP
Memory

OSD2122

System
Memory

Map

Address
Bridge

Memory
Residing
on IOP

System
Memory

Transactions
to this Range
Access IOP

Memory
Shared
Memory

Figure 2-11. Memory Address Translation

The ATU does not map system memory onto the IOP’s local bus, because system resources may
overwhelm the IOP’s memory space. The IOP must supply a transport (DMA) function to move
data from its local memory (or local devices) to system memory, and vice versa.

From the system’s point of view, shared memory is the portion of an IOP’s physical memory that
the system can access directly. From the IOP’s, HDM’s, and ISM’s point of view, shared memory
is the portion of the local memory that can be accessed by system components outside the IOP.

The address bridge is called an address translation unit because the physical address on the system
bus must be translated to the physical address on the IOP’s local bus. A direct relationship exists,
however, between the system and corresponding local bus addresses. For each IOP, the difference
between the system and local bus addresses is a constant for all shared memory. This constant is
the base difference between the IOP’s local address and the system address (modulo 2**32).
Thus, adding the base difference to the local address of a shared memory location yields its system
address. Likewise, subtracting the base difference address from a system address yields the local
address. This relationship is valid only for the shared memory on the local IOP.

2.1.5.6 Address Translation
The IOP and DDMs must use the system address, rather than the local address, to refer to a shared
memory location when communicating with the host or another IOP. This requires that a module
have a translation mechanism that converts a local memory address reference to a system address
reference, so it can import and export data from its local memory.

2.1.5.7 Data Shipping
Figure 2-12 shows two methods for delivering data between modules on different IOPs: pushing
and pulling.

Overview

Draft Version 1.5d March 7, 1997 2-17

• Module A uses pushing to move data in its private local memory to a buffer in module B’s
shared memory, which is mapped into the system address space. Because this memory is part
of module B’s local memory, module B now has direct access to the data.

• Module B uses pulling to move data from a buffer in module A’s shared memory region,
which is mapped into system address space, to its local memory.

OSD2123

Node A copies
data to Node B's
Shared Memory

PUSH

Node B copies
data from Node A's

Shared Memory

PULL

Node A
Memory

Node B
Memory

System
Memory

Node B Memory
mapped into
system

Node A Memory
mapped into

system

Figure 2-12. Mechanisms for Transferring Data

In general, pushing memory is more efficient, and preferable to pulling. The message
transportation relies on pushing for delivering messages. The IOP allocates message frames in its
own shared memory. The host and other IOPs copy messages (push) from their domain into those
message frames. For the outbound queue, the host allocates message frames in system memory,
and the IOP copies data from its local memory to the system buffer (push). Neither has to read
data across the bus.

2.1.5.8 DDM Environment
The DDM’s view of the I2O system is simple. A set of direct services is available to the DDM
through the I2O core service interface. This interface provides the messaging, transport, OS, and
configuration services. Additionally, the DDM creates virtual interfaces with other modules
through the message-passing protocol. The message service interface enables transporting
messages between modules and platforms.

A DDM executes in the IOP’s local address domain, but memory references from an OSM refer to
system memory, not local memory. When the data is in main system memory, the data pointers
(scatter-gather list) in the message frame always use the system address reference. For the DDM
to operate on the data, it must translate the system address to a local address by subtracting the
base difference from the system address, as explained earlier. In many cases, the DDM must know

Intelligent I/O Architecture Specification

2-18 Draft Version 1.5d March 7, 1997

which system addresses are actually shared local memory and which are not. When the DDM
initializes, it learns or calculates the following parameters by calling various API functions:

• Base address of shared memory, the system address where the IOP’s memory is mapped
• Length (number of bytes of shared memory), which determines the upper bound
• Base difference between the system and local base addresses

With these parameters, the DDM can determine when a system memory reference is local shared
memory, and it can also translate between system and local shared memory references. The IOP
also provides API functions to perform these actions for the DDM.

When the DDM controls an adapter on a system bus, it must use the IOP’s transport services to
access the adapter (read and write to I/O registers and adapter memory). If the adapter is a bus
master adapter, it must be programmed with system memory references and not the IOP local bus
reference. The DDM must always know whether a memory reference is system or local.

2.1.6 Communication
Initializing the IOP automatically establishes the communication channel between OSMs and
DDMs. For peer operation between IOPs, the messaging layer provides the service to establish,
use, and tear down communication channels (connections) between modules in the I2O
environment.

2.1.6.1 Opening a Peer Connection
The host initiates a peer connection by sending a message from the host to the IOP, assigning an
I/O device registered by a remote IOP to a local DDM (ExecDeviceAssign message). The
IOP in turn attaches the I/O device to the local DDM (DdmDeviceAttach message). For this
discussion, this local DDM is called the user DDM.

As previously mentioned, each IOP assigns a TID to each local I2O device as it is registered. That
TID becomes the handle for that device. A user DDM uses the TID to address a request to that
device. TID assignments are local to an IOP. Before a DDM can send messages to a device on
another IOP, a pair of alias TIDs must be established so the requests can be dispatched and their
replies routed back to the originator.

1. The local IOP assigns its own alias TID for the remote device. All local DDMs use this alias
to specify the remote device.

2. The local IOP creates a connection setup request message supplying the connection
information and sends the request to the target IOP’s messenger. The request specifies the
alias TID. The remote IOP remembers that alias so that, for replies from the remote device to
the originating module, the remote IOP can replace the target’s TID in the TargetAddress field
with that alias.

3. The target IOP validates the connection with the target module and replies to the originating
IOP. If the reply is an ACCEPT, it contains another alias TID that the remote IOP assigned to
the originating module. The requesting IOP remembers this alias TID so it can replace the
originator’s TID in the InitiatorAddress when it posts requests to the target device.

An alias TID supports assigning TIDs by the local IOP. DDMs see only TIDs assigned by their
local IOP. Since TIDs are not unique within the entire system, the IOP sending the message
converts the Initiator Address and Target Address fields in the message frame header from its local

Overview

Draft Version 1.5d March 7, 1997 2-19

assignments to those used in the target IOP. For requests, the IOP replaces the initiator address
with the alias TID assigned by the target IOP. It also replaces the target address with the TID
originally assigned by the target IOP. Conversely, for replies, the IOP converts the initiator address
from the alias TID it assigned to the TID originally assigned by the target IOP; and, it replaces the
target address with the alias TID the target IOP assigned.

In other words, the IOP sending a message to a remote IOP substitutes both the InitiatorAddress
and TargetAddress. As illustrated in Figure 2-13, the User DDM specifies its own TID and the
local IOP’s alias for the target device. IRTOS A looks up the TargetAddress and:

(1) determines the target IOP

(2) replaces IOP’s alias for the target device in the TargetAddress field with the actual target’s
TID, and

(3) replaces the InitiatorAddress with the target’s IOP’s alias for the initiator. Now IOP A posts
the message to IOP B’s inbound queue. IOP B delivers the message to the target device
unchanged.

For the reply path, the target device uses the same TIDs as received. IRTOS B looks up the
TargetAddress and:

(1) determines the target IOP

(2) replaces the IOP’s alias for the User DDM in the InitiatorAddress field with the actual TID

(3) replaces the TargetAddress with the IOP A’s alias for the target. Now IOP B posts the
message to IOP A’s inbound queue. IOP A delivers the message to the User DDM unchanged.

IOP A Target
Device
TID=B3

User DDM
TID=A1 IOP B

Initator=A1
Target=A5

Remote Alias Table
(Local TID = IOP/AliasTID)

A1 = B/B7
A1 = C/??

Local Alias Table
(My Alias = IOP/TID)

A5 = B/B3

Remote Alias Table
(Local TID = IOP/AliasTID)

B7 = A/A1
A1 = C/??

Local Alias Table
(My Alias = IOP/TID)

B7 = A/A1

Initator=B7
Target=B3

Initator=B7
Target=B3

Initator=A1
Target=A5 Initator=A1

Target=A5
Initator=B7
Target=B3

Request

Reply

Figure 2-13. Illustration of Peer Message Operation

TID values of 0 and 1 are reserved for the IOP executive and host OSMs, respectively. Since the
host dispatches replies based on the initiator context field, and host OSMs are preassigned a unique
TID, aliasing is not required between an IOP and the host.

Intelligent I/O Architecture Specification

2-20 Draft Version 1.5d March 7, 1997

Connecting two modules within the same IOP is a local task. The modules use the TIDs locally
assigned. Because alias TIDs are not required, the modules need not formally connect with
another local module.

2.1.6.2 Closing a Connection
Because connections are established by assigning alias TIDs, they do not need to be closed
between sessions. The only advantage of closing a connection is in recovering the TID for future
use and error recovery. (See restrictions on reassigning TIDs in section 2.3.3.5.) A connection can
be closed at any time by either end of a connection or by the MessengerInstance. A message
informs both modules that the link is shutting down. Both modules must consent to the closure, so
either can keep the connection open until all pending requests finish.

2.1.6.3 Sending Messages
Once the IOPs establish a connection, the modules at both ends of the connection can send and
receive messages. Messages are sent in an asynchronous fashion and are non-blocking by nature.

2.1.6.3.1 Host Messages

The host uses the following procedure to exchange messages with a DDM:

1. The OSM builds a request and calls the host’s message service, indicating the target IOP.

2. The host MessengerInstance allocates a message frame by reading the target IOP’s inbound
message port. This produces the address of a free message frame from the IOP’s free list.

3. The host places the message in the frame, and notifies the target IOP by writing the frame’s
address to the IOP’s inbound message port.

4. The IOP inspects the request header’s Target Address field and posts the message to the
appropriate DDM.

5. Later, the DDM releases the message frame and the IOP places its address on the free list.

6. If a reply is necessary, the DDM builds one. It uses the initiator address, target address, and the
Initiator Context field from the request, and calls the local message service.

7. The IOP’s messenger service, noting that the Initiator Address field contains the value 001h,
allocates a message frame from its list of free host message frames. It copies the message into
the frame and places the frame’s address in its outbound message queue.

8. The host gets the reply’s message frame’s address by reading the IOP’s outbound message port
and dispatches the message based on its Initiator Context field.

9. When the OSM processes the reply and releases the message frame, the host
MessengerInstance reallocates it to the IOP by writing its address to the IOP’s outbound
message port.

2.1.6.3.2 Peer Messages

The peer operation varies slightly, because of the alias TIDs. The use of the aliases is transparent
to the DDMs sending and receiving the messages.

Overview

Draft Version 1.5d March 7, 1997 2-21

1. The originating DDM builds a request. It places the target’s alias TID assigned by the local
IOP in the Target Address field and calls the local message service.

2. The sending IOP examines the target address, determines the target IOP and the actual TID for
the target DDM assigned by the target IOP, and replaces the target address with the actual TID.

3. The sending IOP looks up the initiator address, finds the corresponding alias TID assigned by
the target IOP, and replaces the initiator address with that alias.

4. The sending IOP allocates a message frame by reading the target IOP’s inbound message port,
and places the message in the frame. It then notifies the target IOP by writing the address of
the message frame to the IOP’s inbound message port (just as the host did).

5. The target IOP inspects the request message header’s Target Address field and posts the
message to the appropriate DDM.

6. Later, the DDM releases the message frame and the IOP returns its address to the free list.

7. When a reply is necessary, the remote DDM builds one using the Initiator Address, Target
Address, and the Initiator Context field from the request and calls its local message service
(exactly the same as with messages from the host).

8. The remote IOP’s message service examines the Initiator Address field in the reply and detects
that it is not 001h.

9. The sending IOP examines the Initiator Address, determines the originating IOP and the actual
TID assigned by the originating IOP, and replaces the Initiator Address with the actual TID.

10. The sending IOP looks up the Target Address to find the alias TID the originating IOP
assigned to the replying device and uses it to replace the Target Address.

11. The sending IOP allocates a message frame by reading the originating IOP’s inbound message
port. It places the message in the message frame and notifies the originating IOP by writing
the address of the message frame to the IOP’s inbound message port.

12. The originating IOP inspects the reply header’s Initiator Context field and posts the message to
the appropriate DDM.

13. Later, the DDM releases the message frame and the IOP replaces its address on the free list.

2.1.6.4 Flow of Events
Figure 2-14 illustrates the flow of I/O operations. The text following the figure describes the
events (its numbers correspond to the steps).

Intelligent I/O Architecture Specification

2-22 Draft Version 1.5d March 7, 1997

I/O Bus

OSD2124

NOS Specific
Device Driver

NOS

Build IOP
Request

IOP Request

2

IOP Request

1

3

Message/
Transport

Copy IOP
Request

4

IOP Request

Message/
Transport

Queue IOP
Request

5

IOP Request

Process
Request

Device
Specific
Driver

6

Return I/O
Request

12

Update I/O
Request

10

IOP Reply

Copy IOP
Reply

9

IOP Reply

Build IOP
Reply

8

7

11

Figure 2-14. Flow of I/O Operations

1. The operating system issues an I/O request.

2. The OSM accepts the request and translates it into a message addressed to the DDM. The
Initiator Context field is set to indicate the message handler for the reply. The OSM has the
option to place a pointer to the OS I/O request in the message’s transaction context field.

3. The OSM invokes the communication layer to deliver the message.

4. The host’s MessengerInstance queues the message by copying it into a message frame buffer
residing on the remote IOP.

5. The IOP on the other end posts the message to the DDM’s event queue.

6. The DDM processes the request.

7. After processing the message and satisfying the request, the DDM builds a reply, copies the
initiator’s context and transaction context fields from the request to the reply, addresses the
reply to the initiator, and finally invokes the message service to send it to the originator of the
request.

Overview

Draft Version 1.5d March 7, 1997 2-23

8. The IOP’s message service queues the reply by copying it into a message frame buffer residing
at the host’s MessengerInstance.

9. The IOP alerts the host’s MessengerInstance to the message ready for delivery.

10. The host’s MessengerInstance invokes the OSM’s message handler with the reply.

11. The OSM retrieves the pointer to the OS I/O request from the message’s transaction context
field to establish the original request context and completes the OS I/O request.

12. The driver returns the request to the OS.

2.1.7 Configuring an I2O System
The I2O system contains the host and a number of IOPs. Each IOP is actually a subsystem
composed of a MessengerInstance and a number of adapters managed by DDMs executing on the
IOP. This section is concerned with configuring the IOP, installing DDMs onto that platform, and
configuring those drivers. Furthermore, this section describes initializing the IOP, HDMs, and
ISMs. Figure 2-15 depicts various IOPs’ architectures.

I2O Subsystem

I2O
Subsystem

I2O
Subsystem

CPU
CPU

CPU
CPU

System Bus

IOP

1

2

IO
Device

IO
Device

IO
Device

IOP

IO
P

 E
xp

an
si

on
 B

us

Adapter
Card 31

3

IO
Device

Adapter
Card

33

IO BUS

IO
Device
IO

Device
IO

Device

IO
Device

Adapter
Card

32 34

35

23

21

22

IOP

Adapter
Card

4 4341

IO
Device

42 IO
Device

IO
 B

U
S IO

Device
IO

Device
IO

Device

Adapter
Card

Adapter
Card

45

44

Figure 2-15. Various I2O Subsystems

Intelligent I/O Architecture Specification

2-24 Draft Version 1.5d March 7, 1997

2.1.7.1 Architecture Variations
A goal of the I2O specification is allowing flexible and extensible implementations. Many
architectural variations are supported, with the following considerations:

• An IOP is an I/O processing platform that can be integrated into the system or an add-in card.
• The IOP can contain embedded I/O devices (like IOP-2 in Figure 2-15) or control adapters

provided by third-party vendors (feature cards).
• These third-party feature cards can be attached to the system I/O bus (like IOP-4) or an

expansion bus provided by the IOP (like IOP-3).
• An adapter can contain the I/O device, provide an interface for a specific device, or provide yet

another I/O bus (e.g., SCSI) that the user can populate with varying devices from other
vendors.

• An IOP can contain any number and variety of adapters, devices, and expansion buses.

Providing for flexibility and extensibility, this section defines the functions and interfaces
necessary to:

• install I2O DDMs for third-party adapters
• configure the IOP
• configure the DDMs
• upgrade the IOP environment
• upgrade the DDMs

This specification also defines extensions for common I/O buses, such as PCI and SCSI, so a
developer can design a DDM for an adapter or device on one of those buses that functions on any
IOP that accommodates it.

2.1.7.2 IOP Configuration
An IOP has the following configuration characteristics and capabilities:

• self-booting, does not require user interaction
• self-initializing
• enables configuring the IOP
• provides storage for DDMs and their configuration information
• provides the configuration interface for its DDMs
• provides a logical configuration table that presents available resources to the host and other

IOPs
• gives the host a hardware resource table containing the hardware configurations and

capabilities of the IOP’s adapters.

When an IOP is powered on, it loads and initializes its operating environment. The mechanisms
used to load and boot the I2O environment can depend on, and be specified by, extensions to the
system BIOS. When an IOP is integrated with the system, the system vendor can use existing
system resources and capabilities. When an IOP is an expansion card intended for deployment in
existing systems, it must not expect the system BIOS to be I2O aware. It must not expect any
special system utilities beyond those provided for any other I/O adapter that resides in the same
system.

Overview

Draft Version 1.5d March 7, 1997 2-25

In either case, a host driver in the form of a BIOS extension or an OS driver is required for the host
to take advantage of the I2O system. Again, loading the host driver is system-dependent and
outside the scope of this document.

After the IOP loads, it executes its initialization sequence. Part of that sequence causes the IOP to
scan its physical adapters, load and initialize appropriate DDMs, and build a logical configuration
table. When the IOP scans its adapters, the IOP (or appropriate HDM) must detect any change in
configuration and, for each change, request a configuration dialogue notifying the user of the
change. During the configuration, the IOP interacts with the system, and ultimately the user, to
establish configuration parameters, install new drivers, or upgrade current drivers. A DDM can
also request a dialogue to establish configuration parameters for devices it controls. The dialogue
takes place between the operating system and the DDM or IOP being configured. The operating
system is responsible for invoking the configuration dialogue and can do so at any time,
independent of whether the IOP or DDM requests it. This lets users reconfigure the I 2O
environment whenever they want.

Each module’s configuration dialogue establishes features and capabilities unique to the vendor.
For the IOP, this mechanism also assigns adapters and devices, and manages subsystem topology.
The configuration dialogue is generally invoked during installation and is not required during
normal system booting .

To help manage IOP drivers, each DDM is identified by an organization ID1 assigned to the
vendor, a vendor-assigned module ID, and a version number. The IOP maintains a list of physical
adapters, their locations and associated DDMs. As the IOP locates an adapter, it loads and
initializes the associated DDM into the operating environment, assuming it is not already loaded.
The IOP then instructs the DDM to initialize the hardware. During the adapter initialization
process, the DDM identifies ports and functions in the adapter and registers them with the IOP as
I2O devices. The IOP uses this registration to update its logical configuration table and identify the
TID assigned to the registered device.

When the IOP identifies a device registering as assigned to an ISM that is not loaded, the IOP
loads and initializes the ISM. The IOP then sends the ISM a message identifying the device.
During this process, like the HDM, the ISM creates and registers additional I2O devices. Again,
the IOP uses the registration to update its logical configuration table and identify the TIDs.

2.2 I2O System Operation Overview

2.2.1 OS Centric View of System
This section to be added at a later date. It will discuss how the OS sees the IOPs and uses its
abstracted services.

2.2.2 Peer-to-peer Capabilities
This specification describes functional interfaces based on the current PCI bus specification and
does not attempt to modify or strengthen that specification. The PCI specification stipulates

1 An organization ID may be obtained by contacting the I2O SIG.

Intelligent I/O Architecture Specification

2-26 Draft Version 1.5d March 7, 1997

electrical characteristics and operating behavior of a PCI bus. It further describes how electrical
PCI segments may be arranged in a hierarchy. In such a hierarchy, the electrical PCI buses are
connected by PCI-to-PCI bridges to form a logical PCI bus, or subsystem. The PCI subsystem
supports symmetrical access2 between any two devices, regardless of their positions. This peer PCI
operation is guaranteed only within the subsystem.

The PCI specification allows multiple PCI subsystems on a single host without peer-PCI operation.
This is common among implementations. This document considers each PCI subsystem an I 2O
segment, as described in section 2.1.5. It considers peer operations transactions between IOPs in
the same I2O segment.

The remainder of this section will be added later and explain extensions to peer-to-peer capability.
This specification uses the term peer operation for message passing between IOPs, and peer-to-
peer for transporting data between IOPs.

2.2.3 IOP Operational Overview
An IOP provides the shell and, optionally, the core interfaces, introduced in section 2.1.3.2.

2.2.3.1 Shell Interface
The interface between the host and an IOP is a message queue. The IOP provides an inbound
message queue that the host or any IOP can use to send messages to the IOP. The inbound queue
is actually a pair of queues: a free queue that contains empty message frames, and a work queue
where message frames are deposited for processing. The sender removes a message frame from
the free queue, places a message in it, then posts the message to the work queue. The IOP retrieves
a request message from the work queue, and, based on the target address, places the message in the
event queue for the appropriate DDM. When that module releases the message frame, it is
returned to the free queue. Certain messages are addressed to the messenger itself, which are
queued on the messenger’s event queue and processed the same way any module processes
messages. These messages regard path initialization, configuration table requests, connection
requests, software installation, and configuration dialogue messages.

2.2.3.1.1 Configuration Table Requests

Any messenger can request an IOP’s logical configuration table. The table tells the initiator which
I/O services are available. The request can specify an immediate reply or defer it until the IOP’s
logical configuration table changes.

2.2.3.1.2 Connection Requests

A connection request connects a DDM on one IOP and a device registered on a different IOP.
IOPs locally assign TIDs to DDMs and devices. These TIDs are unique only within an IOP, not
across platforms. The connection request sets up an alias TID to identify the initiator when
sending messages between the two IOPs. OSMs are preassigned an alias TID universally reserved

2 Except for configuration cycles. Access to configuration registers is protected, and only
propagated from the top down. Since I2O is a memory interface, peer I2O operation only affects
memory access, not access to I/O or configuration registers.

Overview

Draft Version 1.5d March 7, 1997 2-27

for OSMs, so the host does not send connection setup requests. These requests can come from any
IOP.

2.2.3.1.3 Software Download

This request gives the IOP the executable code (e.g., a DDM) to either store and/or load and
execute in the IOP environment. If the module replaces an existing module, it is not loaded until
the next time the IOP is initialized. When a module is first loaded, it is tagged as experimental.
The experimental tag is removed by a positive action by the host or the operator. An experimental
module is loaded only once. If the experimental tag is not removed before the IOP is initialized
again, the experimental driver is discarded and its last version recovered. When the new module is
accepted, the experimental flag changes to operational, and the old version of the driver is removed
from the IOP store.

2.2.3.1.4 Software Upload

This request lets the IOP back up its operating environment of DDMs to the host facilities.

2.2.3.1.5 Configuration Dialogue Messages

Configuration dialogue messages let the user control installation and configuration. This
document specifies a configuration language based on HTML that enables each I 2O component to
define its own configuration dialogue, independent of the system’s physical resources (see the
configuration interface in Chapter 3). Each module can display configuration text and prompt the
user for input. The host invokes a configuration dialogue for the IOP, or it can be targeted at one of
the service modules (DDMs). Only the host can invoke the configuration dialogue. Modules
request a configuration dialogue by setting a flag in the logical configuration table.

2.2.3.2 Core Interface
This specification also provides an internal interface called the core interface. It produces a
generic open platform supporting loadable modules (DDMs) where all DDM services are
abstracted. The core interface specification allows third-party drivers to execute in a well-known
environment. This interface consists of I2O API functions providing embedded kernel,
configuration, messaging, and transport services. These APIs give DDMs access to required OS
functions without exposing the actual embedded OS to the DDM. The API establishes a cocoon
that makes the module independent of its surrounding execution environment.

2.2.3.3 IOP Operations
This section describes the functions the IOP must provide.

2.2.3.3.1 IOP Configuration

The IOP’s operational parameters, such as the number of inbound message frames, are set through
a configuration dialogue with the host (see the configuration interface in Chapter 3). DDMs are
installed by executive messages from the host, as is assigning physical adapters and connections
between DDMs. The IOP contains a storage facility that saves the installed DDMs and remembers
the configuration information between power cycles.

Intelligent I/O Architecture Specification

2-28 Draft Version 1.5d March 7, 1997

Other parameters are established during the IOP’s initialization sequence. Typically, there are two
initialization sequences: one when the BIOS brings an IOP on line to boot the OS, and a second
when the OS initializes. If the IOP does not provide access to the boot device, the BIOS
initialization might be bypassed. In any case, an IOP with hidden adapters may require the host to
reserve additional system memory space and system I/O space where the IOP can configure such
adapters. These operational parameters are established via the initialization messages.

2.2.3.3.2 IOP Environment Initialization

Initializing the IOP environment begins when the IOP loads its operating environment and
performs an initialization sequence with the host. This initialization sequence guarantees that all
system adapters, regardless of whether they are controlled by an IOP, are configured into the
system memory and I/O space. It also provides the synchronization points to guarantee that each
adapter is controlled by only one source.

For adapters that an IOP controls, it loads DDMs from its store, initializing and invoking those
modules to initialize their hardware. As part of the adapter initialization, each DDM registers
devices with the IOP, which uses this information to construct a configuration database that
describes the logical configuration of the IOP. The information used to build the database comes
either from configuration data structures already built by the IOP software (e.g., configuration
files) or a physical scan of the hardware environment (e.g., PCI bus scan). The IOP uses its own
physical configuration table to assure consistent and deterministic assignment of adapters to
HDMs and assign TIDs to registered devices. The physical configuration table allows the IOP to
detect when adapters and/or facilities are added, removed, or changed. Once the logical
configuration database is functional, the I2O environment can accept connections and service
requests.

The bootstrapping process can involve all, some, or none of the following stages, depending on the
type of IOP and its state when the system BIOS queries it:

• When the system BIOS is I2O aware, it initializes IOPs as necessary to boot the operating
system.

• Each IOP provides its own BIOS extension if it is to participate in the system boot process
when the system BIOS is not I2O aware. Each BIOS extension functions only with the IOP for
which it was designed.

• If the BIOS cannot establish the IOP’s state, resetting it brings it to a known state. The BIOS
queries the IOP to locate a bootable device, either mass storage or a remote boot class device.
The remote boot class is not defined in this version.

• For each block storage device that the BIOS attaches to the system, the BIOS updates the
IOP’s logical configuration table with the BIOS information (e.g., logical drive number)
assigned to that device. The OS correlates I2O devices with BIOS services using this
information.

• If the boot device is a storage class device, the BIOS sends storage class messages to read the
sectors from the disk. The BIOS updates the logical configuration table to indicate which TID
it uses as the boot device.

• If the boot device is remote, then the BIOS sends RIPL class messages to load the executable
boot file. The BIOS updates the logical configuration table to indicate which TID it uses as
the boot device.

Overview

Draft Version 1.5d March 7, 1997 2-29

The boot process continues normally loading the host OS, which includes the OS’ I2O
environment. The environment locates and initializes all IOPs and notifies them of the others in the
system. As the host OS boots, the information in the IOP’s logical configuration table provides the
information the OS needs to continue booting. As with any device, switching control from the
BIOS to the OS must occur in an orderly fashion.

2.2.3.3.3 DDM Initialization

A functional embedded I2O environment must be established before any DDM can be loaded.
Loading a DDM is initiated either locally by the embedded I2O environment, as a result of locating
a driver in its local store, or, remotely, in response to a download request.

During initialization, the DDM must update the IOP’s logical configuration database, reflecting the
actual devices found on-line and their current configuration. The DDM creates and manages I2O
devices. The I2O specification supports dynamically loaded and unloaded devices, drivers, and I/O
services in general. Maintaining this dynamic environment and tracking dependencies is the
responsibility of the IOP’s configuration manager.

2.2.3.3.4 Loading DDMs

The IOP supports loading I/O driver modules onto the IOP and initializing the module. Once the
code loads, the IOP invokes the module’s initialization code (MAIN). This initialization binds the
module to the IOP, providing the API entry points and enabling the module to call the IOP’s
service routines. Each module registers with the IOP, which assigns a TID.

2.2.3.3.5 DDM Module Registration

During its registration, a module describes for its attributes and registers a set of entry points
known as message handlers. It calls a registration function of the local IOP, which places that
information in the IOP’s configuration tables as a special DDM class device. The IOP issues a
TID to the DDM. The IOP dispatches the appropriate message handler for processing the message
when a request addressed to that TID is received. The message handlers registered by the module
are I/O class neutral; DDM class messages are generic and independent of the actual I/O class of
the DDM. This means that a LAN DDM and a SCSI DDM both register a DDM class TID, and
messages sent to a DDM class TID are neither LAN- nor SCSI-specific. A DDM registers
additional TIDs as class-specific devices.

2.2.3.3.6 HDM Adapter Initialization

A DDM can control multiple adapters, and the IOP must configure each DDM specifically for the
adapters it controls by binding the module to the hardware. The IOP issues the DDM a message for
each adapter the DDM will control. As the DDM brings an adapter or service online, it registers
that service and any I/O devices with the IOP by registering (creating) I2O devices. This routine
repeats for each adapter the DDM will control.

2.2.3.3.7 ISM Device Initialization

A DDM can control I2O devices as well as adapters, and each DDM must be specifically
configured for the devices it controls. This configuration occurs during the IOP’s initialization

Intelligent I/O Architecture Specification

2-30 Draft Version 1.5d March 7, 1997

sequence. Where an adapter can only have one DDM controlling it, an I2O device may have many
clients (service users). The primary client determines whether the service may be shared with other
clients.

For each device registered, the IOP issues an attach message to each DDM that identifies that it
can control that class of device. That DDM then sends the device a claim message to acquire its
service. The IOP must attach devices to DDMs consistently, so that the primary user can acquire
the device first. As the DDM acquires devices, it may register additional devices with the IOP as
appropriate. This routine repeats for all devices registered.

2.2.3.3.8 I/O Device Registration

As a module initializes an adapter, it creates an I 2O device for each function or service provided by
that adapter. This registers the service, placing the registration information in the IOP’s logical
configuration table. Some information disclosed during registration describes the class of service.
Each device is registered with a specific class. The class of service is the primary search criterion
for any user looking for a service provider. The registration message also establishes the message
handlers for that particular device instance. The IOP replies to the registration, assigning or
verifying the TID for that device. This registered service is now an I2O device that can be
addressed through its assigned TID. The TID directs messages to the DDM’s handlers managing
the device. The TID registered for the device is class specific; requests to a TID imply a particular
class.

2.2.3.3.9 Messenger Service

Connection management. The host may assign devices registered on one IOP to an ISM on
another. Before an IOP can attach a remote device to a DDM, the local IOP sends a connection
setup request to the remote IOP, establishing the connection and assigning alias TIDs. Once the
alias TIDs are assigned, the IOP can attach the remote device to the DDM. The DDM does not
know the device is remote.

Messenger service. When a message arrives in the IOP’s inbound queue:

1. The IOP dispatches a request based on the target address in the message header. The message
is received with the remote DDM’s locally assigned alias TID (assigned by this IOP to the
remote DDM) in the initiator’s address field. The TID locally assigned to the target module is
in the target address field.

2. The IOP dispatches replies based on the Initiator Context in the message header.

The IOP places the message in the target’s event queue and schedules the target’s message handler.
After the target releases the message, the IOP places the empty message frame on the free list to be
used again.

When a DDM sends a request to another IOP, the local IOP replaces the alias target address with
the actual TID assigned by the remote IOP. It also replaces the initiator address with the alias TID
assigned by the remote IOP for that initiator. The IOP then places the message in the target IOP’s
inbound queue.

When a DDM replies to another IOP, the local IOP replaces the alias initiator address with the
actual TID assigned by the remote IOP. It also replaces the target address with the alias TID

Overview

Draft Version 1.5d March 7, 1997 2-31

assigned by the remote IOP for that initiator. The IOP then places the message in the target IOP’s
inbound queue.

If the DDM targets a message for a local module, the IOP posts the message to the target’s event
queue without modifying the address fields, and schedules the target’s message handler. If the
initiator address is the TID reserved for OSMs, then the IOP posts the message to the outbound
message queue without modifying the address fields.

2.2.4 DDM Operational Overview
A DDM consists of several functions and represents multiple I2O devices. The top component of a
DDM is its class device, which the DDM creates when the IOP initializes the module. When the
DDM creates its class device, it specifies message handlers that the IOP calls to process messages
to the DDM. These messages are DDM class messages (see Chapter 5).

The IOP assigns (attaches) and identifies an adapter to the DDM by sending it a message. This
message authorizes the DDM to access and initialize the adapter. For each instance of service the
adapter provides, the DDM creates an I2O device. As an example, the IOP attaches an adapter card
containing two SCSI ports to the vendor’s DDM. The DDM creates two additional devices (bus
adapter class) for the ports, and each has an assigned TID. When the DDM creates the bus adapter
device, the DDM specifies message handlers that the IOP calls to process messages to that TID.
These messages are bus adapter class messages (see Chapter 6). The DDM also scans for SCSI
devices attached to each SCSI bus, and for each device found, creates a SCSI Peripheral class
device.

The DDM also creates objects to service each interrupt. The DDM provides a routine that services
the hardware and clears the interrupt. It executes in the context of the interrupt thread. This
routine may also post an event that executes in the DDM’s context.

The model for a DDM is a number of event handlers designed to be non-blocking. That is, the
event handler executes continuously and quickly until it completes all available processing. During
the execution, the DDM does not wait for hardware or facilities to become available. Thus, a
routine is split into a number of event handlers, so that when the routine reaches the point where it
would normally wait, it instead defers. When the hardware or facility is available, the next event
handler is scheduled to continue processing the task.

2.2.4.1 Module Structure
DDM module structure is described in detail in Chapter 5. The DDM is a set of event handlers.
Each device is associated with an event queue. When an event occurs, such as a message arriving,
the IOP creates an event and posts it to the event queue. When the event reaches the head of the
queue, its event handler is invoked. In general, for each I2O device that the DDM registers, it
provides message handlers that process the messages to the device. The DDM also provides an
interrupt handler for each discrete interrupt. If the DDM calls an IOP service that must defer until
an external event or another operation completes, the DDM supplies the identity of the event
handler that continues the processing once the event occurs. This is generally accompanied by a
context variable so the handler can determine which transaction spawned the operation. That way,
the DDM processes multiple functions in parallel.

Intelligent I/O Architecture Specification

2-32 Draft Version 1.5d March 7, 1997

2.2.4.2 IRTOS Services
The IOP supplies services that support the DDM’s operation. The IOP abstracts these services,
called IRTOS services, as a set of APIs. These services include memory allocation, DDM and
device registration, DMA operation, bus access, and timer operation.

2.2.4.3 Messenger Service
The IRTOS supports dispatching received messages as well as delivering messages the DDM
creates. For each device registered, the DDM gives the IRTOS a list of message handlers, one for
each message function, and their respective priorities. The IRTOS builds a message dispatch table
so that when a request arrives, the IRTOS looks up the message function and posts an event for the
corresponding event handler at the appropriate priority.

2.2.4.4 Transport Service
The IOP abstracts the hardware to the DDM, so the DDM must call API functions to access
hardware. The IRTOS provides API functions for accessing configuration registers, I/O ports, and
memory of a particular adapter or system memory. The IOP also provides DMA objects that more
efficiently transfer blocks of data.

2.3 Message Service

The communication model used by the I2O architecture is a message-passing protocol. The
communication service, as defined in this document, provides the message transport service for
OSMs and DDMs. This message transport service abstracts the I/O infrastructure, leaving the
service interface to those modules independent of the system hardware.

2.3.1 Conceptual Overview
The I2O communication layer enables modules to exchange messages without knowing the
underlying bus architecture or system topology, as illustrated in Figure 2-3. An I2O domain
consists of any number of MessengerInstances. An IOP can support up to 4087 registered I2O
devices (I/O driver modules and registered services). Each IOP contains an I2O resource manager
that facilitates the interface between IOPs, directs configuring and initializing DDMs, and
supervises the connections between them.

Together, the MessengerInstances form a network that can deliver I/O transaction messages from
one module to another, anywhere in the I2O domain.

2.3.2 Communication Model
The messages themselves are referred to as message frames. Each message frame contains a
message header and a message payload. Message header format is defined by the I2O messaging
layer. The message header format is constant for all messages and provides the return address of
the originator. The format for the message payload varies between messages and is established by
the function type value in the header. Each class defines its own message payload formats.

In addition, this specification defines a neutral memory buffer descriptor format (i.e., a scatter-
gather list) that provides independence from the host operating system memory model.

Overview

Draft Version 1.5d March 7, 1997 2-33

Each device is a virtual interface for a particular class of I/O messages. A TID identifies a device
and, thus, an instance of a class-specific interface. Only requests of that class may be sent to that
TID. The IOP administers TIDs when a device is first created, and the TID acts as the local
address of the device.

2.3.3 Communication Architecture
All communication is performed through a TID. A message carries the addresses of the initiator
and the target. Messages -- either requests or responses -- travel from one service module to
another. Responses are addressed to the initiator of the request. Specifically, an OSM or DDM
sends a request to a device, which replies to the initiating module. The class of message is
determined by the device’s registered class.

2.3.3.1 Memory Environment
All memory structures (i.e., message frames) shared between MessengerInstances must reside in
physically contiguous memory. They can lie in different memory locations among the processors,
but the memory of each structure must be physically contiguous. This means the memory of each
target message frame -- where the message resides so that the handler can process it -- must be
contiguous.

Data referenced in message frames must reside in memory shared by the target and the initiator. If
the initiator and target are on different IOPs, memory must be referenced by its system memory
reference.

2.3.3.2 Peer Communication
The ability to exchange alias TIDs is the only additional function necessary to send messages
between IOPs. Each IOP is a master in terms of dispatching messages. Each initiator has equal
priority; this enables peer communications.

2.3.3.3 Protection and Marshaling
The messaging layer does not enforce any rules structure or content over that of inspecting the
initiator and target addresses for routing. The communication layer expects that each module
sends the proper class of message on each path.

2.3.3.4 Message Header
Think of the message header as the envelope of a mailed letter. It provides just enough
information to route the message and dispatch it to the appropriate module.

2.3.3.5 Target IDs
TIDs are assigned by each IOP. TIDs must be unique within an IOP. An IOP must assign TIDs
consistently so that, without physical change, the TIDs assigned to local devices are the same each
time the IOP is initialized. For example, a disk drive maintains the same TID in the IOP’s logical
configuration table. Once the IOP assigns a TID, it should not reassign it to another device.

Intelligent I/O Architecture Specification

2-34 Draft Version 1.5d March 7, 1997

2.3.3.6 Endian Support
This version of the specification discusses operation for little endian addressing only. Big endian
addressing may be specified in a future revision. The Message Version field supports future
capabilities, such as big endian messages.

2.3.3.7 64-Bit Addressing
Three domains affect address size: the OS, the I/O subsystem, and the IOP. This version of the
document specifies operation for 32-bit IOP physical addressing, 32-bit I/O subsystem operation,
and both 32-bit and 64-bit OS operation. The OS address size relates to the size of the message
context fields. Future versions of this specification may specify 64-bit physical addressing for 64-
bit I/O subsystems. This version adds hooks (to the SGL) to support 64-bit physical addressing.
The Message Version field in the message header supports future capabilities, such as 64-bit
physical addressing.

Critical messages for initializing the IOP are address-size generic, allowing the OS to
appropriately instate the IOP into the system.

2.3.4 Dependencies
• IOPs must have access to shared system memory for the queuing model described.
• Each IOP must provide its own units for receiving messages from the host and other IOPs and

for queuing messages to the host.
• Efficient memory coherency support is required if shared memory writes involve a write-to

cache, versus a write-through or copy-back. If so, an efficient mechanism to flush modified
cache lines must be provided.

2.4 Configuration Dialogue

The configuration dialogue allows configuring hardware-specific parameters, as well as enabling
and disabling vendor-unique features. The configuration language, based on HTML, lets each
vendor design its own user display using a standard language. The IRTOS provides several API
functions that aid the DDM’s dialogue and also accommodate internationalization.
Internationalization will be fully defined once HTML supports it.

The configuration dialogue is always invoked by the host and can be requested by any DDM or
IOP. The requester sets a flag in the IOP’s logical configuration table.

2.5 Profile of an Intelligent I/O Platform

This section demonstrates an IOP built to I2O requirements. The discussion also includes the
facilities expected by a DDM and their use. This section provides models to help develop the
hardware platform, the IRTOS, and the DDMs. These models are only a guide and should be
construed as neither an architectural requirement, nor the only models that satisfy the I2O
architecture.

Even though this specification attempts to maintain hardware independence, this discussion
focuses on PCI for the following reasons:

Overview

Draft Version 1.5d March 7, 1997 2-35

• It is difficult to describe abstract requirements and still articulate value or convey opportunity.

• PCI is currently a pervasive I/O bus technology.

• Optimum efficiency demands more stringent technical requirements. This is the case with
PCI. No other technologies are identified, so assume that some optimizations may not apply
when such technology is identified.

• An IOP may incorporate other expansion bus technologies, but optimization depends on the
bus characteristics. The effort accommodates adapters and their DDMs from third-party
vendors. These optimizations will be addressed as other interesting and valuable technologies
develop.

2.5.1 Data Movement
Understanding data movement is crucial to understanding the IOP’s hardware requirements and
I2O system operation.

2.5.1.1 Concepts of Data Movement
The IOP’s principal task is moving data between either main system memory and one or more
devices, or between multiple devices. The IOP achieves this functionality through combined
hardware and software. To realize the required functionality, the IOP must meet certain minimum
hardware requirements. An IOP implementation involves many adapters on multiple buses.
Accordingly, an important function of hardware is to move data from one point to another. This,
in turn, affects the behavior of hardware associated with the various buses.

Moving data through a system implementing the I2O specification occurs through:

1. asserting addresses and controls on a bus

2. claiming the address by some element on that bus

3. retrieving or asserting data on the bus according to the control

These operations may be cascaded or nested. That is, the claimant on one bus may initiate a
transaction on another bus to dispose of or obtain data. At least two forms of cascading can be
identified. First, some elements may, in effect, serve as repeaters. (Bridges, at least the simplest
ones, fall into this category.) These elements claim an address on one bus and reassert it
(unchanged) on another. Second, elements may claim an address on one bus and reassert it in some
modified form on another. The first case involves multiple physical buses, but only one logical
bus. All physical buses connected to it are considered as having a common address space. In the
latter case, all distinct buses, both physical and logical, have their own address spaces.

2.5.1.2 Components of Data Movement
In an I2O system, three classes of buses are distinguished:

1. the system bus

3. an IOP local bus for each IOP

4. zero or more expansion buses per IOP.

Intelligent I/O Architecture Specification

2-36 Draft Version 1.5d March 7, 1997

Hardware moves data by referencing its address. Each bus has a unique address space. Thus, an
I2O system contains three noteworthy classes of address space.

1. Because there is only one system bus, there is likewise only one system address space.

2. A given IOP typically has only one local bus. Therefore, each IOP has a local address space.

3. Finally, a given IOP may support multiple expansion buses. Therefore, a given IOP may have
several expansion bus address spaces. Across the system there may lie many expansion bus
address spaces.

Several types of elements are involved in executing intelligent I/O. These elements, distinguished
by how they interact with buses, include:

• Processor elements. Processors assert addresses, and either retrieve or assert data on the bus
to which they attach.

• Memory elements. Memories claim addresses within a range associated with the element and
either pull data from the bus for storage, or retrieve data from storage asserting it on the bus.

• Access unit elements. Access unit elements claim addresses in a range associated with the
element, translate them according to a rule (i.e., linear address mapping). They reassert the
addresses and corresponding controls on another bus. Also, by implication, the access unit
either retrieves data from the source bus and reasserts it on the target bus, or vice versa. Also,
by implication, access units are unidirectional. Bridges, in essence, are a pair of access units
operating in opposite directions. The address ranges of each unit are mutually exclusive.

• DMA engines. DMA engines affect moving data from a source on one bus to a destination on
the same or another bus. A DMA engine is programmed with a source address, a destination
address, and a data length (or the logical equivalent). The DMA engine then affects data
movement in some increment from the source to the destination, incrementing the source and
destination addresses accordingly, until the prescribed amount of data is transferred.

If a DMA engine spans buses, the source address is in the address space of the source bus. The
destination address is in the address space of the target bus. On both the source and target
buses, the DMA engine asserts an address and control. The claimants of the source/target
addresses should deliver/retrieve the corresponding data accordingly. Logically, a DMA
engine does not actually touch the data, although hardware optimizations may provide
intermediate buffering, and so forth.

• Bus master elements. Bus master elements (like processors) assert addresses and data and/or
retrieve data accordingly. Addresses asserted by bus masters are in the bus where the adapter
resides, and are implicitly claimed by some other element on the bus (memory, access unit, or
a bus slave). Most bus master elements are also bus slave elements.

• Bus slave elements. Bus slave elements claim addresses (like memory elements) and assert or
retrieve data accordingly. Addresses claimed by a slave element are configured to the element
and are in the address space of the bus where the element physically resides. Adapter control
and programmed I/O operations to I/O adapters are examples of bus slave elements. Other
elements may also contain a slave interface (e.g., access units to set up translation rules, DMA
engines and bus master adapters to set up transfer parameters).

On any given bus, addresses can be classified as local or remote. A local address is asserted on the
bus claimed by another element on the same bus that is the ultimate destination. A remote address
is claimed by an access unit and, based on rules programmed into the access unit, is delivered to

Overview

Draft Version 1.5d March 7, 1997 2-37

another bus. Having no claimant is possible, but usually invalid. Any address on the originating
bus should have only one terminal claimant throughout the address spaces in the system.
Ultimately, a terminal claimant either consumes or provides data (e.g., a memory element). Thus,
across the entire I2O system, address mappings must ensure only appropriate mappings among
address spaces.

When asserting and claiming addresses:

• Processors reside on a specific bus and can assert any address that bus allows. A host processor
resides on the system bus and an I/O processor resides on the IOP’s local bus.

• Bus master adapters reside on a specific bus and can assert any address that bus allows.
• Memories reside on a specific bus and claim addresses within ranges designated for that

purpose. Memory on the system bus is referred to as main system memory.
• Slave adapters reside on a specific bus. Slave adapters claim addresses within ranges

designated on the bus.
• Access units reside on two buses, with a source connection on one bus and a target connection

on another. The source connection claims addresses within ranges designated on the source
bus. The target connection can assert any address the target bus allows.

2.5.1.3 I2O Data Movement Components
The I2O specification implies minimum hardware requirements for moving data throughout the
system. Every IOP must implement the following functionality:

• System/local access unit. An access unit with the system bus as its source and the IOP’s local
bus as its target. This implies that some range of system address space is mapped onto a
region of each IOP’s local bus address space. Claimants for such system addresses are either
the inbound and outbound message queues, or the IOP local memory (e.g., inbound message
frames). The mapping mechanism for IOP memory is a simple offset. That is, the linear
mapping from system to IOP local bus address requires a (possibly negative) constant in the
system bus address.

• System DMA unit. A logical device connecting the IOP’s local and system buses, which
transfers data between any two addresses that can be claimed on the local and system buses. If
an IOP implements the I2O runtime environment for third-party DDMs, the hardware must
support logical DMA functionality defined by the IRTOS API specifications. This may be
achieved through a suitable hardware DMA engine or however allows proper operation of the
relevant API.

• Local/system access unit (conditional). If an IOP implements the I2O runtime environment and
allows connecting third-party bus master adapters to the IOP’s local bus, it must also provide
an access unit whose source is the IOP local bus and whose target is the system bus. Bus
master adapters on the IOP local bus must have direct access to system memory. Mapping
from a local to a system bus address requires a (possibly negative) constant in the IOP local
bus address.

• Expansion bus DMA/access unit (conditional). If an IOP implements the I2O runtime
environment and supports connecting third-party adapters to one or more expansion buses, it
must also provide a logical DMA element connecting the expansion bus and the IOP’s local
bus. That element transfers data between any two addresses that can be claimed on the
expansion bus and the IOP’s local bus. IOP hardware must support logical DMA functionality

Intelligent I/O Architecture Specification

2-38 Draft Version 1.5d March 7, 1997

defined by the IRTOS API specifications. This may be achieved using either a suitable
hardware DMA engine or another way that allows operation of the relevant API.

 In addition, a set of single access API transport functions enables the IOP to provide a
mechanism whose target is the expansion bus. It transfers data to or from any address that can
be claimed on that expansion bus. IOP hardware must support the logical transport
functionality defined by the IRTOS API specifications. This may be achieved either using a
suitable hardware DMA engine or in another way that allows operation of the relevant API.
Unlike the expansion bus DMA, this function is optimized for small transfers, such as control
data and commands. It may be the same facility operating at a higher priority. Note that DMA
API functions queue the DMA task and return, in contrast to transport API functions that are
blocking.

• Expansion bus/system access unit (conditional). An IOP may implement the I2O runtime
environment and allow connecting third party bus master adapters to one or more expansion
buses. If so, an access unit, whose source is the expansion bus and whose target is the system
bus, is required for each expansion bus. That enables bus master adapters on the expansion bus
to access system memory directly. The linear mapping from the expansion to system bus
address requires adding a (possibly negative) constant to the expansion bus address. For PCI
this constant must be zero (0).

• Expansion bus/local access unit (conditional). An IOP may implement the I2O runtime
environment and support connecting third party bus master adapters to one or more expansion
buses. If so, each expansion bus requires an access unit with the expansion bus as its source
and the IOP’s local bus as its target. This allows the bus master adapter on the expansion bus
to access a portion of the IOP’s memory directly. The linear mapping from expansion bus
address to the IOP’s local bus address requires adding a (possibly negative) constant to the
expansion bus address.

2.5.2 Fundamental Elements
The simplest model for an IOP is shown Figure 2-16. This model fits an intelligent I/O feature card
with its own embedded I/O ports or devices. Applications might include an intelligent Ethernet
card or a RAID adapter.

In this model, the fundamental elements (non-shaded, heavy border) support embedded slave I/O
devices. The IOP’s local memory is logically partitioned into three regions defined by their access
capability. From a DDM’s viewpoint:

1. The Code Partition represents read-only memory.

2. The Private Data Partition is accessible only via the processor data commands.

3. The Shared Partition is also accessible via the host and other IOPs (the effect of the
system/local access unit). Inbound message frames reside in the Shared Partition.

Overview

Draft Version 1.5d March 7, 1997 2-39

 IOP Memory Space
C

od
e

P
ar

tit
io

n
P

riv
at

e
D

at
a

P
ar

tit
io

n

S
ha

re
d

P
ar

tit
io

n

Embedded
Slave

I/O Devices

DMA1

System Local
Access
Unit 1

Processor

Permanent
Store

System Bus

IOP Local Bus

Message
Queues

Figure 2-16. Simple Form of an Intelligent I/O Platform

In this model, the I/O devices reside directly on the local bus. The only additional facility
necessary for data transfer is DMA1. Using DMA1, a DDM (via IRTOS DMA function calls)
transfers data directly from a device or local memory to system memory specified by a request.
The IRTOS also utilizes DMA1 when it moves an outbound message to an outbound message
frame located in the system memory or to another IOP’s inbound message frame.

Shaded elements indicate components that add value beyond the minimum requirements of this
specification. A brief description of each component and its required functions and capabilities
follows.

2.5.2.1 Processor
The processor is the key to performance and capacity. This specification imposes no requirements
on the processor other than the scope of its tools. It strives to make DDMs written in C code
portable across platforms. Therefore, if the platform supports loadable DDMs, the processor’s
tools must include a C compiler that is readily available to DDM writers. The processor, with the
other IOP components, must provide the API functionality specified in Chapter 5.

2.5.2.2 Permanent Store
The IOP provides non-volatile storage for its own code (i.e., bootstrap and IRTOS), drivers and
embedded I/O functions, and for installed DDMs. For each DDM, the IOP stores the module’s

Intelligent I/O Architecture Specification

2-40 Draft Version 1.5d March 7, 1997

header, executable code, and a module parameter block. The IOP may use any form or technology
to provide this capability. The amount of permanent storage and its implementation is left to your
discretion for market differentiation.

2.5.2.3 IOP Local Bus
Two bus objects comprise the simple model: the system bus and the IOP’s local bus. A DDM
accesses memory and devices directly on the IOP’s local bus, which is transparent to normal
operation. However, a number of facilities provide access between the IOP’s local bus and either
the system or expansion bus, as illustrated in Figure 2-18. The IOP creates a bus object for its
local bus. The private data region is specifically associated with this object, although all IOP local
memory regions have an IOP local bus attribute. See section 2.5.4.3, Bus Objects.

2.5.2.4 System Bus
The IOP creates an object for the system bus. DMA1 and a shared system memory region are
specifically associated with this bus object. See section 2.5.4.3, Bus Objects.

2.5.2.5 System/Local Access Unit
A system/local access unit (ATU) claims memory transactions on one bus and translates them into
memory transactions on another bus, substituting a different target address. The target is calculated
by adding an offset to the original address. This allows the processor or bus master on the
initiating bus to access a portion of the memory on another bus.

The ATU maps a portion of the IOP’s memory into the system address space, creating shared
memory. This unit allows the host (and other IOPs) to access inbound message frames as well as
other shared structures. This facility also makes the message queues accessible. The configuration
of this unit is specified by the system platform, rather than this specification. The ATU creates a
window in the system memory space that accesses a block of IOP local memory. The IOP is
expected to know the base address of that window, its size, and the local address for the block of
local shared memory. This shared memory region has an attribute specifying its offset (i.e., the
difference between the window base system address and the local address of the partition). See
section 2.5.2.8, IOP Local Memory Partitions.

2.5.2.6 DMA
This function allows the processor to access system memory (including shared memory on other
IOPs). The DMA is programmed by the processor to move blocks of data between system
memory and the IOP’s local memory. This is how the IOP fills outbound message frames (in
system main memory) and inbound message frames of other IOPs. A DDM utilizes DMA units
via DMA API function calls.

2.5.2.7 Message Queues
This function notifies the IRTOS when a message is deposited in its inbound queue. It is described
in Chapter 4. A DDM does not directly access the message queues. The IRTOS receives messages
and posts them to a DDM’s event queue. The DDM uses API function calls to send messages.

Overview

Draft Version 1.5d March 7, 1997 2-41

2.5.2.8 IOP Local Memory Partitions
The IOP’s local memory space is divided into partitions. Each partition represents a memory
range with common access capabilities. Memory partitions can overlap and, in some cases, must
do so. Each partition is associated with specific access capabilities. When requesting memory
allocation, a DDM specifies a particular memory partition by specifying its access capabilities.

The following sections describe buses that also require access to IOP memory. The region of
memory accessible from various buses is the shared partition. It is further subdivided based on
which buses can access it. The region accessible from the system bus is the shared system region.
The all local adapter region is accessible to any adapter controlled by the IOP. The all adapter
region is where the shared system and all local adapter regions overlap. As opposed to the all local
adapter and all adapter regions, the all adapter region must be accessible by adapters on other IOPs
(if the IOP supports peer connections). However, if the IOP supports adapters on the system bus,
the all adapters and all local adapters regions could conceivably be the same.

Memory partitions have the following attributes:

• Partition Size

• Local Bus Base Address

• System Bus Base Address

• Expansion Bus Base Address (for each expansion bus).

The IOP’s processor (thus each DDM) accesses all partitions via the local bus, and therefore the
DDM uses the local bus address to access that partition directly.

As illustrated in Figure 2-17, the all local adapter region is directly accessible to bus master
adapters on an expansion bus via a bus/local ATU. In this case, the Expansion Bus Base Address
indicates the offset of where that partition appears in that bus’ address space (see section 2.5.3.6,
Expansion/Local Access Unit).

• Code partition. The code partition(s) contain the executable image of the IRTOS and DDMs.
Code partitions are generally protected and not available for access by DDMs or external
agents. That is, DDMs can not allocate memory in a code partition.

• Private data partition. A portion of the IOP’s memory that does not need external access.
This partition is associated with the local bus object, because only the IOP’s local bus needs
access to the partition. The DDM specifies the BusID of the local bus when it allocates
memory within the private data partition.

• System shared partition. The first level of shared memory is shared with the system (see
section 2.5.2.5, System/Local Access Unit). This memory is characterized by its base address
in the local address space (Local Bus Base Address) and its window position in the system
memory space (System Bus Base Address). The system shared region is actually subdivided
into two regions: One that can be accessed by a bus master adapter on a particular expansion
bus through an inbound ATU (see section 2.5.4.2, IOP Memory) and one that cannot. The
DDM allocates memory in the shared partition by specifying System access.

• Adapter Shared partitions. The next level of shared memory is accessible via adapters on the
expansion buses (see section 2.5.3.6, Expansion/Local Access Unit). The all local adapter
region may overlap with the Shared System partition, depending on the IOP’s ability to control
adapters on the system bus and devices on other IOPs.

Intelligent I/O Architecture Specification

2-42 Draft Version 1.5d March 7, 1997

2.5.3 Additional Elements
Add-in cards require an expansion bus. A model for an IOP that provides an expansion bus and,
thus, supports third-party adapters and drivers is shown in Figure 2-17. A more complex model
that provides multiple expansion buses is shown in Figure 2-18. Figure 2-18 shows three
expansion buses and the additional resources needed to support them. Again, the fundamental
elements have a bold outline and the additional elements are shaded. The three levels of shading
indicate the elements associated with each expansion bus.

 IOP Memory Space

C
od

e
P

ar
tit

io
n

P
riv

at
e

D
at

a
P

ar
tit

io
n

S
ha

re
d

P
ar

tit
io

n

Expansion Bus BusId=x

Slave
I/O Adapter
or socket

Bus
Master

I/O Adapter
or socket

DMA1

System/Local
Access
Unit 1

Processor

DMA2

x Permanent
Store

Bus/System
Access
Unit 2x

Bus/Local
Access
Unit 3x

System Bus

IOP Local Bus

Message
Queues

A
ll

Lo
ca

l
A

da
pt

er
s

S
ha

re
d

S
ys

te
m

P
ar

tit
io

n

A
ll

A
da

pt
er

s

Figure 2-17. Typical Intelligent I/O Platform with Expansion Bus

To support slave I/O adapters, the DDM requires a DMA facility for transferring data between the
adapter and local memory, or between the adapter and system memory. This facility is represented
by DMAx in Figure 2-17 and DMAx, y, and z in Figure 2-18.

The bus/local access units (3x, 3y, and 3z) support bus master adapters on the expansion bus by
providing local memory that the adapters can access. See section 2.5.3.6, Expansion/Local Access
Unit. Each unit may have a different expansion bus base address, but must access the all local
adapter region of memory.

Overview

Draft Version 1.5d March 7, 1997 2-43

 IOP Memory Space

C
od

e
P

ar
tit

io
n

P
riv

at
e

D
at

a
P

ar
tit

io
n

S
ha

re
d

P
ar

tit
io

n

A
ll

Lo
ca

l
A

da
pt

er
s

S
ha

re
d

S
ys

te
m

P
ar

tit
io

n

A
ll

A
da

pt
er

s

DMA2

z

DMA2

y

Expansion Bus BusId=z

Expansion Bus BusId=y

Direct Local
Access
Unit 3z

Expansion Bus BusId=x

Direct System
Access
Unit 2z

Direct System
Access
Unit 2y

Slave
I/O Adapter
or socket

Bus
Master

I/O Adapter
or socket

DMA1

System/Local
Access
Unit 1

Processor

DMA2

x Permanent
Store

Bus/System
Access
Unit 2x

Direct Local
Access
Unit 3y

Bus/Local
Access
Unit 3x

System Bus

IOP Local Bus

Message
Queues

Figure 2-18. Complex Intelligent I/O Platform

2.5.3.1 Expansion Bus
The expansion bus is the key to an open platform. It must follow a standard bus architecture, such
as PCI, that accepts adapter cards or controllers already designed for classic computer systems.
Each expansion bus is identified by a BusID and has associated with it a number of facilities. To
support slave adapters, the IOP provides a DMA mechanism, DMAx in Figure 2-17 and DMAs 2x,
2y, and 2z in Figure 2-18. See section 2.5.3.4 Local DMA. Bus master support requires two
address translation units, as illustrated by bus/system access unit 2x and bus/local access unit 3x in
Figure 2-17. (See sections 2.5.3.5, Expansion Bus/System Access and 2.5.3.6, Expansion/Local
Access Unit.)

Intelligent I/O Architecture Specification

2-44 Draft Version 1.5d March 7, 1997

2.5.3.2 Slave I/O Adapter/Socket
A slave adapter is characterized as a block of memory and/or a set of I/O ports that the driver
accesses to control the adapter and transfer data. The DDM accesses the device via API function
calls (DMA, BusRead, or BusWrite).

The DMA capability quickly and efficiently transfers data blocks between either a slave adapter
and local memory, or the adapter and system memory. The IOP’s data transfer between the slave
adapter and the system bus is abstracted to the driver. The IOP may have a direct engine or
manage some intermediate buffers to transfer data from the expansion bus to a local buffer (or vice
versa) and system memory. The attributes of a DMA object include the BusIDs of the source and
target buses.

2.5.3.3 Bus Master Adapter or Socket
A bus master adapter adds to the complexity. It must still be programmed via the driver, generally
by reading and writing to memory-mapped I/O registers or ports. Therefore, the same facilities
that access the slave adapter are also necessary for a bus master adapter. In addition, the bus
master adapter must be able to transfer data directly into buffers in main system memory. This
requires a data path provided by the bus/system access unit 2x, or an address translation unit. See
section 2.5.3.5, Expansion Bus/System Access.

2.5.3.4 Local DMA
Local DMA must be able to transfer large blocks of data efficiently between the IOP’s local
memory and an adapter on an external bus, illustrated by DMA2x in Figure 2-17, and DMA2x, 2y,
and 2z in Figure 2-18. An IOP needs DMA mechanisms that can serve all expansion buses and the
system bus. The IOP may have a direct engine that transfers data between any two buses, or move
the data from one bus to a local buffer, and then to the target bus.

2.5.3.5 Expansion Bus/System Access Unit
As mentioned previously, bus master adapters must transfer data directly in and out of system
memory. This is illustrated by Unit 2x in Figure 2-17 and 2x, 2y, and 2z in Figure 2-18. This
address translation unit claims addresses on the expansion bus within a particular address range (or
set of address ranges) and translates them to a memory transaction on the system bus. Addresses
not claimed by an ATU are considered private address ranges.

This specification addresses only expansion buses with a physical address size matching the
system physical address size. This ensures that an adapter on that bus can generate any valid
physical system address. For support of private and hidden adapters, the host provides a region of
host memory and I/O space that is considered private to the IOP. All other ranges are considered
public. The IOP programs the ATU so it can claim any address in the public range and reasserts it
unmodified on the system bus. Addresses in the private range do not need to be claimed by the
ATU and, in fact, are expected to be claimed by private adapters on the expansion bus. The IOP’s
Bus/Local Access unit is an example of such device.

For this direct system access to function properly:

• The public memory space must be known.

Overview

Draft Version 1.5d March 7, 1997 2-45

• The offset (linear address translation) between each address in the public space and the address
in the expansion bus space must be zero.

• Private adapters on the expansion bus may not be assigned memory addresses in the public
range. Those adapters must be assigned private addresses.

• The expansion bus must have a private address segment. The IOP configures its private
adapters to reside in a private address segment.

• Addresses in the private range are not claimed by the ATU.

2.5.3.6 Expansion/Local Access Unit
As mentioned previously, bus master adapters must be able to directly transfer data in and out of
the IOP’s local memory. This is illustrated by bus/local access unit 3x (Figure 2-17). This address
translation unit captures memory cycles on the expansion bus within a particular address range and
translates them to a memory access transactions on the IOP’s local bus. This is exactly the same
operation as the bus/system access unit, with two exceptions: First, the IOP establishes a single
memory region within the private space for the local access unit, while the system access unit
claims the set of public address ranges. A non-zero base offset may result. Second, the range of
addresses on the expansion bus that the bus/local access unit claims must reside in the private
address segment, and not be assigned to any adapter on that bus.

The IOP programs this unit with an address window that directly translates to the shared memory
partition. The DDM needs to know the offset between the expansion bus address and the memory
partition so it can properly program the bus master’s DMA unit (i.e., program the bus master with
the result of subtracting the offset from the local memory address).

2.5.4 Software Components
This section discusses the software components of an IOP.

2.5.4.1 IRTOS - I2O Real Time Operating System
An IOP is required only to conform to the core specification (Chapter 5) and thus, the formal
presence of an IRTOS, if the IOP supports loadable DDMs. Supporting loadable DDMs makes an
IOP extensible. Even IOPs that do not support additional physical adapters should support
loadable DDMs. In particular, this allows downloading ISMs. ISMs provide a mechanism for
class extensions and other advancements, without modifying the original DDM.

2.5.4.2 IOP Memory Regions
This specification categorizes the IOP’s local memory by its access capabilities. There are actually
five classes of memory that overlap.

1. IOP Private Memory: This memory is accessed only by the IOP’s processor. It is typically
used for code and driver workspace.

2. Bus-Accessible Memory: This local memory is also accessible by bus masters on a particular
bus. It is characterized as a single contiguous block containing a local and a bus base address.
A particular memory location is identified as an offset from that base address. This region is
important to an HDM if it creates data buffers that its adapters access. The HDM allocates

Intelligent I/O Architecture Specification

2-46 Draft Version 1.5d March 7, 1997

memory accessible to a particular adapter by identifying the bus where that adapter is located.
Typically, this is the same as all local adapter memory.

3. All Local Adapter Accessible Memory: An HDM may control adapters on more than one bus
and need them to share data buffers. Therefore, in one region, all bus accessible memory
regions overlap. This is considered all local adapter accessible memory.

4. All Adapter Accessible Memory: An ISM does not necessarily know which adapters will
access the data buffers it specifies in a message. If the ISM makes an external connection, the
buffers that it specifies in its messages must accessible from the system bus. But even if the
ISM makes only local connections, the DDM it claimed may use a remote connection. Thus an
ISM needs to allocate memory accessible by any target device, even when it is on another IOP.
Therefore, the ISM allocates memory that is accessible by all local adapters and other IOPs.
This region is the all adapter accessible memory region.
The actual need for system access to the all-adapter memory region rests with two criteria: If
the IOP supports controlling adapters that reside on the system bus, or if it supports external
connections, then the all adapter region must be accessible from the system bus. Figure 2-19
illustrates how overlapping access capabilities map to respective memory categories based on
those policies.

5. System Shared Memory: At a minimum, a region of memory accessible via the system bus
contains the inbound message frames where the host and other IOPs deposit their messages.
Since hardware/software implementations vary, there may be no relationship between the
system memory address for an inbound message frame and the location of that message in
local memory when it is posted to a DDM’s event queue (because the IOP or its hardware
might copy the message). Additional system shared memory may be available to support peer
connections. In this case, the DDM needs to allocate memory accessible from the system.

Private memory

Accessible by
some Adapters

All Local
Adapters

Private memory

Accessible by
some Adapters

Private memory

Accessible by
some Adapters

All Local
Adapters

& All Adapters

IOP Controls
Devices on
System Bus

All
Adapters

All Local
Adapters

& All
Adapters

IOP Supports
External

Connections

IOP Supports
only Private

Devices

Accessible by
Host, Devices on

System Bus, &
Other IOP’s

Accessible by all
private adapters

Figure 2-19 IOP Memory Regions

Overview

Draft Version 1.5d March 7, 1997 2-47

Even though adapters on all buses may access all-local-adapter-accessible memory, they do not
necessarily do so using the same physical address. The system bus and each I/O Expansion Bus
has its own ATU that maps the adapter accessible memory to a region in that bus’ address space.
Thus, adapter-accessible memory has the following attributes:

Local Bus Address. The address the DDM uses to access the memory.

Adapter Bus Address. The address the adapter uses to access the memory. Each bus that can
access a memory location has its own bus address value. The relationship between memory
locations is linear. That is, the offset between any two memory locations is constant for all buses.

The core interface (i.e., DDM operation) is concerned with allocating memory in:

• the private memory region, for data structures the DDM does not wish to share with or make
accessible to adapters.

• the adapter-accessible region, for data structures the HDM needs to make accessible to a single
adapter (e.g., buffer descriptor lists and buffers for data cache).

• the all-local-adapter region, for the HDM that needs to share data structures between its
adapters.

• the all-adapter region, for data structures the ISM needs to make accessible to its claimed
devices (i.e., local buffers specified in the SGL of messages it sends).

The shell interface deals with the shared system memory region, since it represents the total
memory accessible to the host and other IOPs.

IOP Processor Caching: Data caching is a popular approach to increasing performance, but one
must assure data integrity. Many processor caching schemes do not provide cache coherent
protocols that invalidate the processor’s cache when adapters or DMA engines modify memory.
Nor do they flush the processor’s cache to memory before adapters access the data. Instruction
caching is not an issue, but several issues regarding data caching follow:

• The IOP may cache private memory. The DDM should never use private memory for the
object of a DMA request.

• Memory allocated as adapter accessible must be cache coherent. That is, it should not be
cached unless the processor and memory support cache coherent protocols. This applies to
memory allocated as adapter specific, all local adapters, and all adapters. Even when cache
coherent protocols exist, processor caching for this memory region is often non-productive.

• Message frames: Since processing message frames is a prime operation, it is arguable
whether messages need to be cacheable. However, they could contain data that needs to be
accessed by adapters and therefore need to be in all-adapter memory. An IOP may elect
write-through caching for message frames if it can assure that posting the message does not
violate caching integrity. The DDM must always take the following precautions:

 Messages are treated as read-only by adapter hardware. This allows the adapter to DMA
the immediate data directly from the message and allows the DDM to specify its contents
for the source of a DMA operation.

 Hardware may never write to the message frame.

Intelligent I/O Architecture Specification

2-48 Draft Version 1.5d March 7, 1997

• Memory allocated as shared system memory must be cache coherent. That is, it should not
be cached unless the processor and memory controller support cache-coherent protocols.

2.5.4.3 Bus Objects
All buses have resources associated with them, such as memory, adapters, and DMA controllers. A
DDM running on the IOP directly accesses these resources. A bus object describes the resources
on a bus and provides methods to access them.

The IOP’s HAL creates a bus object for each expansion bus. The DDM learns of a bus object
when it is assigned a physical adapter. The BusID is an attribute of the adapter (i.e., adapter
object) and thus the DDM learns the BusID by querying the IOP about a particular adapter object.

2.5.4.4 DMA Objects
DMA objects are created by a DDM to move data between memory and adapters on the same or
different buses, including the IOP’s local bus. The IRTOS determines its available facilities and
invokes them as it sees fit, providing the requested transfer function. The DDM creates a DMA
object by specifying the source bus and cycle type (memory or I/O port), the target bus and cycle
type. The DDM engages the DMA object by providing the specific source and destination
addresses.

2.5.4.5 Adapter Objects
Depending on the characteristics of the expansion bus, a DDM learns adapter information in
various ways. Typically, if the IOP’s HAL knows of an adapter (as is possible with a PCI bus), the
IRTOS assigns the adapter to the DDM indicating its AdapterID. From the AdapterID, the DDM
learns the BusID and physical address. Other bus types may provide the DDM with only the
information about the bus and let the DDM probe the private space for appropriate adapters. In
either case, with the BusID, the DDM can allocate memory from the shared memory partition for
that bus, create a DMA object to move blocks of data from that bus to another, and access the
adapter.

2.5.4.6 API Transport Functions
Besides the DMA and bus objects, the IRTOS provides API functions that facilitate data
movement:

• Translate. The DDM specifies a primary bus, an address on that bus, and a secondary bus. If
an ATU can access the first bus from the second, the IRTOS provides the address on the
second bus that accesses the specified location on the first bus.

• Single memory access. A set of functions for accessing a byte, 16-bit word, 32-bit word, or
64-bit word on a particular bus. For reading, the DDM specifies the bus and memory address.
The IRTOS returns the value stored at that location. For writing, the DDM specifies the bus,
the memory address, and data value. The IRTOS writes the value to that location.

• Single I/O access. A set of functions for accessing a byte, 16-bit port, 32-bit port, or 64-bit
port on a particular bus. For input, the DDM specifies the bus and port address. The IRTOS
returns the value read from that location. For output, the DDM specifies the bus, the port
address, and data value. The IRTOS writes the value to that port.

Draft Version 1.2 March 7, 1997 2-iii

Draft Version 1.5d March 7, 1997 3-1

3
Basic Requirements

This chapter discusses the basic requirements for implementing each piece of the I 2O system:

• the software on a host platform

• the hardware and software on an I/O platform

• and the device driver modules.

It also includes the facilities and structures common to I 2O interfaces.

3.1 Host Requirements

On the host platform, the I2O components are the OSMs and the message layer.

3.1.1 System BIOS
In a system with an I2O-aware OS, the BIOS (or its extensions) does not need to be I2O aware
unless it boots the OS from an I2O device. However, a BIOS that is I2O aware allows an OS
that is not I2O aware to access I2O devices. In this instance, the BIOS (or its extensions) must
abstract the I2O subsystem to the OS and provide I2O functionality via its normal BIOS
function calls.

Each hardware or system vendor that develops an IOP that can provide service via a BIOS
function call (e.g., hard disk via int 13) may wish to provide a BIOS extension; it can capture
that function and register it with the BIOS when the system’s BIOS is not I2O aware. Also,
hardware vendors who provide DDMs for adapters may also wish to provide a BIOS extension
to capture that function and register it with the BIOS when either the system’s BIOS is not I2O-
aware, or the adapter is not assigned to an IOP.

3.1.1.1 BIOS extensions for I2O intelligent adapters (i.e., IOPs)
An intelligent I2O device may provide a BIOS extension that initializes it in a system where the
system’s BIOS is not I2O-aware. When the system’s BIOS is I2O-aware, the BIOS and its
extension cannot both initialize an IOP. Thus, the BIOS extension must detect when the
system’s BIOS has initialized the IOP and, if so, yield to the system’s BIOS. The BIOS
extension can determine the presence of an I2O-aware system BIOS by sending an
ExecStatusGet request to the IOP. If the IOP returns any state except Reset, then an I2O-aware
system BIOS exists and has initialized the IOP.

3.1.1.2 BIOS extensions for other adapters
An adapter may provide a BIOS extension that initializes the adapter in a system without an
I2O-aware BIOS, or when an IOP does not control that adapter. Since the adapter vendor
provides both the BIOS extension and the DDM, those modules must synchronize control of
the adapter so that the two drivers do not compete or replicate service. An I2O-aware BIOS
can determine which adapters the IOP controls via the IOP’s Hardware Resource Table and

Intelligent I/O Architecture Specification

3-2 Draft Version 1.5d March 7, 1997

must either provide a means to expose that information to the BIOS extension, or prevent
BIOS extensions from accessing those adapters. The I2O architecture supports hidden devices
to promote this requirement.

When the BIOS (or its extension) provides access to an I2O device, it must update the BiosInfo
field in the IOP’s Logical Configuration Table to indicate the relationship between the device
and the BIOS function. In addition, if the BIOS boots from an I2O device, it must set the
BootDevice field in the IOP’s Logical Configuration Table to indicate the device used to boot
the OS. The IOP preserves this information during the system transition from BIOS to OS.

3.1.2 Host Messenger Instance
The host OS provides a number of OSMs and the message layer. In addition to the normal
message transport function, the OS provides the following I2O system functions:

• An executive function that initializes and maintains the I2O system.

• The system resource manager that configures and manages connections between IOPs.

• The configuration function that provides the user interface, file system access, and the
configuration dialogue with an IOP and its DDMs. This function enables installing and
configuring the IOP and its DDMs.

In addition, the OS provides the capacity to install OSMs produced by third-party vendors.
The OSM interface is not specified by this document, but must provide the following:

• The ability to query the messenger for the list of IOPs and their registered devices (i.e.,
logical configuration table information).

• The ability to send requests and receive replies.

The OS hardware abstraction layer must prevent any legacy driver from locating an adapter
listed in an IOP’s hardware resource table as controlled by that IOP.

3.1.3 OS-Specific Modules
The interface and operating environment for an OSM are specified by the OS. The OSM must
adhere to the message requirements specified in this chapter and in Chapter 6.

OSMs only send requests and receive replies. They neither send replies nor receive requests.
OSMs do not need to establish connections, but they do need to claim devices they intend to
consume.

The OSM must send only messages specified for the class for which the target is registered.
The OSM must be capable of processing replies from the message layer as well as replies from
its intended target. The OSM must be able to correlate replies with the appropriate request,
based on the content of the Transaction Context field.

The OSM sees only one memory domain -- system memory -- and is not concerned with
translating addresses. An OSM must be able to convert virtual addresses to physical
addresses.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-3

3.2 I/O Platform Requirements

The requirements for an IOP vary, depending on whether it supports loadable DDMs.

3.2.1 Private Platforms
A hardware or system vendor supplying an I2O adapter (e.g., an intelligent adapter card
providing both the IOP and embedded controllers), without supporting third party DDMs, must
adhere to the requirements for the shell interface (Chapter 4) and the message requirements in
this chapter and Chapter 6. Although the device need not implement the core interface
(Chapter 5), it must function externally as if it does. When responding to an installation or load
request for a DDM, the IOP rejects the request as function not supported (see 3.4.1.2.4).

3.2.2 Open Platforms
A hardware or system vendor supplying an I2O subsystem (e.g., an IOP on the motherboard)
that can support third party DDMs must adhere to the requirements for the shell interface
(Chapter 4), the core interface (Chapter 5), and the message requirements in this chapter and
Chapter 6. Features that differentiate between designs include the amount of non-volatile
memory for storing third party DDMs, as well as the physical expansion bus capability.

3.2.3 IOP Design Considerations
The IOP provides an execution environment for its modules, and thus provides the same
capabilities as an operating system. The physical resources are the CPU, local data and code
memory, non-volatile storage for drivers and parameter blocks, timer functions, and DMA
capability. In addition, the IOP must provide a physical messaging unit. The amount, type,
and location of non-volatile storage is not specified, but left to the ingenuity of the developer.

The effectiveness of an IOP depends not only on its processing performance and capability,
but also on its transport mechanism. This pertains to both message and data transporting.
Message transportation copies data (the message) into the target’s memory (the message
frame) and notifies the target (message queues).

DMA capabilities must exist to transfer data between the local and system memory in both
directions. If the IOP supports expansion buses, it must support transferring data between I/O
adapters and local memory. The IOP must also provide access to any configuration cycles
needed on its internal buses and for adapters on the system I/O bus that it controls.

If the IOP supports controlling adapters on a system bus, it must be able to route interrupts so
that the adapter does not generate interrupts to the host.

The IOP may provide other capabilities, such as battery-backed RAM for data caches and non-
volatile memory. Such features are strictly at the discretion of the vendor.

3.3 Device Driver Module Requirements

The requirements for a DDM vary, depending on whether it is a loadable driver.

Intelligent I/O Architecture Specification

3-4 Draft Version 1.5d March 7, 1997

3.3.1 General Requirements
All drivers must be able to receive and reply to requests as specified in this chapter and in
Chapter 6. The driver must support all utility and base class messages defined for the driver’s
registered class.

3.3.2 Loadable Driver Modules
In addition to the general requirements, a loadable driver must adhere to the core interface and
behavior as specified in Chapter 5. The driver must be fully able to operate given the facilities
defined in this specification.

3.4 Common Facilities and Structures

The rest of this chapter discusses the facilities and structures common to the core, shell, and
message-based interfaces.

3.4.1 Message Structure and Definitions
The I2O components in a system communicate by exchanging messages. The messages are
data structures containing: a fixed-size header and a variable-size payload. These two parts
reside within a physically-contiguous buffer called the message frame, shown in Figure 3-1.
The message frame is allocated in shared memory.

OSD2131

Message
Header

Message
Payload

Message
Frame

Figure 3-1. Message Frame

Messages fall into two basic categories:

• Request messages initiate activity at the destination. A request can contain multiple
transactions of the same type.

• Reply messages return status information concerning one or more requests.

Generally, every request has an associated reply that concludes the transaction. The ratio of
replies to requests need not be one-to-one; each request can have multiple replies or a single
reply can have multiple requests. Certain requests do not evoke a reply. Such exceptions are
explicitly identified in the message definition.

Requests and replies share the same basic structure. The difference between a request and a
reply is that the request payload may contain a scatter-gather list (SGL) and the reply may
contain a transaction reply list (TRL).

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-5

3.4.1.1 Message Header
Message headers are fixed in size, structure, and location within the message frame. They
convey two types of information: device addressing and payload description. The addressing
information is used primarily by the routing mechanism within the transport layer to properly
deliver the message. The function code is used primarily by the target to determine the
structure of the payload section. Figure 3-2 shows the structure of a message header:

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

Figure 3-2. Message Header Version 001

Fields

Function A function code that identifies the requested action as well as the structure
of the message payload (i.e., the parameters). See Section 3.4.1.2.4 for
details on Function ranges. In a reply, the Function code indicates the action
being reported as well as the structure of the reply payload.

InitiatorAddress An IOP-unique identifier of the initiator of the request.

InitiatorContext Initiator−private item. The initiator sets this field. The target must always
return this value unchanged in the reply message. The initiator’s message
layer typically uses this value to identify the handler for the reply. The size
of this field is either 32 bits or 64 bits, as identified by the MessageFlags.
This specification provides the ability for both the IOP and DDM to function
in an environment that supports both context sizes. This is a concept that
has not been verified or tested. Unless the DDM indicates that it supports
both context sizes concurrently, it may assume that context size is a constant
and it does not need to test each message.

MessageSize Total number of 32-bit words occupied by the message including the header.
Although it is intended primarily for use by the transport layer to optimize
the physical data movement process, this field can be useful in transports
that do not inherently track the actual size of the message frame.

Since MessageSize includes the header, the minimum legal value for a
MessageSize is 3 (12 bytes).

MessageFlags Provides status information about the message, as follows:

Bit 0: Static - A 0 identifies a normal message and a 1 identifies a static
message frame.

Bit 1: ContextSize - A 0 identifies 32-bit context field sizes (Initiator Context
and Transaction Context) and a one identifies 64-bit context field
sizes.

Bits 2-3: reserved

Bit 4: Multiple - A 0 identifies a single transaction message and a 1 identifies
a multiple transaction message. When this value is zero, the

Intelligent I/O Architecture Specification

3-6 Draft Version 1.5d March 7, 1997

Transaction Context is the first field in the message payload.
When it is one, then each Transaction Context is specified in the
SGL for a request and in the TRL for a reply.

Bit 5: Fail - Message processing failure: A 0 identifies normal delivery and a
1 indicates that the message could not be processed. This bit
indicates that the original request was not processed and that the
structure of this reply is a FaultNotification message (see 3.4.1.2.3).
Note that this bit indicates transport failure and must not be set to
indicate transaction failure.

Bit 6: Last - In a request, this bit is reserved. In a reply, a 1 indicates the last
reply in a multi-reply transaction. This bit pertains to the
Transaction Context conveyed in the reply. The notion of multiple
replies per transaction is established on a class basis and depends
on the function code. Some functions within a class support
multiple replies per transaction (e.g., status reports), and others do
not. This bit must be set in single reply messages, even though the
last reply is the only one that is ever generated. This bit is specific
to the transaction context: a zero indicates a progress report; a one
concludes each transaction identified in the message and releases
all associated buffers.

Bit 7: Reply - A 0 identifies the message as a request and a 1 identifies it as a
reply.

TargetAddress A simple integer identifier of the recipient of the request. Target addresses
are unique within the domain of an IOP. This is the logical address of the
intended recipient of the request. The transport layer uses it to look up the
characteristics of the target, such as the event handler, preferred method of
delivery, and message priority.

VersionOffset Identifies the structure of the message header and provides the offset of the
SGL/TRL, as follows.

Bits 0-2: MessageHeaderVersion: Identifies the structure of the message
header. The message header in Figure 3-2 is identified by
MessageHeaderVersion 001b. All IOPs that claim compliance
with this specification must support version 001b message
headers. In future releases of this specification, new message
headers may not adhere to the current header structure. These
message headers will have a higher version number, allowing the
recipient of the message, as well as all the intermediate layers in
the delivery chain, to correctly interpret the structure of the
header.

Header version 001b is a little endian format that accommodates
both 32-bit and 64-bit operating systems. Future versions might
define big endian headers.

Bit 3: reserved

Bits 4-7: SglTrlOffset - A four-bit field that indicates the location of the SGL
or TRL within the message frame. This field contains the offset (in
number of 32-bit words) of the start of the list from the start of the

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-7

message header. If there is no list, the initiator sets this value to
zero.

Note

The actual values for the TargetAddress and InitiatorAddress fields are generated and maintained by
the IOPs. ID=000h sent to an IOP identifies the IOP’s I2O executive and not a DDM within that
IOP. ID=001h is reserved for the host operating system and should never be sent to an IOP as a
target address. An IOP never assigns ID=001h as an ID of a DDM.

3.4.1.2 Message Payload
Immediately following the message header, a section of variable size contains all additional
information associated with the message. The structure of this section depends on the class of
the message and the Function field. The content of this section conveys to the target the
operational details (parameters) that define the requested action. For the reply, it conveys the
status of the request along with any immediate data.

Typically, the payload of a request contains a TransactionContext field, which identifies the
specific request and the target returns that TransactionContext value in a reply message.
TransactionContext fields are treated the same as the InitiatorContext field. That is, the target
copies the value from the request to the reply.

Although the message payload is not meant to transmit raw data, it can be desirable to do so.
When the raw data is very small or when the same transport mechanism moves both,
packaging the data with the message reduces the amount of activity on connecting buses.

Often, the payload for a request needs to refer to memory. If so, it requires a scatter-gather list
(SGL). The SGL uses a standard format for memory references that is understood by the
originator, the target, the transport, and all intermediate software layers.

Also, if a request message supports multiple transactions (Multiple bit set in MessageFlags) it
requires an SGL. The SGL bundles details for each transaction and identifies it by its
Transaction Context in a manner that the transport and all intermediate software layers
understand.

The equivalent of an SGL for a reply message is the transaction reply list (TRL). If the reply
concludes multiple transactions (Multiple bit set in MessageFlags) then it requires a TRL. The
TRL bundles the details for each transaction and identifies it by its Transaction Context in a
manner that both the transport and all intermediate software layers understand.

Due to its varying length, if an SGL or TRL is included in a message, it is the last structure in
the payload, and thus follows any message details. Because the length of the message details
varies by function, the start of the SGL or TRL is identified in the message header so it can be
located without knowing the message class.

3.4.1.2.1 Request Message Structures

The template for a single transaction request message is shown in Figure 3-3.

Intelligent I/O Architecture Specification

3-8 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 0 0 0 0 x x x x VersionOffset 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

MessageDetails

(Function Specific)

16 (24)

SGL n

Offset in () signifies offset for 64-bit context fields

Figure 3-3. Single Transaction Request Message Template

Fields

Function Identifies the purpose of the message and the structure of its details.
See the Function field in section 3.4.1.1.

InitiatorAddress The TID of the requesting module.

InitiatorContext An arbitrary value assigned by the message layer of the requesting
module. This value is returned in the reply and is used to route the
reply to the appropriate message handler.

MessageDetails Provides detailed information about the specific request. Each
message class defines the size and content of this field, which varies
based on the value of the Function field.

SGL As defined in section 3.4.2. Typically, the SGL identifies the source
data and/or the reply buffers.

TargetAddress The TID of the module that receives the message.

TransactionContext An arbitrary value assigned by the initiator. This value is returned
in a reply and the requester typically uses it to correlate the reply to
the original request.

VersionOffset As defined in 3.4.1.1. The SglTrlOffset in the VersionOffset field is
set to zero when there is no SGL, and to n/4 when the SGL is
included (where n is the offset of the SGL).

The template for a multiple transaction request is in Figure 3-4.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-9

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 0 0 0 1 x x x x VersionOffset 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

MessageDetails

(Function Specific)

12 (16)

SGL n

TransactionInfo 1

TransactionInfo n

Offset in () signifies offset for 64-bit context fields

Figure 3-4. Multiple Transaction Request Message Template

In lieu of a single Transaction Context field, the SGL contains a list of transaction details
where each set of details specifies a Transaction Context and its respective data buffers (as
defined in 3.4.1.1). The SglTrlOffset in the VersionOffset field is set to n/4.

3.4.1.2.2 Normal Reply Message Structures

The template for a normal single transaction reply is shown in Figure 3-5. A normal reply is
defined as a message with the Reply bit set and the Fail bit reset.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 x 0 0 x x x x VersionOffset 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

ReqStatus reserved DetailedStatusCode 16 (24)

ReplyPayload

(Function and Status specific)

20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 3-5. Single Transaction Reply Message Template

Fields

DetailedStatusCode This field accommodates a more detailed status when required.
Values for this field are defined by the particular message class and
Function. Detailed status codes for Executive Class, DDM Class,
Utility Class, and Transaction Error replies are specified in Table
3-2.

Function The value copied from the Function field of the request.

InitiatorAddress The value from the InitiatorAddress field of the request.

Intelligent I/O Architecture Specification

3-10 Draft Version 1.5d March 7, 1997

InitiatorContext The value copied from the InitiatorContext field of the request.

ReplyPayload Provides more detailed information as required. Each message class
defines the size and content of this field, which vary based on the
Function and ReqStatus codes.

ReqStatus This field conveys the general status of the transaction per Table
3-1.

TargetAddress The value from the TargetAddress field of the request.

TransactionContext The value copied from the TransactionContext field of the request.

VersionOffset As defined in section 3.4.1.1. The SglTrlOffset in the VersionOffset
field is set to zero.

Table 3-1. Reply Status Codes

ReqStatus (I2O_REPLY_STATUS_xxx) Description

_SUCCESS Normal completion without reportable errors. The
DetailedStatusCode reports any warning or residual
status information.

_ABORT_DIRTY Aborted by originator – cannot conclude abort

_ABORT_NO_DATA_TRANSFER Aborted by originator – no data transfer

_ABORT_PARTIAL_TRANSFER Aborted by originator – partial completion

_ERROR_DIRTY Error in execution – cannot conclude completion

_ERROR_NO_DATA_TRANSFER Error in execution – no data transfer

_ERROR_PARTIAL_TRANSFER Error in execution – partial completion

_PROCESS_ABORT_DIRTY Aborted due to system command or reconfiguration –
cannot conclude completion

_PROCESS_ABORT_NO_DATA_TRANSFER Aborted due to system command or reconfiguration – no
data transfer

_PROCESS_ABORT_PARTIAL_TRANSFER Aborted due to system command or reconfiguration – partial
completion

_PROGRESS_REPORT Progress Report (FINAL bit set to 0)

_ TRANSACTION_ERROR The DDM or IOP can not process request (see 3.4.1.2.4)

Note: _ABORT_DIRTY, _ERROR_DIRTY and _PROCESS_ABORT DIRTY indicates hardware programmed with the
address of the buffer and that the target cannot guarantee that the hardware will not access that buffer.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-11

Table 3-2. Detailed Status Codes

ReqStatus (I2O_DETAIL_STATUS_xxx) Description

__SUCCESS Normal completion without reportable errors.

_BAD_KEY The specified key was not recognized or invalid. (Applies
only to operations on table groups.)

_CHAIN_BUFFER_TOO_LARGE The SGL Chain Buffer is too large to be processed.

_DEVICE_BUSY Device is busy with another operation and its request queue
is full.

_DEVICE_LOCKED Resource locked – resource exclusively reserved by
another requester (see UtilLock message and
UtilDeviceReserve message)

_DEVICE_NOT_AVAILABLE Device can not be accessed via this TID.

_DEVICE_RESET Resource reset – not available until UtilResetAck received

_INAPPROPRIATE_FUNCTION This function is not valid for this class or sub-class.

_INSUFFICIENT_RESOURCE_HARD Insufficient resources available to process the message.
Retrying the same message is not advised.

_INSUFFICIENT_RESOURCE_SOFT Insufficient resources are available to process the message.
This situation may be temporary, so retrying the same
message could succeed.

_INVALID_INITIATOR_ADDRESS Invalid InitiatorAddress

_INVALID_MESSAGE_FLAGS Invalid MessageFlags field value

_INVALID_OFFSET Invalid SGL/TRL offset value in message header

_INVALID_PARAMETER Invalid parameter

_INVALID_REQUEST Invalid request – resource not allocated to requester

_INVALID_TARGET_ADDRESS Invalid TargetAddress

_MESSAGE_TOO_LARGE Message too large – MessageSize specifies a value larger
than the message frame

_MESSAGE_TOO_SMALL Message too small – MessageSize less than the minimum
allowed

_MISSING_PARAMETER Missing parameter

_NO_SUCH_PAGE The requested page was not found in the device’s script
table. The reply buffer contains valid HTML describing the
error.

_REPLY_BUFFER_FULL The reply overflowed the reply buffer (or reply message
frame). The reply buffer contains data generated up to the
point of overflow.

_TCL_ERROR The TCL interpreter reported an error while processing the
TCL script for the requested page. The reply buffer contains
valid HTML describing the error.

_TIMEOUT Service or device did not respond within the allocated time.

_UNKNOWN_ERROR An error condition not covered by any other code occurred.

_UNKNOWN_FUNCTION Unknown Function code

_UNSUPPORTED_FUNCTION The requested function is not supported.

_UNSUPPORTED_VERSION Invalid/unsupported message header Version field value

Intelligent I/O Architecture Specification

3-12 Draft Version 1.5d March 7, 1997

The template for a normal multiple transaction reply is in Figure 3-6. All transactions reported
by a multiple transaction reply must be for the same function. This structure is optimized for
reporting a number of successful transactions.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 x 0 1 x x x x VersionOffset 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TrlControlWord (plus pad) 12 (16)

ReqStatus reserved DetailedStatusCode 16 (24)

ReplyPayload

(Function and Status specific)

20 (28)

TRL n

Transaction Info 1

Transaction Info n

Offset in () signifies offset for 64-bit context fields

Figure 3-6. Multiple Transaction Reply Message Template

Additional Fields

TrlControlWord The TRL Control Word (see 3.4.3) replaces the single Transaction
Context value and identifies the format of the TRL that follows the
reply payload. When Transaction Context size is 64 bits, 32 bits of
pad follow the TRL Control Word, placing the status word at the
same offset for both single and multiple transaction replies.

TRL The TRL provides a list of transaction contexts and their details (see
3.4.3). Each class defines the size and content of transaction details,
which may vary based on the Function and status codes.

VersionOffset As defined in section 3.4.1.1. The SglTrlOffset in the VersionOffset
field is set to n/4 where n is the offset of the TRL.

3.4.1.2.3 Fault Reply Message Structure

Two mechanisms convey message failure to the initiator of the message. When a request
cannot be processed, a FaultNotification reply returns to the initiator of the failed request, as
specified below. When a reply cannot be processed, there is no mechanism to reply to a failed
reply, so a UtilReplyFaultNotify request message must be created and sent to the device that sent
the failed reply, as specified in Chapter 6.

Figure 3-7 specifies the reply resulting from message failure when the message layer cannot
deliver the request to the target, or the target cannot process the request. The module that
detects the failure generates the FaultNotification reply. Following the standard header, a status
block details why the message could not be delivered. Following the status block is the MFA

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-13

of a buffer containing the original message. Since the DDM accesses the message via local
memory, the IOP’s messenger translates the local address to a valid MFA (copying the message
if necessary).

The FaultNotification applies to all classes of messages. A failure reply contains both the Reply
and Fail bits set in the MessageFlags field (see section 3.4.1.1). The Final bit is also set in a
failed reply because there will be no other replies.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 1 0 x x x x VersionOffset 0

ORIGFUNCCODE InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext (Null) 12 (16)

FailureCode Severity HighestVersion LowestVersion 16 (24)

FailingHostUnitID reserved FailingIOP_ID 20 (28)

AgeLimit 24 (32)

PreservedMessage(Low 32 bits) 28 (36)

PreservedMessage(High 32 bits) 32 (38)

Offset in () signifies offset for 64-bit context fields

Figure 3-7. Reply Message for Message Failure

Field

AgeLimit The maximum number of microseconds that the transport allows to elapse
when trying to deliver the message. A value of FFFFh indicates no time
limit. At present, aging of messages in the transport layer is not defined.

FailingHostUnitID HostUnitID for the failing unit.

FailingIOP IOP_ID of the failing IOP.

FailureCode Table 3-3 shows the possible FailureCode values.

Function ORIGFUNCCODE = the value of the Function filed in the request message.

IOP_ID The IOP_ID (as assigned by the host using the ExecSysTabSet message) for
the messenger that rejects the message.

LowestVersion The lowest I2O version that the rejecting module supports.

HighestVersion The highest I2O version that the rejecting module supports. Currently 01h.

PreservedMessage

This field provides a pointer to the original message, which is preserved. It
is the offset address of a message frame that holds (a copy of) the original
message. This message frame must be associated with the IOP’s inbound
message queue. A DDM rejecting a message specifies the message handle
of the corrupted message and the IOP converts it to an inbound MFA. The
originator must resubmit, reuse, or release the message frame containing the
preserved message. The message frame can be released by changing the
Function value to NOP and resubmitting it.

Intelligent I/O Architecture Specification

3-14 Draft Version 1.5d March 7, 1997

Note:

The Message Frame Address (MFA) is an offset that the host (or IOP) writes
to the inbound Message FIFO. A DDM rejecting the message can only
supply the message handle that the IOP provided to the DDM. Therefore, the
IOP must convert that message handle to an MFA of a frame that contains
the original message. The IOP may use the actual message frame of the
original message, or copy the original message to a new frame, but the IOP
must know that the originator of the original message will reuse that
message frame.

Severity Indicates the severity of the failure.
Bit 0 FormatError – this message can never be delivered/processed.
Bit 1 PathError – this message can no longer be delivered/processed.
Bit 2 PathState – the system state does not allow delivery.
Bit 3 Congestion – resources temporarily not available; do not retry

immediately.

TransactionContext Set to zero. This is a place holder.

Table 3-3 Message Failure Codes

Code Description

81h Transport service suspended to the specified target

82h Transport service terminated for the specified target

83h Transport congestion – Temporary lack of transport resources to complete transaction

84h Transport failure -- could not deliver message

85h Transport state prevents delivery

86h Time out – could not post message within the appropriate age limit

87h General routing failure – cannot forward frame to intended IOP

88h Invalid/unsupported message header Version field value

89h Invalid SGL/TRL offset value

8Ah Invalid MessageFlags field value

8Bh Message too small – MessageSize less than the minimum allowed

8Ch Message too large – MessageSize specifies a value larger than the message frame

8Dh Invalid TargetAddress

8Eh Invalid InitiatorAddress

8Fh Invalid InitiatorContext

FFh Unknown transport failure

3.4.1.2.4 Transaction Error Reply Message

When an IOP or DDM rejects a message for general cause (format error, bad function code,
insufficient resources, etc.), the target returns a reply message with a ReqStatus value of
I2O_REPLY_STATUS_ TRANSACTION_ERROR as shown in Figure 3-8. The reply is a single

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-15

transaction reply. If the request message was a multiple transaction request, the error reply is
repeated for each transaction that the target rejects.

The TransactionErrorReply applies to all classes of messages. An error reply contains
the Reply bit set to one but the Fail bit set to zero (in the MessageFlags field see section
3.4.1.1). The Final bit is set appropriately.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 x 0 0 0 0 x 0 VersionOffset 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

TRANSACTION_ERROR reserved DetailedStatusCode 16 (24)

ErrorOffset

reserved BitOffset

Offset in () signifies offset for 64-bit context fields

Figure 3-8. Reply Message for Transaction Error

Field

ErrorOffset Indicates the byte location in the message frame where the error was
detected (the VersionOffset field = 0000h). This value is set to zero if the
error is not associated with a particular field, such as for lack of resource
availability.

DetailedStatusCode See Table 3-2.

BitOffset Indicates the bit location (0 through 7) within the byte indicated by
ErrorOffset. This value is typically zero except when the errored
field is a flags field or a bit-specific field. This value is set to zero if
the error is not associated with a particular bit.

3.4.1.3 Function Codes
Messages within a certain class are further divided into types. The Function field in the header
identifies the type of message, as defined in the Table 3-4.

Table 3-4. Relationship Between Message Type and Function
Field

Function Value

From To Type

00h 1Fh Utility (common to all message classes)

20h 0FEh Base (unique to each message class)

0FFh 0FFh Private (allows vendors to add value)

All drivers compliant with the I2O specification must support the utility and base type
messages. Support for private messages is optional and must be negotiated while establishing
a link.

Intelligent I/O Architecture Specification

3-16 Draft Version 1.5d March 7, 1997

3.4.1.4 Utility Messages
A common set of utility messages applies to every class. These messages provide the most
basic functionality to enable negotiation and configuration. All components that claim
compliance with this specification must support all the utility messages defined in Chapter 6.
Initiators assume each target supports all utility messages and that support is not subject to
negotiation.

3.4.1.5 Base Messages
Base messages typically describe I/O requests or service requests. Again, all components that
claim compliance with this specification must support all the base messages within the
registered class. Initiators assume that each target supports all base messages within the
target’s registered class and that support is not subject to negotiation.

3.4.1.6 Private Messages
Private messages allow extensions of the base set of messages within a class, to support new
functionality without creating a new class.

All messages that have a Function field value of Private Message are private extensions to
base class messages. Private messages allow vendors to add value without having to create a
new class.

The private message includes, in addition to the transaction information, a field that uniquely
identifies the organization defining the extended codes and a field specifying the extended
function code identifying the specific function.

The structure of the PrivatePayload of a private message is not described by this specification.
That structure is defined by the vendor that created the extension, as identified by the
OrganizationID field.

Figure 3-9 shows the structure of a private type request message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

Function = 0FFh InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

OrganizationID XFunctionCode 16 (24)

PrivatePayload defined by owner of OrganizationID specific
for XFunctionCode

20 (28)

Figure 3-9. Private Type Request Message Template

Fields

OrganizationID Contains the 16-bit ID assigned by the I2O Special Interest Group to
the organization defining the message. The value 0000h is reserved
for extensions assigned by the I2O SIG. The SIG assigns each
member company an OrganizationID, allowing each company to
define their own set of message extensions.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-17

TransactionContext Contains the transaction context if the Multiple bit in the
MessageFlags field is not set. When Multiple is set, the content of
this field is not defined. The size of this field depends on the value
of the ContextSize bit in the MessageFlags.

XFunctionCode Function code extension. This value is administered by the
organization specified by the OrganizationID field and identifies the
structure for the remainder of the message payload.

3.4.2 Addressing Memory (Scatter-Gather Lists)
Modules pass data to each other by providing a structured list of memory addresses that
specifies data buffers and their respective lengths. The memory of a data buffer can be
scattered, rather than contiguous, and allocated as page frames. This specification defines a
standard format for a scatter-gather list (SGL). The SGL can indicate any number of buffers,
each of which can contain any number of segments (fragments). This specification uses the
term data buffer to mean memory shared between the initiator and target. The information
passed from the initiator to the target must explicitly define the data buffers involved in each
transaction.

A transaction consists of the following components:

• Zero or more data buffers that contain the source data

• Zero or more data buffers where the results of the transaction are placed

• Additional parameters providing details about the specific transaction

A request message provides information about one or more transactions, where each
transaction contains any number of these components. The SGL provides a structured method
for indicating each component.

In general, the request message payload contains details of all the included transactions
(request details) followed by an SGL. The SGL provides the information for each transaction
(transaction details). There are two models for requests: single and multiple transaction.

• The single transaction request model does not differentiate between message details and
transaction parameters. Therefore, transaction parameters typically reside in the message
detail portion of the payload and the SGL provides a list of source data and reply buffers.
Nothing precludes transaction parameters from being included in the SGL except the
following:

 The transaction context is a critical parameter. It is an arbitrary value, supplied by the
initiator of a request, that correlates the data buffers of a transaction with its disposition
(see section 3.4.3). For single transaction requests, this field must be in a known location
independent of the message class or function. Therefore, it is always the first field in the
message payload. This differs from the multiple transaction request that supplies the
transaction context in the SGL.

• The multiple transaction request model groups details for each transaction. In addition,
the first component of a transaction specifies the context for that group. By definition, a
transaction set consists of all components starting with the one that specifies the
transaction context and includes all following components, until another transaction
context is specified. The high level structure is shown in Figure 3-10.

Intelligent I/O Architecture Specification

3-18 Draft Version 1.5d March 7, 1997

SGL Overhead

TransactionContext

TransactionDetails

TransactionContext

TransactionDetails

TransactionContext

TransactionDetails

TransactionContext

TransactionDetails

Figure 3-10 High Level Structure of a Multiple Transaction SGL

The SGL specifies source data by identifying a buffer, which may contain multiple segments.
A large segment of a data is generally indicated by its location in common memory. This
provides efficiency since just the data’s location is passed between functions and only the
terminating function moves the data. For smaller data segments, the data itself may be
supplied in the SGL (immediate data). This is useful when intermediate functions need the
content of that segment, or when the size of the data is not much larger than the size of the
structures specifying the buffer.

The SGL is a structured list of elements, each of which provides specific detail. Some element
types identify a segment of a data buffer, while others provide transaction parameters or
information about the SGL.

A buffer is one or more segments of memory containing a logically contiguous data structure.
The SGL provides three methods of describing the segments that compose a buffer.

1. Simple addressing: A single fragment represented by a physical address and a length.

2. Page frame addressing: Fixed length fragments (data page frames or pages) indicated in
sequence. Data may start anywhere in the first page listed and end anywhere in the last
page listed. More details of page addressing are provided later.

3. Immediate data: Data embedded in the SGL element.

Each segment is either a physically contiguous block of memory or a page frame list. A buffer
is described in the SGL by a consecutive list of data elements, each specifying a segment of the
buffer. The last element is marked as the end of the buffer. All segments for a particular
buffer are listed in order.

Note: The SGL supports 64-bit physical addressing. This provides compatibility with future
versions. This version of the specification requires only support for 32-bit addresses. In
addition, this version of the specification defines both 32- and 64-bit context fields. The size of
the context fields is an environmental parameter. Even though these definitions allow a single
binary to support both sizes, it is not required. DDMs and IOPs indicate their ability to
function with the various context sizes and are never loaded into an environment with a

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-19

context size they do not support. Unless the DDM indicates that it supports both context sizes
concurrently, it may assume that context size is a constant and it does not need to test each
message.

The SGL is structured to satisfy the following requirements:

• Physical address field size is an attribute of the I/O subsystem and is either 32 or 64 bits.
Both system and local address use the same size address fields in the SGL.

• The format for a 64-bit address field places the low order address bits in the low order
byte locations. That way, a 32-bit address can be placed in a 64-bit address field by
padding the high order four bytes with zeros.

• The size of context fields for a particular SGL is constant.

• The Initiator Context field is the same size as the Transaction Context field and is either
32-bit or 64-bit. Buffer Context fields are 0, 1, 2, or 3 times the size of the Transaction
Context field.

3.4.2.1 SGL Format
The following figure shows the structure of a typical SGL. The structure consists of variable
length elements. The most significant bit of the first 32-bit word in each element is the
LastElement flag, which identifies the last element in the sequence. This specification also
discusses a chain pointer indicating a buffer containing an additional sequence of elements.
The pointer appends logically to the end of the original sequence.

31 3 24 23 2 16 15 1 8 7 0 0 element

0 flags SGL Element (32 bits minimum) 1

0 flags 2

SGL Element (32 bits minimum)

:

1 flags n

Last SGL Element (32 bits minimum)

Figure 3-11. Physical Structure of a SGL Sequence

Figure 3-12 illustrates how various element types may be arranged to form an SGL. This
illustration contains m number of elements: n are present in the message and m-n are in the
additional list elsewhere.

Intelligent I/O Architecture Specification

3-20 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 element

0 flags 1

SGL Attributes

0 flags 2

Chain Pointer

0 flags 3

Transaction Detail Element

0 flags 4

Transaction Detail Element

0 flags 5

Transaction Detail Element

:

1 flags n

Transaction Detail Element

0 flags n+1

Transaction Detail Element

0 flags n+2

Transaction Detail Element

:

1 flags m

Transaction Detail Element

Figure 3-12. Logical Structure of a SGL

The first element in the sequence is reserved for SGL attributes. The content of the SGL
Attributes element is specified later in this section. The SGL Attributes element is necessary
only if the attributes of the SGL differ from the default. SGL attributes include address size,
context size, and page frame size. If the SGL Attributes element is absent, the default attributes
are used. When it is present, it is always the first element. An entire SGL contains, at most, a
single SGL Attributes element.

The next element in the order is reserved for an SGL chain pointer. The SGL Chain Pointer
element provides the size and location of the buffer containing the remainder of the SGL. The
SGL Chain Pointer element is specified later in this section. If the SGL Chain Pointer element
is absent, the SGL is a single sequence of elements with all elements present in the message
frame. When an SGL Chain Pointer is present, it is always the first or second element. An
entire SGL contains, at most, a single SGL Chain Pointer element.

The remainder of the SGL contains zero or more sets of transaction elements. A transaction
set contains any number of elements specifying data buffers and transaction parameters. The
following rules apply:

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-21

• Memory addresses and transaction contexts may appear in a message only as
expressly specified.

• The number of components (buffers and transaction parameter elements) in a
transaction depends on class and function.

• The content and interpretation of data and parameters are specific to class and
function.

• All elements that define a buffer must be consecutive (excluding chaining).
Transaction parameter elements may precede, follow, or intermix with buffers, as
long as elements within each buffer are contiguous.

• A data buffer is one or more segments of memory that either:

 contains the source data to be operated on, or
 stores the results of the operation (reply buffer).

• A buffer that both provides source data and is the reply buffer must be listed twice:
first as a source buffer, and second, as a reply buffer, both in the same transaction
set.

• All messages must use either the single transaction model, where the transaction
context is the first field in the message payload, or the multiple transaction model,
whose first element specifies the transaction context. All subsequent buffers, until a
new transaction context is specified, belong to that transaction.

• The life of a buffer is from the time the request message is generated until a FINAL
reply message, containing that transaction context, is returned.

• Ignore elements may appear anywhere in the SGL.

The SGL starts in the message frame and may continue in a separate physically contiguous
buffer, called the SGL Chain Buffer. Designating the SGL Chain Buffer at the beginning of the
SGL allows the parsing module to set up a DMA request to retrieve the remainder of the SGL
without having to parse through it. While the target retrieves the SGL Chain Buffer, it
processes the SGL elements located in the message itself. When more than one SGL Chain
Buffer is specified, the SGL Chain Pointers must appear in the appropriate order, but need not
be densely packed. In fact, a number of factors determine the optimum placement of the chain
pointers. For this version of the specification, only one SGL Chain Buffer is allowed. This is a
requirement for modules creating or modifying the SGL. Modules parsing the SGL may reject
messages with more than one SGL Chain Buffer specified and must reject those with more SGL
Chain Buffers than it can handle.

3.4.2.2 SGL Element Formats
SGL elements are always a multiple of 32 bits long. Each element conforms to one of the
following formats. These definitions provide the foundation for all SGL elements. The class
definition in Chapter 6 specifies which transaction element types are appropriate and their
order in the SGL.

Intelligent I/O Architecture Specification

3-22 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

SglFlags 0

element payload

size of element payload depends on particular element type
n

Figure 3-13 Compressed Format

The compressed format provides density since there is only one byte of overhead. Buffer
segment descriptors use this format, which achieves the maximum amount of buffer
description in the minimum space. For this format, the element length is different for each
type. The definitions later in this section identify each element type using this format and
provide the respective formulas for determining the element’s length. This is the format used
extensively in version 1.0.

Because determining element length depends on a priori knowledge, future definition of
element types using this format presents an interoperability issue: Drivers cannot determine
the size of unknown elements, and therefore cannot find the next element. The definition of
such an element type requires either locating the element at the end of the list (LE bit set), or
including it only in messages with a higher MessageHeaderVersion in the message header.

All remaining formats expressly include element length as a field allowing new definitions
without severe impact. When a driver encounters an unknown element type, it must ignore it,
skipping to the next element.

31 3 24 23 2 16 15 1 8 7 0 0

SglFlags = x11100xx ElementLength 0

element payload
n

Figure 3-14 Short Element of Specified Length

The short element format is defined for small amounts of information. The ElementLength
field specifies the length of the element in 32-bit words. Therefore, the size of the element may
vary from four to 1020 bytes. An ElementLength value of zero is not allowed.

31 3 24 23 2 16 15 1 8 7 0 0 byte

SglFlags= xx000xxx LongElementLength 0

element payload
n

Figure 3-15 Long Element of Specified Length

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-23

The long element format allows large amounts of information. The LongElementLength field
specifies the length of the element in 32-bit words. A LongElementLength value of zero is not
allowed. Therefore, the size of the element may vary from four to 67,108,860 bytes.

The SglFlags values assigned to this format coincide with Ignore entries defined in version 1.0.
Thus, these elements are simply ignored by drivers implemented using the 1.0 specification.

3.4.2.2.1 SglFlags

Bits 24 through 31 of the first 32-bit word in each SGL element contain the SglFlags field. The
SglFlags field identifies the type of element, defined in Table 3-5. Bit 31 (bit 7 of the SglFlags)
is the Last Element (LE) bit. When the module parsing the SGL reaches an element with this
bit set, it looks for an additional SGL Chain Buffer. If one exists, then parsing resumes from
the beginning of the SGL chain buffer, after parsing the element with the LE bit set. If no
chain buffer exists, then this is the last element in the SGL and parsing is complete.

Table 3-5 SglFlags Field Definition

Intelligent I/O Architecture Specification

3-24 Draft Version 1.5d March 7, 1997

SGL Flags Values

Element Description v1.

0

b7 b6 b5 b4 b3 b2 b1 b0 Element Size

reserved for long format LE x 0 0 0 x x x 4 to 64 Mbytes

Ignore Element ä LE 0 0 0 0 0 0 0 “

Transport (reserved) note1
LE 0 0 0 0 1 0 0 “

Long Transaction Parameters note1
LE 1 0 0 0 0 bc1 bc0 “

Bit Bucket LE eob 0 0 1 0 bc1 bc0 4 to 20 bytes

Immediate Data Segment LE eob 0 0 1 1 bc1 bc0 4 to 16 Mbytes

Simple Address Segment * note2 ä* LE eob 0 1 LA* dir bc1 bc0 8 to 24 bytes

Page List Address Segment * note2 ä* LE eob 1 0 LA* dir bc1 bc0 8 to 128K bytes

Chain Pointer* note2 ä* LE 0 1 1 LA* 0 0 0 8 to 12 bytes

Chain Pointer w/context LE 0 1 1 LA* 0 bc1 bc0 8 to 24 bytes

reserved for short format LE 1 1 1 x x x x 4 to 1020 bytes

Short Transaction Parameters LE 1 1 1 0 0 bc1 bc0 “

SGL Attributes LE 1 1 1 1 1 0 0 “

All other values for SglFlags are reserved for future use and may not appear in a message with

MessageHeaderVersion = 001b.

The 1.0 column identifies elements defined in version 1.0:
note1 This element is an ignore element in version 1.0.
note2 The LA bit was only 0 (system address) in version 1.0.

* = The LA bit must be 0 for 1.0 compatibility.

bc1, bc0 impact element length.

Definitions:

bc1, bc0 = buffer context field size as shown in Table 3-6. A 00b indicates a buffer context is not present. When present,

the Buffer Context field starts at offset 4. The buffer context field may contain multiple fields, the first of which is

reserved for a Transaction Context (see rules below).

dir = identifies the direction for the data buffer:

0 = input buffer (I/O places data in buffer).

1 = output data (I/O reads from the buffer).

eob = end of buffer flag. A 1 indicates end of the buffer and thus the next data element (if any) starts a new buffer.

LA = identifies if the address is an IOP local address (1) or a node address (0).

LE = last element flag. When this bit is set, this is the last element in the sequence, but not necessarily the end of the list.

x = any value.

3.4.2.2.2 Physical Address and Buffer Context fields

Many elements contain a physical address field. For 32-bit addressing, the size of this field is
four bytes, but may increase in future versions that accommodate 64-bit physical addressing.
For this version, the size of address fields is constant. A DDM identified as a 32-bit-only
driver may expect every address to be 32 bits long.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-25

Local addresses (LA bit set) are valid only between DDMs on the same IOP. SGLs generated
by DDMs may include local addresses. When an SGL is sent to a remote DDM, the IRTOS
must convert all local addresses to system addresses. The SGL Attributes element indicates the
presence or absence of local addresses. Therefore, a DDM creating an SGL without local
addresses should include the SGL Attributes element if it sends the message to a remote DDM.
This allows the IRTOS to quickly determine that the SGL does not require repair.

Buffer Context Rules: Many of the elements contain a buffer context field. Its size varies and
it may hold a transaction context and/or class-specific information. The following rules apply:

1. The size of the Buffer Context field depends on the size of Transaction Context field
(TcSize). See Table 3-6. TcSize is an attribute of the SGL and is constrained to either 32
bits or 64 bits. If TcSize is not explicitly specified via an SGL Attributes element, then
it defaults to the context size of the message.

Table 3-6 Buffer Context Field Size

bc1 bc0 TcSize Buffer Context field size (BcSize):
0 0 n/a 0 - Buffer Context field is absent

0 1 32 bits 32 bits (4 bytes)

1 0 32 bits 64 bits (8 bytes)

1 1 32 bits 96 bits (12 bytes)

0 1 64 bits 64 bits (8 bytes)

1 0 64 bits 128 bits (16 bytes)

1 1 64 bits 192 bits (24 bytes)

2. If a transaction parameter element (i.e. short or long transaction parameter) contains a
Buffer Context field, then it is the first element of a transaction, and the Buffer Context
field contains a Transaction Context as its first entry. If the Buffer Context field’s length
exceeds a Transaction Context, then the remainder of the field is class and function
specific. This means that a transaction parameter element does not contain a Buffer
Context fields unless it is the very first element of the transaction.

3. If the first segment of a buffer element (i.e., simple address, page list, immediate data, or
bit bucket) contains a Buffer Context field, it defines the buffer as the first of a
transaction and the Buffer Context field contains a Transaction Context as its first entry.
If the Buffer Context field is larger than a Transaction Context, then the remainder of the
field is class and function specific.

4. If a buffer segment other than its first contains a Buffer Context field, then the Buffer
Context field does not contain a Transaction Context and all information in the Buffer
Context is class and function specific.

5. Naturally, elements that do not contain a Buffer Context field do not contain a
Transaction Context. Thus a transaction context must only appear in a request message
as either the first field of the message payload, or in the first field of the Buffer Context
of the first buffer segment or transaction parameter element of each transaction.

3.4.2.3 SGL Element Definitions
 The details for each element follow, listed in alphabetical order by element name.

Intelligent I/O Architecture Specification

3-26 Draft Version 1.5d March 7, 1997

3.4.2.3.1 Bit Bucket Element (new)

A Bit Bucket element describes a segment of data that does not need to be transferred. Since
there is no need to transfer the data, the target should ignore the transfer. If not, it should
provide a trash buffer close to the transferring adapter to minimize the burden on the system.
The result of any following operation is the same as if the Bit Bucket element were replaced
with a simple address element of the same ByteCount value. The structure for the Bit Bucket
element is shown in Figure 3-16.

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE eob 0 0 1 0 bc1 bc0 ByteCount 0

BufferContext 4

Figure 3-16. Bit Bucket Element Structure

Fields

BufferContext Variable size field as defined above. The size of this field is specified by the
bc1::bc0 bits. See Buffer Context Rules in section 3.4.2.2.1.

ByteCount The size (in bytes) of the data segment to skip or dump.

SglFlags Bit 31 - LE bit;
Bit 30 - End of Buffer. A 1 indicates the last segment of data comprising the
buffer;
Bit 29::26 - a value of 0010b identifies this as a Bit Bucket element;
Bit 25::24 - size of Buffer Context field; see Table 3-6.

The size of this element depends on the size of the BufferContext field, as follows:

element length = BcSize + 4 bytes

3.4.2.3.2 Chain Pointer

 SGL chaining provides a method for including an SGL that does not fit in the message frame.
The chain pointer element describes a buffer containing the next segment of the SGL (SGL
Chain Buffer). Although the chain pointer element appears before the end of the current
segment, the SGL Chain Buffer is actually processed as if it appeared at the end of the current
segment.

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE 0 1 1 LA 0 bc1 bc0 ByteCount 0

BufferContext 4

Physical Address

Figure 3-17. Chain Pointer Structure

Fields

BufferContext Variable size field as defined above. The size of this field is specified by the
bc1::bc0 bits. See Buffer Context rules in section 3.4.2.2.1. When present,

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-27

this field contains the Chain Context. Currently, there is no definition or
requirement for a Chain Context.

ByteCount The size of the buffer in bytes that contains the next portion of the SGL.

PhysicalAddress The address of the first element in the SGL chain buffer. The size of this
field is 32 bits for this version of the specification.

SglFlags Bit 31 - LE bit;
Bit 30::26 -a value of 011x0b identifies this as a Chain Pointer element;
Bit 27 indicates that the address is a system address (0) or an IOP address (1)
Bit 25::24 - size of Buffer Context field, see Table 3-6.

The size of this element depends on the address size (determined by the LA bit) and the size of
the BufferContext field, as follows:

element length = BcSize + AddrSize + 4 bytes,

where AddrSize is the address size and BcSize is described in Table 3-6.

Note: A final reply containing the last transaction context in the message implicitly releases
the SGL chain buffer.

An illustration of a SGL with a chain pointer is shown in Figure 3-18. The last element in the
first sequence has its LE bit set to 1, as does the last element in the extended list.

Chaining is useful when the entire SGL cannot be packed into the message frame. Allowing a
mixture of internal and external lists reduces the latencies on certain data transfer operations,
because the first few addressing elements are available within the message frame. The driver
can operate on them while it fetches the remainder of the list.

A chain list element can be the only element in the initial list. In this case, the entire list is
supplied by the SGL chain buffer.

Example

To address a 1038-byte buffer made up of the three segments shown in Table 3-7, using a
chained addressing mode, the SGL might look like Figure 3-18.

Table 3-7. Three Segments in a Buffer

Segment Size (bytes) Physical Address

1 14 00142038h

2 512 00420100h

3 512 00632100h

Intelligent I/O Architecture Specification

3-28 Draft Version 1.5d March 7, 1997

OSD2130

14 Bytes

0011xxxxb 000010h

00118200h

512 Bytes

00420100h
00142038h

00142038h

512 Bytes

00632100h

1000xxxxb 00000Eh

0000xxxxb 000200h

00420100h

00632100h

1100xxxxb 000200h

{ed. note: change drawing - SglFlags= 00110000, 10010000, 00010000, 11010000}

Figure 3-18. Chain Addressing Mode Example

3.4.2.3.3 Ignore Element

An ignore element contains no valid information. These elements must be skipped when
processing the list and may be deleted from the list as it is transported or copied. The
WordCount in such an element specifies the number of 32-bit words to skip. The minimum is
one, because the count includes the first word. Some uses of this element type are: null SGL,
place holders, and fill. Its structure is shown below.

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE 0 0 0 0 0 0 0 WordCount (32-bit words) 0

additional words to skip

Figure 3-19. Ignore Element

Field

WordCount The number of 32-bit words to skip. The minimum is one, because the count
includes the first word.

3.4.2.3.4 Immediate Data Element

An immediate data element describes a segment of data that is contained in the element. This
element is equivalent to a simple address element that contains the address of the DATA field
in the SGL, except there is no address to change when the SGL is moved or copied. The
structure for the immediate data element is shown in Figure 3-20.

While a pointer to a data buffer is efficient for a large segment of data, the immediate data
element is useful for a small amount of data.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-29

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE eob 0 0 1 1 bc1 bc0 ByteCount 0

BufferContext 4

DATA

n

Figure 3-20. Immediate Data Element Structure

Fields

BufferContext Variable size field as defined above. The size of this field is specified by the
bc1::bc0 bits. See Buffer Context Rules in section 3.4.2.2.1.

ByteCount The size (in bytes) of the DATA. This value does not include the size of the
SglFlags, ByteCount, or BufferContext fields.

DATA The exact number of bytes of data is specified in ByteCount. The next
element starts on the first 32-bit boundary after the last byte of DATA.

SglFlags Bit 31 - LE bit;
Bit 30 - a 1 indicates the last segment of data comprising the buffer;
Bit 29::26 - a value of 0011b identifies this as an immediate data element;
Bit 25::24 - size of Buffer Context field (see Table 3-6).

The size of this element is determined by the ByteCount field and the size of the buffer
Context field, as follows:

element length = ByteCount + BcSize + 4 bytes + pad
Where pad is 0,1,2, or 3 bytes, to make the element length a multiple of four bytes,
and BcSize is described in Table 3-6.

3.4.2.3.5 Long Transaction Parameters Element (new)

The long transaction parameter element conveys class-specific information associated with a
particular data buffer or transaction. The information within the element is as shown in Figure
3-21.

Each class specification determines the content and relevance of such information, the
structure of the Info field, and the location of the element within the SGL. The Info structure is
class and function specific.

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE 1 0 0 0 0 bc1 bc0 LongElementLength 0

BufferContext 4

Info

n

Figure 3-21. Long Transaction Parameters Element Structure

Intelligent I/O Architecture Specification

3-30 Draft Version 1.5d March 7, 1997

Fields

BufferContext Variable size field, as defined above. Its size is specified by the bc1::bc0
bits. See Buffer Context Rules in section 3.4.2.2.1. If this field exists, then it
contains a transaction context.

Info Class-specific structure.

LongElementLength The size (in 32-bit words) of the entire element.

SglFlags Bit 31 - LE bit;
Bit 30:: 26 - a value of 10000b identifies a Long Transaction Parameters
element;
Bit 25::24 - size of Buffer Context field (see Table 3-6)

3.4.2.3.6 Page List Addressing (enhanced)

The page list addressing mode addresses buffers that span multiple pages that are not
contiguous. The first and last pages of a list can contain partial pages of data. That is, the
buffer segment can start anywhere in the first page specified and end anywhere in the last page
specified. The intermediate pages always contain exactly a page size of data. Where the data
starts in the first page is specified by the first physical address in the page list. Where data ends
in the last page is derived by subtracting the amount of data in the first and intermediate pages
from the ByteCount and adding the result to the base address of the last page.

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE eob 1 0 LA dir bc1 bc0 Byte Count 0

BufferContext 4

PhysicalAddress

:

PhysicalAddress n

Figure 3-22. Page List Addressing Mode

Fields

ByteCount The total number of bytes addressed by this element.

BufferContext Variable size field as defined above. The size of this field is specified by the
bc1::bc0 bits. See Buffer Context Rules in section 3.4.2.2.1.

PhysicalAddress
The first PhysicalAddress field contains the address of the first data byte.
Any subsequent PhysicalAddress fields hold the address of pages that make
up the rest of the buffer segment. For a four-kilobyte page size system, the
lower 12 bits would be 0 in all but the first PhysicalAddress. The size of
each PhysicalAddress field is 32 bits for this version of the specification.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-31

SglFlags Bit 31 - LE bit;
Bit 30 - a 1 indicates the last segment of data comprising the buffer;
Bit 29::28 -a value of 10b identifies a Page List element;
Bit 27 indicates either a node address (0) or an IOP address (1) ;
Bit 26: a 0 indicates a reply buffer to be filled by the I/O transaction and a 1
indicates the buffer contains source data.
Bit 25::24 - size of Buffer Context field (see Table 3-6).

The local host establishes the default page size for the node when the host initializes the IOP.
It can be any value from 256 to 16 Mbytes that is an integral power of two.

The size of this element depends on the size of the Buffer Context field, the address size, and
number of the Physical Address fields, as follows.

element length = (NumberOfPages x AddrSize) + BcSize + 4 bytes
Where NumberOfPages is the number of pages frames needed, as described above;
AddrSize is 32 bits for this version; and BcSize is described in Table 3-6.

Example

Suppose that a seven-kilobyte buffer spans three physically non-contiguous four-kilobyte
pages (00142000h, 00234000h, and 00356000h) and starts at address 00142C00h. To specify
the buffer using a page list addressing mode, the SGL should look like Figure 3-23.

OSD2129

1K Bytes

1110xxxxb 001C00h

00142C00h 4K Bytes

00234000h

00356000h

2K Bytes
00356000h

00142C00h

00234000h

{ed. note - change picture - SglFlags= 11100000 }

Figure 3-23. Page List Addressing Mode Example

3.4.2.3.7 SGL Attributes Element (new)

An SGL attributes element follows the structure in Figure 3-24. If this element is present, it
must be the first in the SGL (other than an ignored element). This element establishes the
address size, context size, and page frame size for the entire list. When this element is not

Intelligent I/O Architecture Specification

3-32 Draft Version 1.5d March 7, 1997

present, the DDM uses the default values for those parameters. A DDM may reject messages
with other than 32-bit addresses.

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE 1 1 1 1 1 0 0 ElementLength SglAttributeFlags 0

PageFrameSize 4

Additional parameters defined at a later date, ignored by this version 8

Figure 3-24. SGL Attributes Element

Field

ElementLength Specifies the number of 32-bit words in the entire element. The minimum is
one, because the count includes the first word.

PageFrameSize Specifies the page frame size, in bytes, for this SGL. This value overrides
the default value established for the node.

SglAttributeFlags Bit-specific flags identifying the attributes of this SGL.

Bits 15::11 reserved.

Bit 10 - Bit bucket hint - When set, this SGL contains no Bit Bucket
elements.

Bit 9 - Immediate data hint - When set, this SGL contains no Immediate Data
elements.

Bit 8 - Local Address hint - When set, this SGL contains no local addresses.

Bits 7::3 reserved

Bit 2 - Size for Transaction Context fields, 0=32 bits, 1=64 bits.

Bit 1 - reserved.

Bit 0 - Size for Local Address fields, 0=32 bits, 1=reserved.

SglFlags Identifies the SGL element:
Bit 31 - LE bit;
Bit 30::24 - a value of 1111100b identifies this as a SglAttribute element

3.4.2.3.8 Short Transaction Parameters Element (new)

The short transaction parameter element conveys class-specific information associated with a
particular transaction that does not involve a memory reference. The information is contained
within the element, as in Figure 3-25. This element is more efficient than the Long
Transaction Parameters element for conveying small blocks of information, since it has
only two bytes of overhead.

Each class specification determines the content and relevance of such information, the
structure of the Info field, and the location of the element within the SGL. The Info structure is
class and function specific.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-33

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE 1 1 1 0 0 bc1 bc0 ElementLength ClassFields 0

BufferContext 4

Info

n

Figure 3-25. Short Transaction Parameters Structure

Fields

BufferContext Variable size field as defined above. The size of this field is specified by the
bc1::bc0 bits. See Buffer Context Rules in section 3.4.2.2.1.

ClassFields Reserved for class-specific definition.

ElementLength The size (in 32-bit words) of the element.

Info The structure of the Info field is defined by each class by function and
padded to fill the element.

SglFlags Bit 31 - LE bit
Bit 30::26 - a value of 11100b identifies a Short Transaction Parameters
element
Bit 25::24 - size of Buffer Context field (see Table 3-6)

3.4.2.3.9 Simple Addressing (enhanced)

The simple addressing mode shown below is for a single buffer segment that is contiguous in
physical memory. It is also useful for quickly converting existing address/count type scatter-
gather lists into an I2O addressing scheme, with minimal modifications.

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE eob 0 1 LA dir bc1 bc0 ByteCount 0

BufferContext 4

PhysicalAddress

Figure 3-26. Simple Addressing Mode

Fields

BufferContext Variable size field, as defined above. The size of this field is specified by the
bc1::bc0 bits. See Buffer Context Rules in section 3.4.2.2.1.

ByteCount The total number of bytes addressed by this element.

PhysicalAddress The address of the first byte of data in this buffer segment. Its size is 32 bits
for this version of the specification.

SglFlags Bit 31 - LE bit
Bit 30 - a 1 indicates this is the last segment of data comprising the buffer
Bit 29::28 -a value of 01b identifies this as a Simple Address element
Bit 27 indicates that the address is a node address (0) or an IOP address (1)
Bit 26: a 0 indicates this is an empty buffer to be filled by the I/O transaction and a 1 indicates

Intelligent I/O Architecture Specification

3-34 Draft Version 1.5d March 7, 1997

it is a full buffer to be consumed by the I/O transaction.
Bit 25::24 - size of Buffer Context field (see Table 3-6)

The size of this element depends on the sizes of the Buffer Context and the Physical
Address fields, as follows.

element length = AddrSize + BcSize + 4 bytes
Where AddrSize is 32 bits and BcSize is described in Table 3-6.

Example 1

To address a physically-contiguous nine-kilobyte buffer that starts at address 00142038h,
using simple addressing mode, the address list should look like Figure 3-27.

OSD2127

9K Bytes

00142038H

1101xxxxb 002400h

00142038h

{ed. note - change picture - SglFlags= 11010000}

Figure 3-27. Simple Addressing Mode Example 1

Example 2

Suppose that the nine-kilobyte buffer is not physically contiguous, but contains a one-kilobyte
section that starts at address 00142038h, and an eight-kilobyte section that starts at address
00265000h. To address the buffer using simple addressing mode, the address list should look
like Figure 3-28.

00142038H

OSD2128

1K Bytes

0001xxxxb 000400h

00142038h

8K Bytes

00256000H
1101xxxxb 002000h

00256000h

{ed. note - change picture - SglFlags= 00010000, 11010000}

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-35

Figure 3-28. Simple Addressing Mode Example 2

3.4.2.3.10 Transport Detail Element (new)

The transport detail element is reserved for embedding transport-specific information in the
SGL. DDMs always ignore such elements. The code point is reserved so that the transport
layer can use this element type without conflict with future element definitions. The format of
the element is shown in Figure 3-29.

31 3 24 23 2 16 15 1 8 7 0 0 Byte
LE 0 0 0 0 1 0 0 LongElementLength 0

Info

n

Figure 3-29. Transport Element Structure

Fields

Info Transport-specific structure.

LongElementLength The size (in 32-bit words) of the element.

SglFlags Bit 31 - LE bit;
Bit 30::24 - a value of 0000100 identifies a Transport Detail element

3.4.3 Buffer Management Styles
Every buffer is associated with a transaction context. The transaction context correlates zero,
one, or a set of buffers with a transaction reference. When the initiator specifies a buffer in the
SGL, its access privilege is temporarily passed to the target module. When the target module
finishes the transaction, it supplies the transaction context with its appropriate status in a reply
to the initiator. This reply indicates the conclusion of the transaction and thus returns
ownership of the buffer.

In other words, generating each request conveys access rights to the target for each buffer
listed. When the target concludes the transaction, it releases those rights by specifying the
transaction context in a final reply (reply message with the FINAL bit set). The life of a
transaction context (and thus the temporary ownership of the buffers) is from the time the
request message is generated until the associated transaction context value is returned in a final
reply. During this time, the target has access rights to those data buffers. After the final reply,
the target has no access rights to those buffers.

This specification provides for intermediate status reports. In this case, the target conveys the
transaction context in a reply, but the FINAL bit is not set. The originator should understand
that an intermediate status report does not indicate the amount of data available in a reply
buffer. In fact, where remote transports are involved, the target may operate on an
intermediate buffer and the transport does not transfer the data until the target sends the final
reply.

Intelligent I/O Architecture Specification

3-36 Draft Version 1.5d March 7, 1997

For remote transports between nodes, the transport mechanism tracks buffer assignments so it
can set up the necessary mapping or allow shipping data between the nodes. The transport
layer needs to know when it can release the mappings or when it must ship the results back.
The transport accomplishes this by tracking the transaction context. Therefore, the context
must appear only in known locations in both requests and replies.

3.4.3.1 Request Messages:
Two styles exist for specifying the transaction context in requests: the single transaction and
the multiple transactions request models. Message class definitions in Chapter 6 determine the
style for a particular message type.

The single transaction request model provides a single transaction context in a well-known
location in the message payload. For this style, the transaction context is the first field in the
message payload.

The multiple transactions request model supplies a number of transaction context values in the
SGL; that is, one transaction context for each set of elements comprising a transaction.

The originator indicates the transaction style, the size of the transaction context field, and the
location of the SGL in the message header.

3.4.3.2 Reply Messages
Two styles are also available for specifying the transaction context in replies: the single
transaction reply model and the multiple transaction reply model. The style for a particular
reply does not necessarily depend on the style of the request. Message class definitions in
Chapter 6 determine the reply style for a particular message type.

The single transaction reply model provides a single transaction context in a well-known
location in the message payload. For this style, the transaction context must be the first field
in the message payload. The multiple transaction reply model provides a list of transaction
contexts (the Transaction Reply List or TRL). The TRL includes transaction details (status) for
each transaction context.

The multiple transaction reply model provides a TrlControlWord in a well-known location in
the message payload. For this style, the TrlControlWord must be the first field in the message
payload (where the TransactionContext is normally located in single transaction replies).

The target indicates the transaction style, the size of the transaction context field, and the
location of the TRL in the message header of its reply.

3.4.3.3 Transaction Reply Lists (TRLs)
The general structure of a TRL (Figure 3-30) is a list of TransactionContext values with their
associated details. The details can be in one of three formats:

1. single fixed length element

2. single variable length element

3. multiple fixed length elements.

The TrlControlWord indicates the particular format, as shown in Figure 3-31.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-37

TransactionContext

TransactionDetails

TransactionContext

TransactionDetails

TransactionContext

TransactionDetails

Figure 3-30 Transaction Reply List General Structure

31 3 24 23 2 16 15 1 8 7 0 0

TrlFlags reserved TrlElementSize TrlCount

Figure 3-31. TRL Control Word

Fields

TrlCount Total number of transactions in the TRL.

TrlElementSize Size of each element (number of 32-bit words). For variable length
elements, this value is zero.

TrlFlags Bits 31:30 identify the TRL transaction detail format as follows:

00 = Single fixed-length element (Figure 3-32)

01 = Single variable-length element (Figure 3-33)

10 = Multiple fixed-length elements (Figure 3-34)

11 = reserved

31 3 24 23 2 16 15 1 8 7 0 0

0 0 TrlElement Size=m TrlCount=n

TRL Control Word

31 3 24 23 2 16 15 1 8 7 0 0

TransactionContext 1

TransactionDetailElement (mx4 bytes)

TransactionContext 2

TransactionDetailElement (mx4 bytes)

TransactionContext 3

TransactionDetailElement (mx4 bytes)

TransactionContext n

TransactionDetailElement (mx4 bytes)

Figure 3-32. Single Fixed Length Element

Intelligent I/O Architecture Specification

3-38 Draft Version 1.5d March 7, 1997

When TrlElementSize=0 in a single fixed-length TRL, the list simply contains
TransactionContext values. Otherwise, each TransactionContext is followed by exactly one
TransactionDetailElement that is exactly the length specified in TrlElementSize.

31 3 24 23 2 16 15 1 8 7 0 0

0 1 TrlElementSize=0 TrlCount=n

TRL Control Word

31 3 24 23 2 16 15 1 8 7 0 0

TransactionContext 1

Size1

TransactionDetailElement (4 x Size1-1) bytes

TransactionContext 2

Size2

TransactionDetailElement (4 x Size2-1) bytes

TransactionContext n

Sizen

TransactionDetailElement (4 x Sizen -1) bytes

Figure 3-33. Single Variable Length Element

For variable length TRLs, the size of the detail element (in 32-bit words) is indicated in the
first byte of the transaction details. This value does not include the size of the
TransactionContext, but does include the word that contains the size. Thus the value must not
be zero. This allows a TrlElementSize from four to 1020 bytes.

31 3 24 23 2 16 15 1 8 7 0 0

1 0 x x x x x x Element Size=m TrlCount=n

TRL Control Word

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-39

TransactionContext 1

0 1

TransactionDetailElement (mx4 bytes)

TransactionContext 1

0 0

TransactionDetailElement (mx4 bytes)

0 0

TransactionDetailElement (mx4 bytes)

0 0

TransactionDetailElement (mx4 bytes)

0 1

transaction content details (mx4 bytes)

TransactionContext 2

0 x

transaction content details (mx4 bytes)

TransactionContext n

0 0

transaction content details (mx4 bytes)

1 1

transaction detail element (mx4 bytes)

Figure 3-34. Multiple Fixed Length Elements

For a multiple fixed-length detail TRL, one or more fixed-length detail elements reside after
each TransactionContext. Bits 30 and 31 of the first word of each detail element contain the
flags that indicate whether the element is the last for the particular transaction context (bit 30)
and whether this is the last element of the last context in the list (bit 31). The remainder of the
element is reserved for class-specific definition. Each transaction element is the exact size
specified in the TrlElementSize field, in the TrlControlWord.

3.4.4 Serial Numbers
For an I/O device to have redundant paths or be used in redundant systems, serial numbers are
necessary to identify devices that represent the same entity. Each class defines a unique
method for determining and presenting a device’s serial number. The serial number reported
for a device must be unique among devices of the same class and reported identically by all
drivers that control that device. When a device such as a disk drive contains a removable
medium, the serial number must be for the drive and not the medium.

The purpose of this requirement is not to ban devices with no serial number mechanisms, but
rather to emphasize the need for such mechanisms. This specification does allow indicating

Intelligent I/O Architecture Specification

3-40 Draft Version 1.5d March 7, 1997

that the serial number is unknown. The system integrator designing a system with redundant
paths should verify that all devices residing on redundant paths report a valid serial number.
The rapid growth of redundant paths and systems should encourage the hardware vendor to
provide serial number capability.

31 3 24 23 2 16 15 1 8 7 0 0

SerialNumber SNFormat SNLen 0

(SNLen Bytes) 4

n

Figure 3-35. Format for Reporting Serial Number

The serial number is a variable-size field, whose first byte (SNLen) indicates the total bytes of
the serial number that follows. For devices that do not report a serial number or if the serial
number is unknown, the length field must be set to 0.

Immediately following the SNLen field is a SNFormat field. This one-byte field helps high-
level management software determine how to display the serial number, as in the following
table.

Table 3-8. Serial Number Formats

SNFormat Description

0 Unknown

1 BINARY

2 ASCII

3 UNICODE (ISO/IEC -10646)

4 LAN MAC Address

5 WAN Access Address

When reporting LAN MAC Addresses as Serial Numbers, the following rules apply
SN_Len The serial number of a LAN adapter consists of a 48-bit universally-administered

MAC address registered to the device. Therefore, this value is always 06h.

SN_Format The serial number is a LAN MAC Address. Therefore, this value is always 04h.

Serial_Number The serial number of a LAN adapter consists of a 48-bit universally administered
MAC address registered to the device, specified in canonical format (i.e., the first
bit of the address as transmitted on the wire is in the low-order bit of the first byte
of this field). Note that this requires conversion of the address for big endian
media such as Token Ring and FDDI.

3.4.5 Logical Configuration Table Entries
Each entry in an IOP’s logical configuration table contains a SubClassInfo word. The structure
of this word is defined by each class and identifies the major capabilities of the device. When
the DDM registers a device, it provides the information for the LCT entry such as the device’s
ClassID and SubClassInfo. The IOP publishes this information in its logical configuration

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-41

table, and the OSM uses this information when it determines which devices to query. See
Chapter 4 for the structure of the table. LCT entries are defined in Figure 3-36.

31 3 24 23 2 16 15 1 8 7 0 0

reserved LocalTID TableEntrySize = 9 0

ChangeIndicator 4

DeviceFlags 8

ClassID 12

SubClassInfo 16

BiosInfo ParentTID UserTID 20

IdentityTag 24

28

EventCapabilities 32

Figure 3-36. LCT Entry Structure

Fields

BiosInfo Identifier used to correlate a device with any connections the BIOS
creates. This value is set by the BIOS via the ExecBiosInfoSet message.
As an example, when a BIOS extension hooks INT13 for a storage
device and is assigned drive ID 81h, this field is set to 81h to notify the
OS not to call BIOS for drive ID 81h. The default value 0FFh indicates
that the device is not the subject of a BIOS function call.

ChangeIndicator Value of CurrentChangeIndicator last time this entry was updated.

ClassID Message class of this device. Messages sent to the LocalTID must
conform to this class definition. See Chapter 6 for the definition of
ClassID structure.

DeviceFlags Bit-specific field that identifies the device’s characteristics and
capabilities.

Bit 0: Set to indicate that the device requests a configuration
dialogue.

Bit 1: Set if the device can concurrently support more than one user.

Bit 4: Set if Peer Service Class is disabled (determined when the
device is claimed by a primary service user). Peer service class
is simply the ability of other DDMs to send base class messages
to the device.

Bit 5: Set if the Management Service Class is disabled (determined
when the device is claimed by a primary service user).

All other bits are reserved.

EventCapabilities Each bit of this field corresponds to the same bit in the EventMask field
of the UtilEventRegister message. A value of 1 indicates that the DDM
can generate that type of event.

Intelligent I/O Architecture Specification

3-42 Draft Version 1.5d March 7, 1997

IdentityTag Part of serial number that uniquely identifies a device. This field is
always eight bytes long and does not include the SNLen or SNFormat
fields. If the serial number is fewer than 64 bits, it is pre-padded with
zeros. If the serial number exceeds eight bytes, it is truncated to the
lowest order eight bytes (those that provide unique identity). This field
is used to match system configuration with the I/O device. If no serial
number is known, then this field contains all zeros.

LocalTID Local target ID assigned by IOP to this device.

ParentTID TID of the device that created, registered, and manages this I/O device.

SubClassInfo This field is reserved for definition by each message class. Refer to the
particular class section in Chapter 6. Unless specified otherwise, this
field shall be the value returned in Parameter Group 0000h, Field 0, pre-
padded with zeros.

TableEntrySize Number of 32-bit words consumed by this entry. This version of the
specification defines 36 bytes, and thus a value of 9. Future versions of
this specification may add fields to the end of this structure and, thus,
will have values greater than nine.

UserTID TID of the primary service user of this device. Established by
connection setup (UtilClaim), it indicates the OSM or ISM to which this
resource is dedicated. The value of 0FFFh indicates that the resource is
not allocated. A value other than FFFh indicates that the device is
reserved.

3.4.6 Common Structures for Adapters
Both the shell and core specifications identify adapters by their bus type and location. The
following definitions identify those attributes throughout this specification.

3.4.6.1 Bus Type

Table 3-9. Bus Type Code Assignments

Code point Bus Type

00h Local bus

01h ISA bus

02h EISA bus

03h MCA bus

04h PCI bus

05h PCMCIA bus

06h NuBus

07h CardBus

80h Other

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-43

3.4.6.2 Physical Location
PhysicalLocation Eight bytes of data that identify the physical adapter or function.

Format of this field depends on BusType, and those variations are
defined in the following figures.

31 3 24 23 2 16 15 1 8 7 0 0

reserved PciBusNumber PciDeviceNumber PciFunctionNumber 0

PciDeviceID PciVendorID 4

Figure 3-37. Structure of Physical Location for a PCI Bus Adapter

Fields

PciBusNumber Identifies the bus by its assigned PCI identifier. PCI allows a
maximum of 256 PCI buses within a single PCI system.

PciDeviceID DeviceID field from PCI Configuration Header.

PciDeviceNumber Identifies the specific PCI device on the bus. PCI allows a
maximum of 32 PCI devices.

PciFunctionNumber Identifies a particular function of the PCI device. PCI provides for 8
functions (0-7). This is a bit-specific field. Bit 0 corresponds to
function 0 and bit 7 corresponds to function 7. The value 0FFh
designates all functions of the PCI device. Note that each function of
a PCI device meets the requirements of an adapter. This version of
the specification requires that all functions within a particular device
be unassigned, or assigned to the same IOP (but not necessarily
assigned to the same DDM).

PciVendorID VendorID field from PCI Configuration Header. A value of 0FFh
indicates that no PCI device is present.

The PhysicalLocation format for Local bus, ISA bus, EISA bus, MCA bus, and Other Bus are
shown below.

31 3 24 23 2 16 15 1 8 7 0 0

reserved reserved BaseIOPort 0

BaseMemoryAddress 4

Figure 3-38. Structure of Physical Location for a Local Bus Adapter

31 3 24 23 2 16 15 1 8 7 0 0

reserved CSN BaseIOPort 0

BaseMemoryAddress 4

Figure 3-39. Structure of Physical Location for an ISA Bus Adapter

Intelligent I/O Architecture Specification

3-44 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

EisaSlotNumber reserved BaseIOPort 0

BaseMemoryAddress 4

Figure 3-40. Structure of Physical Location for an EISA Bus Adapter

31 3 24 23 2 16 15 1 8 7 0 0

McaSlotNumber reserved BaseIOPort 0

BaseMemoryAddress 4

Figure 3-41. Structure of Physical Location for an MCA Bus Adapter

31 3 24 23 2 16 15 1 8 7 0 0

reserved reserved BaseIOPort 0

BaseMemoryAddress 4

Figure 3-42. Structure of Physical Location for Other Bus

Fields

BaseIOPort Identifies the specific adapter by its base I/O port address. A value
of 0000h means not used, unknown, or otherwise not applicable.

BaseMemoryAddress Identifies the specific adapter by its base memory address. A value
of 0000-0000h means not used, unknown, or otherwise not
applicable.

EisaSlotNumber Identifies the adapter by its EISA card slot. A value of 0FFh means
not used, unknown, or otherwise not applicable.

McaSlotNumber Identifies the adapter by its MCA card slot. A value of 0FFh means
not used, unknown, or otherwise not applicable.

PCMCIA adapter: PhysicalLocation format is not defined.

NuBus adapter: PhysicalLocation format is not defined.

CardBus adapter: PhysicalLocation format is not defined.

3.4.7 Managing I2O Devices

3.4.7.1 Device Management Model
The I2O administration facility provides mechanisms for accessing collections of managed
objects called parameter groups. A parameter group may contain configuration parameters,
statistical information, control variables, and so on. Objects in groups may be read-write or
read-only.

Each parameter group (identified by a GroupNumber) contains columns of data objects known
as fields and, optionally, multiple rows of some replication of those fields. There are two
distinct types of groups: scalar groups, containing only a single row, and table groups,
containing multiple rows. In a table group, rows are selected by the value of the key field,

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-45

which is defined as the first field of the group. Thus for a table group, a [GroupNumber,
FieldIdx, KeyValue] triple identifies a single parameter. For a scalar group, a [GroupNumber,
FieldIdx] pair identifies a single parameter.

GroupNumbers are 16-bit integer values allocated by category with ranges allocated to generic
groups (which pertain to all devices), class groups (which pertain to all devices of a particular
class), and private groups (available for vendor- or driver-specific assignment). The following
table identifies categories of parameters by ranges of their group IDs.

Table 3-10: Parameter GroupNumber Ranges

GroupNumber Category

0000 to 0FFF Class-Specific Parameter Groups

1000 to 7FFF reserved

8000 to 8FFF Private Parameter Groups

9000 to EFFF reserved

F000 to FFFF Generic Parameter Groups

A FieldIdx is a 16-bit integer derived from the sequential index of the field’s position in the
row, starting with 0. Negative values for FieldIdx have special meaning, thus a parameter
group may contain up to 7FFFh (32767) fields. The maximum size of a field is 255 bytes.

For table groups, the first field (FieldIdx=0) is the key field used to select or specify a
particular row. This value must uniquely identify the row in a way that does not change. For
example, the key field may not be the row index if rows can be added or deleted from the table
(except for additions to its end). Such a KeyValue for a particular row would change arbitrarily.
A table group may contain up to FFFFh (65535) rows.

FieldIdx = 0 FieldIdx = 1 FieldIdx = 2 FieldIdx = n

Parameter0 Parameter1 Parameter2 … Parametern

Figure 3-43: Model of a Scalar Group

(Key field)

FieldIdx = 0 FieldIdx = 1 FieldIdx = 2 FieldIdx = n

KeyValue0 Parameter1(KeyValue0) Parameter2(KeyValue0) … Parametern(KeyValue0)

KeyValue1 Parameter1(KeyValue1) Parameter2(KeyValue1) … Parametern(KeyValue1)

KeyValue2 Parameter1(KeyValue2) Parameter2(KeyValue2) … Parametern(KeyValue2)

:
:

:
:

:
:

:
:

:
:

KeyValuem Parameter1(KeyValuem) Parameter2(KeyValuem) … Parametern(KeyValuem)

Each row provides an identical set of parameters for a different KeyValue, with each parameter’s value
depending on the KeyValue.

Figure 3-44: Model of a Table Group

Intelligent I/O Architecture Specification

3-46 Draft Version 1.5d March 7, 1997

3.4.7.2 Basic Parameter Group Access
Chapter 6 provides the following utility messages for accessing the managed objects of a
device by its defined parameter groups:

Table 3-11: Parameter Access Messages

Message Name Description

UtilParamsGet Get field sizes, read parameters or rows of parameters.

UtilParamsSet Modify parameters, add or delete rows.

Each message supports a number of operations on a device’s parameter tables. The following
sections describe in detail those operations. These messages actually specify an operations
list. The list describes a sequence of operations, each of which is specific to a particular
parameter group. Each operation is described in an OperationBlock.

The device parses through the Operations List performing the operations in the order listed. It
creates a Results List that is copied to the Result Buffer. Under normal operation, one
ResultBlock is listed in the Results List for each operation in the Operations List; the
ResultBlocks appear in the same order as their corresponding OperationBlocks. The only
exception to this is when the Result Buffer provided is too small for each operation to report a
result (see section 3.4.7.5, Error Reporting).

Operations List Results List

31 3 2423 2 1615 1 87 0 0 31 3 2423 2 1615 1 87 0 0

reserved OperationCount=n reserved ResultCount=n
OperationBlock 1 ResultBlock 1

(variable size) (variable size)
ResultBlock 2
 (variable size)

OperationBlock 2
(variable size)

OperationBlock n
 (variable size)

ResultBlock n
 (variable size)

Figure 3-45: Operations List And Results List Structures

The size of each OperationBlock depends on the type of operation, as well as the number and
size of the fields it involves. The size of each ResultBlock depends on the type of operation, its
status, and the number and size of the fields it involves. Each OperationBlock and ResultBlock
is padded to end on a four-byte boundary.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-47

3.4.7.3 Reading Device Parameters
The request consists of one or more query operations described in Table 3-12.

Table 3-12: Parameter Read Operations

Operation

Operands/

Arguments ResultBlock Description

FIELD_GET GroupNumber

FieldCount

ListOfFieldIdx*

BlockSize,

BlockStatus

ListOfValues*

ErrorInfo

Returns values of selected fields in a scalar group

LIST_GET GroupNumber

FieldCount

ListOfFieldIdx*

KeyCount

ListOfKeyValues*

BlockSize,

BlockStatus

ListOfValues*

ErrorInfo

Returns values of selected fields of selected rows in a

table group

MORE_GET GroupNumber

FieldCount

ListOfFieldIdx*

PreviousKey

BlockSize,

BlockStatus

RowCount

moreFlag

ListOfValues*

ErrorInfo

Returns values of selected fields of all rows following a

specified row in a table group

SIZE_GET GroupNumber

FieldCount

ListOfFieldIdx*

BlockSize,

BlockStatus

ListOfFieldSizes*

ErrorInfo

Returns size in bytes of selected fields

TABLE_GET GroupNumber

FieldCount

ListOfFieldIdx*

BlockSize,

BlockStatus

RowCount

moreFlag

ListOfValues*

ErrorInfo

Returns values of selected fields of all rows in a table

group

3.4.7.3.1 Features common to all READ operations

All read operations take as a minimum a GroupNumber and a field list as arguments. The
GroupNumber identifies the parameter group on which the operation is performed. The field
list is a FieldCount followed by a list of FieldIdx values. It indicates which fields in the group
the target returns in the results buffer.

The FieldCount normally specifies how many 16-bit FieldIdx values follow, but a FieldCount of
-1 (FFFFh) returns all fields in the group. In this case, no FieldIdx values are specified after the
FieldCount.

The FieldIdx arguments normally specify the index of fields and thus are in the range of 0000h
to 7FFFh. A negative value (FFFFh to 8000h) has special meaning; negative values other than
8000h cause byte padding to be inserted into the result at a specified point. This feature helps
ensure that data objects in the result are correctly aligned, for easy parsing. For example, a

Intelligent I/O Architecture Specification

3-48 Draft Version 1.5d March 7, 1997

FieldIdx value of -3 (FFFDh) causes three bytes of padding to be inserted into the result. This
is useful for aligning a 32-bit field after reading an eight-bit field.

A FieldIdx value of 8000h is a placeholder in the request, and it places no bytes into the result.
This value is otherwise ignored by the target. This value offers limited use with read
operations, but is useful in write operations.

All operations return a ResultBlock, containing a BlockStatus field. Under normal operation,
this value is zero and the Error Information field is null. If an error occurs during an operation,
error information is appended to the ResultBlock and the ErrorInfoSize is set to reflect its size.
Zero or more bytes of padding may appear at the end of the Error Information fields. Section
3.4.7.5, Error Reporting, provides more information on error codes and the Error Information
field.

All read operations are executed by: Operations on multiple rows (such as LIST_GET) first
complete all actions on the first row specified, then the actions on the next row, and so on. This
becomes significant when an error occurs, to determine how far an operation progressed before
the error.

Some operations on tables allow selecting the rows. For these cases, a key list is supplied. The
key list is a KeyCount followed by KeyValues. Each KeyValue identifies the rows.

Each operation returns a ResultBlock, as shown in Figure 3-46.

31 3 24 23 2 16 15 1 8 7 0 0 offset
ErrorInfoSize BlockStatus BlockSize 0

OperationResults

4

pad

ErrorInformation (Zero or more bytes of error information dependent on BlockStatus)

Figure 3-46. ResultBlock Template for Read Operations

Fields

BlockSize Specifies the size of this ResultBlock in number of 32-bit words.
This includes BlockSize, BlockStatus, Operation Results, Pad, and
Error Information fields. The value zero means the size exceeds the
256K byte maximum limit of the BlockSize value.

BlockStatus Indicates the status of the operation as specified in Table 3-14.

ErrorInformation Contains zero or more bytes of error information on the operation, as
in Figure 3-47. Depending on the error, some fields of the Error
Information Template are not included in the Error Information
field.

ErrorInfoSize Specifies the size of the Error Information field in number of 32-bit
words. A zero means there is no error information.

OperationResults Contains the results of the operation.

Pad 0, 1, 2, or 3 bytes of padding that make the block end on a 32-bit
boundary. The value of pad bytes is undefined.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-49

31 3 24 23 2 16 15 1 8 7 0 0 offset
GroupNumber OperationCode 0

NumberKeys AdditionalStatus FieldIdx 2

ListOfKeyValues (variable size, variable count)

pad (variable size)

Figure 3-47. Error Information Template

Fields

AdditionalStatus reserved

FieldIdx FieldIdx of the field generating the error.

GroupNumber GroupNumber copied from the Operations List for this operation.

ListOfKeyValues List of key values that generated this error. The subset of the
KeyValues in the Operations List

NumberKeys Number of KeyValues listed in this error report. A value of zero
means that no KeyValues are specified.

OperationCode Operation code for this operation, copied from the Operations List.

Pad Zero or more bytes that make the Error Information field end on a
32-bit boundary. The value of a pad byte is undefined.

3.4.7.3.2 FIELD_GET Operation

The FIELD_GET operation returns the values of selected fields in a scalar group. It is an error
to invoke this operation on a table group. The structure of the FIELD_GET operation is shown
below:

For Specific Fields For All Fields

16 1 8 7 0 0 offset 16 1 8 7 0 0 offset

Operation = FIELD_GET 0 Operation = FIELD_GET 0

GroupNumber 2 GroupNumber 2

FieldCount = n 4 FieldCount = -1 4

FieldIdx 1 6 Pad 6

FieldIdx 2 8

FieldIdx n 4+2n

Pad (if necessary)

Figure 3-48: FIELD_GET Operation Block

The GET VALUE operation consists of a GroupNumber followed by a field list. The field list
contains a FieldCount and zero or more FieldIdx values.

Intelligent I/O Architecture Specification

3-50 Draft Version 1.5d March 7, 1997

Field values in the result are returned sequentially in the same order as their indices appeared
in the OperationBlock. If the Result Buffer is too small to hold the output from a FIELD_GET
operation, a PARAMS_STATUS_BUFFER_FULL error is returned. For a full description of
how errors are reported, see section 3.4.7.5, Error Reporting.

31 3 24 23 2 16 15 1 8 7 0 0 offset
ErrorInfoSize BlockStatus BlockSize 0

ListOfValues

List for field values in the order specified in the request block

4

pad (as necessary)

ErrorInformation (Zero or more bytes of error information dependent on BlockStatus)

Figure 3-49. FIELD_GET Operation ResultBlock

3.4.7.3.3 LIST_GET Operation

The LIST_GET operation returns the values of selected fields from selected rows in a table
group. It is an error to invoke this operation on a scalar group. The structure of the LIST_GET
OperationBlock is shown in the following figure:

For Specific Fields For All Fields

16 1 8 7 0 0 offset 16 1 8 7 0 0 offset

Operation = LIST_GET 0 Operation = LIST_GET 0

GroupNumber 2 GroupNumber 2

FieldCount = n 4 FieldCount = -1 4

FieldIdx 1 6 KeyCount = m 6

FieldIdx 2 8 KeyValue 1 8

(size dependent on Key field)

FieldIdx n 4+2n KeyValue 2

KeyCount = m 4+2n+2 (size dependent on Key field)

KeyValue 1
(size dependent on Key field)

KeyValue 2
(size dependent on Key field)

KeyValue m
(size dependent on Key field)

Pad (as necessary)

KeyValue m
(size dependent on Key field)

Pad (as necessary)

Figure 3-50. LIST_GET Operation Block

KeyCount = number of KeyValue fields that follow.
Note that the size of the KeyValue field varies by group.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-51

The key values passed in the OperationBlock specifies the rows for which the target returns the
specified field values. Field values are listed in row-major order: The specified field values for
the first specified row are listed first, followed by field values for the next row, and so on.

If the result buffer is too small to hold the output from a LIST_GET operation, a
PARAMS_STATUS_BUFFER_FULL error is returned. For a full description of how errors are
reported, see section 3.4.7.5, Error Reporting.

31 3 24 23 2 16 15 1 8 7 0 0 offset
ErrorInfoSize BlockStatus BlockSize 0

ListOfValues

List for field values in the order specified for the first row specified

4

ListOfValues

List for field values in the order specified for the 2nd row specified

ListOfValues

List for field values in the order specified for the last row specified

pad (as necessary)

ErrorInformation (Zero or more bytes of error information dependent on BlockStatus)

Figure 3-51. LIST_GET Operation ResultBlock

3.4.7.3.4 MORE_GET Operation

The MORE_GET operation returns the values of selected fields from all rows in a table group,
starting immediately after the row specified by the PreviousKey field. Use this command
following a TABLE_GET operation to fetch rows from a table that is too large to read in a
single operation.

It is an error to invoke this operation on a scalar group. The OperationBlock for the
MORE_GET operation is shown below:

Intelligent I/O Architecture Specification

3-52 Draft Version 1.5d March 7, 1997

For Specific Fields For All Fields

16 1 8 7 0 0 offset 16 1 8 7 0 0 offset

Operation = MORE_GET 0 Operation = MORE_GET 0

GroupNumber 2 GroupNumber 2

FieldCount = n 4 FieldCount = -1 4

FieldIdx 1 6 PreviousKey

FieldIdx 2 8 (size varies by Key field)

Pad

FieldIdx n 4+2n

PreviousKey
(size varies by Key field)

6+2n

Pad

Figure 3-52. MORE_GET Operation Block

Note that the size of the PreviousKey field varies depending on the group.

The structure of the ResultBlock is the same as for the TABLE_GET operation in Figure 3-56.
The RowCount value indicates how many complete rows of field values were returned. When
all remaining rows of the table are returned, the MoreFlag is set to zero. Otherwise, it is set to a
non-zero value. The remaining rows of the table may be fetched using additional MORE_GET
operations.

Field values are listed in row-major order. The specified field values for the first row are first,
followed by field values for the second row, and so on.

For a full description of how errors are reported, see section 3.4.7.5, Error Reporting.

3.4.7.3.5 SIZE_GET Operation

The SIZE_GET operation returns the size in bytes of selected fields in a group. This permits
discovery field sizes at run-time by generic clients without a priori knowledge. However, in
general, field sizes are defined as part of this specification and will be known a priori by
specific clients. The structure for the SIZE_GET OperationBlock is shown below:

For Specific Fields For All Fields

16 1 8 7 0 0 offset 16 1 8 7 0 0 offset

Operation = SIZE_GET 0 Operation = SIZE_GET 0

GroupNumber 2 GroupNumber 2

FieldCount = n 4 FieldCount = -1 4

FieldIdx 1 6 Pad 6

FieldIdx 2 8

FieldIdx n 4+2n

Pad (if necessary) 4+2n

Figure 3-53. SIZE_GET Operation Block

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-53

Processing the SIZE_GET operation lists the field size values in the result sequentially, in the
same order as their FieldIdx values appeared in the OperationBlock. If the result buffer is too
small to hold the output from a SIZE_GET operation, a PARAMS_STATUS_BUFFER_FULL
error is returned. For a full description of how errors are reported, see section 3.4.7.5, Error
Reporting.

31 3 24 23 2 16 15 1 8 7 0 0 offset
ErrorInfoSize BlockStatus BlockSize 0

Field4 Size Field 3 Size Field 2 Size Field 1 Size 4

pad Field n-1 Size Field n-2 Size Field n-3 Size

ErrorInformation (zero or more bytes of error information, depending on BlockStatus)

Figure 3-54. SIZE_GET Operation ResultBlock

3.4.7.3.6 TABLE_GET Operation

The TABLE_GET operation returns the values of selected fields from all rows in a table group.
It is an error to invoke this operation on a scalar group. The structure for the TABLE_GET
OperationBlock is shown below:

For Specific Fields For All Fields

16 1 8 7 0 0 offset 16 1 8 7 0 0 offset

Operation = TABLE_GET 0 Operation = TABLE_GET 0

GroupNumber 2 GroupNumber 2

FieldCount = n 4 FieldCount = -1 4

FieldIdx 1 6 Pad 6

FieldIdx 2 8

FieldIdx n 4+2n

Pad (if necessary)

Figure 3-55. TABLE_GET Operation Block

The TABLE_GET operation consists of a group number, followed by a field list.

The RowCount value in the result indicates the exact number of complete rows returned. If all
rows of the table cannot be returned in the result buffer, the MoreFlag is set to a non-zero value
(an error is not returned). The remaining rows of the table can be fetched using one or more
MORE_GET operations. If the result contains all rows, the MoreFlag is set to zero.

Field values are listed in row-major order: the specified field values for the first row, followed
by field values for the second row, and so on.

For a full description of how errors are reported, see section 3.4.7.5, Error Reporting.

Intelligent I/O Architecture Specification

3-54 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset
ErrorInfoSize BlockStatus BlockSize 0

MoreFlag RowCount = n 4

ListOfValues

List for field values in the order specified for the first row

8

ListOfValues

List for field values in the order specified for the 2nd row

ListOfValues

List for field values in the order specified for the nth row

pad (as necessary)

ErrorInformation (zero or more bytes of error information, depending on BlockStatus)

Figure 3-56. TABLE_GET Operation ResultBlock

3.4.7.4 Modifying Device Parameters
The Operations List for an UtilParamSet request consists of one or more operations described
in Table 3-13.

Table 3-13: Parameter Modify Operations

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-55

Operation

Operands/

Arguments ResultBlock Description

FIELD_SET GroupNumber

FieldCount

ListOfFieldIdx*

ListOfValues*

BlockSize,

BlockStatus

ErrorInfo

Sets values of selected fields in a scalar group

LIST_SET GroupNumber

FieldCount

ListOfFieldIdx*

RowCount

ListOfValues*

BlockSize,

BlockStatus

ErrorInfo

Sets values of selected fields of selected rows in a

table group

ROW_ADD GroupNumber

FieldCount

ListOfFieldIdx*

RowCount

ListOfValues*

BlockSize,

BlockStatus

ErrorInfo

Adds rows to a table group

ROW_DELETE GroupNumber

KeyCount

ListOfKeyValues*

BlockSize,

BlockStatus

ErrorInfo

Deletes rows from a table group

TABLE_CLEAR GroupNumber BlockSize,

BlockStatus

ErrorInfo

Deletes all rows from a table group

3.4.7.4.1 Features common to all MODIFY operations

All modify operations are executed in a row-oriented fashion. This means that operations
acting over multiple rows (such as LIST_SET) complete all actions on the first row specified,
then the actions on the next row, and so on. This becomes significant if an error occurs, to
determine how far an operation progressed before the error.

The FieldIdx arguments normally specify the index of fields, and thus are in the range of 0000h
to 7FFFh. A negative value (FFFFh to 8000h) has special meaning; those other than 8000h
identify byte padding in the value list. Use this feature to provide aligned data objects for
creating lists easily. For example, a field index of -3 (FFFDh) tells the target to skip three
bytes before reading the next field value. Use this for aligning a 32-bit field, after specifying
an eight-bit field.

A FieldIdx value of 8000h is a placeholder in the request, and requires no corresponding value
in the values list. This FieldIdx value is otherwise ignored by the target. These two features
allow the value list to always align on a 32-bit boundary, and specific values to align on a
desired boundary. This simplifies building the value list using high-level language constructs.

Some operations on tables allow selecting the rows. For these cases, a key list is supplied. It
contains a KeyCount, followed by a list of KeyValues, each of which identifies the row.

All operations return a ResultBlock, containing a BlockStatus field, as in Figure 3-57. (See
Figure 3-46 for field definitions.) Under normal operation, this value is zero and the
ErrorInformation field is null. If an error occurs during an operation, ErrorInformation is

Intelligent I/O Architecture Specification

3-56 Draft Version 1.5d March 7, 1997

appended to the ResultBlock and the ErrorInfoSize is set to reflect its size. Zero or more bytes
of padding may appear at the end of the ErrorInformation fields. Section 3.4.7.5, Error
Reporting, provides more information on error codes and the ErrorInformation field.

31 3 24 23 2 16 15 1 8 7 0 0 offset
ErrorInfoSize BlockStatus BlockSize 0

ErrorInformation (zero or more bytes of error information, depending on BlockStatus)

Figure 3-57. ResultBlock Template for MODIFY Operations

If an error occurs when processing a modify operation, all parts of the operation up to the point
of failure are assumed complete. Any parts of the operation following the failure are not
performed, unless otherwise stated.

The requester determines the point of failure by the error information in the ResultBlock. See
section 3.4.7.5, Error Reporting.

3.4.7.4.2 FIELD_SET Operation

The FIELD_SET operation modifies the values of selected fields in a scalar group. It is an
error to invoke this operation on a table group. The structure for the FIELD_SET operation is
shown in the following figure:

For Specific Fields For All Fields

16 1 8 7 0 0 offset 16 1 8 7 0 0 offset

Operation = FIELD_SET 0 Operation = FIELD_SET 0

GroupNumber 2 GroupNumber 2

FieldCount = n 4 FieldCount = -1 4

FieldIdx 1 6 Value 1 6

FieldIdx 2 8 Value2

FieldIdx n 4+2n

Value 1 Value n

Value 2 Pad

Value n

Pad

Figure 3-58: FIELD_SET Operation Block

The FIELD_SET operation consists of a group number followed by a field list. The field list
contains a FieldCount plus zero or more FieldIdx values. Following the field list are the values
for those fields, in the same order as the field list.

The FieldCount argument may be specified as -1 (FFFFh) indicating that all fields in the group
are to be written. For this case, no field indices are specified.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-57

If a group contains fields that are read-only, it is impossible to write the entire group using a
wildcard field count. In this instance, the FIELD_SET operation halts with a
PARAMS_STATUS_FIELD_UNWRITEABLE error when it reaches the first read-only field,
and fields beyond that point are not modified. See section 3.4.7.5, Error Reporting.

31 3 24 23 2 16 15 1 8 7 0 0 offset
ErrorInfoSize BlockStatus BlockSize 0

ErrorInformation (zero or more bytes of error information, depending on BlockStatus)

Figure 3-59. SET VALUE Operation ResultBlock

3.4.7.4.3 LIST_SET Operation

The LIST_SET operation sets the values of selected fields in each specified row of a table
group. It is an error to invoke this operation on a scalar group. The structure of the LIST_SET
OperationBlock is shown in the following figure:

For Specific Fields For All Fields

16 1 8 7 0 0 offset 16 1 8 7 0 0 offset

Operation = LIST_SET 0 Operation = LIST_SET 0
GroupNumber 2 GroupNumber 2
FieldCount = n 4 FieldCount = -1 4
FieldIdx 1 = 0 6 RowCount = m 6

FieldIdx 2 8 KeyValue1 † 8
value (FieldIdx 2 , KeyValue1) †

FieldIdx n 4+2n value (FieldIdx 3 , KeyValue1) †
RowCount = m 4+2n+2
KeyValue 1 † value (FieldIdx n , KeyValue 1) †

value (FieldIdx 2 , KeyValue 1) † KeyValue 2 †
value (FieldIdx 3 , KeyValue 1) † value (FieldIdx 2 , KeyValue 2) †

value (FieldIdx 3 , KeyValue 2) †
value (FieldIdx n , KeyValue 1) †

KeyValue 2 † value (FieldIdx n , KeyValue 2) †
value (FieldIdx 2 , KeyValue 2) †
value (FieldIdx 3 , KeyValue 2) † KeyValuem †

value (FieldIdx 2 , KeyValue m) †
value (FieldIdx n , KeyValue 2) † value (FieldIdx 2 , KeyValue m) †

KeyValue m † value (FieldIdx n , KeyValue m) †
value (FieldIdx 2 , KeyValue m) † † field sizes vary, last value padded as

necessary

value (FieldIdx 3 , KeyValue m) †

value (FieldIdx n , KeyValue m) †
† field sizes vary, last value

padded as necessary

Figure 3-60. LIST_SET Operation Block

Intelligent I/O Architecture Specification

3-58 Draft Version 1.5d March 7, 1997

The LIST_SET operation consists of a group number, a field list (FieldCount followed by zero
or more field indices), and a value list. The value list is in row-major order: All field values
for the first row are listed, followed by all field values for the second, and so on.

The first entry in the field index list must be the key field (FieldIdx=0), unless a wildcard
FieldCount of -1 (FFFFh) is specified for FieldCount: That indicates that the values for all
fields of the row are provided. In either case, the first field in the value list for each row must
be the key field value.

Negative FieldIdx values indicate padding bytes in the list of parameter values. Thus, a value of
-n means to skip the next n bytes in the list. A FieldIdx value of 8000h is a placeholder and
means to do nothing.

If a group contains read-only fields, it is impossible to write the entire group using a wildcard
field count. In this instance, the LIST_SET operation halts with a
PARAMS_STATUS_FIELD_UNWRITEABLE error when it reaches the read-only field, and
fields beyond that are not modified.

By nature of the operation, the key field can never be modified. To effectively change the key
field value, a new row must be added and the old row deleted.

3.4.7.4.4 ROW_ADD Operation

The ROW_ADD operation adds rows to a table group. It is an error to invoke this operation on
a scalar group or a table group that does not support dynamic addition of rows. The structure
of the ROW_ADD OperationBlock is shown in the following figure:

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-59

For Specific Fields For All Fields

16 1 8 7 0 0 offset 16 1 8 7 0 0 offset

Operation = ROW_ADD 0 Operation = ROW_ADD 0
GroupNumber 2 GroupNumber 2

FieldCount = n 4 FieldCount = -1 4
FieldIdx1 = 0 6 RowCount = m 6

FieldIdx2 8 KeyValue1 † 8
value (FieldIdx2 , KeyValue1) †

FieldIdxn 4+2n value (FieldIdx3 , KeyValue1) †
RowCount = m 4+2n+2

KeyValue1 † value (FieldIdxn , KeyValue1) †
value (FieldIdx2 , KeyValue1) † KeyValue2 †
value (FieldIdx3 , KeyValue1) † value (FieldIdx2 , KeyValue2) †

value (FieldIdx3 , KeyValue2) †
value (FieldIdxn , KeyValue1) †

KeyValue2 † value (FieldIdxn , KeyValue2) †
value (FieldIdx2 , KeyValue2) †
value (FieldIdx3 , KeyValue2) † KeyValuem †

value (FieldIdx2 , KeyValuem) †
value (FieldIdxn , KeyValue2) † value (FieldIdx2 , KeyValuem) †

KeyValuem † value (FieldIdxn , KeyValuem) †
value (FieldIdx2 , KeyValuem) † † field sizes vary, last value

padded as necessary
value (FieldIdx3 , KeyValuem) †

value (FieldIdxn , KeyValuem) †
† field sizes vary, last value
padded as necessary

Figure 3-61. ROW_ADD Operation Block

The ROW_ADD operation consists of a group number, a field list (FieldCount followed by
zero or more field indices), and a value list. The value list is in row-major order: All field
values for the first row are listed, followed by all field values for the second, and so on.

The first entry in the field index list must be the key field (FieldIdx=0), unless a wildcard
FieldCount of -1 (FFFFh) is specified for FieldCount: That indicates that the values for all
fields of the row are provided. In either case, the first field in the value list for each row must
be the key field value.

Negative FieldIdx values indicate padding bytes in the list of parameter values. Thus, a value of
-n means to skip the next n bytes in the list. A FieldIdx value of 8000h is a placeholder and
means to do nothing.

The only difference between the LIST_SET and ROW_ADD operations is that LIST_SET
requires the key value already in the table and ROW_ADD requires that it not exist. Otherwise,
their formats and operations are identical.

It is not necessary to provide values for all fields in a row when adding rows to a table. The
operation must specify the key field value as a minimum: The DDM should provide sensible
default values for fields whose values are absent from the value list.

Intelligent I/O Architecture Specification

3-60 Draft Version 1.5d March 7, 1997

3.4.7.4.5 ROW_DELETE Operation

The ROW_DELETE operation deletes rows from a table group. It is an error to invoke this
operation on a scalar group or on a table group that does not support dynamic deletion of rows.
The structure of the ROW_DELETE OperationBlock is shown below:

16 1 8 7 0 0 offset

Operation = ROW_DELETE 0

GroupNumber 2

KeyCount = m 4

KeyValue1 †
6

KeyValue2 †

KeyValuem †

† field sizes vary; pad last
value as necessary

Figure 3-62. ROW_DELETE Operation Block

ROW_DELETE consists of a group number and a key list (KeyCount followed by zero or more
key values). Note that the sizes of the KeyValue arguments vary, depending on the size of the
key for the group.

3.4.7.4.6 TABLE_CLEAR Operation

The TABLE_CLEAR operation is used to delete all rows from a table group. It is an error to
invoke this operation on a scalar group or a table group that does not support TABLE_CLEAR.
A sample OperationBlock for TABLE_CLEAR is shown below:

16 1 8 7 0 0 offset

Operation = TABLE_CLEAR 0

GroupNumber 2

Figure 3-63. TABLE_CLEAR Operation Block

TABLE_CLEAR consists simply of a number specifying the group to clear.

3.4.7.5 Error Reporting

3.4.7.5.1 Errors reported in the reply frame header

If all operations complete without error, the reply returns a successful status. If the ResultsList
did not copy to the Results buffer, the reply indicates ERROR_NO_DATA_TRANSFER. If any
operation encounters an error and any portion of an OperationBlock completes, then the reply
indicates ERROR_PARTIAL_TRANSFER. In this case, the error status in the appropriate
ResultsBlock indicates the nature of the error.

3.4.7.5.2 Errors Reported in Result Blocks

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-61

Errors during parsing the operations return information to the ResultBlock for the failed
operation. The module processing an OperationBlock halts immediately when it detects an
error, and appends error information to the ResultBlock.

The length of error information varies and has zero or more bytes of padding to maintain four-
byte alignment. This guarantees alignment of the following ResultBlocks.

3.4.7.5.3 Determining the Point of Failure within an Operation

The error information returned is minimal but always sufficient to determine the point of
failure within the operation. Certain operation level errors are detected before any parameter
accesses occur: They return an ErrorCode, the OperationCode, and the GroupNumber. No part
of the operation is performed.

Other errors are detected as the operation is undertaken. Most errors return a field index as an
additional item in the error report. For field level errors, this is sufficient to identify the point
of failure, even if the operation acted over multiple rows. The error will have occurred on the
first row processed, since all multi-row operations act on one row at a time.

Some errors are specific to certain rows. These row level errors return a KeyValue, identifying
the row where the error occurred. No operations on that row will have been undertaken.

This leaves errors that occur at a specific data element, i.e. a specific field in a specific row.
These element level errors return a FieldIdx and KeyValue to identify the exact point of failure.

Assume that all parts of an operation before the point of failure completed.

Table 3-14: BlockStatus Codes and Error information

Error Code
(I2O_PARAMS_STATUS_xxx)

Error Info

content

Description

_SUCCESS {none} Normal execution - Operation Results field contains
entire results as expected. Size of Error Information
field is zero.

_BAD_KEY_ABORT Operation code,

GroupNumber

FieldIdx = -1

AdditionalStatus

NumberKeys

ListOfKeyValues

Pad

The KeyValue specified was not recognized by the
device. Operation completed up to the first bad
KeyValue, in the ListOfKeyValues, in the
ErrorInformation structure. More than one bad KeyValue
may be supplied, indicating other values that also cause
this error.

_BAD_KEY_CONTINUE Operation code,

GroupNumber

FieldIdx = -1

AdditionalStatus

NumberKeys

ListOfKeyValues

Pad

The device did not recognize KeyValue specified.
Operation completed except for the rows for KeyValues,
in the ListOfKeyValues, in the ErrorInformation structure.

_BUFFER_FULL {none} The operation result exceeds the available space in the
result buffer. Partial completion occurred.

Intelligent I/O Architecture Specification

3-62 Draft Version 1.5d March 7, 1997

Error Code
(I2O_PARAMS_STATUS_xxx)

Error Info

content

Description

_BUFFER_TOO_SMALL None The result buffer was too small for the first operation in a
message to provide a ResultBlock. If this occurs, the
result list contains a single ResultBlock with this error
code. No parameter accesses are performed (i.e., size of
Operation Results field is 0).

_FIELD_UNREADABLE Operation code,

GroupNumber

FieldIdx

AdditionalStatus

NumberKeys = 0

A field was unreadable - error in execution. Partial
completion up to the first encounter of the identified field
occurred.

_FIELD_UNWRITEABLE Operation code,

GroupNumber

FieldIdx

AdditionalStatus

NumberKeys = 0

The field could not be altered. Partial completion up to the
first encounter of the identified field occurred.

_INSUFFICIENT_FIELDS Operation code,

GroupNumber

At least one field index must be specified in the operation.
No parameter accesses were performed (i.e., size of
Operation Results field is 0).

_INVALID_GROUP_ID Operation code,

GroupNumber

The group number supplied did not match any defined
group of the device. No parameter accesses were
performed (i.e., size of Operation Results field is 0).

_INVALID_OPERATION Operation code,

GroupNumber

An unrecognized operation code was specified in an
OperationBlock. No parameter accesses were
performed (i.e., size of Operation Results field is 0).

_NO_KEY_FIELD Operation code,

GroupNumber

The key field was not specified as the first field. No
parameter accesses were performed (i.e., size of
Operation Results field is 0).

_NO_SUCH_FIELD Operation code,

GroupNumber

FieldIdx

AdditionalStatus

NumberKeys = 0

A field index exceeded the range of fields defined for the
group. Partial completion up to the first encounter of the
identified field occurred.

_NON_DYNAMIC_GROUP Operation code,

GroupNumber

An add/delete/clear operation was attempted on a table
group that does not support that operation. No parameter
accesses were performed (i.e., size of Operation
Results field is 0).

_OPERATION_ERROR {none} The OperationBlock could not be parsed. This can result
from errors in preceding operations. No parameter
accesses were performed (i.e., size of Operation
Results field is 0). This error might result from a runt or
malformed request. In this case, this is the last reply block
and the operation code and group number are not known.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-63

Error Code
(I2O_PARAMS_STATUS_xxx)

Error Info

content

Description

_SCALAR_ERROR Operation code,

GroupNumber

FieldIdx

AdditionalStatus

NumberKeys = 0

An unspecified error occurred on a scalar group. Partial
completion up to the first encounter of the identified field
occurred.

_TABLE_ERROR Operation code,

GroupNumber

FieldIdx

AdditionalStatus

NumberKeys = 1

KeyValues + Pad

An unspecified error occurred on a table group. Operation
completed for all key values up to specified FieldIdx of the
specified KeyValue.

_WRONG_GROUP_TYPE Operation code,

GroupNumber

An operation defined only on scalar groups was
attempted on a table group, or vice versa. No parameter
accesses were performed (i.e., size of Operation
Results field is 0).

3.4.7.6 Generic Parameter Group Definitions
The following parameter groups apply to all devices and must be supported by all devices,
unless otherwise stated.

Typically, only the primary service user, as established by UtilCalm, modifies a device’s
operating parameters. However, some parameters are typically set directly by a management
agent, rather than through the primary service user. Therefore, management agents do not alter
parameters unless expressly allowed. The parameter groups listed in the following tables are
exceptions and any parameter identified as read-write may be altered by management.

3.4.7.6.1 The GROUP_DESCRIPTOR Group

To allow discovery at run-time of the parameter groups supported by a device, each device
provides the PARAMS_DESCRIPTOR group. It describes the device’s parameter groups. The
rows of this group represent the groups supported by the device. The fields include the
GroupNumber, number of fields and rows, and whether or not a group is a table.

Intelligent I/O Architecture Specification

3-64 Draft Version 1.5d March 7, 1997

Table 3-15: Group F000h - PARAMS DESCRIPTOR Group

GroupNumber F000h

GroupType TABLE

Name PARAMS_DESCRIPTOR

Description This table identifies the parameter groups provided by this device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 Bytes GroupNumber The 16-bit identifier of the group

1 r 2 Bytes FieldCount The number of fields in the group

2 r 2 Bytes RowCount The number of rows currently in the group

3 r 1 Byte Properties Bit 0: 0 = group is scalar (i.e. always one row)
1 = group is a table (i.e. zero or more
rows)

Bit 1: 0 = row addition not supported
1 = row addition supported

Bit 2: 0 = row deletion not supported
1 = row deletion supported

Bit 3: 0 = clear operation not supported
1 = clear operation supported

4 r 1 Byte reserved1

Note that the PARAMS_DESCRIPTOR group includes an entry for itself. This provides
backward compatibility, allowing additional field definitions at a later date. The management
agent may perform LIST_GET (GroupNumber=F000h, FieldIdx=-1, KeyValue=F000h) or
SIZE_GET (GroupNumber=F000h, FieldIdx=-1) to learn which fields this group supports.

Table 3-16: Group F001h - Physical Device Table

GroupNumber F001h

GroupType TABLE

Name PHYSICAL_DEVICE_TABLE

Description A table of all physical devices that correspond to this device. For a DDM, the table lists all
adapters assigned to the DDM. For a device registered by the DDM, it is a list of all
adapters assigned to the DDM; if the adapter is released, the device will no longer exist.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 Bytes AdapterID The Adapter ID of each device as represented in the
HRT (See Chapter 4).

Table 3-17: Group F002h - Claimed Table

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-65

GroupNumber F002h

GroupType TABLE

Name CLAIMED_TABLE

Description A table of all I2O devices claimed by this DDM in creating this device. Traversing these
tables should yield TIDs for adapters and physical devices that correspond to this device.
For a DDM TID, this lists all TIDs assigned to the DDM.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 Bytes ClaimedTID The TID for each claimed device (the most significant
four bits are zeros)

Table 3-18: Group F003h - User Table

GroupNumber F003h

GroupType TABLE

Name USER_TABLE

Description A table of all users that claim this device. Following this list up to the top identifies all
modules affected if the device is reset or removed.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 Bytes Instance A unique value assigned by the DDM

1 r 2 Bytes UserTID The TID for each user (the most significant four bits are
zeros)

2 r 1 Byte ClaimType The ClaimType from the Claim message

3 r 1 Byte reserved1

4 r 2 Bytes reserved2

Table 3-19: Group F005h - Private Message Extensions

GroupNumber F005h

GroupType TABLE (optional)

Name PRIVATE_MESSAGE_EXTENSIONS_TABLE

Description A list of private message extensions that this device supports.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes ExtInstance The nth instance of private message extension

1 r 2 bytes OrganizationID ID assigned to the organization defining the message
extension. See section 3.4.1.6.

2 r 2 bytes XFunctionCode Function code extension. See section 3.4.1.6.

Table 3-20: Group F006h - Authorized User Table

Intelligent I/O Architecture Specification

3-66 Draft Version 1.5d March 7, 1997

GroupNumber F006h

GroupType TABLE

Name AUTHORIZED_USER_TABLE

Description A table of all TIDs authorized to claim this device as an alternate user. Only the primary
user may modify this table.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 2 Bytes AlternateTID The TID for an authorized alternate user (the most
significant four bits are zeros)

Table 3-21: Group F100h - Device Identity

GroupNumber F100h

GroupType SCALAR

Name DEVICE_IDENTITY

Description Information pertaining to the device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 Bytes ClassID Multi-field parameter identifies the class of messages
that may be sent to this TID.

1 r 2 Bytes OwnerTID TID assigned to the module that claimed this resource
as the primary user (the most significant four bits are
zeros). A value of FFFh indicates the device may be
claimed.

2 r 2 Bytes ParentTID TID assigned to the DDM or device that created this I2O
device (the most significant four bits are zeros). The
parent of a DDM class device is always 000h. The
parent of a port is the TID of the DDM. The parent of a
peripheral is the TID of the port or, if no port device
exists, the TID of the DDM.

3 r 16 Bytes VendorInfo ASCII Vendor Information. Returns the vendor
information for the device.

4 r 16 Bytes ProductInfo ASCII Product Information. Returns the product
information for the device.

5 r 16 Bytes Description ASCII Product Description. Returns the product
description for the device.

6 r 8 Bytes ProductRevLevel ASCII revision level of the product. The length of eight
characters allows BetaX.XX.

7 r 1 Byte SNFormat See section 3.4.4 for definition and values.

8 r Variable SerialNumber See section 3.4.4 for definition and format.

Table 3-22: Group F101h - DDM Identity

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-67

GroupNumber F101h

GroupType SCALAR

Name DDM_IDENTITY

Description Information pertaining to the software (controlling DDM)

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 Bytes DdmTID TID section assigned to the DDM that registered this
device, or registered the port device that registered this
device. The most significant four bits are zeros.

1 r 24 bytes ModuleName ASCII Module Information. Returns the product
information for the device software.

(Example: SuperSlow SCSIware2000)

All devices created by the same software module report
the same information.

2 r 8 bytes ModuleRevLevel ASCII revision level of the product. The length of eight
characters allows BetaX.XX.

3 r 1 byte SNFormat See section 3.4.4 for definition and values. DDM would
support the WW ID format.

4 r 12 bytes SerialNumber See section 3.4.4 for definition and format. If the
software does not contain a serial number, report zeros.

Table 3-23: Group F102 - User Information

GroupNumber F102h

GroupType SCALAR

Name USER_INFORMATION

Description This table contains parameters the user enters to identify devices and their physical
location in the system. This information may show up in error reports or configuration
screens to help the user relate to the device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 64 Bytes DeviceName ASCII user information.
(Examples: SCSI Controller, Ethernet Port)

1 r/w 64 Bytes ServiceName ASCII user information.
(Examples: Right SCSI Enclosure, Test Network)

2 r/w 64 Bytes PhysicalLocation ASCII user information.
(Examples: System Board, PCI slot 5)

3 r/w 4 Bytes InstanceNumber ASCII user information.
(Examples: A, 2, or C:)

Table 3-24: Group F103h - SGL Operating Limits

Intelligent I/O Architecture Specification

3-68 Draft Version 1.5d March 7, 1997

GroupNumber F103h

GroupType SCALAR

Name SGL_OPERATING_LIMITS

Description This group provides attributes that identify SGL operating limits for this device. Exceeding
these values may result in rejection of request messages.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 Bytes SglChainSize The device performs optimally when the SGL chain list
size is less than this number of bytes.

1 r 4 Bytes SglChainSizeMax The device cannot handle an SGL chain greater than
this size (bytes).

2 r/w 4 Bytes SglChainSizeTarget The primary user writes this value to indicate its optimal
SGL chain buffer size. If the device can change its
current operation to accommodate, it should.
Otherwise, if it can change the next time the DDM is
loaded, it should remember this value and do so.
Reading this value provides the value that the DDM
plans to use at next initialization.

3 r 2 Bytes SglFragCount The device performs optimally when the number of data
fragments is less than this number. Each of the
following counts as one fragments: an address in a
page list element, each simple SGL element, each
immediate data element, and each bit bucket element.

4 r 2 Bytes SglFragCountMax The maximum number of buffer fragments that the
device can handle. The device cannot handle a
message containing more than this number.

5 r/w 2 Bytes SglFragCountTarget The primary user writes this value to indicate the
optimal number of fragments for a single message. If
the DDM can change its current operation to
accommodate, it should. Otherwise, if it can change
the next time the DDM is loaded, it should remember
this value and do so. Reading this value provides the
value that the DDM plans to use at next initialization.

3.4.7.6.2 Sensor Parameter Group

System Managers want warning of potential and actual catastrophic system failures.
Manufacturers of high-end systems and peripherals design I/O devices with sensors that read
and report system faults or environmental issues that arise with their equipment. The Sensor
parameter group presents generic attributes that address the data expected from such
instrumentation. This option group applies to any class of device incorporating such sensors.

Table 3-25: Group F200h - Sensors

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-69

GroupNumber F200h

GroupType TABLE (optional)

Name SENSORS

Description This table contains the parameters necessary to report sensor information and set the
appropriate limits for event notification. They are optional and needed only when sensors
are implemented and the information is reported across the I 2O shell interface.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 Bytes SensorInstance The nth ordering of sensors

1 r 1 Byte Component The component where the sensor is located (e.g.
Planar logic board, CPU, chassis)

0 Other
1 Planar Logic Board
2 CPU
3 Chassis
4 Power Supply
5 Storage
6 External

2 r 2 Bytes ComponentInstance The nth ordering of the component

3 r 1 Byte SensorClass Defines the type of pre-processing to be
performed on the sensor. Digital sensors have
no threshold values or hysteresis.

0 analog
1 digital

4 r 1 Byte SensorType Sensor type (and default unit)

0 Other
1 Thermal (°C)
2 DC voltage (DC volts)
3 AC voltage (AC volts)
4 DC current (DC amps)
5 AC current (AC amps)
6 Door open
7 Fan operational

5 r 1 byte

(INT8)

ScalingExponent Decimal exponent of scaling factor

E.g.: 0 = unity, 3 = 103 (kilo-); -5 = 10-5 (10 ×
micro-).

0 for digital sensor class.

This attribute should represent the precision with
which thresholds and readings should be
represented.

Note: This really defines where the decimal point
is placed in the representation of all the readings
and thresholds that follow (i.e. from actual
reading through maximum reading).

Example: A +5 volt sensor measured in tens of
microvolts would exhibit a nominal reading of
500,000 and a scaling exponent of -5.

Intelligent I/O Architecture Specification

3-70 Draft Version 1.5d March 7, 1997

GroupNumber F200h

GroupType TABLE (optional)

Name SENSORS

Description This table contains the parameters necessary to report sensor information and set the
appropriate limits for event notification. They are optional and needed only when sensors
are implemented and the information is reported across the I 2O shell interface.

FieldIdx (r/w) Field Size Parameter Name Description

6 r 4 Bytes
(INT32)

ActualReading The current reading of the sensor, scaled by the
scaling exponent above. For example, an actual
reading of 686 when the scaling exponent is -3
means a DC sensor value of

686×10-3 volts, or 686 milli-volts.

7 r 4 Bytes
(INT32)

MinimumReading The minimum reliable reading the sensor can
support, scaled by the scaling exponent.

8 r/w 4 Bytes
(INT32)

Low2LowCatThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
Low Catastrophic (non-operational) region from
the Low (operational) region

9 r/w 4 Bytes
(INT32)

LowCat2LowThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
Low (operational) region from the Low
Catastrophic (non-operational) region

10 r/w 4 Bytes
(INT32)

LowWarn2LowThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
Low (operational) region from the Low Warning
(operational) region

11 r/w 4 Bytes
(INT32)

Low2LowWarnThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
Low Warning (operational) region from the Low
(operational) region

12 r/w 4 Bytes
(INT32)

Norm2LowWarnThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
Low Warning (operational) region from the
Normal (operational) region

13 r/w 4 Bytes
(INT32)

LowWarn2NormThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
Normal (operational) region from the Low
Warning (operational) region

14 r 4 Bytes
(INT32)

NominalReading The nominal reading, scaled by the scaling
exponent, for the sensor.

15 r/w 4 Bytes
(INT32)

HiWarn2NormThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
Normal (operational) region from the High
Warning (operational) region

16 r/w 4 Bytes
(INT32)

Norm2HiWarnThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
High Warning (operational) region from the
Normal (operational) region

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-71

GroupNumber F200h

GroupType TABLE (optional)

Name SENSORS

Description This table contains the parameters necessary to report sensor information and set the
appropriate limits for event notification. They are optional and needed only when sensors
are implemented and the information is reported across the I 2O shell interface.

FieldIdx (r/w) Field Size Parameter Name Description

17 r/w 4 Bytes
(INT32)

High2HiWarnThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
High Warning (operational) region from the High
(operational) region

18 r/w 4 Bytes
(INT32)

HiWarn2HighThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
High Warning (operational) region from the High
(operational) region

19 r/w 4 Bytes
(INT32)

HiCat2HighThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
High Warning (operational) region from the High
Catastrophic (non-operational) region

20 r/w 4 Bytes
(INT32)

High2HiCatThreshold The sensor reading, scaled by the scaling
exponent, at which sensed condition enters the
High Catastrophic (non-operational) region from
the High Warning (operational) region

21 r 4 Bytes
(INT32)

MaximumReading The maximum reliable reading the sensor can
support, scaled by the scaling exponent

22 r 1 Byte SensorState 0 Normal
1 Abnormal
2 Unknown
3 Low Catastrophic (LoCat)
4 Low (Low)
5 Low warning (LoWarn)
6 High Warning (HiWarn)
7 High (High)
8 High Catastrophic (HiCat)

23 r/w 2 Bytes EventEnable Generate an event when a change in state
occurs for any of the indicated bit masks:

Bit 0: operational state change (digital
sensors only)

Bit 1: low catastrophic
Bit 2: low reading
Bit 3: low warning
Bit 4: change back to normal from out of

range state
Bit 5: high warning
Bit 6: high reading
Bit 7: high catastrophic

Location Location of sensors is comprehended in attributes 0-3. Attribute 0, sensor
instance, indexes the group table for devices that have multiple sensors.
Attribute 1, component instance, describes the component where a sensor
resides. Attribute 2, component instance, provides differentiation for

Intelligent I/O Architecture Specification

3-72 Draft Version 1.5d March 7, 1997

sensors on devices that may have multiple instances of a particular
component type. Attribute 3, sensor class, describes whether the sensor
provides a quantifiable value (0=analog) or a simple binary status
(1=digital).

Nominal Reading The nominal reading of a sensor is comprehended by attribute 15.
Attribute 15, nominal reading, is the mantissa of the nominal value that the
sensor might expect. This attribute reports a INT32 value that must be
multiplied by the precision reported in attribute 6.

Scaling and Precision Scaling and precision of sensors are comprehended together by Attribute
5, scaling exponent. The scaling exponent reports the precision to which
the sensor can report meaningful data. The value is the decimal exponent
that represents the least-significant decimal digit of the reportable value.
For example, a value of -3 means that scaled attributes’ (Attributes 7-22)
values must be multiplied by 10-3 to obtain the actual sensor value.

Sensor Range The operational range of the sensor is reported by attributes 8 and 22.
Attribute 8, minimum reading, reports the minimum reliable reading that
the sensor supports. Attribute 22, maximum reading, reports the
maximum reliable reading that the sensor supports. These attributes report
an INT32 value that must be multiplied by the precision reported in
attribute 5.

Actual Reading The actual reading of the sensor is reported in attributes 4, 5, and 7.
Attribute 4, sensor type, reports the type of information the sensor reports.
Units of measure are implied by the type of sensor reported. (See group
definition table.) Attribute 7, actual reading, is an INT32 value that
represents the mantissa of the value reported by the sensor. Attribute 5,
scaling exponent, reports the decimal exponent of the actual reading
attribute. For example, a scaling exponent value of -3 means that the
actual reading attribute value must be multiplied by 10-3 to obtain the
actual attribute value.

Thresholds To avoid the need to regularly poll sensors to determine system health,
some mechanism must produce meaningful exceptions when sensor
readings change significantly. Attributes 9-14 and 16-21 report thresholds
that define up to seven sensor states.

The boundary of each state is defined by two thresholds, one for each
direction of state transition. Figure 3-63 illustrates each state with a
region of hysteresis (determined by rising and falling threshold values)
between each. This provides a mechanism for filtering low-level, non-
monotonic sensor behavior near the threshold region. It also provides a
way to comprehend the error induced by sensor tolerances.

Status The status of the sensed parameter's value, regarding the thresholds
described in Attributes 9-14 and 16-21, can be determined by the value of
Attribute 23, state. This provides a simple method for an exception
handler on the host to determine why an exception was generated.

Exception Generation State-change exceptions are based on a mask represented in Attribute 24.
The mask value is determined by setting to 1 each bit corresponding to a

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-73

state. An exception is generated upon entry into the state corresponding to
each bit set in the mask.

3.4.8 User Interactive Configuration Dialogue
The basic configuration parameter group access facilities of the previous section provide a
mechanism for clients to query and modify device parameters. This section describes a facility
that allows the DDM to create interactive dialogues with a human operator to display and
modify parameters in those groups.

The purpose of the dialogue facility is to have a DDM-defined and controlled communication
with a human operator. The facility is self-contained in a downloaded DDM and is available
in any I2O-enabled system. The facility does not depend on any DDM-specific program or
files not contained in the downloaded DDM, which might get separated from the DDM or have
version mismatches. The facility allows DDM-defined presentation of data and command
interaction, as opposed to a generic front end such as a DMI management application. The
facility is NOS independent and does not rely on DDM-specific front-end applications that
must be ported to each NOS. Even though the vendor may provide alternatives, the dialogue
facility provides a fundamental configuration and monitoring facility.

To meet these goals, the dialogue facility consists of the following:

• a host-to-IOP dialogue protocol, based on HTML

• a TCL-subset interpreter, to facilitate generating the HTML pages and parsing input

• commands to access device parameter groups from the TCL scripts.

3.4.8.1 Configuration Dialogue Messages
As a basis for the I2O dialogue facility, HTML appropriately combines simplicity and
expressiveness. It is also becoming ubiquitous as a document format. The UtilConfigDialog
message (defined in Chapter 6) provides a mechanism for a DDM-directed dialogue with a
human operator, based on the HTML protocol.

The request message contains the number of a dialogue page, any form data being returned,
and a buffer where the device places the reply. The reply contains HTML text that the host
presents to the human operator via an HTML viewer, such as a Web browser. The form data is
text typically generated from an HTML form submitted with an HTTP POST. The text is in
the form field1=value1&field2=value2, and usually represents new values for selected fields in
selected groups.

Every device must supply a page number 0, the device’s home page. The host requests this
page when a device sets the dialogue request indication in the LCT. Other pages are typically
accessed by HTML links.

3.4.8.2 Host-side Dialogue Components
A Web browser is the obvious viewer for the HTML dialogue pages. Browsers are ubiquitous
and can be operated remotely from the information provider. However, Web browsers use the
HTTP protocol for accessing pages. Thus, to use unmodified browsers for interacting with I2O
dialogue pages, a transducer must convert HTTP messages to I2O messages. This transducer

Intelligent I/O Architecture Specification

3-74 Draft Version 1.5d March 7, 1997

may be implemented in a number of ways; one usually provides an I 2O server application
using the CGI protocol to an HTTP server. This results in the following configuration:

I2O Host I2O
IOP

Browser Server
I2O
App DDM

GET
//<server>/i2o/<iop>/<tid>/<page>

GET
<iop>/<tid>/<page> GET <page>

HTTP CGI

<HTML><HTML><HTML>

I2O Msg

Figure 3-64. Typical Host Configuration Dialogue Mechanism

In this configuration, a standard browser sends HTTP GET messages to a standard server with
a URL that identifies the following:

• server (e.g. localhost or a TCP/IP address)

• I2O application to be invoked by the server via CGI (e.g. i2o)

• specific IOP to address (e.g. an IOP number on that host)

• specific TID to be addressed within that IOP

• the page number requested.

Based on this URL, the server invokes the I2O application, passing the rest of the URL
containing the IOP number, TID, and page number. The I2O application translates this
information into an UtilConfigDialog message, sending it to the specified TID on the specified
IOP. The HTML text is extracted from the reply and returns to the server, which returns it to
the browser for display.

In an HTML form incorporating menus, check boxes, and radio buttons, the user can click a
submit button. The browser then sends the server an HTTP POST message that contains a
URL, followed by the data from the form in text as:

field1=value1&field2=value2…

In this case, the server forwards the remainder of the URL and form data to the I2O application,
which translates this into an UtilConfigDialog message containing the form data. Thus, both
HTTP GET and POST messages get translated into an UtilConfigDialog message.

Every device must supply a home page (page 0), so, using an IOP number and a TID, the URL
for the home page of a particular device is easily constructed. The IOP executive (TID 000h)
also supplies a home page, so given an IOP number, the URL for the home page of that IOP is
easily constructed. The IOP dialogue pages link to the home pages of all registered devices.
Also, each device home page should provide the reverse link to the IOP home page.

These links, and those within a device’s pages, are considered relative URLs, or just the page
number, so devices do not need to construct full URLs with IOP number, TID, and so forth.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 3-lxxv

Any devices that currently request a configuration dialogue must be highlighted on the IOP’s
home page, and their links displayed in the same order as their entries in the LCT.

Finally, the I2O CGI application can also construct a master I2O page that links to the IOP
home pages for each IOP on a given server. It queries the NOS for the IOP numbers of active
IOPs.

Note that the browser may be on a machine remote from the server.

3.4.8.3 TCL Scripts
To interact with a human user using the HTML-based dialogue facility, a device must format
HTML text and parse input form data. While this can be done in the C language, it is far easier
to use text macro and scripting facilities. The IRTOS provides a scripting facility described in
Chapter 5.

Draft Version 1.5d March 7, 1997 4-1

4
I2O Shell Interface Specification

The two perspectives of the IOP are the system view, or shell, and the internal view, or core.
This chapter discusses the system view, which is how the host and other IOPs see an IOP. In
this context, the IOP is a service provider, and it abstracts the service provided by its I/O
devices. Each IOP presents a common programming interface to the host and the other IOPs.
This system programming interface has three components:

1. a register-level interface
2. the protocol for exchanging messages
3. a set of executive-class messages

4.1 Overview of the I2O Shell Operation

The primary function of the IOP shell is providing the abstract interface for its I/O devices and
thus establishing a communication channel between its DDMs and drivers on the host and
other I/O platforms. An IOP abstracts its own embedded devices and can also be the host for
drivers and adapters provided by another vendor. The capability to host such loadable
modules is optional and is described in detail in the core specification (see Chapter 5).

This section specifies the mechanism for loading or installing a driver on an IOP. Some
applications for an IOP might not provide any physical expansion capability to support
additional adapters, and thus these IOPs will not support loadable HDMs. Even in this case it
is still beneficial to support loading third-party ISMs. This document makes no assumptions
about the resources necessary to store and execute third-party drivers. Due to resource
limitations, each IOP limits the number and size of loadable modules it can support. An IOP
that cannot install or load an additional module simply rejects the request.

The I2O shell specification supports the following:

• IOP initialization initializes the inbound message queues, resets the outbound message
queues, and builds a logical configuration table describing current I/O devices behind the
IOP.

• IOP configuration establishes a system configuration table describing all IOPs in the
system, installs and loads DDMs, assigns adapters to HDMs, assigns devices to ISMs, and
builds an external connection table as connections are established with other IOPs.

• Initiation of DDM installation directs the core to install the DDM. DDM installation is
described in the core specification.

• DDM load loads the DDM code, invokes its initialization process, attaches adapters and
devices that the module will control, and enables the DDM configuration process.

• Setup for DDM configuration assigns adapters and devices to the DDM and updates the
IOP’s physical configuration table. The DDM configuration is described in the core
specification.

• Message service routes messages and delivers them to the appropriate driver, creates
connections, and delivers messages on those connections

• Transport service moves blocks of raw data between system memory and local memory.

Intelligent I/O Architecture Specification

4-2 Draft Version 1.5d March 7, 1997

4.2 IOP System Interface

An IOP has a register-level system interface that implements queues for sending and receiving
messages.

4.2.1 Register-level Interface
Messages reside in a shared memory structure, the message frame . A message frame is
indicated by its message frame address (MFA). The MFA specifies the first byte of the
message frame header. This MFA is actually the offset between the start of the target
messenger’s shared memory and the start of the message. Messages are passed by indicating
the frame’s MFA to the target messenger instance (i.e., an IOP or the host). Each IOP contains
hardware to efficiently pass MFAs between messenger instances.

4.2.1.1 IOP Message Unit
The IOP supplies two paths for messages, an inbound queue to receive messages from the host
and all other IOPs, and an outbound queue to pass messages to the host. Each queue is
implemented as a pair of FIFOs, as shown in Figure 4-1. The inbound message queue contains
a pair of hardware FIFOs, Free_List and Post_List, for allocating and posting messages to an
IOP. Another pair of FIFOs comprises the outbound message queue for messages to the host.

A FIFO is a buffer with two interfaces. One interface fills the buffer and the other drains it.
Message frames may be placed in a FIFO in any order. The drain removes the oldest entry
first. The Free_List FIFO holds the empty message frames and the Post_List FIFO holds the
active message frames. A sender (message producer) draws from the head of the Free_List
and posts to the tail of the Post_List. A recipient (message consumer) draws from the head of
the Post_List and releases by posting to the tail of the Free_List.

For the inbound queue, the host and other IOPs are the message producers and the IOP
containing the FIFO is the message consumer. The host or other IOP is not required to post
message frames in the same order that the frames were allocated. For the outbound queue, the
local IOP (i.e., the IOP providing the outbound FIFO) is the message producer and the host is
the message consumer. The host is not required to release message frames in the same order
that they were retrieved.

4.2.1.2 Message Queuing
For the inbound queue the IOP provides, the sender can read a particular system memory
location to retrieve the MFA of the next empty message frame from the Free_List. When the
sender deposits its message in the message frame, it writes the frame’s MFA to the same
system memory location. This causes the MFA to be placed on the end of the Post_List. The
IOP removes an MFA from the Post_List, processes the message, and then places the MFA
(now an empty message frame) on the end of the Free_List. If the Free_List is empty when the
sender reads the Free_List FIFO, the IOP must supply the value FFFF-FFFFh. This
mechanism is used by all messengers (host and other IOPs) to send messages to the local IOP.

When sending messages to another IOP, the local IOP uses the inbound queue of the remote
IOP.

The IOP provides an outbound queue for sending messages to the host. The host OS reads a
particular system memory location to retrieve the MFA of the next message from the Post_List.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-3

When the host has consumed the message, the host writes the MFA to the same system memory
location, which causes the MFA to be placed on the end of the Free_List. The IOP removes an
MFA from the Free List, fills the frame with a message, and then places the MFA on the end of
the Post_List. If the Post_List is empty when the host reads the Post_List FIFO, the host
receives the value FFFF-FFFFh.

OSD2134

MFA

MFA

MFA

MFA

MFA

MFA

MFA

MFA

MFA

MFA

MFA

MFA

MFA

MFA

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Message
Frame

Pool of
Message
Frames

Release

Free_List
FIFO

Post_List
FIFO

Retrieve

Allocate

Post

Figure 4-1. Message Queue Example

4.2.1.3 Initializing the Queues
Until the IOP initializes its inbound queue, reading the inbound FIFO must not return any
value other than FFFF-FFFFh. Any time a value other than FFFF-FFFFh is read, the inbound
FIFO must be ready to receive the posting of that MFA.

Intelligent I/O Architecture Specification

4-4 Draft Version 1.5d March 7, 1997

The IOP initializes its inbound queue by creating a number of message frames in its shared
memory and placing the MFA of each in the Inbound Free_List FIFO. Message frames must
start on a 32-bit boundary.

All of the MFAs can be in either the Free_List FIFO or the Post_List FIFO. To prevent
overflow, the total number of message frames created for a queue must be less than the size of
either FIFO.

The system memory location for the inbound and outbound FIFOs can be discovered as
discussed in section 4.2.1.5 System Bus Extensions below. The host uses this interface to
initialize the IOP’s outbound queue. The host builds a number of message frames and then
posts them to the Free_List by writing their MFAs to the outbound FIFO. These message
frames are also required to start on a 32-bit boundary. Because the host claims all of system
memory as its domain, the outbound MFA is the offset of the message from 0, and thus the
physical address of an outbound message is its MFA. This is not the case for inbound message
frames.

Each FIFO must support a minimum of 16 message frames. The memory of each message
frame must be contiguous, but all the message frames need not be in one contiguous block of
memory. All message frames for a queue are the same size. The minimum size of a message
frame is 64 bytes, and it must start on a 32-bit boundary.

4.2.1.4 System Interrupt Generation
IOP facilities generate and mask system interrupts that indicate events that require immediate
attention, such as posting messages to the outbound queue. The facilities for managing the
interrupt from an IOP allow the host to completely disable the interrupt and resort to a polled
mode of operation. At times, it is desirable to temporarily disable the interrupt and schedule
its processing at an appropriate time, after which the interrupt is again enabled. The following
interrupt facilities serve these purposes:

• In the Interrupt Status Register, each bit represents the source of an interrupt. That bit is
set when the source requests service. One of the bits represents the outbound post list. That
bit is set any time one or more MFAs can be retrieved by the host. Writing to this register
has no effect on the value of this bit.

• The Interrupt Mask Register corresponds to the interrupt status register and masks the
interrupt source from generating a system interrupt. Each bit in this register corresponds
with a bit in the Interrupt Status Register; setting the mask register bit disables that source
from causing a system interrupt. The value of the Interrupt Mask Register does not affect
the value in the Interrupt Status Register. Therefore, the IOP generates a system interrupt
only if the value of the Interrupt Status Register, logically ANDed with the inverse of the
Interrupt Mask Register, produces a non-zero result. The default mask register is set to all
ones, or no interrupts enabled.

4.2.1.4.1 Operation

For polled operation, the host leaves the mask register set to all ones. The host determines if
messages are waiting by reading either the Outbound Post_List FIFO or the Interrupt Status
Register. For interrupt-driven operation, the host enables interrupts by clearing the Outbound
Post List bit in the Interrupt Mask Register. The host ISR disables interrupts at the source by

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-5

setting that bit. Again, the host can either read the Outbound Post_List FIFO or the Interrupt
Status Register to determine if messages are present. Typical ISR operation is that the host:

(1) reads the Interrupt Status Register to verify the interrupt source

(2) disables the interrupt at the source, if deferred processing is necessary

(3) processes the FIFO until all messages are retrieved

(4) enables the interrupt source.

4.2.1.5 System Bus Extensions
This section focuses on the operating characteristics for different system buses. The primary
concern is the capability of the host OS to locate an IOP and thus determine its FIFO
addresses. That allows it to send and receive messages. For the host to discover and form a
connection with an IOP, these attributes are necessary:

• a method to uniquely identify the presence of each IOP
• the location of its inbound Free_List FIFO
• the location of its inbound Post_List FIFO
• the location of its outbound Free_List FIFO
• the location of its outbound Post_List FIFO
• the location of its shared memory, so the host can interpret MFAs properly.

4.2.1.5.1 Extensions for PCI

The host identifies an IOP by its PCI class code. Refer to [PCI] for further detail. The PCI
class code has three fields:

1. Base Class

2. Subclass

3. Programming Interface

The Base Class value assigned for intelligent I/O controllers is 0Eh. The Subclass code
assigned for PCI devices conforming to the I2O specification is 00h. Two programming
interfaces are specified: Both employ 32-bit data width, 32-bit addressing, and little endian
byte order, with the following characteristics:

4.2.1.5.1.1 Programming interface code value = 00h

• Name = hardware FIFO at offset 40h
• Location of the inbound Free_List FIFO at memory offset 40h in the memory region

specified by the first base address configuration register indicating memory space (offset
10h, 14h, and so forth). The inbound Free_List FIFO is a read-only register.

• Location of the inbound Post_List FIFO at memory offset 40h in the memory region
specified by the first base address configuration register indicating memory space (offset
10h, 14h, and so forth). The inbound Post_List FIFO is a write-only register. This write-
only location overlaps with the read-only location of the inbound Free_List FIFO.

Intelligent I/O Architecture Specification

4-6 Draft Version 1.5d March 7, 1997

• Location of the outbound Free_List FIFO is at memory offset 44h in the memory region
specified by the first base address configuration register indicating memory space (offset
10h, 14h, and so forth). The outbound Free_List FIFO is a write-only register.

• Location of the outbound Post_List FIFO at memory offset 44h in the memory region
specified by the first base address configuration register indicating memory space (offset
10h, 14h, and so forth). The outbound Post_List FIFO is a read-only register. This read-
only location overlaps with the write-only location of the outbound Free_List FIFO.

• Each inbound MFA is the offset between the start of the memory region specified by the
first base address configuration register and the start of the message.

• Does not support standard interrupt capability.

4.2.1.5.1.2 Programming interface code value = 01h

Same as above, plus system interrupt capability as follows:

• 32-bit memory mapped Interrupt Status Register, at offset 30h in the memory region
specified by the first base address configuration register indicating memory space (offset
10h, 14h, and so forth). Bits 0-2 and 4-31 are reserved, and bit 3 is the outbound post list
service request.

• 32-bit memory mapped Interrupt Mask Register at offset 34h in the memory region
specified by the first base address configuration register indicating memory space (offset
10h, 14h, and so forth), with bit 3 masking the outbound post list service request.

4.2.1.5.2 Extensions for Other Bus Types

Because PCI is the predominant bus in new server designs, this initial version of the
specification focuses on PCI. This does not preclude other bus types, but defining extensions
for other bus types is left until support becomes necessary.

Note:

These bus extensions apply to the bus where the IOP resides, not on the buses behind an IOP. An
IOP may incorporate a number of different expansion buses, as specified in Chapter 5.

4.2.2 Queuing Model
• Inbound queue. A message frame is allocated to a message producer when the producer

reads the IOP’s inbound port. The value it reads is the MFA. The value FFFF-FFFFh
signifies an empty list; otherwise, the producer builds or copies its message into the
specified message frame. The message is then posted to the IOP by writing the MFA to
the IOP’s inbound port. The IOP processes the message, and when it finishes with the
message frame, places the MFA back on the free list for another messenger to use.

The message producer is not required to post MFAs to the inbound port in the same order
that they were allocated, nor is the IOP required to return MFAs to the free list in the same
order they were posted to the post list. In fact, the IOP need not return the message frame
to the free list, as long as it can maintain a constant supply of message frames.

The message producer cannot directly return an MFA to the free list. To return an unused

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-7

message frame, the message producer uses the UtilNOP function and posts the MFA to the
target’s inbound port (see Utility Messages in Chapter 6).

• Outbound queue. Message frames for sending messages to the host are allocated to an
IOP by the host when it writes the frame’s MFA to the IOP’s outbound port. When the IOP
produces a message for the host, the IOP:

1. pulls an MFA from the outbound free list

2. places its message in the specified message frame

3. posts the MFA to the outbound post list FIFO.

4. The host retrieves a message by reading its MFA from the IOP’s outbound port.

 The value of FFFF-FFFFh signifies that the list is empty. Once the host consumes the
message, it returns the message frame by writing its MFA to the IOP’s outbound port.

The IOP is not required to post messages to the host in the same order they were
allocated, nor is the host required to return MFAs to the free list in the same order they
were posted to the post list. In fact, the host need not return that same message frame
to the free list, as long as it can maintain a constant supply of message frames.

4.2.3 IOP State
The state of an IOP is characterized by its ability to send and receive messages. The states are
defined in Table 4-1, followed by a detailed description of each state. A state table is provided
in Table 4-2.

Table 4-1. IOP State Definitions

State Name State Definition

FAIL Failed: Non-recoverable operational (software) error occurred. Reset or restart needed.

FAULT Faulted: Hardware failure detected that prevents operation

HOLD Quiesced: Accepting only system requests. Outbound queue in operation. System table
not valid, external connection table cleared.

INIT Initializing: Inbound message queue not available

OP Operational: Accepting requests from system and peers.

READY Quiesced: Accepting only system requests. Outbound queue in operation. System table
valid.

RESET Initialized: Inbound message queue available for system requests, outbound message
queue empty. System table not valid; external connection table cleared.

Detailed description of the IOP State in natural sequence:

INIT state When an IOP is powered on or reset, it may temporarily enter the INIT state
while it prepares its inbound message queue (clears the post FIFO and
primes the free list) and clears its outbound message queue (clears both the
Free_List and the Post_List FIFOs). During the INIT state, the IOP cannot
receive messages; any attempt to access the free list or post a message is
indeterminate. The IOP automatically transitions to the RESET state when it
finishes its initialization.

Intelligent I/O Architecture Specification

4-8 Draft Version 1.5d March 7, 1997

RESET state As soon as the IOP has initialized and its inbound message queue is
operational, it enters the RESET state. In the RESET state, the IOP configures
its drivers and builds its logical configuration table. Then it discards any
messages except an ExecStatusGet or an ExecOutboundInit. The
ExecStatusGet does not cause the IOP to change state. The
ExecOutboundInit moves the IOP to the HOLD state. See section 4.4 for
executive class messages.

HOLD state In the HOLD state, the IOP responds only to executive class messages from
the host and discards all others. The ExecSysTabSet message causes the IOP
to move to the READY state. An ExecIopReset message causes a transition
back to the INIT state.

READY state In the READY state, the IOP responds only to executive class messages from
the host, defers processing executive class messages from other IOPs, and
discards all other messages. The ExecSysEnable message causes the IOP to
transition to the operational (OP) state, at which time the IOP processes
deferred messages. An ExecIopReset message causes a transition to the INIT

state, in which case deferred messages are discarded. An ExecIopClear or
ExecSysModify message causes a transition to the HOLD state and also causes
deferred messages to be discarded.

OP state In the operational state, the IOP responds to all messages. An
ExecSysModify or ExecIopClear message causes a transition to the HOLD

state. An ExecIopReset message causes a transition to the INIT state. A
ExecSysQuiesce message moves the IOP to the READY state.

FAIL state The IOP enters the FAIL state any time it detects an inability to operate
reliably (e.g., parity error) and needs to restart. If fault notification is
enabled and the IOP can, it replies to outstanding UtilEventRegister messages
(see UtilEventRegister in Chapter 6). The IOP remains in the FAIL state until
it receives an ExecIopReset or ExecIopClear message from the host. All
other messages are discarded. An ExecIopReset message causes a transition
to the INIT state. An ExecIopClear message causes a transition to the HOLD

state.

FAULT state The IOP enters the FAULT state when it detects a hard failure that prevents it
from functioning. If fault notification is enabled and the IOP can, it replies
to outstanding UtilEventRegister messages. While in the FAULT state, the IOP
discards all messages and curtails all system activity. If the IOP detects that
the fault condition has been removed, it transitions to the FAIL state.

The state table for the IOP is illustrated in Table 4-2. The relative events are listed in the left
column. The intersection of the event row and the current state column produces the action
expected of the IOP when the event occurs while the IOP is in that state. A shaded area with
the new state’s name in BOLD UPPERCASE letters indicates state changes. The notes below the
table specify other actions.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-9

Table 4-2. IOP State Table

Current State

Event INIT RESET HOLD READY OP FAIL FAULT

Hard Reset - INIT INIT INIT1,2 INIT1,2 INIT1,2 INIT1,2

IOP Initialized RESET n/a n/a n/a n/a n/a n/a

ExecStatusGet message ?x? resp resp resp resp resp? resp?

ExecOutboundInit message ?x? HOLD resp resp resp resp? discard

ExecSysTabSet message ?x? discard READY resp resp discard discard

ExecSysEnable message ?x? discard rej OP rej discard discard

ExecIopReset message ?x? INIT1,2 INIT1,2 INIT1,2 INIT1,2 INIT1,2 discard

ExecIopClear message ?x? discard resp2 HOLD2 HOLD2 HOLD2 discard

ExecSysModify message ?x? discard resp2 HOLD2 HOLD2 HOLD2 discard

ExecSysQuiesce message ?x? discard rej resp READY discard discard

Other Host Exec Class message ?x? discard resp resp resp discard discard

Other IOP Exec Class message ?x? discard discard defer resp discard discard

Non Exec Class messages ?x? discard discard discard resp discard discard

Soft Failure retry FAIL FAIL FAIL FAIL - -

Hard Failure FAULT FAULT FAULT FAULT FAULT FAULT -

Hard Failure Repaired n/a n/a n/a n/a n/a n/a FAIL

{BOLD CAPS} New state
1 Clear and rebuild logical configuration table
2 Clear external connection table
?x? Indeterminate - message can be discarded or take action specified in RESET state. Message frame

might be lost since it cannot be placed on free list without jeopardy.
defer Do not process message until after ExecSysEnable message changes state to OP, if any other

state change, then discard.
discard Ignore message, return message frame to free list.
n/a Not applicable.
resp Respond, no state change.
resp? Respond if able, no state change.
rej Reject message for cause.

4.3 Programming Model

The programming interface is a message-passing interface . Messages are either requests or
replies. The host generates requests, and the IOP processes them and generates replies. A
request is never sent to the host. A reply is sent only in response to a request, but there is not
necessarily a one-to-one correspondence between requests and replies. Each request contains
an Initiator Context field, which is returned unchanged in each reply to that request. The
initiator context allows the host to route the reply and associate it with a request.

Messages fall in one of two categories: executive or I/O transaction messages. Executive
messages are between messenger instances, and manage the I2O system. I/O transaction
messages target DDMs for managing an I/O resource. Both executive and I/O transaction
messages use the message frame structure and format described in Chapter 3. Even though the
same utility messages are defined for every class, many simply do not apply to the executive

Intelligent I/O Architecture Specification

4-10 Draft Version 1.5d March 7, 1997

class (e.g., UtilClaim). The IOP rejects inappropriate utility messages as “function not
supported”.

Each I/O driver module registers a number of I2O devices. Each device has an associated class
and a TID. This TID is used for routing messages between modules.

Each IOP assigns a unique TID to devices within its domain and provides that information to
other messengers, in a logical configuration table. TIDs route messages to the proper device
(i.e., instance of a driver).

Each TID is registered as a particular class and a request to that TID must conform to the rules
for its class. The protocol for exchanging messages is discussed below. The protocol for a
request is described under the class specification for the device. The protocol for processing
executive class messages is specified in Section 4.4.

TID values 000h through 007h are reserved for special use and must not be assigned to devices
by the IOP. TID values must be unique within the IOP. Since all IOPs independently assign
their own TIDs, TIDs are not unique across the system. Thus, peer communication between
messengers requires an alias. An alias is the TID value that an IOP assigns to uniquely
identify a TID of another IOP. These alias TIDs do not show up in the logical configuration
table, but in the IOP’s external connection table.

4.3.1 Special TID Values
Two TID values serve special purposes:

1. TID=000h is assigned to the IOP’s executive function. Use of this value in the
InitiatorAddress field of a request is limited. This value must appear only in certain
executive messages.

2. TID=001h is the alias for all OSMs. This value must not appear in the TargetAddress
field of a message posted to an IOP, or in the InitiatorAddress field of a request from an
IOP. A reply to InitiatorAddress = 001h is always placed in the IOP’s outbound queue.

4.3.2 Host/IOP Communication
The host has a separate and distinct queue for messages from each IOP (i.e., the IOP’s
outbound queue), so assigning an alias to uniquely identify the source module is not necessary.
Therefore, the host uses the TIDs that the IOP assigns.

All host requests use TID=001h in the InitiatorAddress field and the TID assigned by the target
IOP in the TargetAddress field. The reply is placed in the IOP’s outbound queue, with
TID=001h in the InitiatorAddress field, and the value from the request’s TargetAddress field in
the reply’s TargetAddress field.

Executive class requests from the host always specify TID=000h in the TargetAddress field;
executive class replies to the host always specify TID=000h in the TargetAddress field.

4.3.3 Peer Communication
The TargetAddress in a posted request message identifies its destination within the target IOP.
When a request enters the target IOP’s inbound queue, the TargetAddress field contains the
TID of the target device assigned by the target IOP, and the InitiatorAddress field contains the
alias TID that the target IOP assigned to identify the module sourcing the message.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-11

When the target IOP replies to the originator, it must use the TIDs assigned by the originator in
both the TargetAddress and InitiatorAddress fields. That is, the reply’s InitiatorAddress field
contains the TID assigned to the original device by the original IOP; the TargetAddress field
contains the alias TID assigned by the original IOP identifying the module sourcing the reply.
Therefore, a pair of aliases must exist before messages can pass between peer modules. These
aliases are conveyed by the ExecConnSetup request and reply messages.

4.4 Executive Messages and Structures

Executive class messages communicate between Messenger Instances. Table 4-3 provides a
brief description of the base set of executive messages. Function codes 00h through 1Fh are
utility messages, generic to all classes. Utility messages are specified in Chapter 6. Not all
utility class messages apply to the Executive class.

Table 4-3. Executive Class Messages

Mnemonic Description

ExecAdapterAssign Assign an adapter to the specified HDM.

ExecAdapterRead Request that the IOP read the registers of a hidden adapter.

ExecAdapterRelease Revoke the adapter assignment.

ExecBiosInfoSet Indicate a device accessible via BIOS function call − sets field in logical
configuration table.

ExecBootDeviceSet Indicate device used to boot the OS − set field in logical configuration table.

ExecConfigValidate Notify the IOP that suspect drivers are acceptable.

ExecConnSetup Establish aliases for sending messages between I2O devices on different IOPs.

ExecDdmDestroy Terminate local DDM operation - release all assigned adapters and I 2O
devices; destroy all devices created (registered) by the specified module.

ExecDdmEnable Release ExecDdmQuiesce state and resume normal operation with specified
DDM.

ExecDdmQuiesce Stop sending messages to specified remote DDM (on another IOP) and ignore
messages from that DDM. Used when shutting down the other DDM.

ExecDdmReset Clear all connections with specified DDM. Sent when reloading the DDM.

ExecDdmSuspend Suspend local DDM operation - quiesce all devices created (i.e., registered) by
the specified module.

ExecDeviceAssign Assign a device to the specified ISM (i.e., invite a connection between the ISM
and the device).

ExecDeviceRelease Release device - break connection.

ExecHrtGet Request the IOP’s hardware resource table.

ExecIopClear Abort all pending requests without replying. Rebuild inbound message queues
and delete all entries in external connection table.

ExecIopConnect Establish aliases for sending messages between IOP executives.

ExecIopReset Abort all pending requests without reply. Rebuild IOP environment - reload
IRTOS and resident DDMs.

ExecLctNotify Request the IOP’s logical configuration table after next configuration change.
When the target IOP modifies its logical configuration table, it replies to this
message, sending its logical configuration table (i.e., broadcasting) to everyone
who made this request.

Intelligent I/O Architecture Specification

4-12 Draft Version 1.5d March 7, 1997

Mnemonic Description

ExecOutboundInit Clear outbound message queues to their initial (empty) state.

ExecPathEnable Release PathQuiesce state and resume normal operation with specified IOP.

ExecPathQuiesce Stop sending messages to specified IOP and ignore messages from that IOP.
Used when shutting down the other IOP. Sent before resetting the other IOP.

ExecPathReset Clear all connections with specified IOP. Sent when resetting the other IOP.

ExecStaticMfCreate Create and stuff a static message frame.

ExecStaticMfRelease Release a static message frame.

ExecStatusGet Return IOP status: state, size of message frames, and size of inbound and
outbound message queues.

ExecSwDownload Download a software module to the IOP.

ExecSwRemove Delete a software module from IOP’s local store.

ExecSwUpload Upload a software module from the IOP.

ExecSysEnable Release ExecSysQuiesce state and resume normal operation.

ExecSysModify Stop sending messages and ignore all but system messages. Also, suspend all
activity to adapters on the system bus, in preparation for a physical system
configuration change. Especially useful when the host is about to change PCI
configuration (e.g., physical address of this IOP or adapters it might control).

ExecSysQuiesce Stop sending messages and ignore all except system messages. Used to shut
down the receiving IOP. Especially useful when the host is about to change
PCI configuration (e.g., change physical address of one or more IOPs).

ExecSysTabSet Provide system configuration table and enable peer operation.

All Executive class messages are single transaction messages. Typically the sender sets the
MessageFlags field for requests to 00h (for 32-bit context size) or 02h (for 64-bit context
size). For a normal reply, the MessageFlags field should contain C0h (for 32-bit context size)
or C2h (for 64-bit context size). Since some requests provide an SGL, the VersionOffset field
depends on the location of the SGL. Since all replies are single transaction, the VersionOffset
field should be 01h for all replies.

4.4.1 Replies to Executive Class Messages
The reply to each request message can contain a unique payload and depends on the function.
In this case, the reply structure is specified immediately following the definition of the request
structure. The default reply structure is used when a specific payload is not required. In
addition to the normal reply to a request, the messenger may respond to a request when it
encounters certain transport failures or cannot process the message.

4.4.1.1 Default Reply
The default reply structure is the single transaction reply template shown in Figure 4-2. It
applies to all message functions, unless otherwise indicated.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-13

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

Function InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

ReqStatus reserved DetailedStatusCode 16 (24)

ReplyPayload 20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 4-2. Executive Class Reply Message Template

Fields

DetailedStatusCode A more detailed description of the status when required. Values for
this field depend on the Function. Chapter 3 provides the description
of these codes for the Executive Class.

Function The value from the Function field of the request.

InitiatorAddress The value from the InitiatorAddress field of the request.

InitiatorContext The value from the InitiatorContext field of the request.

MessageFlags Set to indicate normal reply. Typically C0h (1100-0000b) for 32-bit
context size, and C2h (1100-0010b) for 64-bit context size.

TargetAddress The value from the TargetAddress field of the request.

ReqStatus This field conveys the general status of the transaction as defined in
Chapter 3.

ReplyPayload Detailed information when required. Size and content of this field
are defined by the particular function and status codes. Unless
otherwise specified, the size of this field is zero for Executive class
messages.

TransactionContext The value from the TransactionContext field of the request.

4.4.1.2 Transport Failure Reply
When a message cannot be delivered or processed, a generic reply is returned with the FAIL bit
set in the MessageFlags field. The format of this message is specified in chapter 3.

4.4.2 Utility Messages
All classes of I/O drivers must support a common group of utility messages. Not all utility
messages apply to the Executive class, such as an UtilClaim message to an IOP. The IOP
rejects inappropriate requests by a normal reply with an UNSUPPORTED_FUNCTION detailed
status.

4.4.2.1 Get Parameters
The UtilParamsGet utility message specified in Chapter 6 reads a specified set of current
operating parameters. The IOP copies that set of parameters into the buffer specified by the

Intelligent I/O Architecture Specification

4-14 Draft Version 1.5d March 7, 1997

SGL or places it in the ReplyPayload and then sends a reply. The parameter groups for the
Executive class and their format are specified in Table 4-7. The normal reply to the
UtilParamsGet request is specified in Chapter 6.

4.4.2.2 Set Parameters
The UtilParamsSet utility message specified in Chapter 6 causes the IOP to modify specified
parameters. The parameter sets for the Executive class and their format are specified in Table
4-7. Only the host can send this message. The normal reply is specified in Chapter 6.

4.4.2.3 Event Registration
The host enables fault notification via the UtilEventRegister utility message (see Chapter 6).
When the host enables events, the IOP sends the UtilEventRegister reply notifying the host
when those events occur (e.g., the IOP detects that a peer IOP identified as operational in the
last SysTab is no longer operational or is does not respond to requests).

The EventIndicator is a 32-bit enumerated value, specifying the source that triggered this event.
Only one bit can be set and its location corresponds to the event category that triggered this
event, as described by Table 4-4. (Also see common events specified in Chapter 6.)

Table 4-4. EventIndicator Assignments for Executive Class

Event Name Bit Description

RESOURCE_LIMITS 0 Resource limits exceeded (e.g., memory utilization)

CONNECTION_FAIL 1 Connection failure - detected that another IOP is not responding

ADAPTER_FAULT 2 Adapter fault - hardware assigned to IOP not present or not operational

POWER_FAIL 3 Power loss, running on auxiliary or standby power

RESET_PENDING 4 Reset pending (e.g., battery backup diminishing or NMI)

RESET_IMMINENT 5 Reset scheduled (e.g., parity error, protection violation, NMI, etc.)

HARDWARE_FAIL 6 Hardware failure, no recovery expected

XCT_CHANGE 7 Change to external connection table (i.e., new connection)

NEW_LCT_ENTRY 8 Entry added to the logical configuration table

MODIFIED_LCT 9 Logical configuration table entry modified

DDM_AVAILIBILITY 10 DDM failed or suspended

EventData in the UtilEventRegister reply message contains the information about the event.
The structure of this field depends on the event category specified by the EventIndicator, as
described in Table 4-5. (Also see common events specified in Chapter 6.)

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-15

Table 4-5. EventData For Executive Class Events

Event Name EventData

ADAPTER_FAULT HRT entry defining the adapter (Figure 4-20)

CONNECTION_FAIL Bits 0-11 contain the IOP_ID of the failing IOP. Bits 12-15 contain one of the following
codes:

0h = Responding normally
01h = Not responding − timed out waiting for response
02h = No available message frames − timed out trying to fetch an empty message

frame.
Bits 16-31 contain the failing IOP’s HostUnitID

DDM_AVAILIBILITY Bits 0-11 contain the TID of the failing DDM. Bits 12-15 contain one of the following
codes:

0h = Responding normally
1h = Congested - event queue exceeded threshold
2h = Not responding - excessive execution time
3h = protection violation
4h = code violation

HARDWARE_FAIL EventData is one of the following codes:
00h = unknown cause
01h = CPU failure
02h = memory fault
03h = DMA failure
04h = I/O bus failure

MODIFY_LCT The modified logical configuration table entry.

NEW_LCT_ENTRY The new logical configuration table entry.

POWER_FAIL No EventData.

RESET_IMMINENT EventData is one of the following values:
00h = unknown cause
01h = power loss
02h = code violation
03h = parity error
04h = code execution exception
05h = watchdog timer expired

RESET_PENDING EventData is one of these values:
01h = power loss
02h = code violation

RESOURCE_LIMITS A 32-bit field that contains an enumerated list of limited resources:
Bit 0: Low memory
Bit 1: Inbound message frame Free_List pool low
Bit 2: Outbound message frame Free_List pool low

XCT_CHANGE The new external connection table entry.

4.4.3 Executive Base Class Messages

4.4.3.1 Adapter Assign
The ExecAdapterAssign request assigns an adapter (or a physical device) to the specified
HDM. The IOP adds the adapter to its HRT. The message indicates if the assignment is

Intelligent I/O Architecture Specification

4-16 Draft Version 1.5d March 7, 1997

permanent (remembered across resets) or temporary (remembered until the next reset). If the
host makes an assignment to a specific TID (not 000h), only the host can change it. Such an
assign or release request by a DDM or another IOP must be rejected. The normal reply is a
default with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecAdapterAssign InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

OperationFlags reserved DdmTID 16 (24)

AdapterAddress (HRT entry) 20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 4-3. ExecAdapterAssign Request Message

Fields

AdapterAddress Takes the form of an HRT entry. See Figure 4-20.

DdmTID Indicates the module to which the adapter is assigned. A value of
000h assigns the adapter to the IOP, so the IOP can assign it
according to its own configuration rules.

OperationFlags Bit 0: Permanent. Values:
 0 Assignment is temporary (until a reset).
 1 Assignment is permanent.
Permanent assignments are saved in the IOP’s permanent store and
remembered over resets and power cycles.

4.4.3.2 Adapter Read
ExecAdapterRead requests that the IOP read the memory or registers of an adapter and place
that information in the buffer specified by the SGL. Either the host or an IOP can send this
message. The normal reply is a default reply with no reply payload.

For inventory management, this message provides the mechanism so a host-based resource
manager can identify resources hidden behind an IOP. The primary purpose of the
ExecAdapterRead message is reading any PCI configuration registers of a hidden PCI device.
The generic format of this message supports other bus/adapter architectures as well.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-17

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset 0

ExecAdapterRead InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

AdapterID 16 (24)

RequestFlags 20 (28)

Offset 24 (32)

Length 28 (36)

SGL for result 32 (40)

Offset in () signifies offset for 64-bit context fields

Figure 4-4. ExecAdapterRead Request Message

Fields

AdapterID Value from HRT identifying the adapter. For PCI, each PCI
function is listed with its own AdapterID.

Length Number of bytes to read. The IOP reads exactly the number of bytes
indicated in the Length field.

Offset Address of registers or memory to read. This value is expressed as
an offset, since the originator does not know the address where the
adapter is configured. For PCI, the IOP treats multiple memory
assignments as contiguous. For example, if there are two memory
windows (1MB and 4MB), an offset of 3MB actually refers to the
memory at location at 2MB offset in the second memory window.

Request Flags Bits 1::0 indicate address space as follows:
0 0 = Configuration Registers
0 1 = I/O Registers
1 0 = Adapter Memory

VersionOffset 81h for 32-bit context size and A1h for 64-bit context size.

4.4.3.3 Adapter Release
The ExecAdapterRelease message is the inverse of the ExecAdapterAssign message. The
normal reply is a default reply with no payload. On receipt, the IOP issues a
DdmAdapterRelease if the adapter had been attached to a DDM, releases all controls, such as
interrupt steering, and then replies. A successful reply means that the host can load its own
drivers for the adapter.

Intelligent I/O Architecture Specification

4-18 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecAdapterRelease InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

OperationFlags reserved 16 (24)

AdapterAddress (HRT entry)
20 (28)

24 (32)

Offset in () signifies offset for 64-bit context fields

Figure 4-5. ExecAdapterRelease Request Message

Field

AdapterAddress Takes the form of an HRT entry. See Figure 4-20.

OperationFlags Bit 0: Permanent. Values:
 0 Release is temporary (until a reset).
 1 Release is permanent.
Permanent release deletes the configuration from the IOP’s
permanent store.

4.4.3.4 BIOS Information Set
This message identifies a device that was incorporated into the BIOS. When the BIOS
provides access to an I2O device such as a hard disk, the BIOS updates the BIOS Information
field in the IOP’s logical configuration table with this message. Only the BIOS can send this
message. The IOP must preserve this information during the system transition from BIOS to
OS, which might involve resetting the IOP (see ExecIopReset and ExecIopClear messages).
The normal reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecBiosInfoSet InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

BiosInfo reserved DeviceTID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-6. ExecBiosInfoSet Request Message

Field

BiosInfo The value specified in the BIOS function call that identifies the device. This
value is placed in the BiosInfo field of the logical configuration table entry
for the device identified by DeviceTID.

DeviceTID The TID of the device accessible via the BIOS.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-19

4.4.3.5 Boot Device Set
This message indicates which device booted the OS. Only the BIOS can send this message.
The IOP must preserve this information during the system transition from BIOS to OS which
might involve resetting the IOP (ExecIopReset or ExecIopClear). The normal reply is a default
reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecBootDeviceSet InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

reserved BootDevice 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-7. Boot Device Set Request Message

Field

BootDevice The TID of the device used to boot the OS. This value is placed in the
BootDevice field of the logical configuration table.

4.4.3.6 Configuration Validate
This message indicates that the host accepts the current configuration as valid. The IOP
changes the status of suspect drivers to current and may delete old drivers from its store. Only
the host may send this message. The normal reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecConfigValidate InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

Figure 4-8. ExecConfigValidate Request Message

4.4.3.7 Connection Setup
The ExecConnSetup message is used by an IOP to connect one of its DDMs and a device
registered on another IOP. IOP1 and IOP2, respectively, refer to the IOPs sending and
receiving the ExecConnSetup request message. The InitiatorDevice and TargetDevice,
respectively, refer to the DDM on IOP1 that will send requests and the device on IOP2 that
will receive them.

Intelligent I/O Architecture Specification

4-20 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecConnSetup InitiatorAddress TargetAddress = 000h 4

InitiatorContext 8

TransactionContext 12 (16)

OperationFlags InitiatorDevice TargetDevice 16 (24)

reserved IOP2AliasForInitiatorDevice IOP1AliasForTargetDevice 20 (28)

reserved IOP1InboundMFrameSize 24 (32)

MessageClass 28 (36)

Offset in () signifies offset for 64-bit context fields

Figure 4-9. ExecConnSetup Request Message

Fields

InitiatorAddress Alias assigned to the requesting IOP (IOP1) by the target IOP
(IOP2) in the ExecIopConnect transaction.

InitiatorDevice The natural TID assigned by IOP1 to the device that will be sending
request messages to the TargetDevice. When forwarding replies,
IOP2 replaces the alias in the InitiatorAddress field with this value.

IOP1AliasForTargetDevice IOP1’s alias TID assigned to the TargetDevice. Its value
uniquely identifies to IOP1 the IOP and device. When IOP1
forwards a request from the InitiatorDevice, it removes this value
from the TargetAddress field replacing it with the natural TID
assigned by IOP2. When IOP2 forwards the reply from the
TargetDevice, IOP2 replaces the natural TID in the TargetAddress
field with this value.

IOP1InboundMFrameSize
Number of 32-bit words in each message frame associated with the
requester’s inbound message queue.

IOP2AliasForInitiatorDevice IOP2’s alias TID assigned to the InitiatorDevice. If IOP1
previously connected with the InitiatorDevice, it reports the value
previously assigned by the IOP2; otherwise, the value 000h denotes
unknown.

MessageClass The message class ID for requests being sent from the InitiatorDevice
to the TargetDevice. See Chapter 6 for class code assignments.

OperationFlags Bit 0 Values:

0 CLIENT_SERVER − supports only requests from
InitiatorDevice to the TargetDevice.

1 BIDIRECTIONAL − supports requests in both directions.

Bits 1 - 7 are reserved

TargetAddress 000h

TargetDevice Identifies the subject of the request and contains the TID assigned to
that device by the target IOP (IOP2). IOP1 replaces the value in the

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-21

TargetAddress field with this value when forwarding requests to that
device.

Figure 4-10 shows the structure of the ExecConnSetup reply.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecConnSetup InitiatorAddress = 000h TargetAddress = alias 4

InitiatorContext 8

TransactionContext 12 (16)

ReplyStatusCode InitiatorDevice TargetDevice 16 (24)

reserved IOP2AliasForInitiator IOP1AliasForTarget 20 (28)

reserved IOP2InboundMFrameSize 24 (32)

Offset in () signifies offset for 64-bit context fields

Figure 4-10. ExecConnSetup Reply Message

Fields

InitiatorAddress 000h.
InitiatorDevice Identifies the device that will be sending requests. This value comes

directly from the ExecConnSetup request.
IOP1AliasForTargetDevice IOP1’s alias TID assigned to the TargetDevice. This value is

taken directly from the ExecConnSetup request.
IOP2AliasForInitiatorDevice Alias TID assigned to the InitiatorDevice by IOP2. If IOP2

previously connected to the InitiatorDevice, it uses the same value.
Otherwise IOP2 assigns a value. Its value uniquely identifies to
IOP2 the IOP and device. When IOP1 forwards a request from the
InitiatorDevice, it removes the natural TID it assigned from the
InitiatorAddress field and replaces it with this value. When IOP2
forwards the reply from the TargetDevice, IOP2 removes this value
from the InitiatorAddress field and replaces it with the natural TID
assigned by IOP1.

IOP2InboundMFrameSize
Number of 32-bit words in each message frame associated with the
responder’s inbound message queue.

TargetAddress IOP1’s alias for IOP2, established by the ExecIopConnect
transaction.

TargetDevice Identifies the subject of the request and contains the TID assigned to
that device by IOP2. This value comes directly from the request.

4.4.3.8 DDM Destroy
ExecDdmDestroy removes a driver from operation. If the DdmTID is not registered as a DDM
class device, this message is rejected. If the DdmTID is a DDM class device, then the IOP
removes all instances (i.e., destroys all devices registered by the DDM). Only the host can
send this message. The normal reply is a default reply with no payload. This message does not
affect the presence of the DDM in the IOP’s permanent store.

Intelligent I/O Architecture Specification

4-22 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecDdmDestroy InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

reserved DdmTID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-11. ExecDdmDestroy Request Message

Fields

DdmTID Indicates the module to destroy.

4.4.3.9 Ddm Enable
The ExecDdmEnable message is used during system configuration to notify the IOP that it can
resume operations with a device on another IOP. Once the IOP replies to this message, it can
send messages to the indicated TID. Only the host can send this message. The normal reply is
a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecDdmEnable InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

reserved reserved DeviceTID 16 (24)

HostUnitID reserved IOP_ID 20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 4-12. ExecDdmEnable Request Message

Fields

DeviceTID Indicates the natural TID of the I/O device being enabled.

IOP_ID Indicates the IOP that contains the device being enabled.

HostUnitID Indicates the unit that contains the device being enabled

4.4.3.10 Ddm Quiesce
The ExecDdmQuiesce message is used during system configuration to notify the IOP that a
device on another IOP is being reconfigured. The IOP must stop sending messages to the
indicated device. Once the IOP replies to this message, it does not send messages to the
indicated TID until it receives an ExecDdmEnable or ExecSysEnable message. Only the host
can send this message. The normal reply is a default reply with no payload.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-23

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecDdmQuiesce InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

reserved reserved DeviceTID 16 (24)

HostUnitID reserved IOP_ID 20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 4-13. ExecDdmQuiesce Request Message

Fields

DeviceTID Indicates the natural TID of the I/O device being quiesced.

IOP_ID Indicates the IOP that contains the device being quiesced.

HostUnitID Indicates the unit that contains the device being quiesced

4.4.3.11 Ddm Reset
The ExecDdmReset message is used during system configuration to notify the IOP that a
device on another IOP has been reinitialized. The IOP must stop sending messages to the
indicated device and delete any connections to it. Once the IOP replies to this message, it does
not send messages to the indicated TID until it receives an ExecDdmEnable or ExecSysEnable
message. Only the host can send this message. The normal reply is a default reply with no
payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecDdmReset InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

reserved reserved DeviceTID 16 (24)

HostUnitID reserved IOP_ID 20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 4-14. ExecDdmReset Request Message

Fields

DeviceTID Indicates the natural TID of the I/O device being reset.

IOP_ID Indicates the IOP that contains the device being reset.

HostUnitID Indicates the unit that contains the device being reset.

Intelligent I/O Architecture Specification

4-24 Draft Version 1.5d March 7, 1997

4.4.3.12 Ddm Suspend
ExecDdmSuspend suspends operation of a driver. If the DdmTID is not registered as a DDM
class device, then the IOP suspends that instance of the driver. If the DdmTID is the TID
assigned to a DDM, the message suspends all instances (all devices registered by that DDM).
Only the host can send this message. The normal reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecDdmSuspend InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

reserved DdmTID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-15. ExecDdmSuspend Request Message

4.4.3.13 Device Assign
The ExecDeviceAssign request assigns an I/O device registered by one DDM to the specified
ISM. The device can be on the same or a different IOP than the designated module. If the host
assigns a device to a specific DdmTID (not 000h), then only the host can change that
assignment. An assign or release request by a DDM or another IOP must be rejected. The
normal reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecDeviceAssign InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

OperationFlags DdmTID DeviceTID 16 (24)

HostUnitID reserved IOP_ID 20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 4-16. ExecDeviceAssign Request Message

Fields

DdmTID Indicates the module to which the I/O device is assigned.

DeviceTID Indicates the natural TID of the I/O device being assigned.

HostUnitID Indicates the unit that contains the device being assigned.

IOP_ID Indicates the IOP that contains the device being assigned.

OperationFlags Bit 0: Permanent. Values:
0 Assignment is temporary (until a reset).
1 Assignment is permanent.
Permanent assignments are saved in the IOP’s permanent store and
remembered over resets and power cycles.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-25

4.4.3.14 Device Release
The ExecDeviceRelease message is the inverse of the ExecDeviceAssign message. The normal
reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecDeviceRelease InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

OperationFlags DdmTID DeviceTID 16 (24)

HostUnitID reserved IOP_ID 20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 4-17. ExecDeviceRelease Request Message

Field

DdmTID Indicates the module to which the I/O device is assigned.

DeviceTID Indicates the natural TID of the I/O device being released.

HostUnitID Indicates the unit that contains the device being released.

IOP_ID Indicates the IOP that contains the device being released.

OperationFlags Bit 0: Permanent. Values:
0 Release is temporary (until a reset).
1 Release is permanent.
Permanent release deletes the configuration from the IOP’s
permanent store.

4.4.3.15 HRT Get
The IOP also provides a hardware resource table, which tells the host (and other IOPs) of any
adapters controlled by the IOP. In general, the HRT lists all adapters and locations that the
IOP can control.

The host or another IOP obtains a copy of the IOP’s hardware resource table by sending the
ExecHrtGet message. The only parameter is a scatter-gather list containing a single buffer in
which the table is placed.

If the buffer is too small for the entire table, the IOP copies as much of the table as can fit.
Since the beginning of the table describes its size, the initiator can resubmit with a larger
buffer. The normal reply is a default reply with no payload.

The host must detect and resolve the conflict when two IOPs indicate control of the same
adapter.

This function is crucial for assuring system integrity during initialization and must be simple
enough for the BIOS and OS to configure around the IOP. BIOS functionality must remain
simple and the OS functionality occurs before the OS loads I2O drivers. In addition, all
changes to this message and the HRT structure must provide backward compatibility.

Intelligent I/O Architecture Specification

4-26 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset 0

ExecHrtGet InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

SGL 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-18. ExecHrtGet Request Message

VersionOffset 41h for 32-bit context size and 61h for 64-bit context size.

SGL Identifies the buffer where the IOP copies the HRT.

31 3 24 23 2 16 15 1 8 7 0 0 offset

HrtVersion EntryLength NumberEntries 0

CurrentChangeIndicator 4

HrtEntry 1
(see Figure 4-20)

8

HrtEntry 2
(see Figure 4-20)

...
HrtEntry n

(see Figure 4-20)

Figure 4-19. Hardware Resource Table Structure

Fields

CurrentChangeIndicator Initialized to 0 and conditionally incremented on receiving a
table read request. Incremented only if the table changed
since the last read request.

EntryLength Length of each entry in 32-bit words. Maximum value of
0FFh is 1020 bytes.

Hrt Entry See Figure 4-20.

HrtVersion 00h for this version of the document.

NumberEntries Number of entries contained in the table.

Each HRT entry has the following format:

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-27

31 3 24 23 2 16 15 1 8 7 0 0 offset

AdapterID 0

BusType BusNumber AdapterState Controlling TID 4

PhysicalLocation
8

Figure 4-20. HRT Entry

Fields for HRT Entry

AdapterID Arbitrary value assigned to the adapter by the IOP used to identify the
adapter in other messages.

AdapterState State of the adapter:
Value Assigned Present Controlled Hidden

0 no n/a no no

1 reserved

2 yes no n/a no

3 yes no n/a yes

4 yes yes no no

5 yes yes no yes

6 yes yes yes no

7 yes yes yes yes

8 reserved

9 reserved

10 HARD no n/a no

11 HARD no n/a yes

12 HARD yes no no

13 HARD yes no yes

14 HARD yes yes no

15 HARD yes yes yes

ASSIGNED means that the slot or location is assigned to the IOP and if an
adapter is detected, the IOP assigns its control to a DDM. Assignment is
granted and revoked via the ExecAdapterAssign and ExecAdapterRelease
messages. An adapter or location listed in this table must be assignable to
the IOP. The value of HARD indicates that only the IOP can control the
adapter or location (e.g., an embedded controller) and it cannot be assigned
to the host or another IOP.

PRESENT means that the IOP detected an adapter in the specified location.

CONTROLLED means that the adapter is attached to a DDM and controlled by
the IOP. Reporting an adapter that is PRESENT but not CONTROLLED indicates
the IOP lacks a suitable driver for that adapter.

HIDDEN means that the configuration space of that location or adapter is not
visible to the host.

Intelligent I/O Architecture Specification

4-28 Draft Version 1.5d March 7, 1997

BusNumber Arbitrary value the IOP assigns to identify the physical bus where the
adapter resides. Adapters residing on the same physical bus should report
the same BusNumber.

BusType Indicates the type of expansion bus. For values, see Common Structures for
Adapters in Chapter 3.

Controlling TID Local TID of the HDM to which this adapter is assigned. If the AdapterState
field indicates the adapter is not assigned to the IOP, this value is set to
001h. If the adapter is assigned to the IOP but not controlled, this value is
set to FFFh. A value of 000h means the IOP itself controls the adapter and
does not intend to assign it to a DDM.

PhysicalLocation Eight bytes of data that identify the adapter, physical device, or function.
Format of this field depends on BusType, and those variations are defined in
Common Structures for Adapters in Chapter 3.

4.4.3.16 IOP Clear
The ExecIopClear message causes the IOP to terminate external operations, clear all of its input
queues and prepare for a system restart. Use this command when rebooting the system or
when the system reconfigures (for example, changing the system addresses of IOPs and
adapters). Internal operation of the IOP continues normally. Only the host can send this
message. Unlike the ExecIopReset, this message does not reset the outbound queue and thus
the IOP can reply to this message. The normal reply is a default reply with no payload.

The IOP is not expected to rebuild its LCT as a result of this message. If it does, it must
preserve the LCT’s BootDevice and BiosInfo fields so they are available, unchanged, after the
IOP initializes. This ensures a smooth transition from BIOS to OS.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecIopClear InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

Figure 4-21. ExecIopClear Request Message

The host is expected to send a ExecSysQuiesce message to all IOPs before sending a
ExecIopClear message. When it receives this message, the IOP suspends external message
service, flushes its inbound message queue and all path information, and reallocates its
primary inbound queue. Once the IOP curtails operation and rebuilds its inbound queues, it
replies to the message. The IOP sends DdmPathReset to all DDMs for each alias TID (from an
external connection). This includes TID 001h. Consequently, the UserTID field in the LCT
for external users gets reset to not claimed.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-29

4.4.3.17 IOP Connect
An IOP uses the ExecIopConnect message to set up a path to another IOP. This path is used to
exchange Executive class messages between the IOPs. This is necessary to set up peer
connections.

The IOP1 and IOP2, respectively, refer to the entities sending and receiving the
ExecIopConnect request.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecIopConnect InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

IOP1MsgerType reserved reserved 16 (24)

reserved IOP1AliasForIOP2 IOP1InboundMFrameSize 20 (28)

HostUnitID1 reserved IOP_ID1 24 (32)

Offset in () signifies offset for 64-bit context fields

Figure 4-22. ExecIopConnect Request Message

Fields

HostUnitID1 HostUnitID for IOP1.

InitiatorAddress Initiator address is always 000h, because the alias for IOP1
is not yet established.

IOP1AliasForIOP2 Originator’s alias TID for IOP2. IOP2 places this value in
the InitiatorAddress field when sending request messages to
IOP1 (the initiator of this request), and in the TargetAddress
field when replying to requests from IOP1. This tells IOP2
which IOP sourced the message.

IOP_ID1 IOP_ID assigned to IOP1 by the host. The value FFFh
denotes value not assigned or not known.

IOP1MsgerType IOP1’s messenger type. The only type defined by this
version of the specification is: 00h = memory mapped
message unit.

IOP1InboundMFrameSize Number of 32-bit words in each message frame associated
with IOP1’s inbound message queue.

TargetAddress Target address is always 000h.

When the status is success, the structure of the ExecIopConnect reply is:

Intelligent I/O Architecture Specification

4-30 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecIopConnect InitiatorAddress = 000h TargetAddress = alias 4

InitiatorContext 8

TransactionContext 12 (16)

ReplyStatusCode DetailedStatusCode 16 (24)

reserved IOP2AliasForIOP1 IOP2InboundMFrameSize 20 (28)

HostUnitID2 reserved IOP_ID2 24 (32)

Offset in () signifies offset for 64-bit context fields

Figure 4-23. ExecIopConnect Reply Message

Fields

HostUnitID2 HostUnitID for IOP2.

InitiatorAddress 000h

IOP2AliasForIOP1 IOP2’s alias TID for IOP1. IOP1 places this value in the
InitiatorAddress field when sending request messages to IOP2, and in
the TargetAddress field when replying to IOP2. This tells IOP2
which IOP sourced the message.

IOP2InboundMFrameSize
Number of 32-bit words in each message frame associated with
IOP2’s inbound message queue.

IOP_ID2 The IOP_ID assigned to IOP2 by the host. The value FFFh denotes
value not assigned.

TargetAddress IOP1’s alias for IOP2. This is the value from the IOP1AliasForIOP2
field of the request.

4.4.3.18 IOP Reset
When the IOP receives the ExecIopReset message, it terminates external operations: It clears
its input and output queues, terminates all DDMs, and reloads the IOP’s operating environment
and all local DDMs. The host uses this command for recovering an ill IOP or completely
reconfiguring the system. Only the host can send this message.

When it receives this message, the IOP rebuilds its LCT. The IOP must preserve the LCT’s
BootDevice and BiosInfo fields, so they are available, unchanged, after the IOP initializes. This
ensures a smooth transition from BIOS to OS.

Since the IOP loses its state, a normal reply is not appropriate. Therefore, the IOP
acknowledges the message by writing a status word to the location specified in the request
before it attempts its operation. The IOP is not required to remember this address across the
RESET; it writes only an acknowledge status, never a completion status. Rather, the host
determines the status of the RESET by sending ExecStatusGet requests.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-31

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecIopReset InitiatorAddress TargetAddress=000h 4

Reserved (Universal Context Area)

16 bytes

8

StatusWordLowAddress 24

StatusWordHighAddress 28

Offset in () signifies offset for 64-bit context fields

Figure 4-24. ExecIopReset Request Message

This message reserves an area for universal context that may be used for tracing or debugging.
The universal context field’s size accommodates both a 64-bit InitiatorContext and
TransactionContext. The host may place any value in this field. Since there is no reply, the
IOP ignores this field. Also the status word address is a 64-bit value. If the
StatusWordHighAddress does not contain zero, then the IOP may ignore the request.

The structure of the status word written to the reply address is specified in Figure 4-25.

31 3 24 23 2 16 15 1 8 7 0 0

reserved ResetStatus 0

Figure 4-25. ExecIopReset Status Word Structure

Field

ResetStatus Status of reset request. Values:
01h IN_PROGRESS

02h REJECTED

When it receives this message, the IOP:

1. Stops posting messages to its outbound queue.

2. Recovers any outstanding message frames in use internally.

3. Recovers all MFAs from the inbound free list.

4. Recovers all MFAs from the inbound post list.

5. Clears the inbound free list and post list. This must be done before it writes the
StatusWord.

6. Writes IN_PROGRESS to the StatusWord only after it has cleared its inbound queues. The
IOP’s inbound free list can remain empty until the IOP boots. Writing the StatusWord
only after the inbound free list has been cleared assures the host that once it detects that
the IOP has written the StatusWord, it can safely fetch an inbound message frame and
thus post an ExecStatusGet message. There is no guarantee that an inbound message
frame will be available.

Intelligent I/O Architecture Specification

4-32 Draft Version 1.5d March 7, 1997

After the IOP writes the StatusWord, the host polls the free list until a message frame is
available. Then, the host can immediately post a message and the IOP must be able to process
it.

The host must send an ExecSysQuiesce message to all IOPs before sending an ExecIopReset
message. The IOP clears its inbound message queues, writes the StatusWord, and jumps to its
boot code. The boot code creates new inbound message frames and posts them to the free list.
The host can now send the ExecStatusGet message.

4.4.3.19 LCT Notify
ExecLctNotify requests that an IOP place a copy of its logical configuration table in the buffer
specified by the SGL. This happens only when the IOP’s current Change Indicator is a
different value than the LastReportedChangeIndicator field. Either the host or an IOP can send
this message to other IOPs. DDMs may send this message to the local IOP to ascertain when
configuration is complete. The normal reply is a default reply with no payload. Also, see the
UtilEventRegister utility message specified in Chapter 6.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset 0

ExecLctNotify InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

ClassIdentifier 16 (24)

LastReportedChangeIndicator 20 (28)

SGL for LCT 24 (32)

Offset in () signifies offset for 64-bit context fields

Figure 4-26. ExecLctNotify Request Message

Fields

ClassIdentifier Specifies the class of devices to include in the reply
(FFFF-FFFFh = all classes). The IOP returns all logical
configuration table entries that match ClassIdentifier,
including those that have not changed.

LastReportedChangeIndicator The reply occurs immediately if any table entries for the
specified class have a Change Indicator value greater than
this field. Otherwise, the reply is deferred until such a
change occurs. A value of 0000-0000h assures an
immediate reply.

SGL for LCT Specifies a buffer to hold the logical configuration table. If
the buffer is too small for the entire table, the IOP copies as
much as fits. Since the beginning of the table describes its
size, the initiator can resubmit with a larger buffer.

VersionOffset 61h for 32-bit context size and 81h for 64-bit context size.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-33

31 3 24 23 2 16 15 1 8 7 0 0 offset

LctVer BootDevice TableSize 0

IopFlags 4

CurrentChangeIndicator 8

LctEntry 1
(as per Chapter 3)

12

LctEntry 2
(as per Chapter 3)

...

LctEntry n
(as per Chapter 3)

Figure 4-27. Logical Configuration Table Structure

Fields

BootDevice TID of the device that booted the OS. Set to zero if none or
unknown. The BIOS sets this value via the
ExecBootDeviceSet message.

CurrentChangeIndicator Initialized to 0 and incremented before the table is returned,
only if the table changed since the last table read response.

IopFlags Bit 0: Set to indicate that the IOP requests a configuration
dialogue. All other bits reserved.

LctEntry The content of a logical configuration table entry is defined
in Chapter 3.

LctVer Table version (0000b for this version).

TableSize Number of 32-bit words in the table including this field.

4.4.3.20 Outbound Initialize
The ExecOutboundInit message causes the IOP to flush its outbound message queue (i.e.,
empty both FIFOs). Only the host can send this message. There is no reply message to this
request since the outbound Free_List will be empty. The IOP conveys status by writing a
status word to the system address specified in the SGL.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset 0

ExecOutboundInit InitiatorAddress TargetAddress = 000h 4

InitiatorContext 8

TransactionContext 12 (16)

HostPageFrameSize 16 (24)

OutboundMFrameSize reserved InitCode 20 (28)

SGL 24 (32)

Offset in () signifies offset for 64-bit context fields

Figure 4-28. ExecOutboundInit Request Message

Intelligent I/O Architecture Specification

4-34 Draft Version 1.5d March 7, 1997

Field

HostPageFrameSize Size of host’s page frame specified in number of bytes.

InitCode The host provides this code point and the IOP reports it in each
ExecStatusGet response. Its value may also be modified by the
UtilParamsSet message. The use of this field helps synchronize the
initialization of the IOP between BIOS, BIOS extensions, ROM
BIOS, and the OS. This field allows those entities not only to
identify who is in control, but also the phase of initialization. To
this end, ranges are assigned to each major entity. Each can set any
value within its assigned range (see Exec Parameter Group 0001h).

OutboundMFrameSize Size of message frames for the outbound message queue specified in
number of 32-bit words.

SGL Specifies one or two buffers. The first buffer must be exactly four
bytes long and provide the location where the IOP writes the status
word. The host supplies a second buffer if it wants the IOP to
provide a list of MFAs of outbound message frames from the
previous session. This allows the host to recover those resources.

VersionOffset 61h for 32-bit context size and 81h for 64-bit context size.

Since executing this message resets the outbound message queue, there is no reply to it. The
IOP indicates its progress by writing a status word to the system location specified by the SGL.
The IOP should initially report the status of IN_PROGRESS to acknowledge the request and then
subsequently update the status word to indicate completion.

31 3 24 23 2 16 15 1 8 7 0 0

reserved InitStatus 0

Figure 4-29. ExecOutboundInit Status Word Structure

Fields for Status Word

InitStatus Values:
00h Never used - The host may initialize to this value to detect when the

InitStatus has been written.
01h IN_PROGRESS

02h REJECTED

03h FAILED

04h COMPLETE

When the IOP receives this message, it:

1. Writes IN_PROGRESS to the InitStatus word.

2. Stops posting messages to its outbound queue.

3. Recovers any outstanding message frames in use internally.

4. Removes all outbound message frame MFAs from the outbound free list.

5. Removes all outbound message frame MFAs from the outbound post list.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-35

6. Builds a list (Figure 4-30) of all MFAs, from steps 2, 3, and 4 above, and places that list
in the buffer specified by the SGL. If the list exceeds the buffer, the IOP places as much
of it as fits. If the host does not want the list, it simply gives an SGL a single IGNORE
element (e.g., the value C0-00-00-01h).

7. Writes COMPLETE to the InitStatus word.

31 3 24 23 2 16 15 1 8 7 0 0 offset

Count of MFAs in this list 0

Count of MFAs released 4

MFA 8

...

MFA

Figure 4-30. Reclaim List Structure

4.4.3.21 Path Enable
Receiving the ExecPathEnable message during system configuration notifies the IOP that it can
resume operations with another IOP. Once the IOP replies, it can allocate and send messages
to the indicated IOP. Only the host can send this message. The normal reply is a default reply
with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecPathEnable InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

HostUnitID reserved IOP_ID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-31. ExecPathEnable Request Message

4.4.3.22 Path Quiesce
Receiving the ExecPathQuiesce message during system configuration notifies the IOP that
another IOP is being reconfigured. The IOP must stop sending messages to the indicated IOP.
Once the IOP replies to this message, it does not allocate or send messages to the indicated
IOP until it receives an ExecPathEnable or ExecSysEnable message. Only the host can send
this message. The normal reply is a default reply with no payload.

Intelligent I/O Architecture Specification

4-36 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecPathQuiesce InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

HostUnitID reserved IOP_ID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-32. ExecPathQuiesce Request Message

4.4.3.23 Path Reset
Receiving the ExecPathReset message during system configuration notifies the IOP that
another IOP has been reset. The IOP must stop sending messages to the indicated IOP, discard
any outstanding message frames, and delete any connections with the other IOP. Once the IOP
replies to this message, it does not allocate or send messages to the indicated IOP until it
receives an ExecPathEnable or ExecSysEnable message. Only the host can send this message.
The normal reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecPathReset InitiatorAddress TargetAddress = 000h 4

InitiatorContext 8

TransactionContext 12 (16)

HostUnitID reserved IOP_ID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-33. ExecPathReset Request Message

4.4.3.24 Static Message Frame Create
Because numerous messages routinely carry the exact same header and payload, there is a need
for static (permanent) messages. A static message is a message frame reserved for one
particular message. The sending entity fills in the message frame once. Then, each time it
sends the message, only the address of the message frame (i.e., its MFA) posts to the target’s
inbound message FIFO. The message itself does not need to be copied across the system I/O
bus.

Static messages that are sent repeatedly from one module to another without a change to the
header or payload can do so very efficiently. An example is a notification message that an
ISM sends to a peer identifying new data in an input pipe. By keeping a permanent copy of this
message at the destination, the sourcing IOP does not copy the message each time it is
delivered. As a further optimization, the receiving IRTOS may create a static event block for
that message so it does not parse through the TID’s tables each time it receives the message.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-37

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecStaticMfCreate InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

reserved MaxOutstanding 16 (24)

StaticMessageFrame (Header + Payload)
20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 4-34. ExecStaticMfCreate Request Message

Fields

MaxOutstanding The maximum number of outstanding instances of this message
frame. The initiator must not send the message so often that it
appears more than MaxOutstanding times in the target IOP’s
inbound message queue. This ensures that the IOP’s inbound queue
can always accept a message frame. The IOP rejects requests that
exceed the inbound message FIFO size.

StaticMessageFrame The remainder of the message is the static message frame, which
includes the message header and payload. The target IOP builds a
static message frame from this field.

Figure 4-35 shows the structure of the ExecStaticMfCreate reply.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecStaticMfCreate InitiatorAddress TargetAddress = 000h 4

InitiatorContext 8

TransactionContext 12 (16)

ReqStatus reserved DetailedStatusCode 16 (24)

StaticMFA 20 (28)

Offset in () signifies offset for 64-bit context fields

Figure 4-35. ExecStaticMfCreate Reply Message

Fields

MessageFlags Typically, C0h for 32-bit context size and C2h for 64-bit context.
StaticMFA The MFA the initiator posts to the target’s inbound message queue to

send the static message.

4.4.3.25 Static Message Frame Release

Intelligent I/O Architecture Specification

4-38 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecStaticMfRelease InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

StaticMFA 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-36. ExecStaticMfRelease Request Message

Fields
StaticMFA The MFA that was returned in the ExecStaticMfCreate reply message.

The ExecStaticMfRelease reply is a standard reply with no payload.

4.4.3.26 Status Get
The ExecStatusGet message causes the IOP to place its status block in the buffer specified by
the system address indicated in the ReplyBufferAddress field. This message can be sent by the
host or an IOP. There is no reply to this request, which allows sending this request before the
IOP’s outbound queue is initialized or the IOP’s state is known.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize Flags VersionOffset = 01h 0

ExecStatusGet InitiatorAddress TargetAddress=000h 4

Reserved (UniversalContext)

16 bytes

8

ReplyBufferAddressLow 24

ReplyBufferAddressHigh (reserved) 28

ReplyBufferLength 28

Offset in () signifies offset for 64-bit context fields

Figure 4-37. ExecStatusGet Request Message

Fields

MessageFlags Typically 00h for 32-bit context size and 02h for 64-bit context size

ReplyBufferAddress Defined as a 64-bit field to accommodate requests from both 32-bit
and 64-bit systems. If the ReplyBufferAddressHigh field does not
contain zero, then the IOP may ignore the request (only 32-bit
operation is defined).

ReplyBufferLength Size of reply buffer in bytes. The IOP copies no more than this
number bytes of the reply structure to the reply buffer starting with
the first word. This field allows the initiator to request only the
portion of the status structure it needs or expects. Thus, it provides

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-39

compatibility when future versions of the specification append
information to the reply structure.

UniversalContext This message has an area reserved for universal context that may be
used for tracing or debugging purposes. The OS may place any
value in this field. Since there is no reply, the IOP ignores this field.

Figure 4-38 depicts the status block that the IOP places in the buffer. It uses the location
indicated by the system address in the ReplyBufferAddress field.

31 3 24 23 2 16 15 1 8 7 0 0 offset

reserved OrganizationID 0

HostUnitID reserved IOP_ID 4

MessengerType IopState I2oVersion SegmentNumber 8

reserved InitCode InboundMFrameSize 12

MaxInboundMFrames 16

CurrentInboundMFrames 20

MaxOutboundMFrames 24

ProductIDString
28

48

ExpectedLctSize 52

IopCapabilities 56

DesiredPrivateMemSize 60

CurrentPrivateMemSize 64

CurrentPrivateMemBase 68

DesiredPrivateIOSize 72

CurrentPrivateIOSize 76

CurrentPrivateIOBase 80

FFh reserved 84

Figure 4-38. Status Block Structure

Fields

CurrentInboundMFrames Current number of message frames created for the inbound message
frame pool.

CurrentPrivateIOBase The base address of the Private I/O space currently allocated to this
IOP. This value is set to zero at power up.

CurrentPrivateIOSize Number of bytes of Private I/O space currently allocated to this IOP.
This value is set to zero at power up.

CurrentPrivateMemBase The base address of the Private Memory space currently allocated to
this IOP. This value is set to zero at power up.

CurrentPrivateMemSize Number of bytes of Private Memory space currently allocated to this
IOP. This value is zero when the IOP is powered on.

Intelligent I/O Architecture Specification

4-40 Draft Version 1.5d March 7, 1997

DesiredPrivateIOSize The number of bytes of Private I/O space requested by the IOP.

DesiredPrivateMemSize The number of bytes of Private Memory space requested by the IOP.

ExpectedLctSize The total expected size (number of bytes) of the IOP’s logical
configuration table. This estimate is based on the number of TIDs
assigned, even if table contains no entry for that TID.

HostUnitID Value from ExecSysTabSet message

I2oVersion Version of I2O specification under which the IOP is operating. This
version = 01h.

InboundMFrameSize Size of the inbound message frame (in 32-bit words). Minimum
allowable size is 16 (i.e., 64 bytes).

InitCode Initialization code. The IOP initially sets InitCode to 00h and the
host updates the value indicating the progress of the initialization
sequence. See Table 4-7.

IOP_ID Value from ExecSysTabSet message. Arbitrary number the host
resource manager assigns to uniquely identify each IOP. If a value
is not yet assigned, then the IOP reports the value FFFh.

IopCapabilities: Bit-specific fields that indicate the IOP’s current modes and
capabilities.

Bits 1,0; ContextFieldSizeCapability

0,0 Supports only 32-bit context fields.

0,1 Supports only 64-bit context fields.

1,0 Supports 32-bit & 64-bit context fields, but not
concurrently.

1,1 Supports 32-bit & 64-bit context fields concurrently.

Bits 3,2; CurrentContextFieldSize

0,0 not configured.

0,1 Supports 32-bit context fields only.

1,0 Supports 64-bit context fields only.

1,1 Supports both 32-bit or 64-bit context fields
concurrently.

Bit 4: InboundPeerSupport - This IOP supports connections from
ISMs on other IOPs to devices registered on this IOP (peer
ISM can Claim local device)

Bit 5: OutboundPeerSupport - This IOP supports connections from
ISMs on this IOP to devices registered on other IOPs.

Bit 6: PeerToPeerSupport - This IOP supports peer-to-peer
connections via Peer Transport Protocol (tbd).

Other bits reserved.

IopState Values (see Table 4-1 for state definition):
01h INIT

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-41

02h RESET

04h HOLD

05h READY

08h OP

10h FAILED

11h FAULTED

MaxInboundMFrames Maximum number of message frames that can be allocated for the
inbound message queue.

MaxOutboundMFrames Number of message frames that can be allocated for the outbound
message queue.

MessengerType The only type defined by this version of the specification is:
00h = memory mapped message unit.

OrganizationID ID assigned by I2O SIG to the vendor of the IOP.

ProductIDString 24 bytes of ASCII text identifying the product. It can be any value
the vendor supplies. The value identifies the product for
troubleshooting, upgrading, and so forth.

SegmentNumber Value from ExecSysTabSet message. Set to zero if not
established.

The last byte of the table is fixed at 0FFh, so the initiator has a positive indication of when all
the information is written to the status block.

4.4.3.27 Software Download
The host transfers new software to the IOP using the ExecSwDownload message. The software
to download may be one of the following:

• DDM
• DDM Module Parameter Block
• DDM Configuration Dialogue Table
• IRTOS Upgrade
• IRTOS Private Module
• IRTOS Configuration Dialogue Table
• IOP Private Module
• IOP Configuration Dialogue Table

This message instructs the IOP to either install the software module into its permanent store, or
load it into memory for execution. If the installed software is a DDM, the IOP determines if it
loads and initializes the DDM: It matches the DDM to a device or an adapter assigned to the
IOP that is not otherwise controlled. If the installed module is an IRTOS upgrade, the IOP
loads the new IRTOS during the next boot. The behavior of the IOP for other forms of
software download is implementation dependent. Only the host can send this message. The
normal reply is a default reply with no payload.

The host can break a single software module into fragments, conveying each fragment with an
individual ExecSwDownload message. All messages must have the same transaction context.

Intelligent I/O Architecture Specification

4-42 Draft Version 1.5d March 7, 1997

The IOP must recombine the fragments into a single module. The IOP uses the transaction
context to ensure that all ExecSwDownload messages are part of the same sequence.

The host must download only one fragment of the sequence at a time, wait for the reply, and
then send the next fragment of the same module. Only one sequence may be in progress at a
time. Interleaving sequences causes an error.

The host must send all fragments in order. The first fragment of the sequence (Current
Fragment = 1) contains the beginning of the software module; the last fragment (Current
Fragment = Total Fragments) contains the last portion of the software module. The IOP aborts
any previous download if a request arrives specifying the first fragment (Current Fragment =
1) of a new sequence. After the first fragment, if any fragment arrives out of order, the IOP
returns an error code in the reply and aborts the operation.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset 0

ExecSwDownload InitiatorAddress = 001h TargetAddress = 000h 4

InitiatorContext 8

TransactionContext 12 (16)

DownloadFlags SwType TotalFragments CurrentFragment 16 (24)

SWSize 20 (28)

SwID 24 (32)

SGL

:

28 (36)

Offset in () signifies offset for 64-bit context fields

Figure 4-39. ExecSwDownload Request Message

Fields

CurrentFragment Value indicating the position of the fragment in the sequence. The first
fragment is 1, the second fragment is 2, and so forth.

DownloadFlags Describes the download operation:

Bit Name Description

0 DownloadType 0 = Load: put module in memory
1 = Install: put module in the IOP’s permanent store

1 SafetyOverride 0 = The mode is tagged experimental and the previous
version tagged “old”.

1 = The module is tagged verified, deleting any previous
version.

2-7 reserved

SGL Scatter-gather list identifying the buffer containing the fragment.

SwID Identifies the software downloading. For a DDM, a DDM Module
Parameter Block, or a DDM Configuration Dialogue Table, the SwID
contains two fields from the DDM’s module header, as shown below:

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-43

31 3 24 23 2 16 15 1 8 7 0 0

OrganizationID ModuleID

For downloading any other type, the exact content of this field is
implementation specific.

SwType Type of software module downloading, as described in Table 4-6.

SWSize The total number of bytes in the software module.

TotalFragments The total number of fragments in the sequence.

VersionOffset 71h for 32-bit context size and 91h for 64-bit context size.

The available software modules are described in Table 4-6:

Table 4-6 Software Module Types

Value Description

01h DDM

02h DDM Module Parameter Block

03h DDM Configuration Dialogue Table

11h IRTOS

12h IRTOS private module: may be any portion of the IRTOS, depending on the
IRTOS implementation.

13h IRTOS Dialogue Table

22h IOP private module: Its meaning is implementation specific.

23h IOP Dialogue Table

others reserved

4.4.3.28 Software Upload
The host transfers software from the IOP using the ExecSwUpload message. The software to
upload may be one of the following:

• DDM
• DDM Module Parameter Block
• DDM Configuration Dialogue Table
• IRTOS
• IRTOS Private Module
• IRTOS Configuration Dialogue Table
• IOP Private Module
• IOP Configuration Dialogue Table

This message instructs the IOP to place a portion of the requested module in the designated
buffer. Only the host can send this message. The normal reply is a default with no payload.

The host can break the module into a sequence of fragments, uploading each using an
individual ExecSwUpload message. All messages in the sequence must have the same
transaction context. The IOP uses the transaction context to ensure that all ExecSwUpload
requests are part of the same sequence.

Intelligent I/O Architecture Specification

4-44 Draft Version 1.5d March 7, 1997

The host must upload only one fragment at a time, wait for the reply, and then request the next
fragment of the same module. Only one sequence may be in progress at a time. Interleaving
sequences causes an error.

The IOP sends all fragments in order. The first fragment of the sequence (Current Fragment =
1) contains the beginning of the software module. The last fragment (Current Fragment = Total
Fragments) contains the last portion of the software module. The IOP aborts any previous
uploads if a request arrives specifying a new sequence (Current Fragment = 1). After it sends
the first fragment, if the IOP receives any request out of order, it returns an error code in the
reply and aborts the operation.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

ExecSwUpload InitiatorAddress=001h TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

UploadFlags SwType TotalFragments CurrentFragment 16 (24)

SWSize 20 (28)

SwID 24 (32)

SGL

:

28 (36)

Offset in () signifies offset for 64-bit context fields

Figure 4-40. ExecSwUpload Request Message

Fields

CurrentFragment Value indicating the position of the fragment in the sequence. The first
fragment is 1, the second fragment is 2, and so forth.

SGL Scatter-gather list identifying the destination buffer of the fragment.

SwID Identifies the software being uploaded. For a DDM, a DDM Module
Parameter Block or a DDM Configuration Dialogue Table, the SwID
contains two fields from the DDM’s module header as shown below:

31 3 24 23 2 16 15 1 8 7 0 0

OrganizationID ModuleID

For uploading any other type, the contents of this field are implementation
specific.

SwType Type of software module uploading, as described in Table 4-6.

SWSize The number of bytes in the software module. Set to zero if the value is
unknown. IOP uses this value to verify correct identification of the module
to upload.

TotalFragments The total number of fragments in the sequence.

UploadFlags reserved

VersionOffset 71h for 32-bit context size and 91h for 64-bit context size.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-45

4.4.3.29 Software Remove
The host removes software from the IOP using the ExecSwRemove message. The message
removes one of the following:

• DDM
• DDM Module Parameter Block
• DDM Configuration Dialogue Table
• IRTOS Private Module
• IRTOS Configuration Dialogue Table
• IOP Private Module
• IOP Configuration Dialogue Table

This message instructs the IOP to delete the requested module from its permanent store. The
software continues to operate if it is loaded, but does not load the next time the IOP is reset.
Only the host can send this message. The normal reply is a default reply with no payload.

The IOP may reject any ExecSwRemove requests. This message enables a host-based
application to clean up the driver store on the IOP.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecSwRemove InitiatorAddress = 001h TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

RemoveFlags SwType reserved 16 (24)

SwSize 20 (28)

SwID 24 (32)

Offset in () signifies offset for 64-bit context fields

Figure 4-41. ExecSwRemove Request Message

Fields

SwID Identifies the software being removed. For a DDM, a DDM Module
Parameter Block, or a DDM Configuration Dialogue Table, the SwID
contains two fields from the DDM’s module header as shown below:

31 3 24 23 2 16 15 1 8 7 0 0

OrganizationID ModuleID

For removing any other SwType, the contents of this field is implementation
specific.

SwSize The total number of bytes in the software module. Set to zero if value is
unknown. IOP uses this value to verify identification of module to remove.

SwType Type of software module being removed, as described in Table 4-6.

Intelligent I/O Architecture Specification

4-46 Draft Version 1.5d March 7, 1997

RemoveFlags reserved

4.4.3.30 System Enable
The ExecSysEnable message allows the IOP to resume external operations. This command is
useful when rebooting the system or when the system reconfigures its I/O bus (to change the
address of one or more IOPs, for example). Only the host can send this message. The normal
reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecSysEnable InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

Figure 4-42. ExecSysEnable Request Message

4.4.3.31 System Modify
The ExecSysModify message resembles the ExecIopClear message, but it also notifies the IOP
that a physical system reconfiguration is imminent. This message causes the IOP to terminate
external operations, clearing its input queues and preparing for a system configuration change.
This command is useful when rebooting the system or reconfiguring its I/O bus (to change the
addresses of IOPs or adapters that the IOP controls, for example). Internal operation of the
IOP is affected for all adapters that reside on the system bus. Only the host can send this
message. The normal reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset 0

ExecSysModify InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

SGL 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-43. ExecSysModify Request Message

Fields

SGL Specifies two single segment buffers: The first is the private memory space
declaration and the second is the private I/O space declaration. Any
additional buffers in the SGL are ignored. Refer to section 4.4.3.33 System
Table Set, for details.

VersionOffset 41h for 32-bit context size and 61h for 64-bit context size.

Before system reconfiguration, the host sends this message with public space declarations so
the IOP knows whether to move any of its hidden adapters.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-47

The host is expected to send a ExecSysQuiesce message to all IOPs before sending a
ExecSysModify message. When it receives this message, the IOP suspends external message
service, flushes its inbound message queue, flushes all path information, and reallocates its
primary inbound queue. It also suspends operation of any DDM that controls an adapter on the
system bus. Once the IOP curtails operation and re-establishes its inbound queue, it replies to
the message.

4.4.3.32 System Quiesce
The ExecSysQuiesce message causes the IOP to make external operations quiescent. This
command is useful when rebooting the system or reconfiguring its I/O bus (to change the
address of one or more IOPs, for example). Internal operation of the IOP continues normally.
Only the host can send this message. The normal reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset = 01h 0

ExecSysQuiesce InitiatorAddress TargetAddress=000h 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

Figure 4-44. ExecSysQuiesce Request Message

4.4.3.33 System Table Set
Once the host finishes initializing IOPs, it sends an ExecSysTabSet request to each IOP. This
message gives each IOP the identity (location) of the other IOPs in the system, as well as
declarations of memory and I/O for private space. This event also takes the IOP from the
HOLD state to the READY state. The normal reply is a default reply with no payload.

31 3 24 23 2 16 15 1 8 7 0 0 offset

MessageSize MessageFlags VersionOffset 0

 ExecSysTabSet InitiatorAddress TargetAddress = 000h 4

InitiatorContext 8

TransactionContext 12 (16)

HostUnitID reserved IOP_ID 16 (24)

reserved reserved SegmentNumber 20 (28)

SGL 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 4-45. ExecSysTabSet Request Message

Fields

IOP_ID The host assigns a 12-bit number that uniquely identifies the target IOP
within this unit. The following values are pre-defined or reserved and are not
assigned to an IOP:

Intelligent I/O Architecture Specification

4-48 Draft Version 1.5d March 7, 1997

000h: Null IOP_ID Means the local IOP. Used by DDMs that only
function within their local IOP environment.

001h: Local Host Reserved for indicating the hosting entity within
the unit

FFFh: Unknown IOP Denotes all IOPs or IOP_ID unknown.

The host may assign different values than the BIOS.

HostUnitID This is a 16 bit number that uniquely identifies unit hosting the target IOP.
The following values are pre-defined or reserved:

0000h Null Means the local unit. Used by DDMs and IOPs
that only function within their local unit
environment. Also used by hosts that are not part
of a multi-unit system. This also includes units that
initialize prior to resolving its HostUnitID.

FFFFh Unknown Denotes all units or HostUnitID unknown.

Typically the BIOS specifies NULL unless it participates in multi-unit
protocols. The host may also initially set the value to NULL and later
change it via a UtilParamsSet message.

SegmentNumber This 12-bit number assigned by the local unit uniquely identifies the I 2O
Segment within the unit. The following values are pre-defined or reserved:

000h: Null Means the local I2O segment. Used by DDMs and
IOP’s that only function within their local I2O
segment environment. Also used by a host that
does not have sufficient information about different
I2O segments.

FFFh: Unknown Denotes all segments or SegmentNumber unknown.

This specification allows the BIOS to set the SegmentNumber of each IOP
so the host can learn those assignments if it so chooses.

SGL Provides three buffers (as identified by the EndOfBuffer flag). The first
contains the I2O system table as specified in Figure 4-46; the second is the
private memory space declaration specified as a single SGL element; and the
third is the private I/O space declaration specified as a single SGL element.
The IOP ignores any additional buffers in the SGL.

VersionOffset 41h for 32-bit context size and 61h for 64-bit context size.

This message provides three pieces of information to the IOP, as follows:

1. I2O System Table (SysTab)
Describes the local system (i.e., within the unit) as a set of IOPs and their message
attributes. Figure 4-46 provides the format for this table.

2. Private Memory Space Declaration
The private memory space declaration gives the IOP the base address and length of
address space where it can configure its hidden adapters. The host may assign the same

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-49

private space to all IOPs. The space described by this declaration should constitute a
hole in the host’s physical memory map.

 The private memory space declaration lets the IOP hide adapters from the system and
bring adapters on-line after the system is configured. The host learns the requested size
by the status returned from the ExecStatusGet message.

3. Private I/O Space Declaration
The private I/O space declaration gives the IOP the base address and length of I/O space
where it can configure its hidden adapters. The host may assign the same private space
to all IOPs. The space described by this declaration should constitute a hole in the host’s
physical I/O map.

The private I/O space declaration lets the IOP hide adapters from the system and bring
adapters on-line after the system is configured. The host learns the requested size by the
status returned from the ExecStatusGet message.

31 3 24 23 2 16 15 1 8 7 0 0 offset

reserved SysTabVersion NumberEntries 0

CurrentChangeIndicator 4

reserved 8

SysTablopEntry 1
(per Figure 4-47. System Table Entry)

16

SysTablopEntry 2
(per Figure 4-47. System Table Entry)

48

SysTablopEntry 3
(per Figure 4-47. System Table Entry)

80

...

SysTablopEntry n
(per Figure 4-47. System Table Entry)

Figure 4-46 System Table Structure

Fields for System Table

CurrentChangeIndicator Starts at zero and is incremented each time in configuration change
is reported

SysTabIopEntry Describes an IOP. Figure 4-47 describes the structure of this field in
more detail. Note, this figure provides for PCI base IOPs.
Additional definitions based on other technologies may follow and
can be differentiated by the MessengerType field. Each entry is
always 32 bytes in length.

NumberEntries Specifies the number of entries in the table and thus the number of
IOPs in the system.

SysTabVersion Version of I2O for the system resource manager and, therefore, for
this table.

Intelligent I/O Architecture Specification

4-50 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset

reserved OrganizationID 0

reserved reserved IOP_ID 4

MessengerType IopState I2oVersion SegmentNumber 8

reserved InboundMessageFrameSize 12

LastChanged 16

IopCapabilities 20

MessengerInfo 24

28

Figure 4-47. System Table Entry

Fields for System Table Entry

OrganizationID ID the SIG assigns to the IOP’s vendor.

IOP_ID Arbitrary number assigned by host resource manager to uniquely
identify each IOP.

I2oVersion Version of I2O specification under which the IOP is operating (from
ExecStatusGet message). This version = 01h.

IopCapabilities See ExecStatusGet for values.

IopState See ExecStatusGet for values. A state other than OP means that the
IOP is not available. The reception of the ExecSysTabSet message
might cause an IOP state change. This field reflects the expected
state after any such change.

InboundMFrameSize Size of the inbound message frame (in 32-bit words). Minimum
allowable size is 16 (i.e., 64 bytes).

LastChanged Value of CurrentChangeIndicator the last time this messenger
reported a configuration change.

MessengerInfo Content of this field depends on MessengerType. Figure 4-48
specifies the format for MessengerType = Memory Mapped
Message Unit.

MessengerType The only type defined by this version of the specification is:
00h = memory mapped message unit. The IOP should ignore entries
with an unknown MessengerType.

31 3 24 23 2 16 15 1 8 7 0 0 offset

InboundMessagePortAddressLow 24

InboundMessagePortAddressHigh 28

Figure 4-48. MessengerInfo for Memory Mapped Message Unit

Fields for Specific System Table Entry

InboundMPortAddressHigh High 32 bits of system address of the IOP’s inbound message
FIFO. Not all IOPs support a non zero value.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-51

InboundMPortAddressLow Low 32 bits of system address of the IOP’s inbound message
FIFO.

4.4.4 Modifying Parameters
The UtilParamsGet and UtilParamsSet utility messages specified in Chapter 6 operate on
specific Executive class parameters specified in Table 4-7.

Table 4-7. Executive Parameter Groups

GroupNumber 0000h

GroupType SCALAR

Name IOP_HARDWARE

Description Information to describe the IOP’s hardware environment.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes I2OVendorId The I2O organization ID assigned to the hardware or
system vendor providing the platform.

1 r 2 bytes ProductID A value the vendor assigns to identify the product.

2 r 4 bytes ProcessorMemory Total amount of RAM memory available for code and
data (in bytes).

3 r 4 bytes PermMemory Total amount of permanent memory for storing IRTOS
and DDMs (in bytes).

4 r 4 bytes HWCapabilities Bit-specific field that indicates the capabilities of the
IRTOS. A 1 indicates the capability exists:

bit 0 Self booting
bit 1 IRTOS can be upgraded
bit 2 Supports downloading DDMs
bit 3 Supports installing DDMs
bit 4 Battery-backed RAM

5 r 1 byte ProcessorType Type of IOP:

00h Intel 80960 series
01h AMD29000 series
02h Motorola 68000 series
03h ARM series
04h MIPS series
05h Sparc series
06h PowerPC series
07h Alpha series
08h Intel x86 series
FFh Other
Other values are reserved (for current list see I2O
SIG Web site at http://www.i2osig.org/).

6 r 1 byte ProcessorVersion Version of processor dependent on ProcessorType:

00h default
other values to be determined (for current list visit
the I2O SIG Web site at http://www.i2osig.org/).

Intelligent I/O Architecture Specification

4-52 Draft Version 1.5d March 7, 1997

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0001h

GroupType SCALAR

Name IOP_MESSAGE_IF
Description Provides information regarding the IOP’s inbound and outbound message interface.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes InboundFrameSize Number of bytes in an inbound message frame.

1 r/w 4 bytes InboundSizeTarget Number of bytes of an inbound message frame
after next IOP reset.

2 r 4 bytes InboundMax Maximum number of inbound message frames
that the IOP currently supports.

3 r/w 4 bytes InboundTarget Number of inbound message frames that the
IOP will support after it resets.

4 r/w 4 bytes InboundPoolCount The number of message frames created for the
inbound message queue, not counting static
frames.

5 r 4 bytes InboundCurrentFree The current number of message frames in the
inbound Free_List.

6 r 4 bytes InboundCurrentPost The current number of message frames in the
Inbound Post_List.

7 r WORD16 StaticCount Current number of static message frames.

8 r WORD16 StaticInstanceCount Current total number of instances
(MaxOutstanding) of static message frames
that can be in the inbound queue.

9 r/w WORD16 StaticLimit Maximum number of static message frames the
IOP supports.

10 r/w WORD16 StaticInstanceLimit Total number of instances (MaxOutstanding)
of static message frames that the IOP supports.

11 r 4 bytes OutboundFrameSize Number of bytes in an outbound message
frame.

12 r 4 bytes OutboundMax Maximum number of outbound message
frames that the IOP supports.

13 r/w 4 bytes OutboundMaxTarget Number of outbound message frames that the
IOP will support after it resets.

14 r 4 bytes OutboundCurrentFree The current number of message frames in the
outbound Free_List.

15 r 4 bytes OutboundCurrentPost The current number of message frames in the
Outbound Post_List.

16 r/w 1 byte InitCode Indicates who controls the IOP’s message
interface. This value is modified by the host
during different phases of an IOP’s initialization
sequence. The IOP initially sets this value to
zero. This code is set via an ExecOutboundInit
message and updated by the host as
necessary. The following values are reserved
for the identified entity.

00h - 0Fh: No owner,

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-53

GroupNumber 0001h

GroupType SCALAR

Name IOP_MESSAGE_IF
Description Provides information regarding the IOP’s inbound and outbound message interface.

FieldIdx (r/w) Field Size Parameter Name Description

10h - 1Fh: Reserved for the BIOS vendor
20h - 2Fh: Reserved for the platform OEM

BIOS extension
30h - 3Fh: Reserved for ROM BIOS

extensions
80h - 8Fh: Reserved for formal Operating

System
other values: reserved; to be specified later.

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0002h

GroupType SCALAR

Name EXECUTING_ENVIRONMENT

Description Identifies characteristics of the IOP executing environment.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes MemTotal Total Memory available for execution

1 r 4 bytes MemFree Free Memory

2 r 4 bytes PageSize Page frame size for the host

3 r 4 bytes EventQMax Maximum number of event queues supported

4 r 4 bytes EventQCurrent Current number of event queues

5 r 4 bytes DdmLoadMax Maximum number of drivers that can be loaded

Intelligent I/O Architecture Specification

4-54 Draft Version 1.5d March 7, 1997

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0003h

GroupType TABLE

Name EXECUTING_DDM_LIST
Description Identifies drivers that are loaded in the IOP’s executing environment.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes DdmTID The TID of the executing DDM (the most
significant four bits are zeros).

1 r 1 byte ModuleType Module type extracted from Table 4-6.

00h Other

01h Downloaded DDM

22h Embedded DDM

2 r 1 byte reserved1 reserved

3 r 2 bytes I2oVendorID I2O Organization ID for the DDM vendor

4 r 2 bytes ModuleID Module ID assigned by the DDM vendor

5 r 24 Bytes ModuleName Module name (24 ASCII characters) from header.

6 r 4 bytes ModuleVersion Module version (four ASCII characters) from
header.

7 r 4 bytes DataSize Current memory use, in bytes

8 r 4 bytes CodeSize Code size, in bytes

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0004h

GroupType SCALAR

Name DRIVER_STORE

Description Identifies characteristics of the IOP’s permanent storage media.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes ModuleLimit Maximum Number of driver modules that can be stored

1 r 4 bytes ModuleCount Current number of driver modules saved in IOP’s store

2 r 4 bytes CurrentSpace Number of bytes consumed by driver modules saved in
IOP’s store

3 r 4 bytes FreeSpace Number of bytes left in the IOP’s permanent store

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-55

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0005h

GroupType TABLE

Name DRIVER_STORE_TABLE

Description Identifies the drivers stored in the IOP permanent storage media.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes StoredDdmIndex Unique identifier for each stored DDM

1 r 1 byte ModuleType Module type extracted from Table 4-6

00h Other

01h Downloaded DDM

22h Embedded DDM

r 1 byte reserve1 reserved

0 r 2 bytes I2oVendorID I2O Organization ID for the vendor from header

1 r 2 bytes ModuleID Vendor-assigned module ID from header

2 r 24 bytes ModuleName Module name (24 ASCII characters) from header

3 r 4 bytes ModuleVersion Module version (four ASCII characters) from header

4 r 2 bytes DateDay Day of module date (two ASCII characters) from header

5 r 2 bytes DateMonth Month of module date (two ASCII characters) from
header

6 r 4 bytes DateYear Year of module date (four ASCII characters) from
header

7 r 4 bytes ModuleSize Size of stored image, in bytes

8 r 4 bytes MpbSize Size of stored module parameter block, in bytes

9 r 4 bytes ModuleFlags reserved

Intelligent I/O Architecture Specification

4-56 Draft Version 1.5d March 7, 1997

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0006h

GroupType TABLE

Name IOP_BUS_ATTRIBUTES

Description Specifies the number and type of I/O busses supported by the IOP.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes BusID Bus ID assigned by the IOP

1 r 1 byte BusType Bus type

2 r 1 byte MaxAdapters Maximum number of adapters

3 r 1 byte AdapterCount Current number of adapters

4 r 1 byte BusAttributes Bus Attributes (bridged, private, system)

00h = System bus - host can access this bus; adapters
on this bus can access system memory.

01h = Bridged to system bus - host cannot access this
bus but adapters on this bus can access system
memory.

02h = Private, no system access - host cannot access
this bus; adapters on this bus cannot access
system memory.

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0007h

GroupType SCALAR

Name IOP_SW_ATTRIBUTES

Description Provides information about the IOP’s operating system.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes I2oVendorId The I2O organization ID assigned to the vendor providing
the IRTOS

1 r 2 bytes ProductID A value the vendor assigns to identify the product

2 r 4 bytes CodeSize Code Size (in bytes) of the IOP operating system

3 r 4 bytes SWCapabilities A set of flags indicating the capabilities of the IRTOS:

bit 0 IRTOS is I2O compliant
bit 1 IRTOS can be upgraded
bit 2 Supports downloading DDMs
bit 3 Supports installing DDMs

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-57

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0100h

GroupType TABLE

Name HARDWARE_RESOURCE_TABLE
Description Hardware Resource Table describes adapters that the IOP controls or can control

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes AdapterID Arbitrary value assigned to the adapter by the IOP used
to identify it

1 r 2 bytes StateInfo AdapterState plus Local TID of the HDM to which this
adapter is assigned. ControllingTID is the least significant
12 bits, and AdapterState is the most significant four bits.

2 r 1 byte BusNumber Arbitrary value the IOP assigns that identifies the physical
bus where the adapter resides

3 r 1 byte BusType Indicates the type of expansion bus. For values, see
Common Structures for Adapters in Chapter 3.

4 r 8 bytes PhysicalLocation Eight bytes of data that identify the physical device or
function. Format depends on BusType, and those
variations are defined in Common Structures for
Adapters, in Chapter 3.

5 r 4 bytes MemorySpace Amount of memory space consumed by the adapter

6 r 4 bytes IoSpace Amount of I/O space consumed by the adapter

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0101h

GroupType SCALAR

Name LCT_SCALAR

Description Scalar (non-LCT entry) values associated with the LCT

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes BootDevice TID of the device that booted the OS. Set to zero
if none or unknown. This value is set by the BIOS
via the ExecBootDeviceSet message.

1 r 4 bytes IOPFlags Bit 0: Set indicates that the IOP requests a
configuration dialogue

All other bits reserved

2 r 4 bytes CurrentChangeIndicator Initialized to 0 and incremented before the table
is returned, only if the table changed since the
last table read response.

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0102h

GroupType TABLE

Name LCT_TABLE

Description Logical Configuration Table

Intelligent I/O Architecture Specification

4-58 Draft Version 1.5d March 7, 1997

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes LocalTID Local Target ID assigned by IOP to this device (the most
significant four bits are zeros)

1 r 2 bytes UserTID TID (the most significant four bits are zeros) of the
primary service user of this device. Established by
connection setup (UtilClaim), it indicates the OSM or ISM
to which this resource is dedicated. The value of 0FFFh
indicates that the resource is not allocated. A value other
than 0FFFh indicates that the device is reserved.

2 r 2 bytes ParentTID TID (the most significant four bits are zeros) of the DDM
or device that created, registered and manages this I/O
device.

3 r 2 bytes DdmTID TID of the DDM under which this device was created

4 r 4 bytes ChangeIndicator Value of CurrentChangeIndicator last time this entry was
updated

5 r 4 bytes DeviceFlags Bit-specific field that identifies the device’s characteristics
and capabilities.

Bit 0: Set to indicate that the device requests a
configuration dialogue.

Bit 1: Set if the device can concurrently support more
than one user

All other bits are reserved

6 r 4 bytes ClassID Message class of this device. Messages sent to the
LocalTID must confirm to this class definition. See
Chapter 6 for the definition of ClassID.

7 r 4 bytes SubClass Defined by the message class

8 r 8 bytes IdentityTag Part of the serial number that uniquely identifies a device.
This field is always eight bytes long and does not include
the SNLen or SNFormat fields. If the serial number is
less than 64 bits, it is pre-padded with zeros. If the serial
number exceeds eight bytes, it is truncated to the lowest
order eight bytes (i.e., the bits that provide unique
identity). This field is used to match system configuration
with the device. If no serial number is known, this field
contains all zeros.

9 r 4 bytes EventCapabilities Each bit of this field corresponds to the same bit in the
EventMask field of the UtilEventRegister message. A 1
indicates that the DDM can generate that type of event.

10 r 1 byte BiosInfo Identifier used to correlate a device with any connections
the BIOS creates. For example, when a BIOS extension
hooks INT13 for a storage device and is assigned drive
ID 81h, this field is set to 81h to notify the OS not to call
the BIOS for drive ID 81h. The default value 0FFh
indicates that the device is not the subject of a BIOS
function call. This value is set by the BIOS via the
ExecBiosInfoSet message.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-59

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0103h

GroupType TABLE

Name SYSTEM_TABLE

Description Describes the local I2O system as a set of IOPs and their Attributes.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes IOP_ID Arbitrary number the host resource manager
assigns to uniquely identify each IOP within
the unit (from ExecSysTabSet message).

1 r 2 bytes OrganizationID ID the SIG assigns to the vendor of the IOP.

2 r/w 2 bytes SegmentNumber Segment ID (from ExecSysTabSet message).

3 r 1 byte I2OVersion Version of the I2O specification under which
the IOP operates (the most significant four bits
are zeros).

4 r 1 byte IopState See ExecStatusGet message for values

5 r 1 byte MessengerType The only type defined by this version of the
specification is:

00h Memory-mapped message unit
6 r 1 byte reserved

7 r 4 bytes InboundMessagePortAddress System address of the IOP’s inbound
message FIFO.

8 r 2 bytes InboundMessageFrameSize Size of the inbound message frame (in 32-bit
words). Minimum size is 16 (i.e., 64 bytes).

9 r 4 bytes IopCapabilities See ExecStatusGet message.

10 r 8 bytes MessengerInfo See ExecSysTabSet message

Intelligent I/O Architecture Specification

4-60 Draft Version 1.5d March 7, 1997

Table 4-7. Executive Parameter Groups (continued)

GroupNumber 0104h

GroupType TABLE

Name EXTERNAL_CONNECTION_TABLE

Description External Connection Table

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes LocalAliasTID TID (the most significant four bits are zeros) assigned by
this IOP, uniquely identifying the device to DDMs on this
IOP.

1 r 2 bytes RemoteTID TID (the most significant four bits are zeros) identifying
the device at the far end of the connection. This is the
TID from the remote IOP’s logical configuration table.

2 r 2 bytes RemoteIOP IOP_ID identifying the other IOP. Assigned by the host
from the system table. Upper four bits are reserved.

3 r 2 bytes RemoteUnitID HostUnitID of the other IOP.

4 r 1 byte Flags Bit 0: Initiator flag:

0 Remote IOP created connection
1 This IOP created connection

Bits 1-7 are reserved.

5 r 1 byte reserved1

4.5 I2O Behavioral Model

Unless otherwise specified, the target of a request responds with one or more replies. Some
functions allow a single reply to acknowledge multiple requests. A reply is returned to the
originator as identified by the InitiatorAddress field of the request. The TargetAddress field of
the reply contains the TID of the device sending the reply, which was specified as the
TargetAddress in the original request. If the host issues requests, the InitiatorAddress and
TargetAddress fields of the request are copied to the respective fields of the reply.

The InitiatorContext is always copied unchanged from the request to the reply. The payload of
the request depends on the value of the Function field and the class registered to the
TargetAddress. The payload of the reply depends on the request Function field, the class
registered to the TargetAddress, and the status of the reply. It is the requester’s responsibility
to correlate a reply to the appropriate request, using the TransactionContext field.

4.5.1 I2O System Initialization
To bring the I2O system to a fully operational state, the host must provide the basic
initialization. This is typically a two-phase process. The first phase involves the BIOS, and the
second phase involves the OS. The BIOS is usually interested in an IOP only for booting the
operating system. It is the operating system that brings the IOPs to full operation and enables
peer-to-peer operation. During the OS boot, the OS may reinitialize the I2O sub-system to
establish its own system configuration.

This section describes the protocol for initializing the I2O system. It describes bringing IOPs
online from a power-on state, the interaction with the BIOS, and rebooting the system.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-61

4.5.1.1 System Initialization
Figure 4-49 illustrates an initialization sequence typical of both the BIOS and OS. I 2O sub-
system initialization makes the following assumptions:

• The IRTOS and the DDMs are all stored in the IOP permanent store.

• All I2O devices have been previously configured.

• No problems arise during initialization.

Intelligent I/O Architecture Specification

4-62 Draft Version 1.5d March 7, 1997

IOP STATEIOPHOST

From all the HRTs, determine all
devices not controlled by an IOP.
Install drivers for these devices.

Init state

Reset stateWait for the
Inbound Free

Queue to be ready.

Hold state
Allocate message frames,
load into outbound queue

Send Get Status Message,
read memory for reply.

Send GetHRT. Wait for reply.

Send SetSysTab. Wait for reply.

Process GetHRT message,
Send HRT reply.

 Wait for more messages.

 Send reply.

Send EnableSys. Wait for reply.

The I2O Sub-system is now
initialized.

(Send Claim messages as
necessary)

Initialize outbound queues,
write status into memory.
Wait for more messages.

Ready state

Operational
state

Send LCTNotify, requesting an
immediate reply. Wait for the reply.

When configuration finishes, copy LCT,
Send reply to host .

Initialization:
Determine Hidden Space requirements.
Initialize the Inbound Free and Post queues.
Load the Inbound Free Queue with MFAs.
Load the first free MFA into the Inbound
Port. Wait for messages.

 System Scan.
Find and configure all visible PCI
devices into the system allocating

memory and I/O.

Ensure there is a large enough
space in the system configuration
to support the largest IOP hidden

space requirements.

Scan the system, build the HRT.
Wait for more messages.

Process Get Status Message,
write status into memory.

Initialization:
Hide devices as necessary.

Setup hidden devices.
Match DDMs to Module Headers.

Issue AdapterAttach and DeviceAttach
messages.

Poll

Poll

Message

Message

Message

Message

Message

Message

Message

Message

Message

Message

Poll

(H/W)

Send Init Outbound message,
read memory for reply

Process EnableSys, send reply.
 Wait for more messages.

Figure 4-49. Typical System Initialization

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-63

The key to initializing an I2O sub-system is understanding the points where the host and the IOP
must synchronize. These points are described below:

1. As shown in the Figure 4-49, both the host and the IOP begin initialization in parallel:

• The IOP must hide any hidden adapters before the host performs its bus scan (the host
must never see hidden adapters). The configuration establishes the adapters the IOP
hides. The IOP preserves that list from boot to boot.

• Once the IOP hides adapters, it may scan them to determine their system memory and
I/O requirements. The IOP must not scan any adapters on system buses, since it would
interfere with the host system scan.

• The IOP initializes its Inbound Free and Post queues, allocates a number of inbound
message frames, and loads the Inbound Free Queue with the MFAs for those frames.
As a result, reading the Inbound Port reads the first MFA from the Inbound Free
Queue.

2. The host scans the system I/O bus, configuring all visible adapters. It then finds each
IOP’s inbound and outbound FIFOs, using the method discussed in section 4.2.1.4. Before
the IOP initializes, the host reads only FFFF-FFFFh from the IOP’s inbound free list FIFO.
Once IOP loads its inbound queue, the host reads a valid MFA. The IOP is in the Reset
state and can receive messages from the host.

3. The ExecStatusGet request is typically the first message the host sends to each IOP. Since
the IOP’s outbound queue might not yet be initialized, the IOP does not reply. Instead, the
host polls the status buffer specified in the request to determine when the IOP responds.
From this synchronization point, the host determines whether the IOP is functional and
responding to messages.

 Once the IOP receives the first ExecStatusGet message, it knows the host has completed its
system scan. It is now safe for the IOP to perform its own system scan and build its
Hardware Resource Table.

 The ExecStatusGet request identifies the hidden memory and I/O space needs of the IOP.
The host needs to find a hole in its memory and I/O map to accommodate the largest
request. If there is not a space large enough to meet the hidden adapters’ needs, the host
may need to reconfigure the system. If the host cannot provide as large a space as
required, it should set up one as large as possible. The final system configuration is saved
in the System Table structure, which is sent to each IOP after all IOPs are configured.

4. The host sends an ExecOutboundInit request to each IOP. This request causes the IOP to
flush its outbound FIFOs, which might be loaded from the BIOS session or from a
previous OS session. Since the outbound queue might not yet be initialized, the IOP does
not reply. Instead, the host determines when the operation completes by polling the status
buffer specified in the request.

 Receiving this message causes the IOP to transition to the Hold state. When it detects the
response, the host creates a number of empty message frames and primes the IOP’s
outbound queue by writing the MFA of each frame to the IOP’s outbound FIFO. The IOP
can now reply to the host.

5. The host sends an ExecHrtGet request to each IOP. When it receives the request, the IOP
returns its Hardware Resource Table (HRT). This table tells the host which adapters are
assigned to the IOP and which unassigned adapters the IOP can control. If the host detects

Intelligent I/O Architecture Specification

4-64 Draft Version 1.5d March 7, 1997

an adapter assigned to multiple IOPs, the host must resolve the conflict. The host must also
prevent its drivers from initializing and controlling adapters assigned to an IOP.

• The host can facilitate changes to an IOP’s HRT by using the ExecAdapterAssign and
ExecAdapterRelease messages.

• IOPs must not initialize assigned adapters until after the host can resolve such conflicts
(as described below).

• After receiving the Hardware Resource Table from each IOP in the system, the host
may now install device drivers for all adapters not controlled by an IOP.

6. As the host discovers and initializes IOPs, it builds a list of IOPs and their FIFO addresses.
When the list, called the I2O system table, is complete, the host sends an ExecSysTabSet
request to each IOP providing the System Table and assigning an IOP_ID. Certain
messages uniquely identify an IOP using its IOP_ID.

 Receiving the ExecSysTabSet message:

• causes the IOP to transition to the Ready state.

• gives the IOP the declaration for private space, allowing the IOP to configure hidden
adapters.

• signals the IOP that any adapter conflicts are resolved and that the IOP may now
initialize its adapters.

 The IOP initializes its adapters by matching them against module headers and issuing
DdmAdapterAttach messages to matching DDMs. As a result of the
DdmAdapterAttach, the DDMs registers devices. As devices are registered, the IOP
matches the new device against module headers and issues DdmDeviceAttach
messages to matching DDMs. This last step repeats until all DdmAdapterAttach and
DdmDeviceAttach requests conclude and no new devices are registered.

7. Once the host sends the system table to all IOPs, it sends an ExecSysEnable request to each
IOP. This causes the IOP to transition to the Operational State. Receiving the
ExecSysEnable message permits the IOP to establish peer-to-peer communication with any
IOP listed as operational in the ExecSysTabSet message.

8. The host completes system initialization by gathering Logical Configuration Tables from
all IOPs, via the ExecLctNotify request message. The host learns the size of the IOP’s LCT
from its response to the ExecStatusGet message (the IOP must fill in the Expected Size of
LCT field with an estimated final LCT size). If, before sending the ExecLctNotify message,
the host wants the exact size of the LCT, it may send another ExecStatusGet request.

 The Logical Configuration Table lists all the IOP’s registered devices and their
availability. The IOP does not reply until its initialization completes (i.e., all DDMs
conclude their initialization with no additional devices created). From the reply, the host
determines the I2O class for each device and which devices are unclaimed.

The I2O sub-system is now fully initialized and can accept class-specific messages. The host
may send UtilClaim requests to I2O devices that are listed as unclaimed in the Logical
Configuration Table.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-65

4.5.1.2 System Re-Initialization
During a warm-boot, reset or OS initialization, the host may wish to reset the IOP to ensure it
is in a known state. This can be accomplished with a ExecIopReset request. The host and
the IOP may then proceed with the typical system initialization described above.

4.5.1.3 Abnormal System Initialization
An abnormal system initialization is any that varies from the sequence outlined in section
4.5.1.1. There are many potential causes for an abnormal initialization.

This specification does not explain how an IOP or an I2O sub-system recovers from an
abnormal initialization. However, a number of messages aid in system recovery, as does the
Configuration Dialogue facility.

4.5.2 BIOS Considerations
Typically, the system BIOS is concerned only with storage class devices and remote load
devices, such as a network adapter that provides remote initial program load (RIPL). Other
classes of devices and peer-to-peer operation are not necessary to bring up the system. Newer
operating systems often provide their own transport and OSMs for I 2O, rather than relying on
BIOS facilities. However, the BIOS must initialize an IOP to boot the operating system when
the IOP controls the boot device.

4.5.2.1 Bootstrap Process
Booting from an IOP requires either that the main BIOS be I2O aware, or that the IOP provide
a BIOS extension. Control of an IOP by the main BIOS and a BIOS extension cannot coexist.
Since BIOS extensions execute after the main BIOS, the BIOS extension must test whether the
system’s BIOS initialized the IOP and, if so, yield to the system’s BIOS. Refer to section 3.1.1
for more details.

Both I2O-aware system BIOS and BIOS extensions for I2O adapters must provide the following
features:

• The ability to send and receive I2O messages using the queuing model described in
section 4.2.2.

• The ability to initialize the IOP as described in section 4.5.1.

• Modified Int13H calls that use I2O messaging to access storage class devices.

• User notification that the IOP requests a configuration dialogue session.

An I2O-aware system BIOS must also be able to only execute BIOS extensions for adapters not
controlled by an IOP. The BIOS makes this decision by examining the Hardware Resource
Tables from all IOPs in the system.

A BIOS extension for an IOP must also have the following features:

• The ability to determine if the system’s BIOS has initialized the IOP. If so, the BIOS
extension must not interfere.

• Initializes only IOPs for which it is specifically developed.

Intelligent I/O Architecture Specification

4-66 Draft Version 1.5d March 7, 1997

This specification does not address BIOS implementation.

The BIOS uses the IOP’s outbound message FIFO, but it may not have that facility available
after the OS boots, since the OS claims it exclusively. However, the OS depends on the BIOS
to provide access to the boot device until the OS is operational. To smooth the transition from
BIOS to OS, the BIOS must inform the OS about I2O devices accessible through the BIOS. To
be more specific, a field in the IOP’s logical configuration table is reserved for the BIOS to
identify devices accessed by a BIOS function call. The BIOS sends an ExecBiosInfoSet request
to an IOP to set the BiosInfo field in the IOP’s logical configuration table. The value identifies
the logical unit number assigned by the BIOS (i.e., the value specified in the BIOS function
call that identifies the device). For example, the BiosInfo field in the entry for drive C: would
contain 80H and the entry for drive D: would contain 81H.

If the BIOS selects an I2O device as the boot device, the BIOS modifies the BootDevice field of
the logical configuration table to indicate the TID of the boot device. This occurs when the
BIOS sends an ExecBootDeviceSet request to the IOP.

Since an OS may decide to reset the IOP during the OS boot process, the IOP must preserve
the BootDevice and BiosInfo fields of the LCT.

4.5.2.2 Remote Boot
Remote booting requires the HDM for a LAN adapter, or any other device that can boot
remotely (i.e., RIPL), to register both under its native class and as a remote boot class device.
The RIPL HDM sends the appropriate boot-me packets across the LAN to the boot server, and
the server returns an executable image to the RIPL HDM. The HDM, in turn, provides the
executable image when responding to the system BIOS boot requests.

The booted operating system can detect that the boot device was a network adapter by
inspecting the IOP’s logical configuration table (see the discussion of ExecBootDeviceSet in
4.5.2.1). The OS queries the HDM for the particular remote boot parameters, such as the boot
server address.

Thus, a single HDM with two registered devices, RIPL and network, controls the hardware.
Switching from BIOS boot driver control to network driver control is easily resolved within
the HDM.

4.5.3 Runtime Considerations
While the system is running, the following host and IOP behaviors may occur:

1. Any time the host changes the system table, it sends another ExecSysTabSet request to
each IOP. From this information, the IOP learns about all other IOPs in the system.
Receiving the ExecSysTabSet request indicates that, when the IOP is in the Operational
state, it can establish peer-to-peer communication with any IOP listed as being in the
Operational state.

2. The host may send an ExecLctNotify request to each IOP. The IOP replies to this message
when its logical configuration changes. The IOP uses this reply to ask the host to initiate a
Configuration Dialogue session.

3. The host registers for each event it wants to monitor by sending the UtilEventRegister
request to any TID, including the IOP. The target sends an UtilEventRegister reply to the
host whenever the event occurs.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-67

4. As an IOP connects with devices on other IOPs, it builds an external connection table. The
host can get the IOP’s external connection table by sending an UtilParamsGet request. See
the discussion on system recovery in section 4.5.6 for more information on using this
table.

4.5.4 Establishing Paths and Connections
A path is characterized by the address of the inbound message queue (inbound port) of the IOP
where the target resides. All messages to a particular IOP use the same path, so the reply path
must be explicitly identified. A connection is characterized by the ID of the module at each
end of the connection, plus the paths used to deliver messages in both directions. When a
connection is established, the IOP creates a TID that it uses to identify both the path and the
device registered on a remote IOP. This TID is referred to as an alias, because it can differ
from the TID assigned by the IOP hosting the device. By exchanging aliases, IOPs can
uniquely identify the source and target devices when exchanging messages.

By design, paths from host OSMs to all I2O registered devices exist by default and do not
require aliases. That means that an OSM can send requests to any TID without formally
establishing a path or connection. A peer-to-peer connection between IOPs, on the other hand,
must formally establish a connection before sending messages.

Before a connection is established between devices, a path between the IOP’s executives must
be established. The ExecIopConnect message accomplishes that task by exchanging aliases to
use for sending executive messages between the two IOPs. This is required before any other
executive messages are exchanged. The system table provides all information necessary to
compose a ExecIopConnect message.

Once the executive path is established, either IOP can request the other IOP’s logical
configuration table, using the ExecLctNotify message. This table provides all the information
needed to identify devices registered on the remote IOP and thus, to generate a ExecConnSetup
message. The ExecConnSetup can establish either a true PEER-TO-PEER connection by which
either end can send requests. Or, it can set up a CLIENT/SERVER connection that supports
requests in only one direction, that is the same direction as the ExecConnSetup request. The
result of the ExecConnSetup transaction provides each IOP with the aliases necessary to
exchange messages between the two devices.

4.5.5 Configuring the IOP
The following describes the messages that configure the IOP and its modules.

4.5.5.1 Managing the IOP
The UtilParamsGet and UtilParamsSet messages let the host manage the operating parameters of
the IOP. These operating parameters are general to all IOPs. Static operating parameters,
which can be modified only before a session starts, are read-only and must be changed by the
configuration utility.

The configuration utility is invoked when the host sends a UtilConfigDialog request. The reply
to a configuration dialogue request is a set of instructions for displaying configuration
information on the console, prompting the user for input, accessing a floppy disk drive, and
terminating the session. This dialogue modifies the IOP’s profile, establishing user-
configurable parameters, such as the number of inbound message frames.

Intelligent I/O Architecture Specification

4-68 Draft Version 1.5d March 7, 1997

The host initiates the configuration dialogue at any time. The IOP indicates the need for a
configuration dialogue by setting the appropriate flag bit in the logical configuration table.
The configuration dialogue also applies to each module loaded on the IOP, but the dialogue is
invoked independently for each device, using a UtilConfigDialog request addressed to it. Again,
a flag bit for each device exists in the logical configuration table to indicate that a
configuration dialogue is requested. Setting the flag causes a response to the ExecLctNotify
request, if one was posted. Resetting the flag does not.

4.5.5.2 Installing, Loading, and Configuring Modules
Several messages support installing and loading modules.

Installation primarily stores the module’s executable code in the IOP’s permanent store so that
it can load next time the IOP initializes. The IOP determines whether an installed module
needs to be loaded. Loading includes placing the module’s executable code in IOP main
memory and invoking its initialization program. When a DDM is installed, the IOP creates a
module parameter block, if one is not supplied. The module uses this file to store locally-
configured parameters.

The ExecSwDownload message provides the module’s executable code and, optionally, the
DDM’s module parameter block. When the module parameter block is not included, the IOP
creates a null parameter block. In either case, when the module is loaded, the IOP calls the
modules initialization routine with a pointer to the module parameter block. The module can
set its configuration dialogue request flag. The result of the configuration dialogue defines a
proper module parameter block that stores user-selected options.

When a module is first installed, it is tagged as experimental. The first time the module is
loaded, the IOP changes the experimental tag to suspect. If the host sends an
ExecConfigValidate message, the IOP changes the tag to valid. The IOP may set its own
configuration flag and prompt the user to accept, reject or defer the experimental module. If
the user does not accept the module before the IOP is booted again, then the experimental
module is marked REJECTED and not loaded. The IOP must then provide a configuration
dialogue that warns the user of the rejection. The IOP may delete rejected modules from its
permanent store at any time.

When a replacement module is installed, the existing module is tagged old and is not loaded.
If the experimental module is ACCEPTED, then the old module is removed. Otherwise, the IOP
loads and tags the old module as valid the next time the IOP boots, while tagging the suspect
module as rejected.

The ExecDdmDestroy and ExecSwRemove messages cause modules to be unloaded and
un-installed, respectively.

The ExecAdapterAssign message assigns an adapter residing on the system bus to be controlled
by a HDM on the IOP.

The ExecDeviceAssign message is synonymous to the ExecAdapterAssign message, except that
it ties a registered device to an ISM. This message can link an ISM on one IOP with a device
registered on another, as well as establish a peer-to-peer link between modules on different
IOPs.

The ExecAdapterRelease and ExecDeviceRelease messages invoke the IOP to release the
assignments made by the ExecAdapterAssign and ExecDeviceAssign transactions.

I2O Shell Interface Specification

Draft Version 1.5d March 7, 1997 4-69

For each adapter assigned to a specific DDM, the IOP issues a DdmAdapterAttach to the
specific DDM. The DDM either accepts or rejects the assignment. For adapters that are
rejected or not assigned to a specific DDM, the IOP searches the module headers of DDMs
looking for one that lists that adapter. When it finds the DDM, the IOP loads and initializes it,
if necessary, and issues a DdmAdapterAttach to that DDM.

During the DdmAdapterAttach, the DDM should initialize the adapter, register an adapter class
device for each I/O port, and register a peripheral class device for each physical device found.
The DDM does not reply to the DdmAdapterAttach until it registers its devices for that adapter.

As devices are registered, the IOP checks whether the device is assigned to a specific DDM. If
so, the IOP issues a DdmDeviceAttach to the specific DDM. The DDM either accepts or rejects
the assignment.

During the DdmDeviceAttach, the DDM should claim the device and register additional devices
as appropriate. The DDM should not reply to the DdmDeviceAttach until it claims and registers
any new devices.

After the assigned DDM replies to the DdmDeviceAttach, the IOP searches the module headers
of DDMs looking for additional DDMs that list that device.As if finds a match, the IOP issues
a DdmDeviceAttach to those DDMs. This operation is different from DdmAdapterAttach
because the adapter can have only one controlling entity while devices may serve multiple
users.

Once all DDMs reply to the DdmAdapterAttach and DdmDeviceAttach messages, the IOP
concludes building its LCT and replies to ExecLctNotify requests.

DDMs such as RAID, that combine several devices into a single abstracted device, should
register that device as soon as it determines that the abstracted device will exist. In the case of
RAID, its volume still exists even if one or more drives are missing. The DDM may issue an
ExecLctNotify request to the IOP when the DDM is first initialized, knowing that the IOP
replies only after all configuration is complete. If the DDM expects additional
DdmDeviceAttach messages for a particular device, the DDM may defer processing base class
messages to that device until the ExecLctNotify reply. The ExecLctNotify reply indicates that the
DDM must perform appropriate recovery or reconfiguration.

For example, if a RAID DDM combines 5 drives into a RAID volume, but only requires 4 of
those drives for operation. When DDM receives the DdmDeviceAttach for the 4th drive it
registers the RAID volume but defers base class messages until the 5 th drive is attached. If the
DDM receives the ExecLctNotify reply before the DdmDeviceAttach for the 5th drive, then it
rebuilds the volume as necessary.

4.5.6 System Recovery
The host has several recovery messages. The UtilEventRegister message allows an IOP to
notify the host when another IOP misbehaves or does not respond. The UtilParamsGet message
for the XCT parameter group tells the host how the IOPs are interconnected. The host controls
the entire system point by point.

When the host reconfigures the system (changes the addresses of the IOPs, for example), it
sends the ExecSysModify command to all IOPs before making any changes and issues a
ExecSysTabSet to each IOP, followed by an ExecSysEnable message. If the host does not

Intelligent I/O Architecture Specification

4-lxx Draft Version 1.5d March 7, 1997

change the system address of the IOP or any of its adapters, it may use the ExecIopClear
message in lieu of the ExecSysModify message.

When the host restarts a single IOP, it sends a ExecSysQuiesce to the faulty IOP and a
ExecPathQuiesce message to all other IOPs. It issues either an ExecIopClear or ExecIopReset
to the faulty IOP. Once the IOP is operating, the host sends the ExecSysTabSet message to all
IOPs to re-enable their connections and rebuilds external connections, as necessary, with the
ExecDeviceAssign message.

Individual connections can be managed with the ExecDdmQuiesce and ExecDdmSuspend
messages.

Draft Version 1.5d March 7, 1997 5-1

5
I2O Core Specification

The previous chapter described the IOP from the system viewpoint. This chapter presents the
IOP from the perspective of the DDM: the core. The core is the environment that the IOP
creates for loadable DDMs. This core specification describes the following:

• the operation of the IOP from the viewpoint of its client (loadable) DDMs

• the operating environment for those client DDMs

• the requirements for a driver to be a loadable DDM.

5.1 Conceptual Overview

The primary functions of the IOP core provide an operating environment for its DDMs and
communication between those and other modules, both local and remote. Remote refers to
OSMs resident on the host or DDMs resident on another IOP.

The I2O core specification defines the following:

• Installation saves the DDM in the IOP’s local permanent store, identifies adapters and
devices that the DDM can control, builds a module parameter block, and stores that block
in the IOP’s local store.

• DDM configuration assigns adapters to HDMs, assigns devices to ISMs, and updates the
IOP’s configuration tables.

• Initialization loads the DDM, initializes it, attaches adapters to it, registers the devices the
DDM creates, attaches those devices to other DDMs as appropriate, and updates the IOP’s
logical configuration table.

• Message service enables the DDM to query the IOP’s configuration database, create
connections, and deliver messages on those connections.

• Flow control meters the flow of messages to DDMs. If a slow device clogs the queue
(i.e., its event queue backs up, starving the IOP’s free list), the IOP must reject messages
to that device. The IOP does this by replying immediately to the host with a failed status
and reclaiming the original message frame. This version of the document makes no
requirement for flow control.

• Transport service gives the DDM system access and access to adapters (i.e., bus access).
• The execution environment provides the real-time operating system functions, such as

thread management and memory allocation.

Registering an I2O device places the information about that device in the IOP’s logical
configuration table. When the DDM creates an I/O object, the IRTOS registers it as an I2O
device.

Starting a DDM includes installing, loading, and initializing. Installation places a driver in an
IOP’s permanent storage, so the IOP can load and initialize the driver without host
intervention. DDMs can also be loaded from the host without being installed. Loading places
the driver code in executable memory and initializing executes that code.

Intelligent I/O Architecture Specification

5-2 Draft Version 1.5d March 7, 1997

NOTE
The terms DDM, module, and driver are nearly synonymous. This specification generally uses DDM.
The choice of one term over the other does not convey any particular meaning, except that module and
driver may also refer to the OSM portion as well.

5.1.1 Installing DDMs
Installation is a one-time, initial download of the DDM to the IOP. DDMs are installed and
uninstalled as a result of messages from the host (see Chapter 4, I2O Shell Interface
Specification). The IOP stores the DDM in its permanent storage. The components of a DDM
are the executable code, module descriptor tables, and a module parameter block, as shown in
Figure 5-1. The module parameter block can be subsequently modified by the DDM’s
configuration routine and thus stores DDM-configurable parameters across resets and power
cycles.

Module Header

(module descriptor tables)

Executable Code

Module Parameter Block

Figure 5-1. DDM Components

This specification protects against installing or updating a driver that corrupts operation. See
Configuration of I/O Device Drivers in Chapter 2 and section 5.2.5, Upgrading DDMs.

5.1.2 Loading DDMs
After the IOP loads its operating environment, it loads and initializes its stored DDMs as
necessary. Each DDM is prepended with information (module descriptor tables) that describes
the DDM and lists types of adapters and devices that it can control. Using this list, the IOP
determines whether the DDM needs to be loaded and assigns it unallocated adapters and
devices.

The IOP maintains its own version of a physical resource table that identifies hardware
resources (i.e., adapters and controllers) and the DDMs to which they are assigned. Any
change in the hardware complement should prompt a configuration dialogue, either to report
the loss of service, to acknowledge that a new device or service is available, or to report
hardware that is not controlled by a DDM.

5.1.3 DDM Initialization
The IOP calls the DDM’s initialization code with a pointer to the module’s parameter block as
an argument. As the DDM initializes, it registers itself with the IOP (i.e., creates a DDM
device). During the registration, the IOP creates an event queue and assigns the DDM a TID.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-3

Messages addressed to that TID are posted to the DDM’s event queue. The DDM can now
receive DDM class messages.

The IOP permanently assigns a TID to the DDM, either when the DDM is installed or the first
time it loads. The IOP maintains the notion of persistent TIDs. That is, each time a DDM is
loaded, the IOP assigns it the same TID as the last time it was loaded.

The IOP scans its expansion buses and configuration tables for controllers and adapters that
match adapter types specified in the DDM’s descriptor tables. For each adapter assigned to the
DDM (such a DDM is an HDM), the IOP sends the DDM a DdmAdapterAttach message
identifying the adapter. The DDM initializes the hardware and registers each logical port
and/or device with the IOP by creating an I2O device.

As part of the registration, the DDM specifies the TID for each device. The first time a DDM
registers a particular device, no TID is assigned. In this case, the IOP assigns a unique TID and
reserves it for the DDM. The DDM saves this TID and its relationship to the hardware in its
module parameter block, so the DDM can register each device with the same TID each time the
DDM is loaded. The IOP must only verify that the TID was reserved for that DDM. It is the
DDM’s responsibility to maintain TID persistence with the actual hardware.

As the DDM registers devices, it can use its existing event queue, or create additional event
queues to handle requests targeted for those devices. The DDM must make this choice before
it registers the device.

The IOP contains a configuration database that determines if a registered device is reserved for
a local DDM (such a DDM is an ISM). Once a reserved device is registered, the IOP sends a
DdmDeviceAttach message to the ISM indicating the TID of the attached device. The ISM
establishes a connection by claiming the device and, just like the HDM, the ISM registers
additional devices with the IOP as appropriate.

Each time a DDM registers a device (i.e., created), the IOP updates its logical configuration
table. This table identifies services available to the host, other IOPs, and other DDMs (refer to
Chapter 4, Shell Specification).

5.1.4 Configuration Service
Configuration dialogue is initiated by the host. A DDM requests a configuration dialogue by
setting a flag in the IOP’s logical configuration table. The host sends the DDM a
DdmConfigDialog request, whose response provides a configuration text for the host to display.
As the operator takes appropriate actions, the host sends a DdmConfigDialog request that
returns the results of that operation to the DDM and requests the next dialogue. Each dialogue
potentially causes another DdmConfigDialog request, until the operator exhausts the
configuration effort.

The DDM uses the configuration dialogue to set user parameters. The DDM can permanently
save these parameters in its module parameter block. Except for the header, the content of a
module parameter block is solely at the discretion of the DDM.

5.1.5 Message Service
For sending messages, the IOP provides the DDM with an API function call. For receiving
messages, the DDM creates one or more event queues. Each event queue is associated with a

Intelligent I/O Architecture Specification

5-4 Draft Version 1.5d March 7, 1997

single thread of execution. When the DDM registers an I2O device, it specifies which event
queue receives messages addressed to that device’s TID.

To receive requests, the DDM provides a dispatch table that defines a priority and message
handler for each message Function. When the IOP receives a request addressed to that TID, an
event is posted to the associated event queue at the priority determined by the Function code.
The content of the event specifies the message handler for that message and points to the
received message frame.

When a message event reaches the head of the event queue, the message handler is called with
a pointer to the message frame.

When creating the reply message, the DDM directly copies the Function, InitiatorAddress,
TargetAddress, and InitiatorContext. The DDM may use the message frame of the request for
the reply or it may build a new message. This decouples the request from the reply and
enables the DDM to hold on to the request until it completes all associated processing. The
DDM must explicitly free each received message or post it as a send request.

The IOP handles replies different than requests. Before sending a request, the DDM first
identifies the handler for its reply, an event queue, and the priority at which the IOP posts the
reply to that event queue. The DDM calls an API that registers these parameters and returns
an InitiatorContext value. When the DDM uses that InitiatorContext value in a request, the reply
returns with the same value. The IOP retrieves the priority and message handler using that
InitiatorContext and posts that reply message to the designated event queue.

Note:

A DDM cannot send requests to the host. This enforces the practice of the host never receiving
unsolicited messages. The host listens to a DDM by posting request messages soliciting replies.
When an event occurs, the DDM returns the appropriate reply.

For peer operation, connection to local devices (I2O devices residing on the same IOP) is
implicit, but a connection must be set up to communicate with an I2O device on another IOP.
The result of the connection setup is that a local TID is assigned as an alias for the remote
device. The DDM uses this alias TID to send messages to that module. The use of an alias is
transparent to the DDM.

Two mechanisms exist for initiating connections between DDMs.

• Local configuration: The IOP contains a configuration database indicating which I2O
devices are permanently assigned to DDMs (as discussed in 5.1.3). In this case, the IOP
manages any connection setup, and issues a DdmDeviceAttach message to the DDM once
the device is registered. After issuing DdmDeviceAttach messages to permanently
configured DDMs, the IOP searches module headers and issues a DdmDeviceAttach
message to each DDM that lists itself as a consumer of that class of device.

• System configuration: The host sends an ExecDeviceAssign message to the IOP
assigning an I2O device. The I2O device can be specifically assigned to a DDM, or it can
be generally assigned to the IOP. In the latter case, the IOP determines to which DDM
the device is assigned. In addition, the assignment can be temporary or permanent. The
IOP places permanent assignments in its configuration database. Just like the local
configuration model, the IOP manages any connection setup and issues a
DdmDeviceAttach message to the DDM.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-5

In either case, the ExecDeviceRelease message revokes the assignment.

The class of a message is determined by the TID in the TargetAddress.

5.1.6 Transport Services: Hardware and Bus Access
The transport services abstract the system bus and any I/O expansion buses hosted by the IOP.
Thus, the IOP provides API functions for accessing system resources and adapters. The IOP
also provides DMA objects for moving blocks of data between the IOP’s memory and system
memory, adapters residing on a system bus, or adapters on an I/O expansion bus hosted by the
IOP. This provides the mechanism to the DDM for transferring data to and from system
memory and for accessing adapters.

The term “system bus” refers to the host processors’ main bus and all its I/O buses under the
assumption that all components such as main memory and adapter cards have a unique address
within that domain.

5.1.6.1 Bus Identification
In the I2O architecture, the IOP is concerned with at least two bus domains: its local bus and
the system bus. In addition, there can be a number of I/O expansion buses containing adapters
that the IOP accesses. Each of these buses can have its own memory, I/O, and configuration
space. Or, that space might be a part of the system address space or the IOP’s local address
space. Therefore, access to these buses must be abstracted to the DDM by the IOP. On the
other hand, a DDM controlling two devices on the same bus may be able to gain performance
by understanding that the devices reside on the same bus. Thus, a device’s bus identity must
be known.

The IOP assigns each bus a handle (busId). The DDM determines the busId for the IOP’s local
bus and for the system bus via API function calls. When the IOP attaches a physical device or
adapter to a DDM, the IOP specifies a handle for the adapter (AdapterId). The DDM uses the
AdapterId to identify the adapter and find the busId for its bus. The DDM uses this busId when
it accesses the adapter, creates DMA objects, and allocates local memory that is accessible to
bus master devices on that bus.

When the DDM allocates memory, it considers which adapters need access to that memory.
The levels of access are PRIVATE, SYSTEM, LOCAL_ADAPTERS, ALL_ADAPTERS, and
BUS_SPECIFIC. Depending on the IOP’s physical configuration and capabilities, many of
these levels overlap and may be the same.

• When a DDM allocates memory for internal data structures, it typically specifies
PRIVATE memory.

• For data buffers accessible to adapters, the ISM typically specifies ALL_ADAPTER,
unless it has specific knowledge of its claimed devices, as well as their devices and
adapters.

• The HDM typically specifies LOCAL_ADAPTERS for data buffers, unless it knows all its
adapters are on the same bus or it maintains separate instances of buffers for each adapter.
In this case, the HDM might specify BUS_SPECIFIC.

Intelligent I/O Architecture Specification

5-6 Draft Version 1.5d March 7, 1997

• A management ISM that does not generate base class messages (i.e., no data flow to
adapters) typically specifies PRIVATE. But if it needs to share its data structures with a
peer entity on another IOP, it specifies SYSTEM access.

Cache coherency is another concern when allocating memory. Many I/O class processors do
not support snooping protocols, and even when they exist, caching I/O data buffers can lead to
undesirable effects. Typically, I/O data buffers are allocated in uncached memory and private
memory is always cached.

The DDM allocates data buffers accessible by a bus master adapter on an I/O bus. However,
there is an offset between the local address and the bus address. The DDM converts a local
memory address to a bus address, or vice versa, by calling the address translation function and
specifying the appropriate busIds.

5.1.6.2 Address Translation
When using shared memory, it should be noted that a shared memory location has three
addresses: one that identifies its position in the system memory map, one that identifies its
position in the IOP’s local memory map, and possibly one that identifies its position in the
IOP’s expansion bus memory map.

Address translation is necessary because:

1. The only common memory space among IOPs is system memory. Therefore, the only
appropriate reference to a shared memory location when communicating with a remote
DDM is its system memory address.

2. A bus master adapter resides in the address space of the expansion bus. Therefore, the
DDM must use the expansion bus address instead of the local address when
programming the adapter’s DMA engine to read or write to the adapter’s memory or I/O
ports.

These needs require that a DDM have a translation mechanism that can:

1. convert a local memory address to a system address, and vice versa.

2. convert a local memory address to an expansion bus address, and vice versa.

Given a system address, a local address, or an expansion bus address of a location in a shared
memory partition, the DDM can translate it to a system, local, or an expansion bus address.
This is accomplished via the API translation function call. The DDM specifies the bus, the
address on that bus, and a second bus that needs to access that memory location. The function
returns the address for that second bus.

5.1.6.3 Transport Functions
Because access to different buses and spaces on those buses may vary between platforms, the
DDM does not directly access system memory or adapters on expansion buses. Instead, two
sets of functions access system memory and adapters. One set performs block transfers, and
the other performs single accesses.

For block transfers, the DDM creates DMA objects. The DMA object is used to move a block
of data between IOP local memory and either an adapter or system memory. The DMA action
queues the request to the IOP’s hardware and returns control to the calling module before the

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-7

DMA completes. After the DMA is complete, the IOP posts a DMA completion event to an
event queue specified by the DDM.

For single accesses, a set of functions provides a more direct mechanism for reading and
writing memory, I/O ports, or configuration registers for a particular bus. These functions
operate on single access data (i.e., a byte, 16-bit word, 32-bit word, or 64-bit word) and the
function is immediate; that is, the call returns only once the transfer completes. This causes an
immediate bus access independent of the DMA, but it may be delayed until the current DMA
completes. Therefore, these direct functions are effective only for accessing small amounts of
data.

5.1.7 OS Services
DDMs execute on the IOP under IRTOS, a special-purpose real-time OS designed specifically
to support high-speed, low-overhead I/O operations.

System vendors that provide open I/O processors that host arbitrary device drivers must
provide the IRTOS environment. Device vendors that provide the drivers to run on those I/O
processors must create DDMs that conform to the IRTOS environment.

IRTOS is organized around two primary concepts: objects and events. The IRTOS driver
abstraction is based on an event-driven model of device drivers. For more on IRTOS, see
Section 5.3.3.

5.2 Principles of Operation

This section discusses basic IOP operations, including installing, configuring, and initializing
DDMs, message queuing, and transport services.

5.2.1 Installing DDMs
DDMs are installed because the host sends a ExecSwDownload message. This message
provides the module code and an optional module parameter block. The module parameter
block is analogous to a *.INI file and stores parameters governing DDM operation. Installing
a DDM does not automatically cause the DDM to load. The DDM itself is prepended with a
set of descriptor tables that identifies the DDM and gives the IOP a list of adapters and device
types that the DDM can control. Based on this list, the IOP determines if a DDM needs to be
loaded and assigns it adapters and devices.

5.2.2 DDM Initialization
After a DDM is loaded, its main initialization entry point is invoked with a pointer to the
module’s parameter block. The module’s initialization code initializes the module, creates a
DDM object that sets up an event queue for the DDM, and registers the module as a DDM
class I2O device (i.e., i2oDdmCreate() function). The IOP responds to the registration by
assigning a TID to the DDM.

The IOP searches its physical configuration database for any available adapters assigned to the
DDM. The IOP matches the adapter’s signature (e.g., information from the adapter’s
configuration registers) against the adapter signatures in the module’s header. For each match,
the IOP posts a DdmAdapterAttach message to the DDM’s event queue. The DDM initializes

Intelligent I/O Architecture Specification

5-8 Draft Version 1.5d March 7, 1997

the adapter and registers as many I2O devices as necessary to represent the services available
(i.e., the i2oDevCreate() function). As an example, a SCSI DDM would create a bus adapter
class I2O device for each SCSI port, and for each SCSI device, create a SCSI peripheral class
I2O device. The DDM uses information in its module parameter block to register devices
consistently with the same TID.

Each registered I2O device is assigned a TID. The DDM can create additional event queues if
necessary and, when it creates an I2O device, it identifies which event queue processes
messages addressed to that device’s TID.

As I2O devices are registered, the IOP checks its database and determines if the I2O device is
reserved for a local ISM. If it is, a DdmDeviceAttach message is posted to that DDM’s event
queue. Additionally a DdmDeviceAttach message is posted when the host sends an
ExecDeviceAssign message to the IOP. Instead of initializing hardware, as with the
DdmAdapterAttach , the ISM sends an UtilClaim message to the attached I2O device. Like the
HDM, when an ISM processes an DdmDeviceAttach message, it can register (create) additional
I2O devices.

An I2O device is considered sharable (i.e., the service supports more than one user) but can
limit the number of users it can support. That limit can be one or more. An ISM or OSM sends
the UtilClaim message to the I2O device to use the I2O device’s base class resources (i.e.,
become the primary, alternate, or secondary user). Whether or not a DDM reaches its user
limit, it must receive and respond to utility class messages from all DDMs (UtilClaim is a utility
message). If the I2O device has not reached its user limit, it accepts UtilClaim requests;
otherwise, it rejects subsequent UtilClaim requests. Only one primary user may exist at a time
but the primary user may allow alternate authorized users and peer service users (see Chapter
6, Utility Messages). A user sharing rights can use a device’s services exclusively for
temporary periods via the UtilLock and UtilLockRelease messages. The driver acquires general
rights to a device that may be shared between different DDMs, IOPs, or units via the
UtilDeviceReserve message.

When the I2O device is initially created, an entry is placed in the IOP’s logical configuration
table with the UserTID field set to unknown. When a primary user claims the device, the DDM
updates the table’s UserTID to reflect the TID of its primary user. This signifies that the
resource is not available.

5.2.3 IOP Initialization Example
To illustrate the process, consider the configuration shown in Figure 5-2, which has two SCSI
adapters and a number of SCSI devices attached to each port. Assume that a single HDM
controls both SCSI ports and that there are three separate ISMs. One ISM is a general block
storage module configured to control all the disks on both SCSI ports. The second ISM is a
RAID (block storage) module configured to control the first five disks on the first SCSI port.
The third ISM controls the tape drive on the first SCSI port. The scanner is not an I2O class
and is therefore left for an OSM to control as a typical SCSI device.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-9

Hard
Disk

Hard
Disk

Hard
Disk

OSD2135

SCSI HBA

Hard
Disk

Hard
Disk

Hard
Disk

Tape Drive

S
C
S
I

B
u
s

SCSI HBA

Hard
Disk

Hard
Disk

Hard
Disk

S
C
S
I

B
u
s

Scanner

IOP

I/O Bus

Figure 5-2. An IOP Physical Configuration

A typical initialization sequence follows:

1. By definition, the IOP executive is always TID 000h, and the 001h TID is reserved for host
OSMs.

2. The IOP discovers the SCSI adapters, and thus loads and initializes the SCSI HDM. As
part of its initialization procedure, the HDM registers itself as a DDM and is assigned a
TID of 008h.

 The next phase is hardware initialization:

3. The IOP posts a DdmAdapterAttach message to the SCSI HDM’s queue, which contains the
AdapterID for the first SCSI port.

4. The HDM creates a bus adapter (SCSI port) I2O device, specifying TID = 010h.

5. As the SCSI HDM discovers the six disk drives and the tape drive, it creates appropriate
SCSI peripheral class I2O devices, specifying them as TID = 011h through 017h.

 The logical configuration table now contains the information as shown in Table 5-1.

Intelligent I/O Architecture Specification

5-10 Draft Version 1.5d March 7, 1997

Table 5-1. Initial Configuration Information

TID Class SubClass Parent UserTID Claimed Devices Notes
008h DDM HDM 000h 000h {SCSI driver}
010h Bus Adapter SCSI 008h FFFh
011h SCSI Peripheral Hard Disk 010h FFFh
012h SCSI Peripheral Hard Disk 010h FFFh
013h SCSI Peripheral Hard Disk 010h FFFh
014h SCSI Peripheral Hard Disk 010h FFFh
015h SCSI Peripheral Hard Disk 010h FFFh
016h SCSI Peripheral Hard Disk 010h FFFh
017h SCSI Peripheral Tape Drive 010h FFFh

9. As a result of the SCSI Peripheral devices being registered, the IOP loads and initializes
the general block storage ISM. The ISM registers itself as a DDM and is assigned TID =
009h.

10. Next, the IOP posts a DdmDeviceAttach message to the generic block storage ISM for each
matching SCSI Peripheral (see Table 5-12: Device Table declarations, part of Module
Descriptor Header). Since the ISM remembers the correlation between the devices it
claims and the devices it creates, for each attached device it recognizes, the ISM creates a
block storage class device using the remembered TID, (TIDs = 21h through 26h). Each
block storage device then claims the corresponding SCSI peripheral block storage device.

11. Also as a result of the SCSI Peripheral devices being registered, the IOP loads and
initializes the tape storage ISM. The ISM registers itself as a DDM and it is assigned TID =
00Ah.

12. The IOP now posts a DdmDeviceAttach message to the tape ISM for each matching SCSI
Peripheral. The tape ISM recognizes TID 017, creates a tape storage class device (tape
drive), specifying TID = 027h, and then the tape device (TID 027) claims TID 017.

13. As a result of the block storage class devices being registered, the IOP loads and initializes
the RAID ISM. The RAID ISM registers itself as a DDM and is assigned TID = 00Bh.

14. Next, the IOP posts a DdmDeviceAttach message to the RAID ISM for each block storage
device registered (TIDs 21h through 26h). The RAID ISM recognizes the first TID
attached and creates a block storage class device (RAID disk), which is TID = 028h. The
new RAID disk claims the appropriate devices (TIDs 21h through 25h).

 Note: The RAID device might determine which devices to claim either from information
stored in its MPB or by inspecting the drives themselves.

 The logical configuration table now contains the information as shown in Table 5-2.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-11

Table 5-2. Configuration Information after First Adapter Initialization

TID Class SubClass Parent UserTID Claimed Devices Notes
008h DDM HDM 000h 000h {SCSI driver}
009h DDM ISM 000h 000h {Block Storage}
00Ah DDM ISM 000h 000h {Tape driver}
00Bh DDM ISM 000h 000h {RAID driver}
010h Bus Adapter SCSI 008h FFFh
011h SCSI Peripheral Hard Disk 010h 021h
012h SCSI Peripheral Hard Disk 010h 022h
013h SCSI Peripheral Hard Disk 010h 023h
014h SCSI Peripheral Hard Disk 010h 024h
015h SCSI Peripheral Hard Disk 010h 025h
016h SCSI Peripheral Hard Disk 010h 026h
017h SCSI Peripheral Tape Drive 010h 027h
021h Block Storage Disk 009h 028h 011
022h Block Storage Disk 009h 028h 012
023h Block Storage Disk 009h 028h 013
024h Block Storage Disk 009h 028h 014
025h Block Storage Disk 009h 028h 015
026h Block Storage Disk 009h FFFh 016
028h Block Storage RAID Disk 00Bh FFFh 021,022,023,024,025
027h Tape Storage DAT 00Ah FFFh 017

Shaded area signifies data that is unchanged from the previous example.

1. The IOP posts another DdmAdapterAttach message to the SCSI HDM with the AdapterID
for the second SCSI port.

2. The HDM creates another bus adapter class I2O device, specifying TID = 030h.

3. As the SCSI HDM discovers the three disk drives and the scanner on the second port, it
creates appropriate SCSI peripheral devices registering them as TID = 031h through 034h.

4. The IOP posts an DdmDeviceAttach message to the generic block storage ISM for each
SCSI peripheral device registered that matches the ISM’s device Table (TIDs 031 through
034h). Remembering the association, the ISM creates a block storage class device (disk
drive), specifying remembered TIDs 041h, 042h, and 043h. These storage class devices
claim the appropriate SCSI peripheral devices.

Intelligent I/O Architecture Specification

5-12 Draft Version 1.5d March 7, 1997

The logical configuration table now contains the information as shown in Table 5-3:

Table 5-3. Final Logical Configuration Table

TID Class SubClass Parent UserTID Claimed Devices Notes
008h DDM HDM 000h 000h {SCSI driver}
009h DDM ISM 000h 000h {Block Storage}
00Ah DDM ISM 000h 000h {Tape driver}
00Bh DDM ISM 000h 000h {RAID driver}
010h Bus Adapter SCSI 008h FFFh
030h Bus Adapter SCSI 008h FFFh
011h SCSI Peripheral Hard Disk 010h 021h
012h SCSI Peripheral Hard Disk 010h 022h
013h SCSI Peripheral Hard Disk 010h 023h
014h SCSI Peripheral Hard Disk 010h 024h
015h SCSI Peripheral Hard Disk 010h 025h
016h SCSI Peripheral Hard Disk 010h 026h
017h SCSI Peripheral Tape Drive 010h 027h
031h SCSI Peripheral Hard Disk 030h 041h
032h SCSI Peripheral Hard Disk 030h 042h
033h SCSI Peripheral Hard Disk 030h 043h
034h SCSI Peripheral unknown 030h FFFh scanner
021h Block Storage Disk 009h 028h 011
022h Block Storage Disk 009h 028h 012
023h Block Storage Disk 009h 028h 013
024h Block Storage Disk 009h 028h 014
025h Block Storage Disk 009h 028h 015
026h Block Storage Disk 009h FFFh 016
028h Block Storage RAID Disk 00Bh FFFh 021,022,023,024,025
041h Block Storage Disk 009h FFFh 031
042h Block Storage Disk 009h FFFh 032
043h Block Storage Disk 009h FFFh 033
027h Tape Storage DAT 00Ah FFFh 017

Shaded area signifies data that is unchanged from the previous example.

When the host reads the logical configuration table, entries with a value other than FFFh in the
UserTID field are reserved and not available to an OSM.

When the OSM (or an ISM) claims a device, the UserTID field is updated to indicate that the
device is no longer available to others.

Figure 5-3 illustrates the logical configuration of the above example. The I 2O devices above
the modules are available to an OSM, or an ISM on another IOP. Reserved devices are shown
below the relative user.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-13

Reserved IO Devices
(shown under user)

Available IO Devices (shown above parent)
Bus

Adapter

Storage
Device

Storage
Device

Storage
Device

Storage
Device

Bus
Adapter

SCSI
Device

SCSI
Device

SCSI
Device

SCSI
Device

SCSI
Device

SCSI
Device

Storage
Device

Storage
Device

Storage
Device

Storage
Device

Tape
Device

Storage
Device

Storage
Device

SCSI HDM MS ISM
MS ISM
(RAID)

Tape ISM

SCSI
Device

SCSI
Device

SCSI
Device

SCSI
Device

SCSI
Device

Figure 5-3. An IOP’s Logical Configuration

5.2.4 DDM Configuration
When a DDM is installed, its module header lists the adapter types that the DDM can control.
The IOP compares those types against its own list of unresolved resources. For any match, the
IOP can invoke a configuration dialogue with the host/user to confirm the adapter’s
assignment to the DDM. Typically the IOP does not wait for the configuration dialogue, but
rather configures adapters according its own set of rules, issues the DdmAdapterAttach, and
requests the configuration dialogue. This allows confirmation or modification of the
configuration after the system is operational.

When the IOP issues the DdmAdapterAttach message to the DDM, the DDM creates I2O
devices related to that hardware. Because only the DDM understands the relationship of the
hardware to the registered device, the DDM must correlate the TID assignment of I2O devices it
registers. The mechanism for this task lies in the module parameter block. The first time an
adapter is assigned to a DDM, the DDM specifies a TID of 000h for each new I2O device it
creates. The IOP, detecting this special value, assigns the I2O device an unique TID. The DDM
stores the relationship of that new TID to the hardware in its module parameter block. Thus,
the next time the IOP is booted and the adapter is attached to the DDM, the DDM creates the
I2O device specifying the same TID as previously assigned. The IOP simply verifies that the
TID is assigned to that DDM. This assures that devices are assigned TIDs consistently and that
the host can use the TID assignment to recognize new or missing devices. The DDM must
determine whether an adapter or device is the same, a replacement, or considered a new
device. The DDM may use the configuration dialogue for this effort.

DdmAdapterAttach events are not guaranteed to occur in the same order each time the IOP is
reset. The adapter may not be in the same location, nor have the same AdapterID. Therefore,
the best correlation to hardware is a manufacturer’s serial number, MAC address, or other
unique identification that moves with a device. With this level of correlation, the DDM can
expressly track hardware when it is moved to a different slot or replaced. The next best
correlation is the hardware’s association with its physical bus location.

The DDM must assure that it does not assign a TID to a different entity. If the DDM detects a
hardware change, it should defer I2O device creation and use a configuration dialogue to

Intelligent I/O Architecture Specification

5-14 Draft Version 1.5d March 7, 1997

confirm whether the new card is a replacement or a new device. A replacement should receive
the same TID, whereas a new device requires a new TID. On the other hand, if the adapter
controls the boot device, it may be inappropriate to wait for a configuration dialogue.

If the DDM requires a configuration dialogue, it sets a flag to request a dialogue. The host
invokes the configuration dialogue at its convenience.

5.2.5 Upgrading DDMs
The IOP can receive a request to install a DDM that upgrades a DDM already installed and
running. This version of the specification does not require hot swapping of DDMs but,
protects against upgrading to a faulty DDM. See Configuration of I/O Device Drivers in
Chapter 2.

If the suspect DDMs are rejected implicitly, because the user has neither accepted nor rejected
them, the IOP must request a configuration dialogue to warn the user that the experimental
DDMs are not loaded. The host must issue a new installation command if it wants to try the
upgrade again.

Until suspect DDMs are either accepted or rejected, the IOP should not accept another driver
installation request.

5.2.6 Message Queuing
Each I2O device is created with a unique TID and associated with an event queue. The event
queue supports eight levels of priority, and the DDM supplies a pointer to the message
dispatch table when the device is created. This table lists Function codes, their priorities and
message handlers for processing request messages. When the IOP receives a request message
to that TID, the IOP uses the priority value corresponding with the message’s Function code
and queues the request to the event queue. A DDM can either point to the same dispatch table
for all its registered devices or supply a different table for each.

If the DDM sends requests, it must register their reply handlers and priorities via an API
function call. The IRTOS places that information in a structure and returns an InitiatorContext
value identifying that structure. When a DDM sends a request, it uses the appropriate
InitiatorContext value. When a reply is received, the IRTOS retrieves the reply handler and
priority from a structure identified by the InitiatorContext field and then queues the event.

5.2.7 Accessing System Memory
As mentioned earlier, a DDM cannot access system memory directly, but must use the IOP’s
transport services. The transport services provide DMA capability for moving blocks of data
between system memory and a local buffer. The IOP’s transport services also support single
accesses. The single access is simpler, because it does not involve a callback mechanism.
However, the DMA is more efficient (for both the local and system buses) when transferring
more than a few bytes of data. See section 5.1.6.3 for more information.

5.2.8 Accessing Physical Adapters
A DDM cannot access physical adapters directly, but must use the IOP’s transport services.
Access to physical adapters is the same as specified for system memory access (see 5.2.7).

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-15

An adapter can directly access a portion of IOP memory. This enables bus master adapters to
copy data directly to the DDM’s buffers. The DDM must allocate buffers in a memory
partition accessible by the adapter. See section 5.1.6.2 for more information.

5.3 Technical Reference

This section is the technical reference for the DDM class of device. It defines the messages
the IOP uses to manage DDMs, the physical structure of the DDM, and its module parameter
block.

5.3.1 DDM Class Message Definitions
The following messages are specifically designed for managing loadable DDMs:

Table 5-4. DDM Class Messages for Loadable DDMs

Mnemonic Description
DdmAdapterAttach Assigns a physical adapter to a HDM

DdmAdapterReconfig Notifies HDM of adapter’s new physical location and resumes operation

DdmAdapterRelease Revokes a physical adapter previously assigned to a HDM

DdmAdapterResume Resumes access after a DdmAdapterSuspend when no change occurred

DdmAdapterSuspend Suspends access to a adapter so it can be reconfigured

DdmDeviceAttach Assigns an I2O device to an ISM (forms connection)

DdmDeviceRelease Revokes a device previously assigned to an ISM

DdmDeviceReset Aborts all operation with the specified TID

DdmDeviceResume Resumes sending messages to the specified TID

DdmDeviceSuspend Suspends sending messages to the specified TID

DdmSelfReset Aborts all operations and reset state

DdmSelfResume Resumes sending messages

DdmSelfSuspend Suspends operation of the module

DdmSystemChange Notifies DDM that system has been reconfigured

DdmSystemEnable Notifies DDM that system is operating after a DdmSystemHalt

DdmSystemHalt Notifies DDM that system will be reconfigured

All DDM class messages are single-transaction messages. Typically, the MessageFlags field
for requests should be set to 00h (for 32-bit context size) or 02h (for 64-bit context size). For a
normal reply, it should contain C0h (for 32-bit context size) or C2h (for 64-bit context size).
All requests are single transaction requests. All replies are single transaction replies. Since no
request provides an SGL, the VersionOffset field should be 01h for both requests and replies.

Detailed Status Codes for replies are specified in Chapter 3.

5.3.1.1 DdmAdapterAttach
This message gives the DDM the identity of an adapter and requests that the DDM accept
control and initialize the adapter. The IOP should defer the reply to this message until it has
registered all devices created as a result of this message.

Intelligent I/O Architecture Specification

5-16 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmAdapterAttach InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

AdapterID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 5-4. DdmAdapterAttach Request Message Structure

Fields

AdapterID Handle for the adapter. The DDM and IOP use this value to
represent the physical adapter in subsequent messages and function
calls.

MessageFlags Typically 00h for 32-bit context size and 02h for 64-bit context size.

5.3.1.2 DdmAdapterReconfig
This message returns adapter control to the DDM after a DdmAdapterSuspend operation and
notifies the DDM that the adapter is physically reconfigured. The DDM should ascertain the
adapter’s new configuration.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmAdapterReconfig InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

AdapterID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 5-5. DdmAdapterReconfig Request Message Structure

5.3.1.3 DdmAdapterRelease
This message revokes access to an adapter and asks the DDM to release control of it. The
DDM should put the adapter in a quiescent state before replying to this message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmAdapterRelease InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

AdapterID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 5-6. DdmAdapterRelease Request Message Structure

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-17

5.3.1.4 DdmAdapterResume
This message returns control of the adapter to the DDM after a DdmAdapterSuspend operation
and notifies the DDM that the adapter was not physically reconfigured.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmAdapterResume InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

AdapterID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 5-7. DdmAdapterResume Request Message Structure

5.3.1.5 DdmAdapterSuspend
This message temporarily revokes access to an adapter. The IOP sends this message before
changing the adapter’s physical address. Once the DDM replies to this message, it should not
access the adapter until it receives a DdmAdapterReconfig or DdmAdapterResume message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmAdapterSuspend InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

AdapterID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 5-8. DdmAdapterSuspend Request Message Structure

5.3.1.6 DdmDeviceAttach
This message provides the DDM with the TID of an I2O device and suggests that the DDM
claim and use the device. This is how the IRTOS assigns devices to ISMs. The IOP should
defer the reply to this message until it has registered all devices created as a result of this
message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmDeviceAttach InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved DeviceTID 16 (24)

Offset in () signifies offset for 64-bit context fields

Intelligent I/O Architecture Specification

5-18 Draft Version 1.5d March 7, 1997

Figure 5-9. DdmDeviceAttach Request Message Structure

5.3.1.7 DdmDeviceRelease
This message revokes access to an I2O device previously attached to the DDM and requests
that the DDM release control of the device. The DDM should send an UtilClaimRelease
message to the device.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmDeviceRelease InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved DeviceTID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 5-10. DdmDeviceRelease Request Message Structure

5.3.1.8 DdmDeviceReset
The DDM aborts all operations for the specified TID. If the DDM is the parent of the ResetTID,
then it aborts all request messages queued for that TID before replying to this message. It also
aborts outstanding I/O requests using the appropriate process abort status code. Otherwise, the
DDM flushes all messages and outstanding I/O requests from the specified TID. The DDM
does not reply to the ResetTID after receiving this message. In either case, the claim state
reverts to not claimed.

The typical order of messages is:

1. DdmDeviceSuspend to the users of the TID to reset

2. DdmDeviceReset to the device being reset

3. DdmDeviceReset to each of its users

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmDeviceReset InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved ResetTID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 5-11. DdmDeviceReset Request Message Structure

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-19

5.3.1.9 DdmDeviceResume
This message enables the DDM to send messages to and from the specified TID again. If the
DDM is the parent of the SuspendedTID, it enables processing request messages for that TID.
Otherwise, it enables sending requests or replies to that TID.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmDeviceResume InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved SuspendedTID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 5-12. DdmDeviceResume Request Message Structure

5.3.1.10 DdmDeviceSuspend
The DDM suspends message service with the specified TID until it receives a DdmDeviceReset,
DdmDeviceResume, or DdmSelfReset message. If the DDM is the parent of the SuspendedTID,
then it stops processing request messages for that TID. Otherwise, it stops sending requests or
replies to that TID. The typical use of this message is to halt communication while the system
is reconfigured.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmDeviceSuspend InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved SuspendedTID 16 (24)

Offset in () signifies offset for 64-bit context fields

Figure 5-13. DdmDeviceSuspend Request Message Structure

5.3.1.11 DdmSelfReset
The DDM discards all operations and resets its state.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmSelfReset InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

Figure 5-14. DdmSelfReset Request Message Structure

Intelligent I/O Architecture Specification

5-20 Draft Version 1.5d March 7, 1997

When it receives this message, the target aborts all operations, releases all devices and other
IRTOS objects (except for the DDM object itself), and returns all message frames before
replying. The DDM must destroy all I2O devices it created and waits for the IOP to reissue
DdmAdapterAttach and DdmDeviceAttach messages.

5.3.1.12 DdmSelfResume
When it receives this message, the DDM resumes operation and begins sending messages
again.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmSelfResume InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

Figure 5-15. DdmSelfResume Request Message Structure

5.3.1.13 DdmSelfSuspend
This message asks the target to suspend operation of the module and stop sending messages.
Once the target responds to this message, it sends no messages until it receives a DdmSelfReset
or DdmSelfResume message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmSelfSuspend InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

Figure 5-16. DdmSelfSuspend Request Message Structure

5.3.1.14 DdmSystemChange
This message notifies the DDM of system configuration changes, and that it can resume
operation. If the DDM is attached to any adapters, it should ascertain each adapter’s new
configuration. If the DDM has any direct links to DDMs on other IOPs, it should re-establish
those links and validate any system addresses in use.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmSystemChange InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-21

Figure 5-17. DdmSystemChange Request Message Structure

5.3.1.15 DdmSystemEnable
This message notifies the DDM that the system configuration has not changed, and the DDM
can resume operation.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmSystemEnable InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

Figure 5-18. DdmSystemEnable Request Message Structure

5.3.1.16 DdmSystemHalt
This message notifies the DDM that the system is about to be reconfigured. Once the target
responds, it should not access any adapters on a system bus until it receives a
DdmSystemChange or a DdmSystemEnable message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

DdmSystemHalt InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Offset in () signifies offset for 64-bit context fields

Figure 5-19. DdmSystemHalt Request Message Structure

5.3.2 Technical Reference for Structures
This section describes the physical structure of the DDM and its module parameter block.

5.3.2.1 DDM Physical Structure
The DDM contains a module descriptor header (set of module descriptor tables) prepended to
the executable code, as specified in the following tables.

Intelligent I/O Architecture Specification

5-22 Draft Version 1.5d March 7, 1997

Table 5-5 Structure of Module Descriptor Header

Size Name Description

32 bits HeaderSize Number of bytes consumed by module descriptor header, starting
with this field and including all descriptor tables. Always an multiple
of four bytes.

16 bits OrganizationID The I2O organization ID assigned to the vendor producing the
module.

16 bits ModuleID A value assigned by the vendor producing the module. The
OrganizationID and ModuleID form a unique name for the module,
which identifies it during upgrades.

16 bits DateCodeDay ASCII string identifying the two-digit day of the month the DDM was
produced (01 through 31).

16 bits DateCodeMonth ASCII string identifying the two-digit month the DDM was produced
(01 through 12).

32 bits DateCodeYear ASCII string identifying the four-digit year the DDM was produced.

8 bits I2OVersionInfo This version is 01h.

8 bits MajorCapabilities This field identifies major capabilities, specified by Table 5-6.

16 bits reserved Set to zero. Reserved for future definition.

32 bits ObjCodeSize Number of bytes of memory required to load and execute the code.

32 bits TableOffset Offset from the start of the module header (i.e., HeaderSize field) to
the start of the tables (i.e., NumberTables field). This allows
additional fields in the future.

32 bits MemoryReqmnts Number of bytes of data memory needed before attaching any
adapters or devices.

32 bits MemoryPreferred The additional amount of memory (in bytes) of IOP memory desired
by the module for enhanced performance. This field excludes the
amount specified by the MemoryReqmnts field.

32 bits ModuleVersion Module version (four ASCII characters).

8 bits ProcessorType Type of IOP:

00h Intel 80960 series

01h AMD29000 series

02h Motorola 68000 series

03h ARM series

04h MIPS series

05h Sparc series

06h PowerPC series

07h Alpha series

08h Intel x86 series

FFh Other

Other values are reserved (for current list see I2O SIG Web site at
http://www.i2osig.org/).

8 bits ProcessorVersion Version of processor dependent on ProcessorType:

00h default
other values to be determined (for current list visit the I2O SIG Web
site at http://www.i2osig.org/).

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-23

8 bits ObjCodeFormat Identifies how the object code was compiled, dependent on
ProcessorType:

00h default
other values to be determined (for current list visit the I2O SIG Web
site at http://www.i2osig.org/).

8 bits reserved1 reserved

x32 bits unknown Additional fields defined in future versions. Since size of additional
fields are unknown, use TableOffset to locate following tables.

32 bits NumberTables Number of descriptor tables.

24 bytes ModuleInfo ASCII string; module name and any manufacturer’s information the
vendor provides

16 bits Length Length of this table in 32-bit words (includes this field).

16 bits DescriptorID Table content, per Table 5-7. Tables are in order of their
DescriptorID.

x32 bits data Table content

x32 bits additional tables Length, DescriptorID, and data, as above, repeated for each
table. Tables are in order of their DescriptorID.

any object code Object code; HeaderSize determines placement of object code.

x32 bits means any number of 32-bit words.

Table 5-6 Module’s Major Capabilities

Bit Position Description

Bit 1,0 ContextFieldSizeCapability

0,0 Supports only 32-bit context fields.

0,1 Supports only 64-bit context fields.

1,0 Supports both 32-bit or 64-bit context fields, but not concurrently.

1,1 Supports 32-bit & 64-bit context fields concurrently.

others reserved

Additional capabilities may be specified at a later date.

Table 5-7 DescriptorID Assignments

DescriptorID Description

0000h Index table − indicates the tables included in the header; see Table 5-8

0001h Adapter table − describes the adapters that this HDM can control; see Table 5-10

0002h Device table − list of device classes this ISM can control; see Table 5-12

0003h Obsolete DDM table − list of ModuleIDs that this module replaces; see Table 5-14

0004h TCL script table − table of TCL Script for Configuration Dialogue; see Table 5-16.

Additional DescriptorIDs will be specified.

Intelligent I/O Architecture Specification

5-24 Draft Version 1.5d March 7, 1997

Table 5-8 Structure of Index Table

Size Name Description

16 bits length Length, in 32-bit words, of table, including this field

16 bits DescriptorID DescriptorID = 0000h identifies this as an Index table

8 bits EntrySize Number of 32-bit words in each entry (two for this version)

8 bits NumberEntries Number of entries

8 bits TableVersion This version = 00h

8 bits reserved1 reserved

n x m data Table entries (size = EntrySize x NumberEntries x 32 bits); see Table
5-9

Table 5-9 Index Table Entry

Size Name Description

16 bits TableDescriptorI
D

DescriptorID of the Table

16 bits reserved2 reserved

32 bits TableOffset Offset of table from start of header

Table 5-10 Structure of Adapter Table

Size Name Description

16 bits length Length, in 32-bit words, of table, including this field

16 bits DescriptorID DescriptorID = 0001h identifies this as an adapter table

8 bits EntrySize Number of 32-bit words in each entry

8 bits NumberEntries Number of entries

8 bits TableVersion This version = 00h

8 bits - reserved

n x m data Table entries (size = EntrySize x NumberEntries x 32 bits). The first
byte of each entry identifies the bus type; the remainder is specific to
bus type. PCI is the only type defined (see Table 5-11).

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-25

Table 5-11 PCI Adapter Table Entry

Size Name Description

8 bits BusType=PCI See Chapter 3 for bus type values.

24 bits ClassCode Value to match PCI configuration register at offset 09h

16 bits PCIvendorID Value to match PCI configuration register at offset 00h

16 bits PCIdeviceID Value to match PCI configuration register at offset 02h

16 bits PCIdeviceMask Value ANDed with the PCI configuration register at offset 02h, before
comparing with PCIdeviceID

16 bits SubVendorID Value to match PCI configuration register at offset 2Ch

16 bits SubDeviceID Value to match PCI configuration register at offset 2Eh

16 bits SubDeviceMask Value ANDed with the PCI configuration register at offset 2Eh before
comparing with SubDeviceID

32 bits MemReqmnts Number of bytes of IOP data memory needed to support this adapter

Table 5-12 Structure of Device Table

Size Name Description

16 bits length Length, in 32-bit words of table, including this field

16 bits DescriptorID DescriptorID = 0002h identifies this as an device table.

8 bits EntrySize Number of 32-bit words in each entry (two for this version)

8 bits NumberEntries Number of entries

8 bits TableVersion This version = 00h

8 bits - reserved

n x m data Table entries (size = EntrySize x NumberEntries x 32 bits) First two
words of each entry identify the message class and subclass. The
IRTOS determines if an I2O device can be assigned to this ISM by
matching the ClassID and SubClass with the same fields in logical
configuration table entries. See Table 5-13

Table 5-13 Device Table Entry

Size Name Description

32 ClassID The first word of each entry identifies the message class (see Class
Codes in Chapter 6). A value of -1 means issue a
DdmDeviceAttach message for all devices as they are registered. A
value of 0 means always load and initialize this module.

32 SubClass The second word of each entry identifies the subclass (defined by
each message class in Chapter 6). A value of -1 indicates any
subclass.

Intelligent I/O Architecture Specification

5-26 Draft Version 1.5d March 7, 1997

Table 5-14 Structure of Obsolete DDM Table

Size Name Description

16 bits length Length, in 32-bit words, of table, including this field.

16 bits DescriptorID DescriptorID = 0003h identifies this as an obsolete DDM table

8 bits EntrySize Number of 32-bit words in each entry

8 bits NumberEntries Number of entries

8 bits TableVersion This version = 00h

8 bits reserved1 reserved

n x m data
<as follows>

Table entries (size = EntrySize x NumberEntries x 32 bits). Each
entry consists of the fields defined in Table 5-15.

Table 5-15 Obsolete Table Entry

Size Name Description

16 OrganizationID Identifies the vendor producing the module (see Table 5-5)

16 ModuleID Identifies the module (see Table 5-5)

Table 5-16 Structure of TCL Script Table

Size Name Description

16 bits length Length, in 32-bit words, of table, including this field

16 bits DescriptorID DescriptorID = 0004h identifies this as a TCL Script table

16 bits reserved2 reserved

8 bits ScriptVersion This version = 00h

8 bits reserved1 reserved

data TCL Script List − table of TCL Script for Configuration Dialogue. See
section 5.3.3.2, Module Script Table.

5.3.2.2 Module Parameter Block
Each installed DDM has an associated module parameter block to hold user-configurable
parameters.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-27

Table 5-17 Structure of Module Parameter Block

Size Name Description

32 bits MPBsize The size of the module parameter block, in 32-bit words, including
this field

16 bits OrganizationID The I2O organization ID assigned to the vendor producing the DDM

16 bits ModuleID This value must match the ModuleID in the module header

32 bits MPBversion Used by the vendor to synchronize MPB structures when upgrading
existing DDMs. When the system creates the module parameter
block, it sets this value to 0000-0000h and sets MPBsize to 4. The
DDM can set this to any value.

32 bits reserved4 reserved

x32 bits MPB data The remainder of the module parameter block is specific to the
vendor. The DDM stores any information that needs to be persistent
from one power cycle to the next. Should include any information
such as device tags to correlate TIDs assigned to ports and physical
devices, as well as configuration information for making other
connections. Each DDM vendor has its own private requirements,
based on the classes of service it provides.

x32 bits means any number of 32-bit words.

5.3.2.3 System Configuration Information
Each I2O device provides a description of itself that is used to create the IOP’s logical
configuration table. This information is specified in Logical Configuration Table Entries in
Chapter 3.

5.3.3 Configuration Dialogue

5.3.3.1 TCL Scripts
To carry out an interaction with a human user using the HTML-based dialogue facility, a DDM
must format HTML text and parse input form data. While this can be done in the C language,
it is far easier to use text macro and scripting facilities. The scripting facility for I2O allows
the following:

• string substitution for internationalization of text.

• access to fields in parameter groups, to get values for display and setting
values as the result of form submissions.

• formatting values obtained from those fields (e.g. display as decimal or hex
integer).

• conditional text substitution based on values of fields (e.g. adds HTML
command CHECKED if field equals a particular value).

• evaluating arithmetic and logical expressions.

• variable length loops, depending on values of fields (e.g. display a table with a
variable number of rows).

• defining additional macros or procedures for higher levels of functionality.

Intelligent I/O Architecture Specification

5-28 Draft Version 1.5d March 7, 1997

• a dense definition of the HTML dialogue.

The I2O scripting facility is a small subset of Tool Command Language (TCL), a very flexible
and expressive language. However, it is extremely simple in its underlying syntax and,
therefore, the footprint of the basic interpreter is quite small.

5.3.3.1.1 Standard TCL command support

IRTOS provides the following subset of standard TCL commands for I2O dialogue writers.

Table 5-18: Standard TCL Commands Supported by IRTOS

Comma
nd

Description

SET Read and write variables

UNSET Delete variables

EXPR Evaluate an expression

EVAL Evaluate a TCL script

FOR Iterate over sequential values

FOREACH Iterate over all elements in a list

WHILE Execute script repeatedly as long as a condition is met

BREAK Abort looping command

CONTINUE Skip to the next iteration of a loop

IF Execute scripts conditionally

SWITCH Evaluate one of several scripts, depending on a given value

FORMAT Format a string in the style of sprintf

SCAN Parse string using conversion specifiers in the style of sscanf

CONCAT Join lists together

JOIN Create a string by joining together list elements

SPLIT Split a string into a proper Tcl list

PROC Create a Tcl procedure

RETURN Return from a procedure

5.3.3.1.2 Custom TCL Commands for IRTOS

In addition to the standard TCL commands previously listed, this specification defines several
commands adapted from the TCL command set. The definitions of these modified TCL
commands follow:

Table 5-19: Customized TCL Commands Support by IRTOS

puts string

puts is a standard TCL command normally used to write to the standard output stream. For
I2O, this command is modified to write into the reply buffer indicated by an UtilDialogGet
message.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-29

Source script

source is a standard TCL command that reads and executes another script before
executing the current script. This can include a set of common definitions and TCL
procedures into multiple scripts, or for internationalization, provide alternate strings for
dialogue pages for different languages. A script for each supported language can set a
collection of variables to the appropriate dialogue strings in that language. To display
dialogues in the appropriate language, a TCL script first sources the script containing the
strings of the selected language.

Source normally reads scripts from an underlying file system. For I 2O, the source
command is modified to read scripts from a DDM’s script table.

KeysGet group keytype

keysGet returns the keys of the specified group. The keytype parameter can take the values
b or s: b indicates binary keys, and s indicates ASCII strings. Binary keys are converted
into ASCII numeric format (“0x…”) before being returned.

fieldGet group field [key keytype] type &

fieldSet group field [key keytype] type value

fieldGet/fieldSet will get/set the value specified by the (group, field, key) triple. If the
group is scalar, the key and keytype arguments are omitted. The type and keytype
arguments can be s or b: s indicates an ASCII string type, and b indicates a binary type.

add group key keytype

delete group key keytype

add/delete adds or deletes a row with the specified key to/from a table group. The keytype
argument can be s or b, indicating whether the key type is string or binary. Once a row is
added to a table, fieldSet calls can set the values of fields in that row.

clear group

clear removes all rows from the specified table group.

The IRTOS provides pre-defined TCL commands to simplify producing standard HTML items
such as menus, check boxes, radio buttons, tables, and so on, and for standardized parsing of
form data. A device may make use of these commands simply by sourcing the built-in TCL
script defining these commands.

The actual content of this pre-defined TCL script is beyond the scope of this specification.

5.3.3.2 Module Script Table
The DDM module descriptor header includes dialogue scripts. The format of the TCL script
table is shown below:

Intelligent I/O Architecture Specification

5-30 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0 offset

0004h Length 0
reserved ScriptVersion reserved 4

Offset from start of table for Set0 (=a) 8
Offset from start of table for Set1 (=b) 12

: :
Offset from start of table for Setn (=c) :

Offset from start of table for Set0 Page0 (=d) a
Offset from start of table for Set0 Page1 (=e) a+4

: :
Offset from start of table for last page of Set0 (=f) :

Offset from start of table for Set1 Page0 (=g) b
Offset from start of table for Set1 Page1 b+4

: :
Offset from start of table for last page of Set1 :

Offset from start of table for Setn Page0 c
Offset from start of table for Setn Page1 c+4

: :
Offset from start of table for last page of Setn :

TCL Script for Set0 : Page0 d
: :

TCL Script for Set0 Page1 e
: :

TCL Script for Last Page of Set0 f
: :

TCL Script for Set1 Page0 g
: :

Figure 5-2. TCL script table format

Two numbers identify each script: a set number and a page number. The set number
distinguishes different sets of pages, since a DDM may need to provide several sets of
dialogues if it creates devices of different classes. The location of sets and pages within the
table is determined by 32-bit pointers relative to the start of the table. The scripts themselves
are byte arrays and are byte-aligned within the table.

The scripts are in the module’s header stored in the IOP’s non-volatile store. Thus, dialogue
scripts never occupy RAM. The IRTOS locates scripts by its set number and page number.
DDM writers simply identify dialogue scripts by its set and page number.

5.4 IRTOS: I2O Real-Time OS

This section specifies IRTOS, a special-purpose real-time OS designed specifically to support
high-speed, low-overhead I/O operations.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-31

5.4.1 Purpose
I2O provides a framework for off-loading I/O processing from the central CPU(s) to one or
more dedicated I/O processors. Thus, the I2O architecture splits I/O drivers into two
components: OSMs that run on the CPU(s) under the host OS’ operating system, and DDMs
that run on the IOP under a dedicated operating system called IRTOS.

IRTOS is specified by an API that defines the services available to DDMs and that the DDM is
expected to supply. IRTOS does not refer to any specific implementation of the specification;
many different implementations can qualify as IRTOS-compliant if they provide the exact API
specified here.

Use of IRTOS is not required by integrated intelligent devices that provide their own I/O
processor. In that case, the device is I2O compliant if it fully adheres to the I2O shell
communication protocols and those for each specific I/O class.

However, to be I2O compliant, system vendors that provide open I/O processors for execution
of arbitrary device drivers must provide the IRTOS environment. Device vendors that provide
the I2O compliant drivers to run on those I/O processors must create DDMs that conform to the
IRTOS environment. This level of IRTOS compliance allows the compatibility and
interoperability of drivers and system platforms that I2O intends to provide.

5.4.2 IRTOS Overview
IRTOS is organized around two primary concepts: objects and events. Objects offer a uniform
way to provide system services. They also facilitate tracking and reclaiming system resources.
Objects provide a mechanism for configuration-time or run-time binding of variants of system
services to specific users, without requiring their recompilation or reinstallation.

The IRTOS driver abstraction is based on an event-driven model of device drivers. In this
model, all inputs to the driver are in the form of events that are queued to the driver. The
driver writer defines an event handler for each event that the driver can receive. The IRTOS
package handles the bulk of the bookkeeping for the driver. IRTOS translates I2O request
messages, device interrupts, DMA completion, and timer expirations into events, and invokes
the appropriate DDM handler functions.

The following figure illustrates the primary IRTOS objects, event facilities, and how they are
related. Details of each component are in the sections below.

Intelligent I/O Architecture Specification

5-32 Draft Version 1.5d March 7, 1997

TID Table
deviceld

deviceld

deviceld

deviceld

deviceld

0

1

2

4094

4095

Device
owner links

TID

func table

eventQld
owned list

DDM
...

owned list

Thread

Dispatch Table
func0

func1

func2

pri0

pri1

pri2

0
1

2
3
4
5
6
7

OSD2137

Device
owner links

TID

func table
eventQld

owned list

Interrupt
owner links

Timer
owner links

DMA
owner links

e ee

e e

e

e = Event

evt
list links

func
arg1

arg2

evtQ
threadld

Figure 5-20 IRTOS Component Overview

5.4.2.1 IRTOS API Conventions
This section discusses the API naming conventions and error handling.

5.4.2.1.1 Naming Conventions

All IRTOS API functions follow a uniform naming convention. IRTOS functions are named
as follows:

i2o<noun><verb>

Because IRTOS functionality is organized around various types of system objects, the <noun>
is usually the name of the object class and the <verb> is a function or property that applies to
that class.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-33

IRTOS data types are given C typedefs and are written in uppercase with the prefix I2O:

I2O_STATUS

IRTOS constants and enumeration values are likewise written in uppercase with the prefix I2O
and an additional prefix identifying the type to which they belong:

I2O_STS_INVALID_OBJECT_ID

5.4.2.1.2 Error Handling

IRTOS provides an error handling mechanism that is simple, uniform across all API functions,
and significantly increases the robustness of IRTOS-based IOPs. All IRTOS API functions
(except those few that cannot possibly incur errors) take as their last argument a pointer to a
status variable of type I2O_STATUS. If any error is encountered in performing an IRTOS
function, the IRTOS error code is returned in this status variable. If an IRTOS function
completes, the status variable is not modified. Thus, the user should initialize the status
variable to I2O_STS_OK before calling the IRTOS function.

However, if a NULL pointer is specified for the pointer to the status variable, then IRTOS
automatically takes a predetermined error action if an error is encountered. Possible error
actions include ignoring the error and continuing, suspending execution of the calling thread
and invoking a debugger, or calling a user-specified error handler. The default error action
can be specified for a thread by calling the i2oThreadErrorActionSet() function (see section
5.4.16 Threads).

The symbol I2O_NO_STATUS is defined as a NULL pointer to a variable of type
I2O_STATUS. Thus, the following example invokes the default action if any error is
encountered when calling i2oObjContextGet():

context = i2oObjContextGet (objId, I2O_NO_STATUS);

Most errors encountered in IRTOS API functions represent a program error or a corruption of
system or DDM data structures. For example, an invalid object ID specified to any of the
object functions (such as the call to i2oObjContextGet() shown above) usually results from a
bug in the DDM or a DDM data structure corrupted by a bug in another program. A DDM
encountering such a fault should immediately stop execution or invoke comprehensive error
recovery, such as reloading the DDM. However, checking the status of every IRTOS API call
in the DDM code adds considerable overhead and obfuscates the DDM code. IRTOS
automatic error handling provides a simple alternative that can stop errant code as soon as it is
detected.

By specifying I2O_NO_STATUS as the status pointer, the caller effectively tells the IRTOS
“I’m not going to be checking the status of this function, so please prevent me from continuing
on if an error is encountered in this call.”

Intelligent I/O Architecture Specification

5-34 Draft Version 1.5d March 7, 1997

Table 5-20 IRTOS Error Actions

Value Description

I2O_ERR_ACT_DEFAULT Take thread or system-specified default error action

I2O_ERR_ACT_IGNORE Ignore error and continue

I2O_ERR_ACT_USER Call user-specified user function

I2O_ERR_ACT_DEBUG Suspend program and invoke debugger

Table 5-21 IRTOS Status Pointer

Value Description

I2O_NO_STATUS When specified as value of status return pointer (&status) in IRTOS API
functions, indicates that thread or system-specified error action should be
taken if an error is encountered

ANY OTHER VALUE When specified as value of status return pointer (&status) in IRTOS API
functions, indicates that the function must return a status code of type
I2O_STATUS at that location.

Invoking IRTOS Error Handling

The IRTOS status return and error handling policy described above is directly implemented by
the function i2oErrorSet(). This function takes as arguments an error code and a pointer to a
status variable. If the pointer is not NULL, then the error code is set in the status variable. If
the pointer is NULL, then the current IRTOS default error action is invoked. Thus, a DDM
writer can implement a subroutine that provides IRTOS-style error handling, as in the
following example:

void myHandler (int arg1, I2O_STATUS *pCallersStatus)
{
...
if <error is detected>

{
i2oErrorSet (MY_ERROR_CODE, pCallerStatus);
return; /* may not reach here, depending on error action */
}

{

Another IRTOS function, i2oErrorAction(), allows invoking IRTOS error actions directly. This
function takes as arguments an error code (which can be logged or reported by the error action)
and the type of error handling desired. Specifying I2O_ERR_ACT_DEFAULT causes the
current default error action to be invoked. This is often used when a DDM needs to handle
error conditions from one IRTOS function, but not others. In this case, the DDM calls the
IRTOS function with a pointer to a status variable. When the call returns, the DDM tests for
special cases. If it finds no special cases, the DDM calls i2oErrorAction() for default error
handling.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-35

I2O_STATUS status = I2O_STS_OK; /* initialize status to OK */
value = i2oBusRead (busId, space, addr, &status);
if (status != I2O_STS_OK)

{
if (status == I2O_BUS_INVALID_ADDRESS)

… reset device …
else

{
/* let IRTOS handle all other errors */
i2oErrorAction (status, I2O_ERR_ACT_DEFAULT);
return; /* may not reach here, depending on error action */
}

}

Also, DDM writers can call i2oErrorAction() to invoke specific error actions other than the
current default.

Table 5-22 IRTOS Error Action Functions

Returns API Function Call Description

void i2oErrorSet (errorCode, &status) Set error code or invoke error action

void i2oErrorAction(errorCode, errorAction) Invoke error action

Parameter Type Description

errorCode I2O_STATUS code of error that occurred (see Table 5-23)

&status I2O_STATUS * variable to receive error code

errorAction I2O_ERROR_ACTION error action to perform (see Table 5-20)

Table 5-23 I2O_STATUS − IRTOS Status Values

Value Description

I2O_STS_OK No error

I2O_STS_INVALID_OBJ_ID The object ID is not a valid object or of the required class

I2O_STS_INVALID_OWNER_ID The specified owner ID is not a valid device ID

I2O_STS_NOT_ISR_CALLABLE The API function was invoked from an Interrupt Service Routine
(see section 5.4.12 for API functions that can be called from
ISRs)

TBD complete list will be provided

5.4.2.2 I2O Data Types
The following table summarizes the data types defined by the IRTOS API.

Table 5-24 I2O Data Types

I2O Data Type Definition

BOOL Boolean: TRUE, FALSE

int Default integer

INT8 8-bit integer

INT16 16-bit integer

Intelligent I/O Architecture Specification

5-36 Draft Version 1.5d March 7, 1997

I2O Data Type Definition

INT32 32-bit integer

INT64 64-bit integer

I2O_ADAPTER_ID ID of adapter object

I2O_ADDR32 32-bit address value

I2O_ARG Arbitrary argument

I2O_BBU_ATTR Battery backup attribute (see Table 5-46)

I2O_BBU_STATUS Current condition of battery backup (see Table 5-47)

I2O_BUS_ID ID of bus object

I2O_BUS_SPACE Bus space:
I2O_BUS_SPC_MEMORY
I2O_BUS_SPC_IO

I2O_COUNT Positive count of items

I2O_DDM_ID ID of DDM object

I2O_DDM_TAG Concatenation of I2O organizationId and moduleId

I2O_DEV_BIOS_INFO Device BIOS correlation information

I2O_DEV_CHANGE_INDICATOR Change indicator of device info in LCT

I2O_DEV_CLASS Device class

I2O_DEV_EVENT_CAPABILITIES Device event capabilities in LCT

I2O_DEV_FLAGS Device flags in LCT

I2O_DEV_ID ID of device object

I2O_DEV_IDENTITY_TAG Unique device identifier in LCT

I2O_DEV_SUBCLASS Device subclass information (class specific)

I2O_DISPATCH_TBL_ID ID of dispatch table object

I2O_DMA_CANCEL_MODE Mode of cancel operation (see Table 5-58)

I2O_DMA_CREATE_FLAGS Option flags when creating DMA objects (see Table 5-54)

I2O_DMA_ID ID of DMA object

I2O_DMA_XFER_FLAGS Option flags when queuing DMA transfers (see Table 5-57 DMA
Transfer Flag Values)

I2O_ERROR_ACTION Automatic error action (see Table 5-20 IRTOS Error Actions)

I2O_ERROR_FUNC Error action function

I2O_EVENT_HANDLER Event handler function

I2O_EVENT_PRI Event priority: 0 (highest) − 7 (lowest)

I2O_EVENT_PRI_MASK Event priority mask, LSB = priority 0

I2O_EVENT_QUEUE_ID ID of event queue object

I2O_FRAME I2O message frame

I2O_FUNC_ENTRY Function description: {message Function code, message handler,
priority}

I2O_INITIATOR_CONTEXT Initiator context field in request and reply messages

I2O_INT_ID ID of interrupt object

I2O_INT_LOCK_KEY Interrupt state key

I2O_IOP_CONFIG_FLAGS Flags indicating configuration of this IOP

I2O_IOP_CONFIG_INFO Structure containing configuration constants for this IOP

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-37

I2O Data Type Definition

I2O_ISR_HANDLER Interrupt service routine handler

I2O_LCT_INFO Logical configuration table entry descriptor

I2O_MEM_ACCESS_ATTR Access attributes of memory (see Table 5-41)

I2O_MEM_CACHE_ATTR Cache attributes of memory (see Table 5-42)

I2O_MEM_PART_ID ID of memory partition object

I2O_MODULE_PARAM_BLOCK Module parameter block

I2O_OBJ_CONTEXT Arbitrary context value for object

I2O_OBJ_ID ID of object (unspecified type)

I2O_OBJ_NAME Name string of object (ASCII string of printable non-whitespace
characters)

I2O_OWNER_ID ID of owner device object (equated to I2O_DEV_ID)

I2O_PHYS_LOCATION Adapter physical location descriptor

I2O_PIPE_ID ID of pipe object

I2O_PIPE_OPTIONS Pipe options (see Table 5-65)

I2O_PIPE_PRI Priority of message on pipe:
I2O_PIPE_PRI_NORMAL
I2O_PIPE_PRI_URGENT

I2O_SEM_B_STATE Initial state of semaphore object:
I2O_SEM_FULL
I2O_SEM_EMPTY

I2O_SEM_ID ID of semaphore object

I2O_SEM_OPTIONS Semaphore options (see Table 5-63)

I2O_SG_ELEMENT Element of scatter-gather list

I2O_SIZE Value representing size (length) of item in bytes

I2O_STATIC_MSG_ID ID of static message object

I2O_STATUS Status value (see Table 5-21)

I2O_THREAD_FUNC Initial thread function

I2O_THREAD_ID ID of thread object (NULL means self when passed as parameter)

I2O_THREAD_OPTIONS Thread options (see Table 5-60)

I2O_THREAD_PRI Thread priority: 0 (highest) − 255 (lowest)

I2O_TID I2O target identifier: 0 - 4095

I2O_TIMER_ID ID of timer object

I2O_TRANSACTION_CONTEXT Transaction context field in request and reply messages

I2O_USECS Number of microseconds

5.4.2.3 Objects
All IOP facilities in IRTOS are encapsulated as objects. Every object has:

• an ID the user and the system use to refer to the object
• virtual functions for create, destroy, and other generic object functions
• an owner device to which the object belongs
• a name (optional)
• a user context value (optional)

Intelligent I/O Architecture Specification

5-38 Draft Version 1.5d March 7, 1997

IRTOS provides objects for the following facilities:

• hardware access:
 interrupt objects for connecting, acknowledging, vectoring, enabling, and disabling
 DMA objects for allocating, initiating, and terminating DMA channels
 bus objects for accessing hardware and system memory
 adapter objects for initializing and mapping physical devices

• I2O message protocol package:
 initializing and allocating channels
 dispatching request messages to identified targets
 reply messages
 low-level formatting and parsing
 routing and forwarding facilities

• multi-threading package:
 thread manipulation for creation, deletion, setting priorities, etc.
 memory management
 mutexes and semaphores
 inter-thread communication pipes
 event queues
 virtual timers for setting watchdogs, delays, and timeouts

The following table lists the classes of objects defined in IRTOS.

Table 5-25 Classes of Objects Defined in IRTOS

Class Description

DDMs DDM description and manipulation

devices Device description and manipulation

dispatch tables Tables of message functions for I2O request message handling

DMA DMA allocation and execution (i.e., data movement)

hardware adapters Get information about specific hardware devices

interrupts Interrupt handling

memory sets Allocating and deallocating memory from memory sets

page sets Allocating and deallocating pages from page sets

physical buses Read and write to each bus and translate addresses between buses

pipes Send and receive variable length data between threads

semaphores Binary, counting, and mutex semaphores or synchronization and mutual exclusion

static messages High-speed communication of pre-determined, unchanging messages

threads Independent, prioritized, preemptable threads of program execution

timers Timeouts, timestamps, one-shot and periodic timers

The table below lists the generic object functions. These functions can be invoked on any of
the IRTOS objects.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-39

Table 5-26 IRTOS Object Functions

Returns API Function Call Description

void i2oObjDestroy (objId, &status) Destroy object

ownerId i2oObjOwnerGet (objId, &status) Get owner of object

void i2oObjOwnerSet (objId, ownerId, &status) Set owner of object { XE
"i2oObjOwnerSet()" }

pName i2oObjNameGet (objId, &status) Get name of object

void i2oObjNameSet (objId, pName, &status) Set name of object

context i2oObjContextGet (objId, &status) Get user context from object

void i2oObjContextSet (objId, context, &status) Set user context in object

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

context I2O_OBJ_CONTEXT User context value (see 5.4.2.3.3), typically a pointer to a
data structure

objId I2O_OBJ_ID ID of object

ownerId I2O_OWNER_ID ID of owner device object (see 5.4.2.3.1)

pName I2O_OBJ_NAME * Pointer to name string assigned by user

5.4.2.3.1 Object Ownership

Each IRTOS object is owned by an I2O device. The owner device is specified as a parameter in
each IRTOS object create function. The primary use for this is in resource tracking and
reclamation. When a device is deleted, all objects it owns are automatically deleted as well. An
IRTOS may also use ownership to limit resource utilization by device. Object ownership by
devices is discussed in section 5.4.3.7.

OSD2138

Device
owner links

owned list

Interrupt
owner links

Timer
owner links

DMA
owner links

Figure 5-21 Example of IRTOS Object Ownership

5.4.2.3.2 Object Names

Any IRTOS object can be assigned a user-readable name. This is primarily used to identify the
object to the user or DDM developer. The IRTOS uses object names, if set, in reporting error

Intelligent I/O Architecture Specification

5-40 Draft Version 1.5d March 7, 1997

messages, configuration dialogues, and so on. An object name must be an ASCII string of
printable, non-whitespace characters.

An object name can be set or read via the i2oObjNameSet() and i2oObjNameGet() functions. The
name string passed as a parameter to the i2oObjNameSet() function is copied by the system and
so can be altered or destroyed after the function returns.

5.4.2.3.3 User Context of IRTOS Objects

DDM code often needs to relate an IRTOS object to another DDM object or data structure. To
facilitate this, every IRTOS object has a four-byte context value that DDMs can freely use to
hold any arbitrary value. Often this value is a pointer to an internal DDM data structure.

The user context of any object can be set or read via the i2oObjContextSet() and
i2oObjContextGet() functions. Also, as noted in section 5.4.2.5, IRTOS objects that post events
(such as a DMA object) supply that object’s user context as an argument when posting an
event (such as DMA completion). The DDM specifies the user context when it creates any of
these objects.

5.4.2.4 Events
The IRTOS driver model is called event-driven because all inputs relevant to a device are
encapsulated in a common event structure and delivered to the appropriate driver via a
prioritized event queue. Drivers consume the incoming events by calling the appropriate event
handler function for each. All event handlers must be short, non-blocking functions so that
drivers do not wait, except when waiting for events.

An event is characterized by the following elements:

• the function to call that handles the event (i.e., the specific event handler)
• arguments to that function
• its event queue
• its priority in the event queue

An event queue is prioritized. Associated with each event queue is a single thread that
dequeues the events and executes the appropriate event handlers, one at a time. Thus, handling
events on a given event queue is serialized by the single thread servicing it. This eliminates
the need for mutual exclusion mechanisms on device data structures within event handler
functions, since no two event handlers can execute simultaneously for a given device.

There are eight event priority levels. The thread associated with the event queue always
dequeues the highest-priority event queued. If no events are currently queued (at an enabled
priority level), the thread is blocked until either such an event posts to that queue, or a priority
level is enabled for which events are queued.

The i2oEventQPriEnableSet() function individually enables and disables event priority levels
and the i2oEventQPriMaskSet() function operates on all priority levels. If a priority level is
disabled, then no events at that level are dequeued by the event queue’s thread until the priority
level is enabled. Thus, events of a particular priority can be held off in the event queue. The
i2oEventQPriEnableGet() and i2oEventQPriMaskGet() functions identify which priority levels are
enabled. In the priority bit masks, the least significant bit corresponds to priority 0 (highest), 1
indicates an enable priority, and 0 indicates a disabled priority.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-41

The i2oEventQPriPending()function returns a bit mask of priorities on which events are
pending. In this mask, the least significant bit corresponds to priority 0 (highest), 1 indicates a
priority with events pending, and 0 indicates a priority with no events pending.

Thread

OSD2139

evt
list links

func
arg1

arg2

e ee

e e

e

0
1

2
3
4
5
6
7

evtQ
threadld

Figure 5-22 IRTOS Events and Event Queues

Table 5-27 Event Queue Functions

Returns API Function Call Description

evtQId i2oEventQCreate (ownerId, threadOptions,
threadStackSize, &status)

Create event queue

threadId i2oEventQThreadGet(evtQId, &status) Get ID of event queue
thread

enableFlag i2oEventQPriEnableGet (evtQId, evtPri,
&status)

Get priority enable state

void i2oEventQPriEnableSet (evtQId, evtPri,
enableFlag, &status)

Set priority enable state

evtPriMask i2oEventQPriMaskGet (evtQId, &status) Get priority enable mask

void i2oEventQPriMaskSet (evtQId, evtPriMask,
&status)

Set priority enable mask

evtPriMask i2oEventQPriPending (evtQId, &status) Get mask of priorities
with queued events

void i2oEventQPost (evtQId, evtPri, evtHandler,
evtArg1, evtArg2, &status)

Post event to queue

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

enableFlag BOOL TRUE = priority level enabled, FALSE = priority
level disabled

evtArg1 I2O_ARG First argument to event handler

evtArg2 I2O_ARG Second argument to event handler

evtHandler I2O_EVENT_HANDLER

*
Pointer to event handler called when event is
dispatched

evtPri I2O_EVENT_PRI Event priority level, 0 (highest) - 7 (lowest)

evtPriMask I2O_EVENT_PRI_MASK Bit mask of priority levels, LSB = priority 0, 1 =
enabled/pending, 0 = disabled/none pending

Intelligent I/O Architecture Specification

5-42 Draft Version 1.5d March 7, 1997

Parameter Type Description

evtQId I2O_EVENT_QUEUE_ID ID of event queue object

ownerId I2O_OWNER_ID ID of owner device object (see 5.4.2.3.1)

threadId I2O_THREAD_ID ID of thread that services event queue

threadOptions I2O_THREAD_OPTIONS Event queue thread options -: no options
defined at this time

threadStackSize I2O_SIZE Size of event queue thread’s stack in bytes

Certain IRTOS functions may delay the request. Instead of blocking the caller until the
request completes, these functions post events when they finish. These functions generally
take additional parameters such as the event priority, event handler, and arguments to that
handler. Such functions return as soon as all immediate processing completes and the waiting
condition has been encountered. In this case, the operation is queued in the system. When the
waiting condition is removed and the requested operation is complete, the event specified in
the original call is posted. The table below lists the IRTOS functions that may require waiting,
and therefore post events.

Table 5-28 IRTOS Functions That Post Events

API Function Call Description

i2oDmaXfer() Do DMA transfer

i2oDmaXferFrag() Do DMA transfer of list fragment

i2oDmaXferList() Do DMA transfer of list

i2oIntEventPost() Post event from interrupt service routine

i2oPageAllocContig Allocate initial contiguous block of memory

i2oPageBbuNotify Notify on crossing of battery backup threshold

i2oStaticMsgCreate() Create static message frame

i2oTimerRepeat() Start periodic timer

i2oTimerStart() Start one-shot timer

For event handlers to execute promptly, they must be short and not block indeterminately.
Thus, all waiting in an event-driven program such as a DDM is for an event, rather than at a
system call coded into an event handler. For example, suppose a driver executing an event
handler requires a free buffer, but none is available. If the driver is blocked in the event
handler waiting for a free buffer, then the driver does not respond to incoming events until the
buffer becomes available. This could produce poor response times, at best, and complete
deadlocks, at worst.

If an event handler blocks on a mutex semaphore of a known, deterministic set of critical
regions is acceptable, because this does not constitute indefinite waiting. However, the mutex
must be protected from priority inversion by the priority inheritance protocol (see section
5.4.18, Semaphores).

Using the IRTOS model, the DDM operates as follows:

• In general, as little device processing as possible takes place at interrupt level, for
example, in interrupt service routines (ISR). Except where microsecond-level response to

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-43

devices is required, ISRs simply dispatch events to the appropriate event queues, which are
then serviced by the appropriate driver threads.

• As implemented in the IRTOS framework, a driver thread follows a simple event handling
model:
loop:
 {
 wait for next event
 dispatch to appropriate function to handle event
 }

• In general, handling each event by driver threads must be short and not block waiting for
specific interactions. Drivers should do all waiting in the main event-handling loop. This
ensures that the drivers can always examine incoming request messages, even during I/O
operations.

• The drivers can use various system objects such as timers and DMA objects to initiate
operations and receive event notification on completion.

• Drivers can use other IOP primitives to implement more sophisticated device control. For
example, a driver could spawn additional threads for asynchronous processing of
algorithms that do not fit in the discrete event handling model of the basic drivers (e.g. ,
elevator sorting, caching, and network protocols).

• Drivers invoke other drivers by sending I2O requests and receiving the corresponding
replies as events. Thus, hierarchies of drivers can be constructed (e.g., a RAID driver that
utilizes raw disk drivers).

The diagram below shows examples of events queued to two hierarchically-related devices.

OSD2140

Mass Storage
Device

SCSI Device

Hardware
Interrupt

Timeout

Timeout

= Event Queue

Host
read

Request

SCSI ccb Request

SCSI ccb Reply

Figure 5-23 Hierarchical Event Queues

5.4.2.5 Event Handlers
All I2O event handlers have the same basic declaration:

void evtHandler (arg1, arg2)

Intelligent I/O Architecture Specification

5-44 Draft Version 1.5d March 7, 1997

The parameters arg1 and arg2 are 32-bit values whose content depends on the event handler.
When an event reaches the top of the event queue, the event dispatcher retrieves the address of
the event handler and its arguments from the event structure. It calls that event handler with its
arguments.

5.4.2.5.1 Specific IRTOS Object Event Handlers

Several IRTOS objects provide asynchronous notification to drivers in the form of events. The
event parameters include:

• the event queue to post the event to

• the event priority

• the pointer to the event handler

• perhaps arguments to the handler, specified either when the object is created or when a
particular function requiring event posting is invoked on that object.

For example, for a timer object, the event queue ID is specified when the timer object is
created, and the event priority, handler, and an argument are specified when the timer is
started.

Objects that post events require specific event handler functions that take specific arguments
defined by the object. By convention, these event handlers all receive the object’s user context
as the first argument; the object’s user context is initialized by an argument to the object’s
creation function. The IRTOS considers the context value an arbitrary four-byte value and
never touches it except to pass it as an argument to the object event handlers. Typically, the
context value is a pointer to a private data structure within the user’s program.

The following table summarizes the IRTOS objects that post events and the declaration of their
event handler functions.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-45

Table 5-29 Event Handler Functions for IRTOS Objects

Object Initiating Action Event Handler

Battery
Backup

i2oPageBbuNotify() void bbuEvtHandler (pageContext,
bbuEvtArg)

Device receiving request or
reply msg

void msgHandler (devContext, pFrame)

Dma i2oDmaXfer(),
i2oDmaXferList() and

i2oDmaXferFrag()

void dmaEvtHandler (dmaContext,
dmaStatus)

Interrupt i2oIntEventPost() void intEvtHandler (intContext,
intEvtArg)

Page Set i2oPageAllocContig() void allocEvtHandler (pageContext,
allocEvtArg)

Timer i2oTimerStart() and
i2oTimerRepeat()

void timerEvtHandler (timerContext,
timerEvtArg)

Static Msg i2oStaticMsgCreate() void smEvtHandler (smContext, smEvtArg)

5.4.3 DDMs and Devices
IRTOS provides two objects that represent the basic entities each driver provides: the DDM
itself and the devices it services. An IRTOS DDM object represents all components associated
with a running driver: the actual DDM code and global data, and all I2O devices and OS
objects created by the DDM, such as threads, timers, and semaphores.

An IRTOS device object represents the I2O addressable entities created by a DDM. Each
device is assigned an I2O target ID, i.e., a TID. One DDM generally creates several devices,
possibly of different classes. Every DDM has one device that represents the DDM itself.

5.4.3.1 DDM Initialization Function
Every DDM has a single initialization function identified in the DDM object module. The
IRTOS calls this function whenever it loads the driver. The function receives a single
argument; a pointer to the DDM’s Module Parameter Block (MPB). See the discussion of
i2oDdmMpbStore() in section 5.4.3.2.

DDM initialization function declaration:

void ddmInit (pMpb)

5.4.3.2 DDM Management Functions
Every DDM must create a single object by calling i2oDdmCreate() in the DDM’s initialization
function. This function creates the DDM object and several associated objects, and causes the
IRTOS to add an entry to its logical configuration table identifying the DDM. It uses the values
provided in the lctInfo parameter (see section 5.4.3.4).

In addition to the DDM object, this function also creates the following:

Intelligent I/O Architecture Specification

5-46 Draft Version 1.5d March 7, 1997

• an event queue, for events posted to the DDM

• a thread to service the event queue, using the threadOptions and threadStackSize
parameters (see section 5.4.16)

• a dispatch table is created, using the pFuncArray and numFuncs parameters, that holds the
message handler entry points for each message to which the DDM responds (see section
5.4.6)

• a DDM class device object (described below) that represents the DDM itself. The IRTOS
and host OSMs use this device to communicate with the DDM itself, as opposed to its I/O
devices. The IRTOS uses the ddmTag parameter to identify the DDM. Then it assigns the
same TID to the DDM device on each reboot of the IOP (see section 5.4.3.5). The
devContext argument sets the context of the DDM device, and thus, becomes the first
argument to the message handlers. The ID of the device object for the DDM is obtained by
calling i2oDdmDevGet().

The IRTOS also provides each DDM with a Module Parameter Block (MPB), a single,
expandable block of non-volatile storage. The first time the driver is loaded, the MPB is
empty. Subsequently, the DDM can store arbitrary data in its MPB using i2oDdmMpbStore().
This function takes a pointer to a scatter-gather list of data that is to replace the old MPB. That
data then goes in the MPB provided to the DDM’s initialization function (see section 5.4.3.1).

Table 5-30 DDM Management Functions

Returns API Function Call Description

ddmId i2oDdmCreate (ddmTag, i2oVersion,
&lctInfo, devContext,
threadOptions, threadStackSize,
pFuncArray, numFuncs, &status)

Create DDM object

devId i2oDdmDevGet (ddmId, &status) Get device ID of DDM

void i2oDdmTidRelease (ddmId, tid, &status) Release TID assigned to DDM

void i2oDdmMpbStore (ddmId, pMpbList, &status) Store module parameter block

Parameter Type Description

&lctInfo I2O_LCT_INFO * Pointer to LCT Info structure for DDM device
(see Table 5-32)

&status I2O_STATUS * Variable to receive error code

ddmId I2O_DDM_ID ID of DDM object

ddmTag I2O_DDM_TAG Concatenation of the driver’s I2O
OrganizationID and the ModuleID (see
Table 5-5).

devContext I2O_OBJ_CONTEXT User context value (see 5.4.2.3.3), typically a
pointer to a data structure

devId I2O_DEV_ID ID of DDM’s device object; created by
i2oDdmCreate() function

i2oVersion int Version of the I2O specification under which
the device operates. (0h for this version).

numFuncs I2O_COUNT Number of entries in pFuncArray

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-47

Parameter Type Description

pFuncArray I2O_FUNC_ENTRY * Pointer to array of dispatch function entries:
{funcCode, message handler, priority} (see
Table 5-33)

pMpbList I2O_SG_ELEMENT Pointer to a scatter-gather list for the module
parameter block for storage (see Table 5-17).

threadOptions I2O_THREAD_OPTIONS DDM device event queue thread options -
reserved - no options defined at this time.

threadStackSize I2O_SIZE Size of stack in bytes for the thread created
for the event queue.

tid I2O_TID TID previously assigned to DDM

5.4.3.3 Device Management Functions
After creating the DDM object, a driver creates device objects for each I/O device it will
control. Usually these are the response to ADAPTER_ATTACH or DEVICE_ATTACH
messages.

To create a device, the DDM calls the i2oDevCreate() function, specifying the ID of the event
queue to post events containing messages for that device, the dispatch table for message
handler functions (see section 5.4.6), and the LCT information for the device (see section
5.4.3.4). The event queue can be created either automatically, as part of i2oDdmCreate(), or
separately.

The i2oDevUserTidSet() function allows the DDM to set the UserTid field in the LCT and the
associated claim flags. This is the response to a CLAIM message.

The i2oDevLctFlagsSet() function allows the DDM to set the Flags field of the LCT. This is
used to set the DialogRequest flag, for example. Only those bits that are 1 in the
deviceFlagsMask parameter are set to the value of the corresponding bits in the deviceFlags
parameter.

Other device management functions allow the DDM information about a device object,
including:

• its assigned TID

• the ID of its event queue

• its dispatch table

• its LCT entry.

Intelligent I/O Architecture Specification

5-48 Draft Version 1.5d March 7, 1997

Table 5-31 Device Management Functions

Returns API Function Call Description

devId i2oDevCreate (ownerId, devContext, evtQId,
dispatchTblId, &lctInfo, &status)

Create device object

tid i2oDevTidGet (devId, &status) Get TID of device

evtQId i2oDevEventQGet (devId, &status) Get event queue for device

dispatchTblId i2oDevDispatchTblGet (devId, &status) Get dispatch table for
device

void i2oDevLctInfoGet (devId, &lctInfo, &status) Get LCT entry for device

void i2oDevLctFlagsSet (devId, deviceFlags,
deviceFlagsMask, &status)

Set deviceFlags in LCT

void i2oDevUserTidSet (devId, userTid, claimFlags,
&status)

Set UserTID and
claimFlags in LCT

Parameter Type Description

&lctInfo I2O_LCT_INFO * Pointer to LCT_Info structure for this device (see
Table 5-32)

&status I2O_STATUS * Variable to receive error code

claimFlags I2O_DEV_FLAGS Claim bits in device flags, to be set in LCT

devContext I2O_OBJ_CONTEXT User context value (see 5.4.2.3.3), typically a
pointer to a data structure

deviceFlags I2O_DEV_FLAGS Device flags, to be set in LCT

deviceFlagsMask I2O_DEV_FLAGS Mask of bits to be altered in device flags in LCT

devId I2O_DEV_ID ID of device object

dispatchTblId I2O_DISPATCH_TBL_ID ID of dispatch table for this device

evtQId I2O_EVENT_QUEUE_ID ID of event queue for this device

ownerId I2O_OWNER_ID ID of owner device object, typically the DDM device

pageSize I2O_SIZE Hardware page size of system on which TID resides

tid I2O_TID TID to be assigned to this device, 0 if IRTOS is to
make initial assignment (see 5.4.3.4)

userTid I2O_TID TID of user of this device, to be set in LCT

5.4.3.4 LCT Information
The IRTOS creates an entry in the logical configuration table (LCT) for each device, including
the DDM class device implicitly created by i2oDdmCreate().Table 5-32 details the origin of the
values of each field in the LCT. Most information comes from the lctInfo structure parameter
supplied to the i2oDdmCreate() and i2oDevCreate()functions. Specifically, the fields listed as Set
by, i2oDevCreate() / i2oDdmCreate() are copied to the LCT by those calls. The other fields are
ignored in those calls. Formal specification of these fields is in Chapter 3.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-49

Table 5-32 LCT Info Structure

Member Type Set by

LocalTID I2O_TID IRTOS or i2oDevCreate() (see 5.4.3.4)

Flags I2O_DEV_FLAGS i2oDevLctFlagsSet() and i2oDevUserTidSet()

Class I2O_DEV_CLASS i2oDevCreate() / i2oDdmCreate()

Subclass I2O_DEV_SUBCLASS i2oDevCreate() / i2oDdmCreate()

UserTID I2O_TID i2oDevUserTidSet()

ParentTID I2O_TID i2oDevCreate() / i2oDdmCreate()

IdentityTag I2O_DEV_IDENTITY_TAG i2oDevCreate() / i2oDdmCreate()

EventCapabilities I2O_DEV_EVENT_CAPABILITIES i2oDevCreate() / i2oDdmCreate()

BiosInfo I2O_DEV_BIOS_INFO IRTOS

ChangeIndicator I2O_DEV_CHANGE_INDICATOR IRTOS

5.4.3.5 Assignment and Correlation of TIDs
The I2O shell specification requires an IOP to use the same TIDs for each device from boot to
boot. Since only the DDM knows the relation between physical devices and the I2O devices
that it creates via i2oDevCreate(), the DDM must correlate assigning TIDs to its devices. Each
DDM must remember its TID assignments in non-volatile storage (using i2oDdmMpbStore) and
associate TIDs with specific devices, so that each device gets the same TID from boot to boot.

The first time a device is created, the DDM calls i2oDevCreate() with a localTid of 0 in the
lctInfo structure parameter. The IRTOS detects this special value and assigns the device an
unused TID. The DDM learns the TID by calling i2oDevTidGet() and stores that TID in its MPB
via i2oDdmMpbStore(). In the future, after a power cycle, reset, restart, or reboot, if the DDM
calls i2oDevCreate() for that same device, it must supply the TID originally assigned by the
IRTOS.

The IRTOS does, however, track the assignment of TIDs to DDMs from boot to boot. The
IRTOS returns an error if a DDM attempts to create a device with a TID that was not assigned
to that DDM in a previous boot.

The DDM must understand changes in physical configuration, for example, via configuration
dialogues or operating principals. That is, the DDM determines whether a physical device or
adapter has moved, been replaced, or been removed permanently or temporarily. By assigning
the same TID, the DDM hides that the device moved or was replaced. If the device was
permanently removed, the DDM releases the TID via the i2oDdmTidRelease() function. This
makes the TID available for reassignment to other devices.

The exception is assigning the TID for DDM class devices that are created implicitly by
i2oDdmCreate(). These TIDs are always assigned by the IRTOS, which uses the ddmTag
parameter of i2oDdmCreate() to identify a DDM and assign it the same TID on each reboot. The
localTid field of the lctInfo parameter of the i2oDdmCreate() call is ignored.

5.4.3.6 TID Table
I2O messages address devices by TID, a small integer unique within a given IOP. IRTOS must
map this into a pointer to a device before they can find the event queue for the request.
Therefore, a TID table indexed by TID contains pointers to the corresponding devices.

Intelligent I/O Architecture Specification

5-50 Draft Version 1.5d March 7, 1997

OSD2142

TID Table
deviceld

deviceld

deviceld

deviceld

deviceld

0

1

2

4094

4095

Device
Device

Figure 5-24 TID Table and Devices

5.4.3.7 Ownership of Objects by Devices
When IRTOS objects are created, a parameter to the create function specifies the ID of an
owner device object to which the each object belongs. The IRTOS uses this ownership
relationship to track and reclaim every resource. When a device is destroyed, all objects it
owns automatically delete as well.

Thus, a typical DDM sequence is to create a new device object and then create any other
IRTOS objects required to support that device (e.g. interrupt, timer, DMA objects), all owned
by that device object. IRTOS objects used by the whole DDM, not just a single device, should
belong to the device object of the DDM; that is, the DDM-class device obtained by
i2oDdmDevGet().

A device object must have an owner, as specified in the i2oDevCreate() function. Often this is
the device object of the DDM. However, if a DDM manages a hierarchy of devices, that
hierarchy should be reflected in the ownership hierarchy. For example, a DDM for a SCSI
adapter would have a device for the DDM itself, which could own all the SCSI adapter class
devices created by the DDM. They, in turn, could own all the SCSI peripheral class devices
created by the DDM.

The following figure below shows such a hierarchy. In this example, a DDM device owns two
adapter devices: one owns two peripheral devices and the other owns one. In addition, each
adapter owns an interrupt object, and each peripheral owns timer and DMA objects. Thus,
deleting an adapter device automatically deletes all the peripheral devices and IRTOS objects
under it.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-51

5.4.4 Device Event Queues
Associated with each device is its event queue. Each event has a priority relative to other
events. For example, hardware interrupt events might be highest priority, followed by timeout
events and class request events. Events are dequeued in priority order, and FIFO within a
given priority.

Although a given device is serviced by only one event queue, one event queue can service
many devices. This optimizes resources when several devices would not benefit from
preemptive parallel execution of events; for example, devices on a common host-bus-adapter
that inherently serializes access to the devices anyway. This is described in more detail below.

5.4.5 Sharing Event Queues
A device’s event queue and associated thread provide a serializing, prioritized, preemptable
context for handling events for a given device. In many DDMs, several devices are accessed
via a common piece of hardware, such as a host bus adapter. In this case, there is no advantage
to separate event queues and threads for each device. This scenario actually poses problems,
because, unless the handler functions interlock further, multiple devices might conflict by
trying to simultaneously access the common hardware. Thus, a DDM often creates one event
queue for several or all devices. Since each event contains the user context for its IRTOS
object, events from many devices can intermingle in the event queue. Whenever the
corresponding thread is free, it dequeues the highest priority event, regardless of which device
it applies to. Within priority levels, events simply queue in FIFO order.

Interrupt
Object

Interrupt
Object

Peripheral
Device

DMA
Object

DMA
Object

DMA
Object

Peripheral
Device

Adapter
Device

DDM
Device

Adapter
Device

Peripheral
Device

Timer
Object

Timer
Object

Timer
Object

Intelligent I/O Architecture Specification

5-52 Draft Version 1.5d March 7, 1997

OSD2143

e ee

e e

e

e = Event

Task

Prioritized Event Queue

HDM
descr

device
descr

device
descr

Figure 5-25 Example of Event Queue Sharing

5.4.6 Event Handler Functions and Dispatch Tables
In the IRTOS event queue facility, an event contains a pointer to a function that handles the
event and two arguments from the IRTOS. When a routine posts an event, it must provide the
pointer to appropriate the handler function and arguments. When certain IRTOS facilities post
events, the IRTOS determines the appropriate handler in one of three ways:

1. for I2O requests, in a dispatch table that the DDM supplies to the IRTOS, as discussed
below.

2. for replies, encoded in the request’s Initiator_Context field and returned in the reply, as
discussed in section 5.4.7.2.

3. A driver calls certain IRTOS API functions specifying the handler for the event posted at
the final conclusion of that function. See section 5.4.2.5.1.

The message dispatch table contains the event handler and queuing priority for each request
message Function code for the device class (see Figure 5-26). A driver builds a message
dispatch table by calling i2oDispatchTblCreate(). This call provides an array of entries
consisting of {function code, handler entry point, event priority} triples. The IRTOS turns this
array into a dispatch table, an internal data structure optimized for dispatching an incoming
message. When the driver creates a device by calling i2oDevCreate(), it specifies a message
dispatch table. Typically, many devices point to the same message dispatch table.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-53

Device

func table

OSD2145

DDM Func Table
func0

func1

func2

pri0

pri1

pri2

Device

func table

Figure 5-26 Example of Sharing a Message Dispatch Table

The message dispatcher allocates an event for each message received. The dispatcher
determines the appropriate event handler. It locates message Function type in the dispatch
table for the device addressed by the Target_Address. The arguments for the event are the
user-specified context of the target device and a pointer to the message frame. When the event
reaches the top of the queue, the event dispatcher calls the message handler with those
arguments.

Table 5-33 Dispatch Table Functions

Returns API Function Call Description

dispatchTblId i2oDispatchTblCreate (ownerId, pFuncArray,
numFuncs, &status)

Create message handler
dispatch table

 Message handler declarations:

void msgHandler (devContext, pMsgFrame)

Parameter Type Description

&status I2O_STATUS * variable to receive error code

devContext I2O_OBJ_CONTEXT user context value for device to which message is sent

dispatchTblId I2O_DISPATCH_TBL_ID ID of dispatch table

numFuncs I2O_COUNT number of entries in pFuncArray

ownerId I2O_OWNER_ID ID of owner device object, typically the DDM device object

pFuncArray I2O_FUNC_ENTRY * pointer to array of dispatch function entries: {funcCode,

message handler, priority}

pMsgFrame I2O_FRAME pointer to received message

Table 5-34 Array Elements for Dispatch Functions (I2O_FUNC_ENTRY):

Parameter Type Description (each entry contains the following
elements)

funcCode int Value to match with the Function field in a received
request message

evtHandler I2O_EVENT_HANDLER * Pointer to the event handler that handles the message

evtPri I2O_EVENT_PRI Event priority level (0=highest; 7=lowest)

Intelligent I/O Architecture Specification

5-54 Draft Version 1.5d March 7, 1997

5.4.7 Dispatching Incoming Messages
I2O messages come from the host (and other IOPs) via a FIFO, to which the host writes I/O
request messages, implemented in IOP hardware. An I/O message arriving in the FIFO causes
an interrupt in the IOP. IRTOS services this interrupt by extracting the I/O message from the
FIFO. Then it dispatches the message to the appropriate event queue. The steps in dispatching
the message depend on whether it is a request or a reply.

5.4.7.1 Dispatching Incoming Requests
From the received request message, the IRTOS locates the destination device. It indexes into
the TID table with the TID in the Target_Address field of the request message. The TID entry
points to the device and its associated dispatch table. The event handler and priority are
determined from the dispatch table. The IRTOS obtains a free event from the IRTOS and
creates an event. The event includes it arguments: the user context value of the target device
and a pointer to the incoming message frame. The IRTOS posts the event to the device’s
queue at the priority indicated in the dispatch table. Figure 5-27 shows the flow of incoming
requests.

Thread

H/W Msg
FIFO

0

1

TID Table
deviceld

deviceld

➁

e

Event Queue
threadld

0
1

2

func: handler

arg1: device context

arg2: msg ptr

Event

Dispatch Table
Function # handler pri

Device
TID

dispatch table

context

eventQld

OSD2146

➃

➂

➀

e = Event

Target TID

Initiator TID
Function #

Initiator Context
data

I O Request Msg2

Figure 5-27 Flow of Request Message Dispatching

5.4.7.2 Dispatching Incoming Replies
The IRTOS handles replies much the way it handles requests. The IRTOS locates the
destination device by indexing into the TID table with the TID in the Target_Address field of
the message. From the device, the IRTOS determines the event queue and user context. Using
the Initiator_Context, the IRTOS looks up the handler and the event priority. The IRTOS

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-55

obtains a free event from the IRTOS and creates an event with its arguments: the user context
value and a pointer to the incoming message frame. The IRTOS posts the event to the queue.
Figure 5-27 shows the flow of incoming replies.

Target TID
Initiator TID

Function #
Initiator Context

data

I O Reply Msg2

Device
TID

dispatch table

context
eventQld

Context Table
IC value handler pri

Thread

H/W Msg
FIFO

0

1

TID Table
deviceld

deviceld

➁

e

Event Queue
threadld

0
1

2

func: handler

arg1: device context

arg2: msg ptr

Event

OSD2194

➃
➂

➀

e = Event

Figure 5-28 Flow of Reply Message Dispatching

5.4.8 Sending Request and Reply Messages
A DDM requests and replies via the functions in Table 5-35. DDMs must build messages, both
requests and replies, in IRTOS-provided local message frames. The i2oFrameAlloc() function
gets a local message frame in which a DDM can build a message. Note that when a message
frame is allocated this way, its contents are arbitrary. Once a message is constructed in the
message frame, the DDM calls i2oFrameSend() to send it. The message frame now belongs to
the IRTOS again and the DDM must not access it further.

If the message targets a device on the local IOP, it is processed much like a message from the
host:

• the device is found via the TID table

• a free event is obtained from the IRTOS’ free event pool

• the message handler and priority are determined by the device message dispatch table

• the event posts to the target’s queue.

If the message targets the host or another IOP, the IRTOS allocates an appropriate remote
message frame on that platform, transfers the message to it, posts that remote message frame
to the appropriate FIFO, and releases the original local message frame.

Intelligent I/O Architecture Specification

5-56 Draft Version 1.5d March 7, 1997

When a DDM receives a request or reply, it must return the incoming message frame to the
IRTOS after it processes the message. The DDM can explicitly free the message frame by
calling the i2oFrameFree() function. Alternately, the DDM can reuse the incoming message
frame for an outgoing message; for example, to construct the reply to a request in the incoming
message frame. This is preferable because it eliminates freeing and allocating a message
frame.

The size of the message frames may vary on each I2O messenger instance, i.e. on the host and
each IOP, although all message frames must be at least 64 bytes long. The message frame
provided to the DDM either in an incoming message or by a call to i2oFrameAlloc() is local and
a size the IOP defines. However, the message frame of the destination (host or IOP) may be
smaller than the local message frame size. Thus, the largest message a DDM can send a given
TID is the smaller of the local and destination message frame sizes. The DDM can determine
this maximum by calling the function i2oFrameMaxSizeGet(tid). This returns the largest
message frame that can be sent to the specified TID. The IRTOS returns an error if
i2oFrameSend() is called with a frame that is too large for the destination.

Note that calling i2oFrameMaxSizeGet() with a TID known to be local, such as one of a DDM’s
own TIDs or the TID of the IRTOS Executive (i.e., 0), returns the actual size of the local
message frames.

Table 5-35 I2O Message Frame Functions

Returns API Function Call Description

pFrame i2oFrameAlloc (&status) Get frame for sending

void i2oFrameFree (pFrame, &status) Free frame

void i2oFrameSend (pFrame, &status) Send frame

maxFrameSize i2oFrameMaxSizeGet (tid) Get maximum frame size for
sending to specified TID

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

maxFrameSize I2O_SIZE Maximum size of frame to send to TID

pFrame I2O_FRAME * Pointer to message frame

When the DDM sends a request, it must provide an Initiator_Context field that the IRTOS uses
when replies are received. The DDM calls the i2oInitiatorContextBuild() function specifying the
event handler and event priority for the reply. The IRTOS returns an Initiator_Context value
that the DDM can use in any frame. When a reply frame is returned, the IRTOS queues an
event, just as for a request, except that, instead of using the dispatch table, the IRTOS
determines the priority and event handler from the Initiator_Context.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-57

Table 5-36 Initiator Context Function

Returns API Function Call Description

icValue i2oInitiatorContextBuild (replyEvtHandler, replyEvtPri, &status) Build initiator context
field

Reply Message Received evtHandler declaration:

void replyEvtHandler (devContext, pFrame)

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

devContext I2O_OBJ_CONTEXT Context of device specified as TID in
Target_Address

icValue I2O_INITIATOR_CONTEXT Value to be specified as Initiator_Context in
request message

pFrame I2O_FRAME * Pointer to reply message frame

replyEvtHandler I2O_EVENT_HANDLER * Event handler for reply message event

replyEvtPri I2O_EVENT_PRI Priority of reply message event

5.4.9 Static Messages
To create a static message, a DDM allocates a message frame by calling i2oFrameAlloc() and
builds the message. Then it calls i2oStaticMsgCreate(). This instructs the IRTOS to create a
static message frame using the indicated frame. If the target is on another IOP, the IRTOS
communicates with that IOP to establish the static message frame. The communication with
the other IOP is potentially lengthy. To avoid blocking the DDM during the inter-IOP
negotiation, the i2oStaticMsgFrameCreate() function returns once communication with the other
IOP begins. At this point, the static message frame is not fully created. After negotiating with
the other IOP, the IRTOS posts an event to the DDM indicating creation of the static message
frame. Now, the DDM can call i2oStaticMsgSend() to send the message.

Once a message frame becomes static, the DDM cannot change its content. It cannot attempt to
send or free the frame using i2oFrameSend() or i2oFrameFree(). The frame is automatically
freed if the static message frame is destroyed (i2oObjDestroy()).

Part of negotiating with the other IOP includes asking it to reserve the specified
maxOutstanding slots in its input FIFO. This prevents FIFO overflow from repeatedly posting
static message frames. Thus, the DDM must ensure that more than maxOutstanding number of
this static message never post to the target at once.

Table 5-37 I2O Static Message Functions

Returns API Function Call Description

staticMsgId i2oStaticMsgCreate(ownerId, smContext, pFrame,
maxOutstanding, evtQId, smEvtPri,
smEvtHandler, &status)

Create static message

void i2oStaticMsgSend (staticMsgId, &status) Send static message

Create Static Message Frame evtHandler declaration:

void smEvtHandler (smContext, smCreateStatus)

Intelligent I/O Architecture Specification

5-58 Draft Version 1.5d March 7, 1997

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

evtQId I2O_EVENT_QUEUE_ID ID of event queue to which static msg create
event will be posted

maxOutstanding I2O_COUNT Maximum number of times static msg will be
queued at one time

ownerId I2O_OWNER_ID ID of owner device object

pFrame I2O_FRAME * Pointer to message frame to use for static
message

smContext I2O_OBJ_CONTEXT User context value for static msg object used in
completion event

smCreateStatus I2O_STATUS Status of static message creation

smEvtHandler I2O_EVENT_Handler

*
Event handler for static msg create event

smEvtPri I2O_EVENT_PRI Priority of static msg create event

staticMsgId I2O_STATIC_MSG_ID ID of static message

5.4.10 Buses
Two IRTOS objects represent physical hardware entities: the Bus and Adapter objects. The
adapter and the bus are hierarchically related. That is, the adapter occupies a portion of the bus
space and, therefore, the driver accesses adapters via operations on that bus object.

An IOP might connect to many physical buses and DDMs may need access to address spaces
on each bus. DDMs need a platform-independent way to access the various buses.
Furthermore, access to a given address on a bus might require configuring certain bus windows
(hardware-specific), since not all addresses of all buses can be visible at once. Thus, DDMs
must access all buses through IRTOS bus objects. The IRTOS provides functions that read
and write various sized data (8, 16, 32, and 64-bit) of a specified address on a specified bus.
An address space argument identifies which of several different types of address spaces is
accessed (e.g. memory space vs. I/O space). This address space argument is bus-specific and
must correspond to the types of address space the bus type supports.

The IRTOS also provides an i2oBusTranslate() function that translates addresses from one bus
to another. The DDM can use this, for example, to determine the address of a buffer in local or
system memory as seen from another bus. That way, a device with bus master (DMA)
capabilities can be programmed to read or write that buffer. Note that this function only
translates addresses on the first specified bus that are actually visible from the second specified
bus. If the address is not visible on the second bus, there is no legitimate translation of that
address. Therefore, the function returns an error status, or takes the automatic error action, if
I2O_NO_STATUS is specified for the status pointer.

To find the constant offset between local and system addresses (mentioned in Chapter 2 as the
base difference), a DDM can call i2oBusTranslate(). It translates a local address of a local
buffer visible on the system bus (e.g., via the memory allocation functions) to a system
address. The offset will be the difference between the two addresses. That technique applies to
other buses, as well.

Every system identifies two buses: the local bus that contains IOP private memory and
devices, and the system bus that hosts main system memory and system I/O devices. The

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-59

DDM obtains the busId of these buses by calling i2oBusLocal() and i2oBusSystem(),
respectively.

The other bus a DDM must know about is the bus(es) where its physical adapters reside. This
might be either the local bus, the system bus, or another bus the IOP can access. The DDM
obtains the busId where a particular physical device resides by calling i2oAdapterBusGet() as
described below.

Table 5-38 lists the IRTOS functions for bus objects.

NOTE
IRTOS does not provide a create function for bus objects, because it creates all the bus objects as part of
the platform-specific system initialization.

Table 5-38 Bus Functions

Returns API Function Call Description

busId i2oBusLocal () Get ID of local bus

result8 i2oBusRead8 (busId, busSpace, busAddr, &status) Read byte

result16 i2oBusRead16 (busId, busSpace, busAddr, &status) Read 16-bit word

result32 i2oBusRead32 (busId, busSpace, busAddr, &status) Read 32-bit word

result64 i2oBusRead64 (busId, busSpace, busAddr, &status) Read 64-bit word

busId i2oBusSystem () Get ID of system bus

busAddr2 i2oBusTranslate (busId1, busSpace1, busAddr1, busId2,
busSpace2, &status))

Translate a shared
memory address

void i2oBusWrite8 (busId, busSpace, busAddr, value8, &status) Write 8-bit word

void i2oBusWrite16 (busId, busSpace, busAddr, value16, &status) Write 16-bit word

void i2oBusWrite32 (busId, busSpace, busAddr, value32, &status) Write 32-bit word

void i2oBusWrite64 (busId, busSpace, busAddr, value64, &status) Write 64-bit word

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

busAddr I2O_ADDR32 Address to access on bus

busAddr1 I2O_ADDR32 Address on bus 1

busAddr2 I2O_ADDR32 Equivalent address on bus 2 of specified address on bus 1

busId I2O_BUS_ID ID of bus object

busId1 I2O_BUS_ID ID of bus 1

busId2 I2O_BUS_ID ID of bus 2

busSpace I2O_BUS_SPACE Address space to access on bus (memory, I/O, etc.)

busSpace1 I2O_BUS_SPACE Address space on bus 1

busSpace2 I2O_BUS_SPACE Address space on bus 2

result8 INT8 8-bit value read from bus

result16 INT16 16-bit value read from bus

result32 INT32 32-bit value read from bus

result64 INT64 64-bit value read from bus

Intelligent I/O Architecture Specification

5-60 Draft Version 1.5d March 7, 1997

Parameter Type Description

value8 INT8 8-bit value written to bus

value16 INT16 16-bit value written to bus

value32 INT32 32-bit value written to bus

value64 INT64 64-bit value written to bus

5.4.11 Adapters
In addition to accessing buses, DDMs also need platform-independent access to specific
physical devices on those buses. Therefore, the IRTOS provides an adapter object for each
physical device attached to a DDM. Adapter functions provide information about the adapter,
including the bus on which it resides (i2oAdapterBusGet()) and its physical location on that bus
(i2oAdapterPhysLocGet()). The IRTOS also provides functions that read and write to
configuration registers on the adapter in various data widths (8-, 16-, 32-, and 64-bit).

A DDM must enable and disable interrupts from an adapter. Often, this is necessary to
properly synchronize activity between ISRs. ISRs run at interrupt level in response to device
interrupts, and event handlers, which run in an IRTOS thread context (see section 5.4.12).
Often, the DDM commands the physical device itself to enable or disable its interrupt
generation. This method is the least intrusive to the rest of the system, because only interrupts
from that device are affected.

However, in some cases it is impossible or undesirable to control the physical device directly
in this way. In this case, one can enable and disable interrupts on the IOP itself. The functions
i2oAdapterIntLock() and i2oAdapterIntUnlock() disable and re-enable interrupts from a particular
adapter by locking out interrupts up to and including the interrupt level of the specified
adapter. This also locks out interrupts from all other devices at or below the interrupt level of
the adapter, so these calls must disable interrupts only briefly. It is preferable, however, to use
i2oAdapterIntLock() and i2oAdapterIntUnlock(), rather than i2oIntLock() and i2oIntUnlock(), which
disable all interrupts on the IOP CPU.

This specification does not limit interrupt lockout, but OS vendors can impose their own
limits. These functions are provided for DDMs that absolutely need them, but are not
recommended otherwise. From a marketing perspective, drivers that disable others’ interrupts
for prolonged periods are considered poor performers.

A DDM receives the adapterId for a particular device in the DeviceAttach message to the DDM
from the IRTOS executive.

Table 5-39 lists the IRTOS functions for adapter objects.

NOTE
IRTOS does not provide a create call for adapter objects, because it creates all adapter objects during
platform-specific initialization or bus scanning. For bus types that require the DDM to scan for its own
adapters, the IRTOS creates a single adapter object.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-61

Table 5-39 Adapter Functions

Returns API Function Call Description

busId i2oAdapterBusGet (adapterId, &status) Get adapter’s bus identifier

result8 i2oAdapterConfigRead8 (adapterId, offset, &status) Read adapter configuration
register

result16 i2oAdapterConfigRead16 (adapterId, offset, &status) Read adapter configuration
register

result32 i2oAdapterConfigRead32 (adapterId, offset, &status) Read adapter configuration
register

result64 i2oAdapterConfigRead64 (adapterId, offset, &status) Read adapter configuration
register

void i2oAdapterConfigWrite8 (adapterId, offset, value8,
&status)

Write adapter configuration
register

void i2oAdapterConfigWrite16 (adapterId, offset, value16,
&status)

Write adapter configuration
register

void i2oAdapterConfigWrite32 (adapterId, offset, value32,
&status)

Write adapter configuration
register

void i2oAdapterConfigWrite64 (adapterId, offset, value64,
&status)

Write adapter configuration
register

void i2oAdapterIntLock (adapterId, &status) Disable adapter interrupts

void i2oAdapterIntUnlock (adapterId, &status) Enable adapter interrupts

void i2oAdapterPhysLocGet (adapterId, &physLoc,
&status)

Get hardware physical
location

Parameter Type Description

&physLoc I2O_PHYS_LOC * Pointer to physical location structure where location of
adapter is returned (bus-specific)

&status I2O_STATUS * Variable to receive error code

adapterId I2O_ADAPTER_ID ID of adapter object

busId I2O_BUS_ID ID of bus on which adapter resides

offset I2O_ADDR32 Offset of configuration register to access

result8 INT8 8-bit value read from adapter configuration register

result16 INT16 16-bit value read from adapter configuration register

result32 INT32 32-bit value read from adapter configuration register

result64 INT64 64-bit value read from adapter configuration register

value8 INT8 8-bit value written to adapter configuration register

value16 INT16 16-bit value written to adapter configuration register

value32 INT32 32-bit value written to adapter configuration register

value64 INT64 64-bit value written to adapter configuration register

5.4.12 Memory Allocation
DDMs require variable amounts of memory dynamically at run-time. Three IRTOS
mechanisms allocate run-time memory with different requirements and trade- offs of memory

Intelligent I/O Architecture Specification

5-62 Draft Version 1.5d March 7, 1997

management. Table 5-40 summarizes those memory management mechanisms. Each is
described in detail in the following sections.

Table 5-40 Memory Allocation Functions Summary

Allocate Function Free Function Allocation
Size

Allocation
Frequency

Battery
Backup

Typical Use

i2oMemAlloc() i2oMemFree() Variable #
of bytes

Infrequent No Data structure

i2oPageAllocContig() n/a Contiguous
pages

Initialization
only

Yes DDM managed
buffers

i2oPageAlloc(),
i2oPageAllocN()

i2oPageFree(),
i2oPageFreeN()

Individual
pages

Frequent Yes Temporary buffers

i2oMemAlloc(),

I2oMemFree()

These functions allow dynamic allocation and deallocation of
variable size blocks of memory. Because the algorithms for
managing variable size memory are relatively slow, these functions
suit relatively infrequent allocation/deallocation needs, such as
creating internal data structures as devices are added. These
functions are the most like the traditional C malloc() and free()
functions.

i2oPageAllocContig() This function allows a DDM a single initial block of contiguous
memory whose size is determined by IRTOS based on the needs of
all DDMs. This memory is permanently allocated to the device or
DDM. This mechanism is typically used by drivers that want to
manage their own single large extent of memory. Memory obtained
from this mechanism can be recovered from a system crash if
battery backup is available on the memory.

i2oPageAlloc(),
i2oPageAllocN(),
i2oPageFree(),
i2oPageFreeN()

These functions allow dynamically allocating and deallocating
fixed-size pages of memory. These functions are extremely fast.
Also, because they allocate only individual, non-contiguous pages,
they pose no issues of memory fragmentation. DDMs should use
this allocation mechanism wherever possible and especially for
frequent and/or short memory allocations. Memory obtained from
this mechanism can be recovered from a system crash if battery
backup is available on the memory.

5.4.12.1 Memory Attributes
IRTOS allows a DDM to specify three important characteristics of memory allocation:

access the accessibility of the memory by various categories of external devices

cache the cache-coherency of the memory, with respect to reading and writing to
external devices

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-63

battery backup whether or not the memory can be preserved by battery backup in case of a
system failure (this attribute can be specified only on page allocations)

5.4.12.1.1 Access Attributes

An IOP maps different regions of local memory to external buses, so devices on those buses
can read from and write to those regions. When allocating memory, a DDM must specify
requirements of external devices and buses for accessing that memory. For example, a DDM
allocating a buffer that will be read by a bus mastering adapter must make sure that the
memory is accessible to that adapter. Table 5-41 lists the access attributes that can be specified
when allocating memory.

Table 5-41 Memory Access Attributes

Access Attribute Description

I2O_MEM_ACCESS_PRIVATE Not accessible by external devices

I2O_MEM_ACCESS_SYSTEM Accessible by host, and other IOPs and devices
on the System bus

I2O_MEM_ACCESS_LOCAL_ADAPTERS Accessible by all adapters controlled by this IOP

I2O_MEM_ACCESS_ALL_ADAPTERS Accessible by all adapters in this I2O segment

I2O_MEM_ACCESS_BUS_SPECIFIC Accessible to adapters on a specific bus

PRIVATE specifies memory not accessible by any external devices. Specify
this attribute for all internal data structures that are not shared with
any external device.

SYSTEM specifies memory accessible from the System bus. Specify this
attribute for any buffer the host will access. (This is equivalent to
specifying I2O_MEM_ACCESS_BUS_SPECIFIC with the busId of
the system bus.)

LOCAL_ADAPTERS specifies memory accessible to all devices this IOP controls. Specify
this attribute for any buffer that may be accessed by a device
controlled by a DDM on this IOP.

ALL_ADAPTERS specifies memory accessible to all devices in the entire I 2O segment.
Specify this attribute for any buffer that may be accessed by an
arbitrary I2O device. For example, an ISM would specify this
attribute for buffers that will go to lower-level DDMs without
knowing the location of the adapter that may access the data. Note
that the ALL_ADAPTERS attribute includes accessibility by the
system bus if this IOP communicates peer to peer, or controls any
adapters on the system bus.

BUS_SPECIFIC specifies memory accessible from a specified bus (busId provided in
a separate parameter). Specify this for any buffer that will be
accessed only by devices known to be the particular bus. For
example, an HDM would specify this attribute for buffers to be
shared with the device being controlled.

Intelligent I/O Architecture Specification

5-64 Draft Version 1.5d March 7, 1997

These attributes specify the minimum accessibility requirements of the allocated memory. The
IRTOS allocates memory that has at least the accessibility specified, but may also be
accessible to other devices and buses. For example, memory allocated with the
I2O_MEM_ACCESS_PRIVATE attribute may be accessible by external devices if the IOP has
no truly private memory available. To maximize protection, the IRTOS will try to provide
memory as close as possible to the specified attributes.

5.4.12.1.2 Cache Attributes

When sharing local IOP memory with external devices, consider the effects of the IOP’s data
cache. A data cache allows cache-coherency problems, that is, the contents of memory looks
different to the processor (i.e. by DDMs running on the IOP) than the external devices. IOPs
solve cache-coherency different ways, perhaps disabling the cache for regions of memory or
using bus snooping hardware.

A DDM must always specify what cache-coherency attributes it requires for memory being
allocated. If the allocated memory will not be accessed by an external device, then the memory
has no cache attribute requirements. If so, the IRTOS allocates memory with the most efficient
caching available.

If the allocated memory will be written to by the processor and read by an external device,
then the memory must be safe for external reads (I2O_MEM_EXTERNAL_READ_SAFE). This
means that if the processor writes to the memory, then the values must be visible immediately
to external reads. This occurs if that memory is uncached, write-through cached, or write-back
cached with snooping, but not if the memory is write-back cached without snooping.

Similarly, if the allocated memory will be written by an external device and read by the
processor, then the memory must be safe for external writes
(I2O_MEM_EXTERNAL_WRITE_SAFE); that is, if an external device writes to the memory,
then the values must be immediately visible to processor reads. This occurs if the memory is
uncached or cached with snooping, but not if the memory is cached without snooping.

When allocating memory, the DDM specifies the cache attributes it requires for the memory
by ORing together either attribute (see Table 5-42). The IRTOS allocates appropriate memory,
if possible, for the specified characteristics.

A DDM should always specify the weakest cache-coherency requirements it can. For example,
if a buffer is allocated that will be read externally but not written to externally, then the DDM
should specify only I2O_MEM_EXTERNAL_READ_SAFE. This allows the IRTOS to allocate
the buffer in write-through cached memory, rather than uncached memory. This can
significantly impact the performance of the DDM.

On the other hand, one must specify all the cache-coherency requirements really needed.
Cache-coherency problems are notoriously difficult to debug.

Table 5-42 Memory Cache Attributes

Cache Attribute Description

I2O_MEM_EXTERNAL_READ_SAFE Buffer will be read by external device

I2O_MEM_EXTERNAL_WRITE_SAFE Buffer will be written by external device

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-65

For reference, Table 5-43 summarizes the cache attributes of various types of caches, although
this information is irrelevant when writing a DDM since the cache attributes are sorted out by
the IRTOS.

Table 5-43 Cache Attributes of Various Cache Types

Cache Type External Read-Safe External Write-Safe

Uncached Yes Yes

Write-through w/o snooping Yes No

Write-through w/snooping Yes Yes

Write-back w/o snooping No No

Write-back w/snooping Yes Yes

5.4.12.1.3 Memory Attributes of Local Message Frames

There is one important buffer whose memory attributes the DDM cannot control: local
message frames. These are obtained by DDMs either as incoming messages or by calling
i2oFrameAlloc(). The IRTOS guarantees that these local messages will be:

1. in memory accessible to all adapters (I2O_MEM_ACCESS_ALL_ADAPTERS), and

2. in external read safe memory (I2O_EXTERNAL_READ_SAFE), but may not be external
write safe. Thus, a DDM can safely set up an external device to read directly out of a local
message frame (immediate data or the S/G list itself), but not to write into a local message
frame.

5.4.12.2 Memory Sets
The i2oMem…() functions allocate and free variable length blocks of local IOP memory.
Allocating variable length blocks allows dense use of available memory but incurs additional
run-time overhead in managing the memory pool (e.g. finding, splitting, and recombining free
blocks). Also, frequently allocating and deallocating variable length blocks can fragment the
memory pool, which will decrease the size of blocks available for allocation. Therefore, these
functions are intended only for infrequent allocation and freeing of memory, typically at
during initialization time or changes in configuration or operating conditions. These functions
are not intended for use by transaction basis. Instead, the page allocation facility described
below should be used for such purposes.

Intelligent I/O Architecture Specification

5-66 Draft Version 1.5d March 7, 1997

Table 5-44 IRTOS Variable Size Memory Allocation Functions

Returns API Function Call Description

memSetId i2oMemSetCreate (ownerId, cacheAttr, accessAttr, busId,
&status)

Create a memory set

addr i2oMemAlloc (memSetId, size, alignment, &status) Allocate memory block

void i2oMemFree (memSetId, addr, &status) Free memory block

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

accessAttr I2O_MEM_ACCESS_ATTR Access attribute of memory set (see Table 5-41)

addr I2O_ADDR32 Pointer to memory block allocated via memory set

alignment I2O_SIZE Alignment requirement of allocated block

busId I2O_BUS_ID ID of bus, if accessAttr =
I2O_MEM_ACCESS_BUS_SPECIFIC

cacheAttr I2O_MEM_CACHE_ATTR Cache attributes of memory set (see Table 5-42)

memSetId I2O_MEM_SET_ID ID of memory set object

ownerId I2O_OWNER_ID ID of owner device object

size I2O_SIZE Number of bytes to allocate via memory set

The i2oMemSetCreate() function creates a memory set object that holds the variable length
memory blocks allocated via that memSet. The cacheAttr, accessAttr, and busId parameters
specify the memory attributes to allocate via the memSet. The memSet object resembles a
container for memory allocations. When a memSet object is destroyed, the memory
allocations contained automatically return to the IRTOS. Thus, memSets provide the
following:

1. a convenient way to specify memory attributes, and

2. they track memory allocations for automatic reclamation and clean-up.

Typically, a DDM creates, in its initialization routine and/or ATTACH message handlers, a
memSet for each type of memory it needs with different sets of attributes. Depending on how
it assigns memory to specific devices, it may create separate memSets for each device or
collections of devices. Generally, however, creating and allocating out of fewer memSets uses
system memory more efficiently.

The i2oMemAlloc() function allocates the specified size memory block via the specified
memSet and returns the address of the allocated memory. Its address is aligned per the
alignment parameter specified in the call to i2oMemAlloc(), i.e., if the address is evenly divisible
by the value of the alignment parameter. The i2oMemFree() function frees a previously
allocated block.

If insufficient memory is available when i2oMemAlloc() is called, the function returns a NULL
address and the returned status is set to I2O_STS_INSUFFICIENT_MEMORY. This is not an
error condition that invokes automatic error handling if I2O_NO_STATUS is specified as the
status return parameter. This out of memory condition can occur during normal system
operation and so should not cause fatal error recovery. Thus, the address returned from
i2oMemAlloc() must always be tested to verify that a non-NULL address was returned.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-67

5.4.12.3 Page Sets
The i2oPage…() functions allocate and free local IOP memory in pages. Pages are fixed size
blocks of memory that are:

1. a power of two in length with a minimum of 4K bytes, and

2. naturally aligned, that is, on the same power of two boundary as their length.

This makes them suitable for use in scatter-gather list page elements. Since the pages are
fixed-size, allocating and freeing individual pages can be quick, eliminating memory
fragmentation problems. Thus, this mechanism is suited to very frequent, possibly per
transaction, allocations and deallocations. Another mechanism obtains a single initial
allocation of contiguous pages. Also, page sets may be battery backed-up. Table 5-45 lists the
page set functions.

Table 5-45 Page Allocation Functions

Returns API Function Call Description

addr i2oPageAddrGet (pageSetId, prevPageAddr,
&status)

Get address of page in set

addr i2oPageAlloc (pageSetId, &status) Allocate page

void i2oPageAllocContig (pageSetId, minPages,
maxPages, pageEvtQId, pageEvtPri,
pageEvtHandler, pageEvtArg,
&status)

Allocate initial contiguous
pages

count i2oPageAllocN (pageSetId, nPages, &addrArray,
&status)

Allocate pages

bbuEnabled i2oPageBbuEnableGet (pageSetId, &status) Get BBU enabled/disabled

void i2oPageBbuEnableSet (pageSetId, bbuEnable,
&status)

Set BBU enabled/disabled

void i2oPageBbuNotify (pageSetId, evtQId, evtPri,
bbuEvtHandler, bbuEvtArg, &status)

Request notification of
changes in BBU status

bbuStatus i2oPageBbuStatus (pageSetId, &status) Get current BBU status

count i2oPageCountGet (pageSetId, &status) Get number of pages in set

void i2oPageFree (pageSetId, addr, &status) Free an allocate page

void i2oPageFreeN (pageSetId, nPages, &addrArray,
&status)

Free a list of allocated
pages

pageSetId i2oPageSetCreate (ownerId, pageContext,
cacheAttr, accessAttr, busId, bbuAttr,
&status)

Create a page set

pageSize i2oPageSizeGet (pageSetId, &status) Get size of page

 pageEvtHandler and bbuEvtHandler declarations:

void pageEvtHandler (pageContext, pageEvtArg)

void bbuEvtHandler (pageContext, bbuEvtArg)

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

accessAttr I2O_MEM_ACCESS_ATTR Access attribute of page set (see Table 5-41)

Intelligent I/O Architecture Specification

5-68 Draft Version 1.5d March 7, 1997

Parameter Type Description

addr I2O_ADDR32 Pointer to page allocated via page set

bbuAttr I2O_BBU_ATTR Battery backup attribute of page set (see Table 5-
46)

bbuEnabled BOOL TRUE if battery backup is enabled for this page
set, FALSE if disabled

bbuEvtQId,
bbuEvtPri,
bbuEvtHandler,
bbuEvtArg

I2O_EVENT_QUEUE_ID,

I2O_EVENT_PRI,

I2O_EVENT_HANDLER,

I2O_ARG

Parameters for event to be posted when battery
backup status changes

bbuStatus I2O_BBU_STATUS Current condition of battery backup (see Table 5-
47)

busId I2O_BUS_ID ID of bus, if accessAttr =
I2O_MEM_ACCESS_BUS_SPECIFIC

cacheAttr I2O_MEM_CACHE_ATTR Cache attributes of page set (see Table 5-42)

count I2O_COUNT Number of pages actually allocated, or in page set

list I2O_ADDR32 * Pointer to list of page addresses

maxPages I2O_COUNT Maximum number of pages desired in initial
contiguous allocation (0 = as much as possible)

minPages I2O_COUNT Minimum number of pages required in initial
contiguous allocation

nPages I2O_COUNT Number of pages requested to allocate or free

ownerId I2O_OWNER_ID ID of owner device object

pageContext I2O_OBJ_CONTEXT User context value for page set

pageEvtQId,
pageEvtPri,
pageEvtHandler,
pageEvtArg

I2O_EVENT_QUEUE_ID,

I2O_EVENT_PRI,

I2O_EVENT_HANDLER,

I2O_ARG

Parameters for event to be posted when initial
contiguous allocation is complete

pageSetId I2O_PAGE_SET_ID ID of page set object

pageSize I2O_SIZE Page size in bytes

prevPageAddr I2O_ADDR32 Address of page previously returned by
i2oPageAddrGet() (NULL = get first page
address)

The i2oPageSetCreate() function creates a pageSet object that holds the pages it allocates. The
cacheAttr, accessAttr, busId, and bbu parameters specify the attributes of the pages that will be
allocated via the pageSet. The pageSet object resembles a container for page allocations. A
pageSet is created empty of pages.

The function i2oPageAlloc() adds a single page to the specified pageSet and returns the page’s
address. Pages are allocated from a system page pool that satisfies the attributes specified for
the pageSet. The i2oPageAllocN() function adds the specified number of separate, non-
contiguous pages to the pageSet and returns their addresses in the specified array. This is the
same as calling i2oPageAlloc() repeatedly. In either case, the allocated pages are then owned by
that pageSet. (See Figure 5-29.) Pages can be freed one at a time by calling i2oPageFree(),
which removes it from the pageSet and returns it to the system page pool. The function
i2oPageFreeN() frees the specified number of pages whose addresses are in the specified array.
As noted, these functions are fast and may be called frequently.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-69

 If no pages are available to allocate when i2oPageAlloc() is called, the function returns a NULL
address and the returned status is set to I2O_STS_INSUFFICIENT_MEMORY. This is not an
error condition that invokes automatic error handling if I2O_NO_STATUS is specified as the
status return parameter. This out of memory condition can occur during normal system
operation and so should not cause fatal error recovery. Thus, the address returned from
i2oPageAlloc() must always be tested to verify that a non-NULL address was returned.
Similarly, i2oPageAllocN() returns the count of the actual number of pages allocated. The count
will be less than the number requested only if too few pages were available to fulfill the
request. Thus, the count returned must always be tested to find the actual number of pages
allocated.

Contig AllocContig Alloc

System Page Pool

Page Set 1 Page Set 2

Figure 5-29: Page Sets

The pageSet facility is typically used by DDMs to allocate and free data buffers, cache
buffers, and so forth, for each incoming request. In general, DDMs should allocate pages for
these uses only when necessary and free them as soon as the buffer is no longer needed.
Following this policy leaves the most pages available for the system to adapt to changing
loads, such as demand peaks for DDMs, and configuration changes..

Typically, during initialization and/or ATTACH message handlers, a DDM creates a pageSet
for each type of memory it needs, with different sets of attributes. Depending on how it assigns
memory to specific devices, it may create separate pageSets for each device or collections of
devices.

When a pageSet object is destroyed, all its pages automatically return to the IRTOS. Thus,
pageSets provide the following:

1. a convenient way to specify a set of page attributes

2. tracking of a set of page allocations for automatic reclamation and clean-up, and

3. a mechanism for recovering battery backed-up pages after a system failure.

Intelligent I/O Architecture Specification

5-70 Draft Version 1.5d March 7, 1997

The i2oPageSizeGet() function returns the size of the pages in bytes.

The i2oPageCountGet() function returns the number of pages currently allocated to the
specified pageSet. The i2oPageAddrGet() function returns the addresses of pages currently
allocated to the specified set, one at a time. The prevPageAddr parameter must be specified as
NULL on the initial call to get the first page in the set. Additional page addresses can then be
obtained by calling i2oPageAddrGet() with prevPageAddr set to the address of the page returned
in the previous call. The first page of the initial contiguous allocation (described below), if
any, is always returned first.

5.4.12.3.1 Initial Contiguous Page Allocation

When a pageSet is created, an initial allocation of contiguous pages can be requested with
i2oPageAllocContig() . This function requests a range of pages from minPages to maxPages. A
value of 0 for maxPages indicates an unlimited maximum; that is, the DDM can use as many
pages as possible. The pages are not actually allocated at the time of the call, because the
IRTOS may first need to accumulate the initial contiguous page requests of other DDMs.
Therefore the DDM is notified of the actual allocation by an event, as specified by pageEvtPri,
pageEvtHandler, and pageEvtArg, in the i2oPageAllocContig() call. Once the event arrives
indicating a complete allocation, the i2oPageAddrGet() and i2oPageCountGet() functions can
find out the address of the pages allocated and actual number of contiguous pages allocated to
the pageSet.

The i2oPageAllocContig() must run before the IRTOS receives replies to all ADAPTERATTACH
and DEVICEATTACH messages, when the IRTOS makes the initial contiguous page
allocations. Only a single i2oPageAllocContig() can be made on each page set. Call
i2oPageAllocContig() only for contiguous pages.

5.4.12.3.2 Battery Backup

Some IOPs offer battery backup for some regions of local IOP memory. The bbuAttr parameter
in the i2oPageSetCreate() call specifies that battery backup on the pages allocated to the
pageSet is either

1. required

2. desirable but not required

3. not needed

If bbuAttr is specified as required but not available, an error will be returned. If bbuAttr is
specified as desirable, but not required, then whether battery backup is available on the
pageSet can be determined by the i2oPageBbuStatus() function described below.

Table 5-46 Battery Backup Attributes

BBU Attribute Description

I2O_BBU_DESIRED Pages should have battery backup capability, if possible

I2O_BBU_NOT_USED Pages do not need battery backup capability

I2O_BBU_REQUIRED Pages need battery backup capability

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-71

When the IRTOS boots after a system failure with battery-backup on, it automatically adds the
recovered pages to the appropriate pageSets as they are created by the DDMs. Thus,
immediately after creating a pageSet, a DDM can determine whether any battery-backed-up
pages were recovered by calling i2oPageCountGet(). It can locate the pages by calling
i2oPageAddrGet(). Also, the battery backup is automatically enabled for that pageSet if any
battery backed-up pages were recovered (see i2oPageBbuEnableSet() below).

When recovering battery backed-up pages, to identify the pageSet that the pages belong to, the
IRTOS uses the TID of the device specified as owning the pageSet in the i2oPageSetCreate()
call. Therefore, each device can have only one battery backed-up pageSet for each set of
memory attributes.

The i2oPageBbuStatus() function returns the condition of the battery backup on the specified
pageSet (see Table 5-47). The i2oPageBbuNotify() function requests notification via an event as
specified by bbuEvtPri, bbuEvtHandler, and bbuEvtArg, whenever the battery backup changes
status (goes from CHARGED to UNCHARGED, or vice versa).

Table 5-47 Battery Backup Status Values

BBU Status Description

I2O_BBU_CHARGED Battery backup is present and can supply backup

I2O_BBU_UNAVAILABLE No battery backup is present on this page set

I2O_BBU_UNCHARGED Battery backup is present but cannot currently supply backup

The i2oPageBbuEnableSet() function requests the battery backup on or off for the specified
page set. In implementation, the battery backup is only physically turned off if all battery
backed-up page sets for all DDMs are disabled. Thus, the i2oPageBbuEnableSet() function
tells the IRTOS that the page set contains no data (bbuEnable = FALSE) or contents that need
to be preserved (bbuEnable = TRUE). This function is a no-op if the pageSet has no battery
backup. Battery backup is initially off when a page set is created, unless battery backed-up
pages for that pageSet were recovered from a previous system failure. If so, as noted above,
the pages automatically add to the pageSet and the battery backup for that pageSet is on.

The i2oPageBbuEnableGet() function returns the current state of the battery backup enabling on
the specified pageSet.

5.4.12.4 Persistent Memory
An I2O IOP may have several types of persistent memory a DDM can use. Three distinct
categories of persistent memory are supported by IRTOS APIs:

1. an IOP file store, typically implemented with FLASH memory

2. non-volatile RAM (NV-RAM), used to store faster-changing configuration and state
information

3. battery-backed-up RAM, typically used to store data cache buffers

The following table summarizes the characteristics of these three types of persistent memory:

Intelligent I/O Architecture Specification

5-72 Draft Version 1.5d March 7, 1997

Memory
Abstraction

Typical
Devices

IRTOS API Write
Freq.

Typical
Size

Typical Use

File store FLASH i2oDdmMpbSto
re, InstallDDM,
etc.

very low 1MB store IRTOS, DDMs,
MPBs

NV-RAM serial
EPROM

i2oDevNvram… medium 256 bytes store faster changing
configuration and state
information

Battery-
backup RAM

dynamic
RAM w/BBU

i2oPageBbu… high 4MB cache buffers

The IOP file store is discussed in section 5.4.3.2. The battery-backup RAM facilities are
discussed in section 5.4.12.3.2. The NV-RAM facilities are discussed below.

5.4.12.4.1 Non-Volatile RAM Allocation

Table 5-48 IRTOS NVRAM Access Functions

Returns API Function Call Description

size i2oNvramSizeGet (devId, &status) Get size of NV-RAM allocated to device

void i2oNvramSizeSet (devId, size, &status) Set size of NV-RAM allocated to device

void i2oNvramRead (devId, addr, len, buf, &status) Read bytes from NV-RAM

void i2oNvramWrite (devId, addr, len, buf, &status) Write bytes to NV-RAM

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

addr I2O_ADDR32 Byte offset into NVRAM segment to read or write

buf I2O_ADDR32 Address of buffer to be written to or read from NVRAM

devId I2O_DEV_ID ID of device object that owns the NVRAM segment

len I2O_SIZE Number of bytes of NVRAM segment to read or write

size I2O_SIZE Number of bytes of NVRAM to allocate to device

Some I2O platforms have a small amount (typically a few hundred bytes) of non-volatile RAM
(NV-RAM) available for DDMs. This NV-RAM is typically implemented with a serial
EPROM or similar device. It generally can be written to fairly often, as opposed to the
FLASH-based IOP file store, which can be written to only during significant configuration
changes. A DDM may use NV-RAM to store current state information. Often, this is used with
battery-backed-up RAM to recover critical state and data after a system failure.

The model of NV-RAM in the IRTOS API defines each device, identified by TID, with a
single segment of NV-RAM. Initially, the NV-RAM segment for a new device is of 0 length.
The segment is associated with the TID across reboots of the IOP, so that the data written to a
device’s NV-RAM segment remains in the same segment after a reboot. The NV-RAM
segment assigned to a device is automatically freed when the TID associated with that device
is released.

The i2oDevNvramSizeSet() function sets the size of the NV-RAM segment assigned to the
device. This function may fail if insufficient NV-RAM is available to satisfy the request. If
the new size exceeds the old, the segment is extended without affecting its original contents.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-73

The contents of the new additional bytes of NV-RAM is unspecified. If the new size is smaller
than the old, the segment is truncated and the remainder of the old segment is lost.

Note that in actual implementation, changing the size of a segment may involve copying and
moving segments around. However, as far as the application is concerned, the segment simply
grows or is truncated as described above.

The i2oDevNvramSizeGet() function gets the size of the NV-RAM segment assigned to the
device. This size is 0 if the device never allocated a segment previously using
i2oDevNvramSizeSet().

The NV-RAM segment assigned to a device is accessed by the DDM with the
i2oDevNvramRead() and i2oDevNvramWrite() functions. These functions allow data to be read or
written to the NV-RAM segment starting at the specified address in the segment (each segment
starting at address 0) and extending the specified length. If the access exceeds the length of
the segment, the call returns an error (or takes the appropriate error handling action).

5.4.13 Interrupt Objects
DDMs that actually control hardware devices (HDMs) must respond to their interrupts. An
IRTOS responds by creating an interrupt object. A device creates as many interrupt objects as
it needs, i.e., one for each physical interrupt to which it responds.

Table 5-49 IRTOS Interrupt Handling Functions

Returns API Function Call Description

intId i2oIntCreate (ownerId, intContext, adapterId,
isrHandler, isrArg, evtQId, maxEvts,
&status)

Create interrupt object

void i2oIntEventPost (intId, evtPri, intEvtHandler,
intEvtArg, &status)

Send event from interrupt object

inIsr i2oIntInIsr () Determine if currently in ISR

key i2oIntLock () Lock interrupts at kernel lock level

void i2oIntUnlock (key) Restore previous interrupt level

 Interrupt ISR and evtHandler declarations:

intHandled = isrHandler (intContext, isrArg)

void intEvtHandler (intContext, intEvtArg)

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

adapterId I2O_ADAPTER_ID ID of adapter that generates interrupt

evtPri I2O_EVENT_PRI Priority of interrupt event

evtQId I2O_EVENT_QUEUE_ID ID of event queue to which IRTOS posts interrupt
events

inIsr BOOL TRUE = executing in ISR thread context,
FALSE = executing in event queue thread context

intContext I2O_OBJ_CONTEXT User context value for interrupt object

intEvtArg I2O_ARG User value to be passed to intEvtHandler()

intEvtHandler I2O_EVENT_HANDLER Event handler for interrupt event

Intelligent I/O Architecture Specification

5-74 Draft Version 1.5d March 7, 1997

Parameter Type Description

*

intHandled BOOL TRUE = interrupt was handled by this ISR,
FALSE = interrupt not from this device

intId I2O_INT_ID ID of interrupt object

isrArg I2O_ARG User value to be passed to isrHandler()

isrHandler I2O_ISR_HANDLER * Interrupt handler function that processes interrupts
from device

key I2O_INT_LOCK_KEY Opaque value representing previous interrupt lock
state; value returned by intLock() must be supplied to
intUnlock()

maxEvts I2O_COUNT Maximum number of interrupt events that can be
pending at one time

ownerId I2O_OWNER_ID ID of owner device object

In the i2oIntCreate() call, adapterId identifies the source of the interrupt. isrHandler is the
address of an ISR. The IRTOS calls isrHandler() at interrupt level when a hardware interrupt
from the specified adapter occurs. isrArg is an argument passed in isrHandler(). intEvtHandler
is the address of a DDM event handler function the IRTOS invokes at the normal DDM thread
level when the ISR posts an interrupt event. The maxEvts parameter the driver limit the
number of outstanding interrupt events in the queue.

Thus a driver responds to device interrupts at two levels: directly at interrupt level in an ISR,
and via an event handler executed by the driver thread. One should minimize processing at
interrupt level.

Because the interrupt vectors can be multiplexed (a requirement of the PCI bus, for example),
the isrHandler() function must probe its device to determine the source of the interrupt. If its
device does not have an interrupt pending, isrHandler() returns FALSE to indicate that it did not
handle the interrupt. If isrHandler() discovers that its device is interrupting, then it returns
TRUE to indicate that it did handle the interrupt. It can then do minimal response-critical
processing of the interrupt. If the interrupt is a level-sensitive signal, then the ISR must clear
or disable its source.

The ISR can also post an event to the DDM thread-level by calling i2oIntEventPost(). Note that
isrHandler() need not post an event on every interrupt, but only when thread-level processing
by the DDM is required. The IRTOS posts the interrupt event only if the number of
outstanding interrupt events is less than the maxEvts parameter of the i2oIntCreate() function.
Typically, this parameter is set to 1, because a single service call to intEvtHandler() can process
all outstanding interrupt tasks.

The isrHandler() might look like:

BOOL isrHandler (MY_STRUCT* intContext, int isrArg)
 {
 ... probe device ...
 if (device is not interrupting)
 return (FALSE); /* interrupt not handled */

 . .. handle device’s minimal, immediate interrupt needs ...
 if (device needs longer term attention)

 i2oIntEventPost (intContext->intId, intEvtPri, intEvtHandler,

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-75

 intEvtArg, NO_STATUS);
 return (TRUE); /* interrupt handled */

 }

intEvtHandler()is called with the user context of the interrupt object that posted the event and
the intEvtArg value specified in the i2oIntEventPost() call. This intEvtArg is an arbitrary four-
byte value, as far as the system is concerned; it is solely for communication between
isrHandler() and intEvtHandler(). Thus intEvtHandler() is declared as:

void intEvtHandler (I2O_CONTEXT intContext, int intEvtArg)

5.4.13.1 Calling IRTOS Functions in an ISR
The IRTOS invokes isrHandler() at interrupt level in a special interrupt handling context of the
IOP. Thus isrHandler() is not executing in normal IRTOS thread context. Therefore many
IRTOS functions are not callable from the ISR function, nor from any function called by an
ISR function. The table below lists the IRTOS functions that are callable from ISRs.

A program determines if it is executing in the special ISR context or a normal thread context
by calling the function i2oIntInIsr(). This function returns TRUE if called from an ISR context
and FALSE if called from a normal thread context.

Intelligent I/O Architecture Specification

5-76 Draft Version 1.5d March 7, 1997

Table 5-50 IRTOS Functions That Can Be Called From an ISR

API Function Call

i2oAdapterBusGet()

i2oAdapterConfigRead...

i2oAdapterConfigWrite...

i2oAdapterIntLock()

i2oAdapterIntUnlock()

i2oAdapterPhysLocGet()

i2oBusLocal()

i2oBusRead…

i2oBusSystem()

i2oBusTranslate()

i2oBusWrite…

i2oBusyWait()

i2oErrorAction()

i2oIntEventPost()

i2oIntInIsr()

i2oIntLock()

i2oIntUnlock()

i2oObjContextGet()

i2oSemGive()

5.4.13.2 Controlling IOP Interrupts
The functions i2oIntLock() and i2oIntUnlock() disable and re-enable, respectively, interrupts on
the IOP CPU. This guarantees that sections of code can run without interruption. This has
significant impact on the rest of the IOP, since the normal response of the IRTOS and other
DDMs is completely inhibited. These functions should be used only for short durations and as
a last resort.

The IRTOS allow synchronizing and mutually excluding programs. The i2oAdapterIntLock()
and i2oAdapterIntUnlock() functions are slightly less intrusive than the alternatives, because
they disable interrupts only up to the level of a specific adapter. For synchronization between
thread-level code, three types of semaphores have minimal impact on other programs in the
IOP.

5.4.14 Timer Objects
DDMs must often provide timeouts on operations. In IRTOS, DDMs create timer objects for
various timing needs. After the DDM creates a timer object, it starts the timer by specifying
the timeout’s duration and event handler function. When the specified number of
microseconds elapse, the event is queued, which invokes the specified event handler. A timer
can be canceled at any time. Only one event can be outstanding for any given timer object .

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-77

Since the timer functions use an unsigned 32-bit integer to specify the microsecond values, the
maximum duration is limited. The table below details the maximum duration from 32-bit
timer with a granularity of 1 usec. For longer durations, invoke a single timer repeatedly.

Table 5-51 Maximum Timer Duration

 4,294,967,295 microseconds

 4,295 seconds

 72 minutes

Table 5-52 lists the IRTOS functions for timer objects.

Table 5-52 IRTOS Timer Functions

Returns API Function Call Description

void i2oTimerCancel (timerId, &status) Cancel timer

timerId i2oTimerCreate (ownerId, timerContext, evtQId,
&status)

Create timer object

usecs i2oTimerElapsed (timerId, &count, &status) Get time elapsed since start of
timer

usecs i2oTimerEventRes () Get resolution of event timing

void i2oTimerRepeat (timerId, usec, evtPri,
timerEvtHandler, timerEvtArg,
&status)

Start periodic timer

usecs i2oTimerStampRes () Get resolution of time stamping

void i2oTimerStart (timerId, usec, evtPri,
timerEvtHandler, timerEvtArg,
&status)

Start one-shot timer

 Declaration of Timer evtHandler :

 void evtHandler (timerContext, evtArg)

Parameter Type Description

&count I2O_COUNT * Pointer of variable to receive count of expirations of
period timer

&status I2O_STATUS * Variable to receive error code

evtPri I2O_EVENT_PRI Priority of timer event

evtQId I2O_EVENT_QUEUE_ID ID of event queue to post timer events to

ownerId I2O_OWNER_ID ID of owner device object

timerContext I2O_OBJ_CONTEXT User context value for timer object

timerEvtArg I2O_ARG User value to be passed to timerEvtHandler()

timerEvtHandler I2O_EVENT_HANDLER

*
Event handler for timer event

timerId I2O_TIMER_ID ID of timer object

usecs I2O_USECS Number of microseconds

Intelligent I/O Architecture Specification

5-78 Draft Version 1.5d March 7, 1997

To use the IRTOS timer facility, a timer object must first be created by i2oTimerCreate(). Start
the timer by calling either i2oTimerStart() or i2oTimerRepeat(). i2oTimerStart() initiates a one-
shot timer that expires when at least the specified number of microseconds elapse. Upon
expiration, the specified event is posted and the timer idles. i2oTimerRepeat() initiates a
periodic timer that resets after each expiration. On each expiration, the event is posted. If the
event is still posted (not yet been handled) from a previous expiration, the periodic timer
continues to run, but further expirations are not posted while the event remains queued. Once
the event dequeues, the next timer expiration posts another event. The count returned by
i2oTimerElapsed(), described below, always reflects the actual number of expirations.

An unlimited number of timer objects can be created in an IRTOS system, even though only a
small number of hardware timers are usually available (typically 1 to 3). For this reason, the
timer objects are generally implemented as a software queue driven by a periodic hardware
timer. This is known as the platform timer. The period of the platform timer determines the
resolution of timer expirations, since the IRTOS can discover an expiration only upon
interruption from the platform timer. Thus, the timer object guarantees that at least the
specified number of microseconds have elapsed when the expiration event is posted. The
actual time elapsed before the event is posted can be considerably longer, depending on the
period of the platform timer (100 Hz is typical, e.g. 10,000 usecs). Calling i2oTimerEvtRes()
provides the resolution of timer objects.

Calling i2oTimerElapsed() provides timestamping by reading the number of microseconds that
elapsed since the timer started. With a periodic timer, i2oTimerElapsed() also returns a count of
the number of expirations since the timer started, in addition to the number of microseconds
since the last expiration.

Unlike timer expirations, the timestamping is generally very high resolution because it
involves only reading a high frequency counter. The resolution of the timestamping function
is obtained by calling i2oTimerStampRes().

For general-purpose timestamping without event posting, the driver specifies the platform
timer directly, without creating a timer object, by supplying a NULL timerId to
i2oTimerElapsed(). In this case, the function returns a count of the system timer interrupts (or
ticks) since the system started and the number of microseconds since the last system timer
interrupt, i.e., 1 tick = i2oTimerEvtRes().

5.4.15 DMA Objects
IOPs may have several DMA channels, each with different attributes or capabilities. The
IRTOS DMA objects allow device drivers to queue DMA operations with specific attributes.
Each DMA operation is then executed by a DMA channel that can satisfy the request as soon
as such a channel is available. When a DMA operation completes, or gets an error or timeout,
an event is posted to the DDM.

Table 5-53 lists the IRTOS functions for DMA objects.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-79

Table 5-53 IRTOS DMA Functions

Returns API Function Call Description

void i2oDmaCancel (dmaId, mode, xferContext, &status) Cancel DMA transfer

dmaId i2oDmaCreate (ownerId, busId1, busSpace1, busId2,
busSpace2, maxXfers, createFlags, evtQId,
evtPri, &status)

Create DMA object

void i2oDmaResume (dmaId, &status) Resume DMA after error

reqStatus i2oDmaXfer (dmaId, addr1, addr2, length, xferFlags,
xferContext, dmaEvtHandler, &status)

Do DMA transfer of single
buffer

reqStatus i2oDmaXferFrag (dmaId, list1, offset1, list2, offset2,
maxBytes, xferFlags, xferContext,
dmaEvtHandler, &status)

Do DMA transfer of
scatter-gather list fragment

reqStatus i2oDmaXferList (dmaId, list1, list2, xferFlags,
xferContext, dmaEvtHandler, &status)

Do DMA transfer of
scatter-gather list

 Declaration of evtHandler for DMA Object :

 void dmaEvtHandler (xferContext, dmaStatus)

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

addr1 I2O_ADDR32 Starting address on bus 1

addr2 I2O_ADDR32 Starting address on bus 2

busId1 I2O_BUS_ID Local ID of source bus 1 to transfer from

busId2 I2O_BUS_ID Local ID of destination bus 2 to transfer to

busSpace1 I2O_BUS_SPACE Address space on source bus 1

busSpace2 I2O_BUS_SPACE Address space on destination bus 2

cancelMode I2O_CANCEL_MODE Mode of cancel operation (see Table 5-58)

createFlags I2O_DMA_CREATE_FLAGS DMA object option flags (see Table 5-54)

dmaEvtHandler I2O_EVENT_HANDLER * Event handler for DMA completion event

dmaId I2O_DMA_ID ID of DMA object

dmaStatus I2O_STATUS Status of DMA completion (see Table 5-56)

evtPri I2O_EVENT_PRI Priority of DMA completion events

evtQId I2O_EVENT_QUEUE_ID ID of event queue to post DMA events to

length I2O_SIZE Number of bytes to transfer

list1 I2O_SG_ELEMENT * Pointer to scatter-gather list for bus 1

list2 I2O_SG_ELEMENT * Pointer to scatter-gather list for bus 2

maxBytes I2O_SIZE Maximum number of bytes of S/G list to
transfer

maxXfers I2O_COUNT Maximum number of transfers outstanding

offset1 I2O_SIZE Number of bytes to skip in list1

offset2 I2O_SIZE Number of bytes to skip in list2

ownerId I2O_OWNER_ID ID of owner device object

reqStatus I2O_STATUS Status of DMA request (see Table 5-55)

xferContext I2O_OBJ_CONTEXT User context value for DMA transfer

Intelligent I/O Architecture Specification

5-80 Draft Version 1.5d March 7, 1997

Parameter Type Description

xferFlags I2O_DMA_XFER_FLAGS Transfer option flags (see Table 5-57 DMA
Transfer Flag Values)

5.4.15.1 Creating DMA Objects
To use the DMA facilities, a driver first creates a DMA object by calling i2oDmaCreate(). This
DMA object is like a virtual DMA channel between the two buses (busId1 and busId2)
specified in the create call. If the buses support multiple address spaces (e.g. memory, i/o,
configuration) then the bus’ address spaces (busSpace1 and busSpace2) are also identified in
the create call.

Memory is pre-allocated to hold a maximum of maxXfers simultaneous outstanding DMA
transfers. Note that each transfer may require about 50 bytes of memory, depending on IRTOS
implementation, so a DDM should minimize the maximum number of transfers a DMA object
is created with.

The create call also specifies the event queue ID to which events post upon DMA completion
and the event priority where they will queue.

Several options can be specified for the DMA object by ORing flags in the createFlags
parameter. Normally, the IRTOS is free to queue requested DMA transfers to physical DMA
engines as soon as they are available. Under certain circumstances, this may cause transfers in
parallel or even out of the order in which they were requested. However, if a DMA object is
created with the I2O_DMA_SERIAL_MODE option, then all transfers queued to that object
execute strictly in the order they are requested and no transfer starts before all previous
transfers queued to the same object complete. (The only exception to the serial order is local-
to-local transfers; see 5.4.15.8.) Note that this serial transfers mode also changes how DMA
errors and timeouts are handled (see 0).

Note that there is never any implied temporal ordering of requests on different DMA objects.

The I2O_DMA_BUS_1_DEMAND_MODE and I2O_DMA_BUS_2_DEMAND_MODE flags
indicate that the DMA to the specified bus should occur in demand mode, which drives
transfers by a device on that bus. These options require platform-specific support from both
the IOP hardware and the external devices, and thus are available only in certain
configurations.

Table 5-54 DMA Creation Flags Values

Flag Description

I2O_DMA_BUS_1_DEMAND_MODE set bus 1 in demand mode

I2O_DMA_BUS_2_DEMAND_MODE set bus 2 in demand mode

I2O_DMA_SERIAL_MODE execute all transfers strictly in order requested

5.4.15.2 Requesting DMA Transfers
Three functions provide DMA transfers via a DMA object:

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-81

i2oDmaXfer() requests a DMA transfer between simple buffers on the two buses,
specifying the start address on each bus (addr1 and addr2) and the
length of the transfer (length).

i2oDmaXferList() requests a DMA transfer between scatter-gather lists on the two
busses (list1 and list2). The length of the transfer is determined by
the shorter of the two S/G lists.

i2oDmaXferFrag() requests a DMA transfer between fragments of S/G lists. The
arguments are as in the i2oDmaXferList() function, except that an
offset is specified for each list (offset1 and offset2), indicating the
number of bytes to skip in each list, and the maximum length
(maxBytes). The actual length is the lesser of the length of either the
list fragment or the specified maximum length.

Note that in the i2oDmaXferList() and i2oDmaXferFrag() functions, the scatter-gather lists must
not be modified until the transfer is complete.

These functions ignore the direction bits embedded in the list elements (see Chapter 3). These
bits indicate to the message transport whether the scatter-gather list elements are input or
output, but the DMA transfer functions ignore them.

All three transfer request functions return a request status. That status is I2O_STS_OK if the
transfer queues and I2O_STS_DMA_FULL if the transfer cannot queue because the DMA
object already has the maximum number of outstanding requests. The maximum is specified
when the DMA object is created.

I2O_STS_DMA_FULL is not considered a fatal error since it may happen in the normal course
of using a DMA object. Therefore, it is returned separately as the result of the transfer request
functions, rather than in the usual status return (&status). Therefore, it invokes no automatic
error actions.

Table 5-55 DMA Request Status Values

Flag Description

I2O_STS_OK transfer queued successfully

I2O_STS_DMA_FULL transfer not queued because DMA object already has maximum
outstanding requests

5.4.15.3 DMA Completion Events
In all of the i2oDmaXfer…() functions, the caller supplies two parameters for an event that will
be posted after the transfer (unless the I2O_DMA_NO_EVENT flag is specified as described
below): the handler function (evtHandler), and a context value (xferContext), usually a pointer
to an internal data structure.

When the transfer completes or terminates with an error or timeout, an event posts that will
call the specified function, with the xferContext as the first argument, and the dmaStatus of the
transfer as the second argument.

Intelligent I/O Architecture Specification

5-82 Draft Version 1.5d March 7, 1997

Table 5-56 DMA Completion Status Values

Flag Description

I2O_STS_OK transfer completed successfully

I2O_STS_DMA_ERROR transfer failed

I2O_STS_DMA_TIMEOUT transfer timed out

5.4.15.4 DMA Transfer Options
In all of the i2oDmaXfer…() functions, the caller supplies a xferFlags word that specifies
transfer options.

One flag specifies the direction of the transfer. By default, transfers progress from bus 1 to
bus 2. By specifying the I2O_DMA_DIR_REVERSE option, the transfer reverses, so that bus 2
becomes the source and bus 1 the destination.

Another flag allows optimizing posting completion events. By default, a completion event is
posted when each transfer completes. However, a driver may not need notification of some
transfers. In this case, some overhead can be saved by specifying the I2O_DMA_NO_EVENT
option when a transfer is queued. This suppresses posting the transfer completion event, and
automatically makes room for another transfer. A completion event posts only if an error or
timeout occurs on that transfer.

For example, if a given I/O request to a driver generates five DMA transfers, and the driver
cannot process further until all five complete, then the I2O_DMA_NO_EVENT could be
specified on the first four, leaving only the last transfer to post a completion event. This saves
80% (four out of five) of the overhead of the DMA interrupts and completion event posting
and handling. However, this optimization is possible only if the DMA object is created in
serial transfers mode. Otherwise, completing the fifth transfer does not imply completion of
the first four.

As another example, if a device is automatically triggered by transferring bytes or by accessing
an address, then the driver might know implicitly that the DMA transfer completed when it
receives a device interrupt. In this case, the driver can eliminate all DMA interrupts and
completion events (other than errors) by specifying the I2O_DMA_NO_EVENT option on
every transfer. Note that this optimization applies even in normal non-serial mode.

For i2oDmaXferList() and i2oDmaXferFrag() functions, two more flags,
I2O_DMA_SRC_SGL_CONTEXT_64 and I2O_DMA_DST_SGL_CONTEXT_64,
respectively indicate that the default transaction context size for the source and destination
scatter-gather lists is 64-bit. Use of these flags removes the need to place an attribute element
at the start of lists indicating 64-bit transaction context size. Should an attribute element be
present in the source or destination list, it overrides any usage of these flags.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-83

Table 5-57 DMA Transfer Flag Values

Flag Description

I2O_DMA_DIR_REVERSE DMA from bus 2 to bus 1

I2O_DMA_NO_EVENT Do not post event when transfer completes

I2O_DMA_SRC_SGL_CONTEXT_64 Indicates transaction context size for the source scatter-gather
list defaults to 64-bit.

I2O_DMA_DST_SGL_CONTEXT_64 Indicates transaction context size for the destination scatter-
gather list defaults to 64-bit.

5.4.15.5 DMA Error Handling
If a DMA error occurs on any transfer, a completion event posts, regardless of whether or not
I2O_DMA_NO_EVENT was specified for the transfer in error. The dmaStatus argument to the
completion handler indicates an error, I2O_STS_DMA_ERROR.

In addition, the IRTOS keeps timers on all active DMA channels and automatically detects a
stalled DMA transfer. In this case, a completion event is posted, again regardless of whether or
not I2O_DMA_NO_EVENT was specified, with a dmaStatus argument of
I2O_STS_DMA_TIMEOUT.

In both cases, the DMA transfer that incurred the error or timeout is automatically canceled
and removed from the DMA queue.

Normally, one transfer error or timeout does not affect any other transfers on that same object,
and normal operation of the DMA object continues. However, if the DMA object was created
in the serial-transfers mode (I2O_DMA_SERIAL_MODE), then any DMA error or timeout
suspends all DMA transfers on that object. However, it does not prevent queuing additional
transfers to the DMA object with the i2oDmaXfer…() functions. To restart transfers after an
error or timeout, a DDM must call i2oDmaResume() . Typically, a DDM will want to cancel
other transfers related to the one that failed, if any, and then resume the DMA. It is
unnecessary to cancel the transfer that incurred the error since it will already cancel
automatically. It is an error to call i2oDmaResume() if the DMA object is not suspended due to
an error or timeout.

5.4.15.6 Canceling Transfers
Queued DMA transfers can be canceled before completion using i2oDmaCancel() . This
function cancels either transactions with the specified xferContext, or all transfers on the
specified DMA object, depending on the specified mode. Note that a canceled transfer may
not have started at all, be in progress and partially complete, or have completed but its event
not dequeued yet. In any case, the transfer is discarded, i2oDmaCancel() is called, and no
completion event is received for a canceled transfer.

Intelligent I/O Architecture Specification

5-84 Draft Version 1.5d March 7, 1997

Table 5-58 DMA Cancel Modes

Value Description

I2O_DMA_CANCEL_MATCHING cancel transfers with the specified context

I2O_DMA_CANCEL_ALL cancel all transfers

5.4.15.7 Interpreting System Bus Addresses
When the DMA creation specifies the system bus, the addresses in the transfer for that bus
may actually reside on the IOP local bus, on the primary bus, or on a secondary bus bridged to
the primary. The i2oDmaXfer…() functions check the range for the actual location of the
addresses and invoke the appropriate DMA engines. Or they do local memory copies as
described below.

5.4.15.8 Local-to-local Transfers
A requested DMA transfer may be entirely or partly local-to-local, without the driver knowing.
A source or destination fragment of a DMA transfer is local if:

a) the corresponding bus was specified as the local bus in the i2oDmaCreate() call,

b) the corresponding bus was specified as the system bus in the i2oDmaCreate() call, and
the specified system address maps to local memory,

c) the fragment is an element of a scatter-gather list, marked as a local address,

d) the fragment is an immediate data element in a scatter-gather list.

As they set up the DMA transfer, the i2oDmaXfer…() functions detect any part of a transfer
between two local fragments and translate it into a local-to-local memory copy done in-line,
rather than by a DMA engine. Completion events post as usual.

Local-to-local transfers are an exception to the serial order dictated by the serial-transfer mode
(I2O_DMA_SERIAL_MODE), since these transfers are in-line during the request processing.
However, this does not affect the strictly serial execution of the non-local-to-local fragments in
this mode. Furthermore, in serial transfers mode, the completion event of a local-to-local
transfer does not post until all transfers before the local-to-local transfer finish. Thus, the
behavior of completion events is unaffected by local-to-local transfers, even in serial transfers
mode.

5.4.16 Threads
When an event queue is created with i2oEventQCreate() , a thread simply loops, dequeuing
events and invoking the specified handler function for each. This event queue thread therefore
provides the context for all DDM functions.

It is not usually necessary for a DDM to create any threads besides the one implicitly created
when an event queue is created. However, some I/O subsystems may be more complex than a
single DDM. Advanced I/O facilities requiring a more sophisticated software architecture may
use a set of cooperating threads. Additional threads can be created by calling
i2oThreadCreate() . The parameters to this call specify the thread priority, options, stack size,
initial entry point, and initial argument to the entry point.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-85

The ID of the thread that services a particular event queue is provided by
i2oEventQThreadGet().i2oThreadIdSelf() provides the ID of the current running thread. Also,
specifying a NULL for the threadID parameter in any thread control function implies the
current thread, or self.

A thread can be suspended and relinquish control to other threads for a specified amount of
time by calling i2oThreadDelay().

The default error action for the thread is set by calling i2oThreadErrorActionSet(). When the
thread calls an IRTOS function with the status pointer argument specified as
I2O_NO_STATUS, an error occurs, and the error action specified in i2oThreadErrorActionSet()
is invoked.

IRTOS uses a priority-based preemptive scheduling algorithm. This means it always runs the
highest priority thread that is ready. Thread priorities are assigned from 0 to 255 with 0
highest priority and 255 the lowest. A thread is assigned a priority when it is created. A
thread’s priority can be obtained by i2oThreadPriGet() and set by i2oThreadPriSet().

It is possible to disable the normal IRTOS scheduling whenever a thread runs by calling
i2oThreadLock(). Any thread that has disabled IRTOS scheduling this way is not preempted by
higher-priority threads. Only when such a thread blocks is another thread scheduled. Normal
IRTOS scheduling is re-enabled by calling i2oThreadUnlock(). Because disabling the thread
scheduling destroys the normal prioritized response of the system, preemption should rarely be
locked and only briefly.

Table 5-59 lists the IRTOS functions for threads.

Table 5-59 IRTOS Thread Functions

Returns API Function Call Description

threadId i2oThreadCreate (ownerId, threadPri,
threadOptions, threadStackSize,
threadInitFunc, threadArg, &status)

Create thread

void i2oThreadDelay (usecs, &status) Delay thread for specified
usecs

errorAction i2oThreadErrorActionGet (threadId,
&userErrorHandler, &status)

Get error action for thread

void i2oThreadErrorActionSet (threadId,
errorAction, userErrorHandler, &status)

Set error action for thread

threadId i2oThreadIdSelf (&status) Get threadId of current thread

void i2oThreadLock (&status) Disable preemption of current
thread

threadPri i2oThreadPriGet (threadId, &status) Get priority of thread

void i2oThreadPriSet (threadId, threadPri, &status) Set priority of thread

void i2oThreadUnlock (&status) Enable preemption of current
thread

Intelligent I/O Architecture Specification

5-86 Draft Version 1.5d March 7, 1997

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

errorAction I2O_ERROR_ACTION Response if error encountered

ownerId I2O_OWNER_ID ID of owner device object

threadArg I2O_ARG User value to pass to threadInitFunc()

threadId I2O_THREAD_ID ID of thread object

threadInitFunc I2O_THREAD_FUNC * Initial entry point of thread

threadOptions I2O_THREAD_OPTIONS Thread options - none defined at this time

threadPri I2O_THREAD_PRI Priority of thread: 0 (highest) - 255 (lowest)

threadStackSize I2O_SIZE Size of thread’s stack in bytes

usecs I2O_USECS Number of microseconds to delay thread

userErrorHandler I2O_ERROR_HANDLER

*
User error handler to call if
errorAction = I2O_ERR_ACT_USER

Table 5-60 IRTOS Thread Options

Value Description

I2O_THREAD_OPTS_NONE No thread options are currently defined; this argument is a placeholder
for future IRTOS facilities

5.4.17 Busy Wait
The i2oBusyWait() function accommodates short, timing-critical delays some hardware
requires. This function spins the processor in a busy loop until at least the specified number of
microseconds elapse. Obviously, since this function is wasting CPU cycles, it should be used
only when absolutely necessary for very short durations. This function can be called from
both the interrupt and thread levels. This function does not disable thread preemption or
interrupts, so if necessary, complete those steps before calling this function.

Table 5-61 IRTOS Busy Wait Function

Returns API Function Call Description

void i2oBusyWait (usecs, &status) Busy wait for specified usecs

Parameter Type Description

usecs I2O_USECS number of microseconds to busy wait

&status I2O_STATUS * variable to receive error code

5.4.18 Semaphores
The IRTOS environment supports all the synchronization a simple DDM requires. However, a
DDM may need to synchronize explicitly with other DDMs or other threads that are created
explicitly. The basic IRTOS mechanism for thread synchronization and mutual exclusion is
semaphores. Three types of semaphores are provided:

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-87

• binary semaphores
• counting semaphores
• mutual exclusion (mutex) semaphores

5.4.18.1 Binary Semaphores
A binary semaphore is a simple flag that is available (full) or unavailable (empty). When a
thread takes a binary semaphore, using i2oSemTake(), the outcome depends on whether the
semaphore is available or unavailable. If the semaphore is available, then it becomes
unavailable and the function returns immediately. If the semaphore is unavailable, then the
action depends on the timeout specified in the call:

1) If the timeout is specified as I2O_WAIT_FOREVER, the thread blocks and waits
indefinitely to obtain the semaphore.

2) If the timeout is specified as I2O_NO_WAIT, the function returns immediately with the
error condition I2O_STS_UNAVAILABLE.

3) If the timeout is specified as something other than I2O_WAIT_FOREVER or
I2O_NO_WAIT, the thread blocks for the timeout specified. If the semaphore is still
unavailable when the timeout expires, the function returns with the error condition
I2O_STS_TIMEOUT.

When a thread gives a binary semaphore, using i2oSemGive(), the outcome also depends on the
whether the semaphore is available or unavailable at the time of the call. If the semaphore is
already available, giving the semaphore has no effect at all. If the semaphore is unavailable
and no thread waits to take it, then the semaphore is simply made available. If the semaphore
is unavailable and one or more threads were pending its availability, then the first thread
blocked on that semaphore is unblocked, and the semaphore is left unavailable.

Binary semaphores are very fast with low overhead, and are useful for both thread
synchronization and mutual exclusion. When used for thread synchronization, one thread
waits for the synchronization by taking a semaphore from another thread. When used for
mutual exclusion, a binary semaphore is associated with a resource that needs to be guarded.
When a thread wants to access the resource, it takes the associated binary semaphore,
preventing any other thread’s access to the resource at the same time. When the thread
finishes accessing the guarded resource, it releases the resource by giving the semaphore,
allowing other threads to take the semaphore and gain access to the resource.

5.4.18.2 Counting Semaphores
Counting semaphores are another means to synchronize threads and use mutual exclusion.
The counting semaphore works like the binary semaphore, except that it tracks the number of
times a semaphore is given. Every time a semaphore is given, the count increments; every
time a semaphore is taken, the count decrements. When the count reaches zero, a thread that
tries to take the semaphore is blocked. As with the binary semaphore, if a semaphore is given
and a thread is already blocked waiting on that semaphore, that thread becomes unblocked.
However, if a semaphore is given and no threads blocked, then the count is simply
incremented. This means that a counting semaphore given twice can be taken twice without
blocking, in contrast to a binary semaphore.

Intelligent I/O Architecture Specification

5-88 Draft Version 1.5d March 7, 1997

Counting semaphores can guard multiple instances of a resource. For example, the use of five
tape drives can be coordinated using a counting semaphore with an initial count of five, or a
FIFO with 256 entries can be implemented using a counting semaphore with an initial count of
256. The initial count is specified as an argument to the i2oSemCCreate() function.

5.4.18.3 Mutual Exclusion Semaphores
A mutual exclusion (mutex) semaphore is a specialized binary semaphore designed to address
issues inherent in mutual exclusion, including priority inversion, deletion safety, and recursive
access to resources.

The behavior of the mutex semaphore is the same as a binary semaphore, with the following
exceptions:

• It can only be used for mutual exclusion.
• It can be given only by the thread that took it.
• The same thread can take it repeatedly and it is not available until that thread gives the

semaphore the same number of times it took it. (This allows nested taking of the same
semaphore).

• It can optionally prevent deleting threads while they own the semaphore. (This provides
deletion safety).

• It can optionally invoke the priority inheritance protocol when a thread blocks on a
semaphore that is currently owned by a lower-priority thread. This prevents priority
inversion, which blocks indefinitely a high-priority thread with an unrelated lower-priority
thread.

Table 5-62 lists the IRTOS functions for semaphores.

Table 5-62 IRTOS Semaphore Functions

Returns API Function Call Description

semId i2oSemBCreate (ownerId, semOptions, initialState, &status) Create binary semaphore

semId i2oSemCCreate (ownerId, semOptions, initialCount, &status) Create counting semaphore

semId i2oSemMCreate (ownerId, semOptions, &status) Create mutex semaphore

void i2oSemTake (semId, timeout, &status) Take semaphore

void i2oSemGive (semId, &status) Give semaphore

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

initialCount I2O_COUNT Initial count of counting semaphore

initialState I2O_SEM_B_STATE Initial state of semaphore object:
I2O_SEM_FULL = semaphore is available
I2O_SEM_EMPTY = semaphore no available

ownerId I2O_OWNER_ID ID of owner device object

semId I2O_SEM_ID ID of semaphore object

semOptions I2O_SEM_OPTIONS Semaphore options (see Table 5-63)

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-89

Parameter Type Description

timeout I2O_USECS Number of microseconds before canceling i2oSemTake();
I2O_NO_WAIT = immediate return if not available,
I2O_WAIT_FOREVER = no timeout

Table 5-63 IRTOS Semaphore Options

Value Description

I2O_SEM_OPT_Q_PRIORITY Waiting threads queued in thread priority order

I2O_SEM_OPT_Q_FIFO Waiting threads queued in FIFO order

I2O_SEM_OPT_DELETE_SAFE Prevent deletion of thread holding mutex (mutex semaphore
only)

I2O_SEM_OPT_INVERSION_SAFE Use priority inheritance protocol (mutex semaphore only)

5.4.19 Pipes
While semaphores provide a fast way to synchronize and interlock threads, often a higher-level
mechanism is necessary to allow cooperating threads to communicate with each other. In
IRTOS, the primary inter-thread communication mechanism within a single IOP is a pipe.

A variable number of messages, each of variable length, can be sent to a pipe. The maximum
number of messages and the their maximum lengths are specified when a pipe is created, and
enough memory is pre-allocated to accommodate that much data (number of messages x
maximum length) in the pipe. Messages are sent to a pipe by calling the i2oPipeSend()
function and messages are received from a pipe by calling i2oPipeReceive().

Note that the messages transported using pipes do not affect formal I 2O messages that use the
I2O Message Transport. The I2O Message Transport sends via i2oFrameSend() and receives via
events posted to event queues; it contents are defined by the I 2O Shell specification. Rather,
pipe messages are simple local buffers of data whose contents are completely up to the user.

When a thread calls i2oPipeSend() there are several possible outcomes:

1) If there is free space for the message in the pipe, then the message queues to the pipe and
the function returns immediately.

2) If no space is available for the message and the timeout is specified as
I2O_WAIT_FOREVER, the thread blocks and waits indefinitely for free space to queue the
message to the pipe.

3) If no space is available for the message and the timeout is specified as I2O_NO_WAIT, the
function returns immediately with the error condition I2O_STS_UNAVAILABLE.

4) If no space is available for the message and the timeout is specified as something other
than I2O_WAIT_FOREVER or I2O_NO_WAIT, the thread blocks for the timeout specified.
If no space is available to queue the message when the timeout expires, the function
returns with the error condition I2O_STS_TIMEOUT.

Similarly, when a thread calls i2oPipeReceive() there are several possible outcomes:

1) If messages are already queued to the pipe, then the first message dequeues into the
caller’s buffer and the function returns immediately.

Intelligent I/O Architecture Specification

5-90 Draft Version 1.5d March 7, 1997

2) If no message is available and the timeout is specified as I2O_WAIT_FOREVER, the
thread blocks and waits indefinitely for a message on the pipe.

3) If no message is available and the timeout is specified as I2O_NO_WAIT, the function
returns immediately with the error condition I2O_STS_UNAVAILABLE.

4) If no message is available and the timeout is specified as other than I2O_WAIT_FOREVER
or I2O_NO_WAIT, the thread blocks for the timeout specified. If no message arrives
before the timeout expires, the function returns with the error condition
I2O_STS_TIMEOUT.

In any case, the length of the message received is returned as the value of the function, or as 0
if no message is returned.

Table 5-64 lists the IRTOS functions for pipes.

Table 5-64 IRTOS Pipe Functions

Returns API Function Call Description

pipeId i2oPipeCreate (ownerId, maxMsgs, maxMsgLen,
pipeOptions, &status)

Create pipe

void i2oPipeSend (pipeId, buf, nBytes, pri, timeout, &status) Send buffer to pipe

nBytes i2oPipeReceive (pipeId, buf, maxBytes, timeout, &status) Receive buffer from pipe

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

buf I2O_ADDR32 Pointer to message buffer

maxBytes I2O_SIZE Maximum number of bytes of message to receive

maxMsgLen I2O_SIZE Maximum length of message that can be queued to this
pipe

maxMsgs I2O_COUNT Maximum messages that can be queued to this pipe

nBytes I2O_SIZE Number of bytes in message

ownerId I2O_OWNER_ID ID of owner device object

pipeId I2O_PIPE_ID ID of pipe object

pipeOptions I2O_PIPE_OPTIONS Pipe options (see Table 5-65)

pri I2O_PIPE_PRI Message queuing priority:
I2O_PIPE_PRI_NORMAL = queue message at tail
of pipe queue
I2O_PIPE_PRI_URGENT = queue message at
head of pipe queue

timeout I2O_USECS Number of microseconds before canceling send or receive;
I2O_NO_WAIT = immediate return if not available
I2O_WAIT_FOREVER = no timeout

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-91

Table 5-65 IRTOS Pipe Options

Value Description

I2O_PIPE_OPT_Q_PRIORITY Waiting threads queued in thread priority order

I2O_PIPE_OPT_Q_FIFO Waiting threads queued in FIFO order

5.4.20 IOP Information Functions
Two functions give DDMs configuration information about the IOP on which they are running.

Table 5-66 IOP Information Functions

Returns API Function Call Description

pConfigInfo i2oIopConfigGet () Get pointer to IOP configuration information

isLocal i2oIopTidIsLocal (tid, &status) Determine if TID is local

Parameter Type Description

&status I2O_STATUS * Variable to receive error code

isLocal BOOL TRUE if TID is on this IOP, FALSE otherwise

pConfigInfo I2O_IOP_CONFIG_INFO * Pointer to configuration info for this IOP

tid I2O_TID TID to test

Table 5-67 IOP Configuration Info Structure

Member Type Description

configInfoSize I2O_SIZE Length of configuration info structure

i2oVersion I2O_COUNT I2O version supported by this IOP

iopFlags I2O_IOP_CONFIG_FLAGS 32-bit/64-bit mode

inboundFrameSize I2O_SIZE Size of message frames on this IOP

sysPageSize I2O_SIZE Size of pages on this I2O segment

bitBucketAddr I2O_ADDR32 Address of a bit bucket

bitBucketSize I2O_SIZE Size of bit bucket

The function i2oIopConfigGet() returns a pointer to a static structure defining various
configuration constants for the IOP. The IOP configuration information contains:

configInfoSize The total number of bytes in the configuration information structure.

i2oVersion The version number of the I2O specification supported by this IOP

iopFlags Bit-specific fields that indicate the IOP’s current modes and capabilities.

Bits 1,0; ContextFieldSizeCapability

0,0 Supports only 32-bit context fields.

0,1 Supports only 64-bit context fields.

1,0 Supports 32-bit & 64-bit context fields, but not
concurrently.

1,1 Supports 32-bit & 64-bit context fields concurrently.

Intelligent I/O Architecture Specification

5-92 Draft Version 1.5d March 7, 1997

Bits 3,2; CurrentContextFieldSize

0,0 not configured.

0,1 32-bit context fields only.

1,0 64-bit context fields only.

1,1 both 32-bit or 64-bit context fields concurrently.

inboundFrameSize The size in bytes of this IOP’s inbound message frames.

sysPageSize The size in bytes of pages on this I2O segment.

bitBucketAddr The address of a bit bucket buffer where any DDM can send unneeded
data. For example, this buffer can be the destination for DMA or external
bus mastered transfers when it is necessary or more efficient to transfer
and discard data. In general, the IRTOS supplies a bit bucket the size of
one host page (sysPageSize bytes), but it may be smaller if the host page
size is inappropriate. The actual size is specified by the bitBucketSize
field. However, if this address is NULL, then the IRTOS is not supplying a
bit bucket. A DDM must allocate its own, or use an algorithm not
requiring a bit bucket.

bitBucketSize The size in bytes of the bit bucket described above.

The i2oIopTidIsLocal() function returns TRUE if the specified TID is on the same IOP as the
caller, and FALSE otherwise. This may be used by DDMs that want to optimize algorithms
differently for local versus remote targets.

5.4.21 ANSI C Library
The ANSI Standard C Library (ANSI X3.159) is intended to provide a standard base of
commonly-used C functions. Many C programmers know these functions and use them
routinely in programs. To help develop I2O DDMs and other IOP software, and to increase the
portability of code to and from the IOP, the IRTOS API includes the functions from the ANSI
C library that pertain to developing IOP software. IOP software developers can rely on these
functions for any DDM loaded into an IOP that complies with the I2O core specification.

Some ANSI C functions are not re-entrant in a multithreaded environment, because they return
pointers to strings or structures that are often implemented as static or global buffers (e.g.
div()). In these cases, the proposed POSIX 1003.1b specification provides alternate functions
that are re-entrant. These functions require the caller to pass the buffer or structure in which
the result is returned. These functions receive the same name as the ANSI functions with _r
appended (e.g. div_r()). Because the IRTOS environment is multithreaded, the re-entrant
POSIX functions are provided, but the original ANSI functions are not.

Below are the ANSI C functions included in and excluded from the I2O API.

I2O Core Specification

Draft Version 1.5d March 7, 1997 5-93

Table 5-68 ANSI Standard C Functions Included in IRTOS

Standard Category Returns Function Description

ansi stdio len sprintf (buf, fmt, args…) Format a string to a buffer

ansi stdio count sscanf (buf, fmt, args…) Scan values from string in a
buffer

ansi stdlib int abs (value) Compute absolute value of int

posix stdlib void div_r (numer, denom,
&divStruct)

Quotient and remainder of int

ansi stdlib long labs (value) Compute absolute value of long

posix stdlib void ldiv_r (numer, denom,
&divStruct)

Quotient and remainder of long

ansi stdlib int rand () Generate pseudo-random integer

ansi stdlib void srand (seed) Set the seed for rand()

ansi string ptr memchr (buf, chr, len) Search buffer for char

ansi string int memcmp (p1, p2, len) Compare two buffers

ansi string ptr memcpy (pDest, pSrc, len) Copy a buffer to a non-
overlapping buffer

ansi string ptr memmove (pDest, pSrc, len) Copy a buffer to a possibly
overlapping buffer

ansi string ptr memset (buf, chr, len) Fill a buffer

ansi string ptr strcat (dest, append) Concatenate strings

ansi string ptr strchr (str, chr) Find first occurrence of char

ansi string int strcmp (str1, str2) Compare strings

Table 5-68 ANSI Standard C Functions Included in IRTOS (continued)

Standard Category Returns Function Description

ansi string ptr strcpy (dest, src) Copy strings

ansi string length strcspn (str, chrset) Find length to next character in
set

ansi string length strlen (str) Get length of string

ansi string ptr strncat (dest, append) Concatenate strings with limit

ansi string int strncmp (str1, str2) Compare strings with limit

ansi string ptr strncpy (dest, src) Copy strings with limit

ansi string ptr strpbrk (str, chrset) Find first occurrence of char set

ansi string ptr strrchr (str, chr) Find last occurrence of char

ansi string length strspn (str, chrset) Find length to next char not in set

ansi string ptr strstr (str, substr) Find occurrence of substring

Table 5-69 ANSI Standard C Functions Not Included in IRTOS

abort

acos

asctime

asctime_r

asin

atan

atan2

atexit

atod

atoi

atol

bsearch

calloc

ceil

clearerr

clock

cos

cosh

Intelligent I/O Architecture Specification

5-94 Draft Version 1.5d March 7, 1997

ctime

ctime_r

difftime

div

exit

exp

fabs

fclose

fdopen

feof

ferror

fflush

fgetc

fgetpos

fgets

fileno

floor

fmod

fopen

fprintf

fputc

fputs

fread

free

freopen

frexp

fscanf

fseek

fsetpos

ftell

fwrite

getc

getchar

getenv

gets

gmtime

gmtime_r

isalnum

isalpha

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

ldexp

ldiv

localeconv

localtime

localtime_r

log

log10

longjmp

malloc

mblen

mbstowcs

mbtowc

mktime

modf

perror

pow

printf

putc

putchar

puts

qsort

raise

realloc

remove

rename

rewind

scanf

setbuf

setjmp

setlocale

setvbuf

signal

sin

sinh

sqrt

strcoll

strerror

strerror_r

strftime

strtok

strtok_r

strtol

strtoul

strxfrm

system

tan

tanh

time

tmpfile

tmpnam

tolower

toupper

ungetc

va_arg

va_end

va_start

vfprintf

vprintf

vsprintf

wcstombs

wctomb

I2O Core Specification

Draft Version 1.1 March 7, 1997 5-95

5.4.22 64-Bit Integer Arithmetic
The IRTOS API includes 64-bit integer arithmetic functions.

5.4.23 Floating Point Arithmetic
IRTOS does not support floating point arithmetic. IOP CPUs are not required to provide floating
point instructions and the IRTOS environment is not required to emulate floating point. Therefore,
depending on the compiler and the specific IOP platform, any floating point numbers or functions
in a DDM can cause either a load error when the DDM downloads to the IOP, or a program
exception at run time.

5.4.24 Configuration Support
A DDM must support device management and configuration mechanisms defined in Chapter 3 -
Managing I2O Devices via the UtilParamsGet, UtilParamsSet and UtilConfigDialog messages. The
IRTOS provides the following functions to automate processing of these messages. These functions
simplify the implementation of a DDM’s configuration support.

Table 5-70 Configuration Functions

Returns API Function Call Description

void i2oCfgParamMsgReply (devId, context, &msg,
numGroups, &groupArray,
&eventClients, &status)

Process a UtilParamsGet or
UtilParamsSet message and issue a
reply message.

void i2oCfgDialogMsgReply (devId, context,
setNumber, &msg, numGroups,
&groupArray, &eventClients,
&status)

Process a UtilConfigDialog message
and issue a reply message.

Parameter Type Description

devId I2O_DEV_ID Device ID of caller.

context I2O_OBJ_CONTEXT User context value.

setNumber I2O_COUNT Set number from which TCL scripts should be read
(see 5.3.3.2, Module Script Table).

&msg I2O_MESSAGE_FRAME* Pointer to UtilConfigDialog, UtilParamsGet or
UtilParamsSet message frame.

numGroups I2O_COUNT Count of parameter groups defined in
&groupArray.

&groupArray I2O_PARAMS_GROUP_DEF* Pointer to array of parameter group definitions (see
5.4.24.1 Group Declarations)

&eventClients I2O_EVENT_CLIENT_LIST* Pointer to a list of clients currently registered for
event notification (5.4.24.2).

&status I2O_STATUS * Variable to receive error code.

Intelligent I/O Architecture Specification

96 Draft Version 1.1 March 7, 199

A DDM must not make any accesses to a message frame once it has passed that frame via the
i2oCfgParamMsgReply() or i2oCfgDialogMsgReply() function. IRTOS frees the frame once it
completes processing.

Processing of UtilParamsGet, UtilParamsSet and UtilConfigDialog messages generally involve several
DMA transfers. Calls to i2oCfgParamMsgReply() or i2oCfgDialogMsgReply() typically return before
processing completes. Completion of the operation continues in the background transparent to the
DDM as DMA transfers complete.

In order to utilize these IRTOS configuration functions, a DDM must define its configuration data
using the standardized data structures described in the following sections.

5.4.24.1 Group Declarations
The DDM identifies its parameter groups in an array, with each structure in the array providing the
declaration of a parameter group. Each parameter group declaration provides an array of field
declarations with each structure in the field array providing the declaration of a field. Figure 5-30
illustrates this hierarchy. The DDM passes a pointer to the group array in the
i2oCfgParamMsgReply() and i2oCfgDialogMsgReply() function calls.

GrNum/NumFields/&FieldArray/Null/Null

&groupArray

GrNum/NumFields/&FieldArray/pGetKey/pClear

GrNum/NumFields/&FieldArray/pGetKey/pClear

pGetFunc/pSetFunc/Size/userFieldId

pGetFunc/pSetFunc/Size/userFieldId

pGetFunc/pSetFunc/Size/userFieldId

GetFunc
SetFunc

GetFunc
SetFunc

Field Array
(Scalar Group Declaration)
Defines all fields for a group

GetFunc
SetFunc

pGetFunc/pSetFunc/Size/userFieldId

pGetFunc/pSetFunc/Size/userFieldId

pAddFunc/pDelFunc/Size/userFieldId

GetKeyFunc ClearTableFunc

DelFunc
AddFunc
GetFunc
SetFunc

GetFunc
SetFunc

Field Array
(Table Group Declaration)
Defines all fields for a group

pGetFunc/pSetFunc/Size/userFieldId

pGetFunc/pSetFunc/Size/userFieldId

pAddFunc/pDelFunc/Size/userFieldId

GetKeyFunc ClearTableFunc

DelFunc
AddFunc
GetFunc
SetFunc

GetFunc
SetFunc

Field Array
(Table Group Declaration)

Group Array
Defines all groups for the TID

First Group

Last Group

Second Group

Figure 5-30. Hierarchy of Parameter Group Declaration

The Group Array contains a number of structures defined in Table 5-71.

I2O Core Specification

Draft Version 1.1 March 7, 1997 5-97

Table 5-71 Parameter Group Declartion Structure

Member Type Description

groupNumber U16 16-bit identifier for the group.

FieldCount U16 Number of fields in the group (number of entries
in fieldArray).

FieldArray I2O_PARAMS_FIELD_DEF * An array defining the fields of the group (see
5.4.24.1.1.1and 5.4.24.1.1.2).

getKeysFunction I2O_PARAMS_GET_KEYS_FUNC Pointer to function that obtains key field values
for rows currently in the group (see 5.4.24.1.2).

clearFunction I2O_PARAMS_CLEAR_FUNC Pointer to function that deletes all rows from the
group (see 5.4.24.1.3).

A typical parameter group array definition might be:

I2O_PARAMS_GROUP_DEF parameterGroups [] =

{

{ 0x8001, 5, group8001FieldArray, getKeysFunc0, clearFunc0 },

{ 0x8002, 1, group8002FieldArray, getKeysFunc1, clearFunc1 },

{ 0x8003, 2, group8003FieldArray, getKeysFunc2, clearFunc2 },

…

 };

The getKeysFunction and clearFunction members, described in the following sections, are only
meaningful to table groups. Scalar groups must define both these members as NULL. For table
groups, the getKeysFunction must be implemented as described below. The clearFunction can be
defined as NULL if the table group cannot be cleared via the configuration interface.

5.4.24.1.1 Field Array

The DDM specifies the fields of each parameter group as an array of field declarations. The DDM
specifies each field within a group in terms of get and set functions, rather than any actual data
storage location.

The field array is a set of field declarations structures based on the structure specified in Table 5-72.

Table 5-72 Basic Field Declaration Structure

Member Type Description

pSetFunction I2O_PARAMS_FIELD_ACCESS_FUNC Pointer to function that writes field value

pGetFunction I2O_PARAMS_FIELD_ACCESS_FUNC Pointer to function that reads field value

fieldSize I2O_COUNT Field size in bytes

userFieldId U32 Arbitrary value associated with field.

The pSetFunction and pGetFunction components identify the functions provided by the DDM that
the IRTOS calls when it access the field. The IRTOS passes the field’s userFieldId value as an

Intelligent I/O Architecture Specification

98 Draft Version 1.1 March 7, 199

argument to the set or get function. The DDM can use the userFieldId in various ways. It allows a
single function to serve as the set or get function for several fields.

5.4.24.1.1.1 Scalar Group Field Array

The DDM specifies a scalar group as an array of basic field declarations. A typical scalar group
definition might be:

I2O_PARAMS_FIELD_DEF scalarGroup [] =

 {

 { pSetFunction0, pGetFunction0, fieldSize0, userFieldId0 },

 { pSetFunction1, pGetFunction1, fieldSize1, userFieldId1 },

 …

 };

Defining a field’s pSetFunction as NULL indicates that the field is read-only. Similarly, defining a
field’s pGetFunction as NULL indicates that the field is write-only.

5.4.24.1.1.2 Table Group Field Array

Table groups typically contain multiple rows, holding multiple instances of the same field data. The
first field in a table group is the key field, and has the property that it uniquely identifies a specific
row in the table, in a way that does not change over time.

The get function for the key field is not needed since get functions for table groups require the key
field value as a parameter (see 5.4.24.1.1.3). Similarly, the set function for the key field is not
needed either since modifying a set function would change the identity of the row. Instead of get/set
functions, the DDM specifies add and delete row functions that manipulate rows in a table group.

The key field declaration structure described in Table 5-73 differs from other field declarations
since it specifies add and delete functions instead of get and set functions. The DDM specifies the
remaining fields in a table group using the basic field declaration structure.

Table 5-73 Key Field Declaration Structure

Member Type Description

pAddFunction I2O_PARAMS_FIELD_ACCESS_FUNC Pointer to function to add row to group.

pDelFunction I2O_PARAMS_FIELD_ACCESS_FUNC Pointer to function to delete row from
group.

fieldSize I2O_COUNT Key field size in bytes

userFieldId U32 Arbitrary constant associated with field.

The IRTOS passes the key field’s userFieldId value as an argument to the add or delete function.
The DDM might use this value to identify the particular table.

I2O Core Specification

Draft Version 1.1 March 7, 1997 5-99

A typical table group definition might be:

I2O_PARAMS_FIELD_DEF tableGroup [] =

 {

 { pAddFunction, pDelFunction, fieldSize0, userFieldId0 },

 { pSetFunction1, pGetFunction1, fieldSize1, userFieldId1 },

{ pSetFunction2, pGetFunction2, fieldSize2, userFieldId2 },

 …

 };

Defining pAddFunction as NULL indicates that the group does not support addition of rows via the
configuration interface. Similarly, defining pDelFunction as NULL indicates that the group does not
support deletion of rows via the configuration interface.

5.4.24.1.1.3 Field Get/Set Functions

The pSetFunction and pGetFunction members of a field declaration are pointers to functions with
the following definition:

U8 setGetFunction (I2O_OBJ_CONTEXT context, U32 userFieldId,

I2O_ADDR32 pKey, I2O_ADDR32 pValue);

where:

context is the value the DDM supplied in the i2oCfgParamMsgReply() or
i2oCfgDialogMsgReply() function. A DDM may use this value to distinguish the specific
parameter groups for a particular TID, since DDMs typically create an instance of a group for
each of its TIDs.

pKey is the address of a buffer containing a key value. For set/get operations on fields within
table groups, the key value identifies the row on which an operation is carried out. For scalar
groups the get and set functions must ignore the pKey parameter.

pValue is the address of a buffer containing or receiving the value of the field, and

userFieldId is the userFieldId value supplied in the field declaration,

The DDM can implement these functions in any way it sees fit. For example, the DDM may obtain
field values from data structures, compute them from other data, or obtain them from hardware
devices. Note that field declarations contain no type information; the get and set functions must
know a priori the appropriate type defined for a specific field.

Note that status is not returned via the standard IRTOS status pointer and error handling mechanism
because these are not IRTOS API functions. Instead, the DDM’s function returns an 8-bit status
value directly.

Intelligent I/O Architecture Specification

100 Draft Version 1.1 March 7, 199

Table 5-74 Field Get/Set Function Return Values

Value Description

I2O_PARAMS_STATUS_SUCCESS Operation completed successfully.

I2O_PARAMS_STATUS_SCALAR_ERROR Operation on a field in a scalar group failed for
an unspecified reason.

I2O_PARAMS_STATUS_TABLE_ERROR Operation on a field in a table group failed for
an unspecified reason.

I2O_PARAMS_STATUS_BAD_KEY_ABORT Operation on a field in a table group failed due
to a unrecognized key value being supplied.
The IRTOS should abort the current operation.

I2O_PARAMS_STATUS_BAD_KEY_CONTINUE Operation on a field in a table group failed due
to a unrecognized key value being supplied.
The IRTOS may continue the current operation
with further key values if desired.

5.4.24.1.1.4 Table Row Add/Delete Functions

The pAddFunction and pDelFunction members of a key field declaration are pointers to functions
with the following definition:

U8 addDelFunction (I2O_OBJ_CONTEXT context, U32 userFieldId,
I2O_ADDR32 pKey);

where:

context is the value the DDM supplies in the i2oCfgParamMsgReply() or
i2oCfgDialogMsgReply() call.

pKey is the address of a key value, and

userFieldId is the value supplied in the key field declaration,

The add function creates a new row with the specified key field. The DDM initializes all other
fields to reasonable default values. The delete function removes the row with the specified key from
the table.

Table 5-75 Row Add/Delete Function Return Values

Value Description

I2O_PARAMS_STATUS_SUCCESS Operation completed successfully.

I2O_PARAMS_STATUS_TABLE_ERROR Operation failed for an unspecified reason.

I2O_PARAMS_STATUS_BAD_KEY_ABORT Operation failed due to a bad key value being
supplied. The IRTOS should abort the current
operation.

I2O_PARAMS_STATUS_BAD_KEY_CONTINUE Operation failed due to a bad key value being
supplied. The IRTOS may continue the current
operation with further key values if desired.

I2O Core Specification

Draft Version 1.1 March 7, 1997 5-101

An add function should return a BAD_KEY status if the key value already exists. A delete function
should return a BAD_KEY status if the key value does not exist.

5.4.24.1.2 GetKeys Function

For scalar groups the pGetKeysFunction member of a group structure must be NULL. For table
groups the pGetKeysFunction member must not be NULL . This is a pointer to the function that
provides the IRTOS with a list of key field values from rows currently in the group. The function’s
design allows the IRTOS to make repeated calls, each obtaining successive subsets of the keys in
the group. The function has the following definition:

U8 getKeysFunction (I2O_OBJ_CONTEXT context, U16 groupNum,

I2O_ADDR32 pPrevKey, I2O_COUNT resultBufLen,

I2O_ADDR32 pResultBuf, U16 * pNumKeysReturned,

U16 * pNumKeysTotal);

where:

context is the value the DDM supplies in the i2oCfgParamMsgReply() or
i2oCfgDialogMsgReply() call. Since DDMs typically create an instance of a group for each of
its TIDs, a DDM may use this value to distinguish the specific TID whose parameter groups
are being accessed.

groupNum indicates the group from which the function obtains the key values.

pNumKeysTotal is the address where the function writes how many keys are currently present in
the group, that is, how many rows are in the group.

pNumKeysReturned is the address where the function writes how many key values have been
written into the result buffer.

pPrevKey is a pointer to a key value previously obtained via this function. If pPrevKey is
NULL, the function returns key values starting at the first row in the group. Otherwise it
should return keys starting from the row immediately after the row having the key specified
by pPrevKey. In the case that pPrevKey indicates the last row in the group, the function
should return successfully with pNumKeysReturned set to zero.

pResultBuf is a pointer to a buffer into which the function writes successive key values.

resultBufLen is the size of pResultBuf buffer. Key values should be written into pResultBuf

until it is filled.

Intelligent I/O Architecture Specification

102 Draft Version 1.1 March 7, 199

Table 5-76 GetKeysFunction Return Values

Value Description

I2O_PARAMS_STATUS_SUCCESS Operation completed successfully.

I2O_PARAMS_STATUS_TABLE_ERROR Operation failed for an unspecified reason.

I2O_PARAMS_STATUS_BAD_KEY_ABORT Operation failed due to an unrecognized key value
being supplied at pPrevKey. The current
operation should be aborted.

I2O_PARAMS_STATUS_BAD_KEY_CONTINUE Operation failed due to an unrecognized key value
being supplied at pPrevKey. The current
operation may be continued with further key values
if desired.

5.4.24.1.3 Table Clear Function

The pClearFunction member of a group declaration structure for scalar groups must be NULL. For
table groups the clear function is optional. If the table does not support the clear function the
pClearFunction value is set to NULL.. The clear function deletes all rows from the table. The
function has the following definition:

U8 clearFunction (I2O_OBJ_CONTEXT context, U16 groupNum);

where:

context is the value the DDM supplies in the i2oCfgParamMsgReply() or
i2oCfgDialogMsgReply() call. Since DDMs typically create multiple instances of a group for
each of its TIDs, a DDM may use this value to distinguish the specific TID whose table is
being cleared.

groupNum indicates the group to be cleared.

Table 5-77 GetKeysFunction Return Values

Value Description

I2O_PARAMS_STATUS_SUCCESS Operation completed successfully.

I2O_PARAMS_STATUS_TABLE_ERROR Operation failed for an unspecified reason.

5.4.24.2 Event Notification Support
Both the i2oCfgParamMsgReply() and i2oCfgDialogMsgReply() functions provide support for
automation of FIELD_MODIFIED event handling (see Chapter 6, UtilEventRegister message).
The &eventClients parameter provides the IRTOS with a list of clients that registered for event
notification. Should the IRTOS successfully change a parameter group field during the course of
message processing, the IRTOS issues UtilEventRegister reply messages to each client in the list
who registered for the FIELD_MODIFIED event. If this support is not desired, the DDM sets
&eventClients to NULL.

I2O Core Specification

Draft Version 1.1 March 7, 1997 5-ciii

The event client list pointed to by &eventClients has the following format:

Table 5-78 Event Client List Structure

Member Type Description

clientCount I2O_COUNT Number of clients in client array

reserved U32 Reserved

clientList I2O_EVENT_CLIENT_INFO[] Array of client information structures

The client information structure, I2O_EVENT_CLIENT_INFO has the following format:

Table 5-79 Event Client Info Structure

Member Type Description

TargetAddress I2O_TID Local DDM/Device TID

Initiator Address I2O_TID Event client TID

InitiatorContext U64 Client initiator context. If 32-bit context fields
are being used, the initiator context should
appear in the least significant four bytes of
this field.

Flags U32 Flags:

Bit 0: reserved

Bit 1: A 0 indicates 32-bit context field sizes,
in which case the most significant four bytes
of the context fields below are ignored.

A 1 indicates 64-bit context field sizes.

Bits 2-31: reserved

TransactionContext U64 Client transaction context. If 32-bit context
fields are being used, the transaction context
should appear in the least significant four
bytes of this field.

EventMask U32 Client event mask

Draft Version 1.5d March 7, 1997 6-1

6
Class Specifications

Each I/O class has a message-based interface designated by one of the message class
specifications. For each class, this includes messages and a protocol for replying to them. This
chapter defines each class and its messages.

6.1 General Requirements

Messages fall into three categories:

• utility messages common to all classes
• base class messages specific to one class
• private messages - not part of this specification

Every device must support utility messages and the base messages for its registered class. Section
6.1.3 defines the utility messages. Some utility messages contain fields that are class-specific.
Sections 6.2 through 6.10.7 provide that class-specific detail and define the base messages for each
class.

Section 6.1.2 provides generic requirements for replies. Each class defines additional detail based
on the reply templates in Chapter 3. For reply details specific to each class, refer to sections 6.2
through 6.10.

Unless otherwise specified, a DDM and its registered devices must support all utility and base
class messages for their registered class.

6.1.1 Class Codes
Each device is registered as a particular class and is assigned a TID. The class identifier (i.e.,
ClassID) identifies the class of messages that may be sent to that TID. The ClassID contains an
OrganizationID, a Version identifier, and a 12-bit ClassCode, as shown in the figure below.
Classes defined by this specification use the OrganizationID of 0000h and Version 1h.

31 3 24 23 2 16 15 1 8 7 0 0

OrganizationID (16 bits) Version ClassCode (12 bits)

Figure 6-1. Structure for ClassID

6.1.1.1 I2O Standard Class Codes
Table 6-1 gives the ClassCode assignments.

Intelligent I/O Architecture Specification

6-2 Draft Version 1.5d March 7, 1997

Table 6-1. Class Code Assignments

ClassCode Class Name (I2O_CLASS_xxx) Description

000h _EXECUTIVE Manages I/O platforms (e.g., system initialization, system
configuration, and peer-to-peer connection)

001h _DDM Manages the device drivers

010h _RANDOM_BLOCK_STORAGE Abstraction of a block storage device, such as a hard
disk drive or CD ROM drive.

011h _SEQUENTIAL_STORAGE Abstraction of a sequential storage device, such as a
tape drive

020h _LAN Abstraction of a local area network port, such as an
Ethernet or Token Ring controller

030h _WAN Abstraction of a wide area network port, such as an ATM
controller

040h _FIBRE_CHANNEL_PORT Abstraction of a Fibre Channel port, manages the port
itself (reserved)

041h _FIBRE_CHANNEL_PERIPHER
AL

Abstraction of a Fibre Channel connection, manages a
set of sessions between two fibre channel devices
(reserved)

051h _SCSI_PERIPHERAL Abstraction of a SCSI device

060h _ATE_PORT Manages the ATE controller

061h _ATE_PERIPHERAL Abstraction of an ATE device

070h _FLOPPY_CONTROLLER reserved - Manages the floppy disk controller

071h _FLOPPY_DEVICE reserved - Abstraction of a floppy disk device

080h _BUS_ADAPTER_PORT Manages an adapter’s port to a secondary bus

090h-09Fh _PEER_PEER Reserved for Peer-to-peer components

6.1.1.2 Private Message Classes
This specification supports private message classes. A private message class may be defined by
any member of the I2O SIG and allows new technology to take advantage of the I2O architecture in
a proprietary manner. A message class is a formal interface describing the messages that can be
sent to the interface and the replies that will return. A private message class must meet all of the
generic requirements specified in chapter 3 and in section 6.1, including utility messages.

The I2O SIG assigns each member organization an OrganizationID which it specifies in the
ClassID portion of its private class ID (shown in Figure 6-1). The member organization
administers the ClassCode. A DDM that supports that class simply registers one or more devices
with that private Class ID.

6.1.1.3 Sub Class Information
Unless specified otherwise, the SubClassInfo field in the Logical Configuration Table shall be the
value returned in Parameter Group 0000h, Field 0.

Class Specifications

Draft Version 1.5d March 7, 1997 6-3

6.1.2 Replies to Request Messages
Reply messages are identified by the REPLY bit in the message header’s MessageFlags field.
Replies fall into two categories: failed messages and processed messages. Failed messages cannot
be processed. They include messages that cannot be delivered, or contain invalid or missing data.
Failed messages pertain only to message processing and do not include transactions that fail due to
error conditions within the DDM or its hardware. The reply for a failed message is independent of
the message class or its function and is specified in section 6.1.2.1.

Note: If the IOP cannot deliver a request to the DDM, due to a system state change, system
reconfiguration, or suspended DDM, the IOP returns that message via the
FaultNotification reply, per section 6.1.2.1. For this case, the IOP sets the FAIL bit in the
MessageFlags field. The DDM never sets the FAIL bit in the MessageFlags field. If
the DDM receives a request with an unknown Function code or an ill-formed message,
it replies with a Transaction Error Reply Message as specified in Chapter 3.
Otherwise, the DDM indicates the generic message status in the ReqStatus field and
provides a detailed status code in the DetailedStatusCode field.

The term normal reply denotes a reply to a request that the target successfully processed (i.e. not a
Transaction Error). Normal replies do not have the FAIL bit set in the MessageFlags field. A
normal reply depends on both the message class and function. To standardize the normal reply
format across classes, this specification defines two default reply templates:

1. for single transactions -- a single reply acknowledging a single transaction

2. for multiple transactions -- a single reply acknowledging multiple transactions from multiple
messages

Each class specification defines by Function whether a DDM replies with a single or multiple
transaction reply message.

Chapter 3 provides the reply templates for single and multiple transaction messages. All reply
structures are based on these default templates. Generally, each class defines a default reply based
on these templates. The definition of each request Function either specifies a unique reply payload
structure, or indicates that the default structure is used.

The Detailed Status Codes for the Executive Class, DDM Class, Utility Class and Transaction
Error replies are specified in Chapter 3. Otherwise each message class defines its own class
specific codes.

6.1.2.1 Message Failure Reply
Messages fail when the message layer cannot deliver the message. A DDM’s inability to perform
the request is an error, not a message failure.

Two mechanisms convey a message’s failure to its sender. When a request cannot be delivered,
the message layer returns a generic FaultNotification reply to the initiator of the failed request
message, as specified in Chapter 3. When a reply cannot be delivered, there is no mechanism to
reply to a failed reply, so the failing module creates and sends an UtilReplyFaultNotify request
message (as specified in section 6.1.3.14) to the sender.

Intelligent I/O Architecture Specification

6-4 Draft Version 1.5d March 7, 1997

6.1.2.2 Normal Replies
Chapter 3 provides the templates for a normal reply. A normal reply is a message with the
REPLY bit set and the FAIL bit reset (see MessageFlags field in Chapter 3). The class
definitions in this chapter specify message functions, the reply template, and class-specific fields
for the reply.

6.1.3 Utility Messages
Request messages are divided into two major groups: utility messages and base messages. Utility
messages are common across class drivers, and their support is mandatory. This section defines
the utility messages. Function code assignments for utility messages are specified in Table 6-2.

Table 6-2. Utility Message Function Codes

Function Name Description

UtilNOP Do nothing

UtilAbort Abort previous transaction(s)

UtilClaim Request use of the device

UtilClaimRelease Release claim

UtilConfigDialog Perform a configuration dialogue

UtilDeviceRelease Release ownership of a device

UtilDeviceReserve Acquire ownership of a device

UtilEventAck Acknowledge an event

UtilEventRegister Turn on/off event notification

UtilLock Request temporary exclusive control of device

UtilLockRelease Release lock

UtilParamsGet Read device parameters

UtilParamsSet Set device parameters

UtilReplyFaultNotify Notify module of transport failure of a reply message it generated

All utility messages are single-transaction messages. Typically, the MessageFlags field for
requests should be set to 00h (for 32-bit context size) or 02h (for 64-bit context size). For a normal
reply, the MessageFlags field should contain C0h (for 32-bit context size) or C2h (for 64-bit
context size). Since some requests provide an SGL, the value of the VersionOffset field depends
on the location of the SGL. Since all utility replies are single transaction replies, the
VersionOffset field should be set to 01h for all replies.

6.1.3.1 Abort Message
The UtilAbort function causes the device to abort all transactions from the initiator with a Function
matching FunctionToAbort and TransactionContext matching TransactionContextToAbort.

Class Specifications

Draft Version 1.5d March 7, 1997 6-5

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilAbort InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

FunctionToAbort AbortType reserved 16 (24)

TransactionContextToAbort 20 (28)

offset values for 64-bit context field size in ()

Figure 6-2. UtilAbort Request Message

Fields

AbortType Value Description

00h EXACT_ABORT - Abort any transactions from this initiator
that have a Function code matching the FunctionToAbort and
a TransactionContext matching Transaction ContextToAbort.

01h FUNCTION_ABORT - Abort any transactions from this
initiator that have a function code matching the
FunctionToAbort (any TransactionContext).

02h TRANSACTION_ABORT - Abort any transactions from this
initiator that have a TransactionContext matching
TransactionContextToAbort (any Function code).

03h WILD_ABORT - Abort all transactions from this initiator (any
function, and any Transaction Context).

04h CLEAN_EXACT_ABORT - Abort only messages from this
initiator that have a Function code matching the
FunctionToAbort, and a TransactionContext matching
TransactionContextToAbort that have not started any data
transfer (Clean Abort).

05h CLEAN_FUNCTION_ABORT - Abort any messages from this
initiator that have a Function code matching the
FunctionToAbort (any TransactionContext) that have not
started any data transfer (Clean Abort).

06h CLEAN_TRANSACTION_ABORT - Abort any messages from
this initiator that have a TransactionContext matching
TransactionContextToAbort (any Function code) that have
not started any data transfer (Clean Abort).

07h CLEAN_WILD_ABORT - Abort all messages from this
initiator (any Function, and TransactionContext) that have
not started any data transfer (Clean Abort)

FunctionToAbort Value to match with message Function field.

Intelligent I/O Architecture Specification

6-6 Draft Version 1.5d March 7, 1997

TransactionContextToAbort Value to match with TransactionContext field. The field is the
same as the size as TransactionContext fields.

The reply contains the count of transactions aborted (which may be zero). The target must reply to
all aborted transactions before replying to the UtilAbort request. The UtilAbort reply always
indicates success and has the FINAL bit set. If no matches are found, the
CountOfAbortedMessages is set to zero. The Clean Abort command aborts messages in the input
queue and does not affect transactions being executed.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilAbort InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

CountOfAbortedMessages 16 (24)

offset values for 64-bit context field size in ()

Figure 6-3. UtilAbort Reply Message

The target must reply to each aborted transaction. This may be a batch reply, if the class definition
so allows. The reply status code of STATUS_CODE_ ABORT_NO_DATA_TRANSFER and
STATUS_CODE_ ABORT_PARTIAL_TRANSFER signifies that the abort succeeded and that the buffers
will not be accessed again for that transaction. In this case, the FINAL bit is set to 1. If the DDM
attempts an abort, but cannot ascertain its status (e.g., the hardware does not respond) or cannot
guarantee that the buffers will not be accessed, then the DDM returns a
STATUS_CODE_ABORT_DIRTY status to the respective transaction and the FINAL bit is not set. The
CountOfAborted messages includes all transactions returned with a status of
STATUS_CODE_ABORT_NO_DATA_TRANSFER, STATUS_CODE_ ABORT_PARTIAL_TRANSFER, or
STATUS_CODE_ABORT_DIRTY.

By definition, all transactions aborted by a Clean Abort have a reply status of
STATUS_CODE_ABORT_NO_DATA_TRANSFER. Note that Clean Abort is not the exact opposite of
Dirty Abort. Rather, Clean Abort cancels a transaction only if no data has transferred, while Dirty
Abort means that the conclusion of the abort is not known due to some failure.

6.1.3.2 Claim Message
The UtilClaim request notifies the target that the initiator asks to use its base class functions. The
normal reply to this request is a default single-transaction reply with no ReplyPayload. A
successful reply indicates that the target will accept base class messages from the initiator.

The potential user identifies the type of control it requires as follows:

Primary User: In the simple model an OSM is the primary user, and in the stacked driver model
an ISM is the primary user. The primary user establishes executive control over the device and
thus there can only be one primary user. Three other user classifications allow for multiple hosts
(clustered operation), peer-to-peer, and management.

Management User: Generally management agents do not claim devices unless they desire to
change parameters. A conflict arises if both a management agent and the primary user set the

Class Specifications

Draft Version 1.5d March 7, 1997 6-7

same parameter. Each class definition identifies which parameters may be modified by a
management user. Unless specifically stated, the management user does not modify parameters.
In addition to managed objects, there are certain base class messages that also cause a conflict with
the primary user. To allow flexibility, this specification does not provide specific requirements for
base class messages and allows each message class to specify its own requirements. Note that
many class definitions are in their infancy and do not particularly address active management.

Authorized User: The primary user may wish to authorize additional users allowing them to send
base class messages and modify parameters. The extent of control that an authorized user
possesses is privately defined by the primary user. How the primary user determines authorized
users is private and outside the scope of this specification. The device being claimed assumes that
an authorized user has the same rights as the primary user. Authorized users are affirmed by the
primary user. The authorized user category gives the primary user explicit control over which
devices can access the services of the claimed device. The authorized user category is useful for
clustered environments, redundant hosts, and for peer-to-peer.

Secondary User: The primary user may not wish to expressly authorize each additional user and
therefore enables the claimed device for secondary service. Unless otherwise prohibited, a
secondary user may send any base class messages but does not modify operational parameters.
Operation of secondary users should be transparent to the primary service. The secondary user
category is useful for peer-to-peer operation.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilClaim InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

ClaimType reserved ClaimFlags 16 (24)

offset values for 64-bit context field size in ()

Figure 6-4. UtilClaim Request Message

Fields

ClaimFlags Each bit of this field represents a different claim attribute. The only bits defined
are:

Bit 0 = Exclusive − reserved. Bits 4 and 5 replace this bit definition.

Bit 1 = ResetSensitive − setting this bit indicates that the initiator needs to
synchronize with any resets to the device. For such a reset, the target
rejects any further base class requests from the initiator until an
appropriate UtilEventAck message is received. As an example, when a
SCSI bus reset is performed, all SCSI peripheral devices on that bus are
reset, and each device generates a DEVICE_RESET event to its users and
rejects further messages until the reset is acknowledged.

Intelligent I/O Architecture Specification

6-8 Draft Version 1.5d March 7, 1997

Bit 2 = StateSensitive – setting this bit indicates that the initiator needs to
synchronize with any state changes of the device (such as media or
volume change of a storage device). If such a change occurs, the device
rejects any further base class requests from the initiator until an
appropriate UtilEventAck message is received.

Bit 3 = CapacitySensitive – setting this bit indicates that the initiator needs
to synchronize with any capacity changes of the device. If such a change
occurs, the device rejects any further base class requests from the
initiator until it receives an appropriate UtilEventAck message.

Bit 4 Peer Service Class Disabled: The target rejects UtilClaim requests from
secondary users when this bit is set. If a secondary user already claimed
the device, then the target rejects this request. This bit is only
meaningful in the UtilClaim request from the primary user. If target
rejects the request because a secondary user already exists, the initiator
might consider the ExecDeviceRelease message.

Bit 5 Management Service Class Disabled: The target rejects subsequent
UtilClaim messages from management users when this bit is set. If a
management user has already claimed the device, then the target rejects
this request. This bit is only meaningful in the UtilClaim request from the
primary user. If the target rejects the request because a management user
already exists, the initiator might consider the ExecDeviceRelease
message.

ClaimType A value that represents the intent of the claiming entity:

PRIMARY_USER: A device may have only one primary user. If a UtilClaim
request indicates a primary user and another user already claimed this
device as a primary user, then the target rejects the request. If it accepts
the request, it rejects subsequent UtilClaim requests indicating a primary
user, until the primary user sends a UtilClaimRelease message.

AUTHORIZED_USER: The primary user authorizes alternate users using the
UtilParamsSet utility message (Group F006h - Authorized User Table).
When a received UtilClaim request indicates an authorized user, the
target verifies that the initiator is authorized. If not, the target rejects the
request.

SECONDARY_USER: The target rejects a UtilClaim request from a secondary
user if the primary user disabled peer service class.

MANAGEMENT_USER: The target rejects a UtilClaim request from a
management user if the primary user disabled management service class.

Note

Because all OSMs use the same TID (001h), a DDM cannot differentiate between OSMs. Once a DDM
accepts a UtilClaim request from a primary user, it rejects all UtilClaim requests indicating a primary
user, even if they are from the same TID as the first. The OS is responsible for any correlation between
OSMs that need to share a resource.

Class Specifications

Draft Version 1.5d March 7, 1997 6-9

6.1.3.3 Claim Release Message
The UtilClaimRelease function notifies the target that the initiator releases its claim. The normal
reply to this request is a single transaction reply with no ReplyPayload.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilClaimRelease InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

ClaimType reserved ReleaseFlags 16 (24)

offset values for 64-bit context field size in ()

Figure 6-5. UtilClaimRelease Request Message

Fields

ClaimType A value that identifies the user type being released (see UtilClaim request).

ReleaseFlags Each bit of this field represents a different release attribute. The only bit defined
is:

Bit 0 = Conditional − May only be set by the primary user. When this bit is
set, the DDM retains the Authorized User List and rejects a primary
claim unless it is from a TID specified in the list. If the primary user
does not set this bit in its release, then the target clears the authorized list
and may reject base class messages from any authorized user. When the
primary user releases the claim, the target assumes that all authorized
users are aware.

Note

Because all OSMs use the same TID (001h), a DDM cannot differentiate between OSMs. A DDM accepts
a UtilClaimRelease without verification. An OSM or ISM must not send a UtilClaimRelease unless it sent
the UtilClaim.

6.1.3.4 Configuration Dialogue Message
The UtilConfigDialog request in Figure 6-6 starts or continues a configuration session with the
target. The SGL identifies the buffer where the target deposits its configuration template and
supplies any data from the operator. The reply to this request is a single transaction reply with no
ReplyPayload.

Intelligent I/O Architecture Specification

6-10 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

UtilConfigDialog InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

PageNumber 16 (24)

SGL 20 (28)

offset values for 64-bit context field size in ()

Figure 6-6. UtilConfigDialog Request Message

Fields

PageNumber The host side service extracts the PageNumber from the HTML GET. Page 0 is
the device’s home page and all other page numbers result from links in the pages
displayed by the device.

SGL The SGL specifies one or two buffers. The first buffer contains the target’s
HTML text for the next screen. The second buffer, when present, contains the
HTML results from the previous display passed from the browser to the target
(the form data from an HTML POST). That text is in the form
field1=value1&field2=value2 and usually represents new values for selected
fields in selected groups.

VersionOffset A value of 51h for 32-bit context size, and 71h for 64-bit context size.

The normal reply to an UtilDialogGet message is a default reply with no ReplyPayload and the
ReqStatus field set to STATUS_CODE_SUCCESS. The reply buffer contains HTML text.

If an error occurs while processing the message, the ReqStatus field is set to
STATUS_CODE_ERROR_NO_DATA_TRANSFER or STATUS_CODE_ERROR_PARTIAL_TRANSFER and
the DetailedStatusCode field adds information about the nature of the error (see detailed status
codes in Chapter 3). In some cases, the HTML text in the reply buffer provides error information.

6.1.3.5 Device Release Message
The UtilDeviceRelease message releases the exclusive ownership of a device acquired via the
UtilDeviceReserve message. Only the primary user or an authorized user should send this message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilDeviceRelease InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64 bit context field size in ()

Figure 6-7. UtilDeviceRelease Request Message

Class Specifications

Draft Version 1.5d March 7, 1997 6-11

6.1.3.6 Device Reserve Message
The UtilDeviceReserve message directs the target to acquire exclusive ownership of a device using
the appropriate low level reservation protocol. This command is appropriate for devices that have
multiple paths (multiple DDMs, IOPs, or units controlling the same device).

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilDeviceReserve InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64 bit context field size in ()

Figure 6-8. UtilDeviceReserve Request Message

When this command is successful, then all users (see UtilClaim message) have access to the
device via base class messages. If the request fails, then no users have access. The following table
depicts the normal reply codes the target generates.

Table 6-3. Device Reserve Reply Codes

ReqStatus DetailedStatusCode Meaning

_SUCCESS _SUCCESS This driver acquired the device.

_SUCCESS _UNSUPPORTED_FUNCTION No low level reservation protocol defined
for this class or sub-class (such as for a
LAN port). This driver acquired the
device by default.

_ERROR_NO_DATA_TRANSFER _DEVICE__NOT_AVAILABLE Another driver already acquired the
device.

_ERROR_NO_DATA_TRANSFER _UNSUPPORTED_FUNCTION Device does not support the low level
reserve protocol.

_ERROR_NO_DATA_TRANSFER _INAPPROPRIATE_FUNCTION Not a valid request for this message class
(such as for Exec or DDM class).

For an ISM, the low level reservation protocol is:

1. The ISM issues a UtilDeviceReserve message to each device claimed by the target of the
original request.

2. The reply to the original request reflects the aggregate of the replies to the secondary requests.

Intelligent I/O Architecture Specification

6-12 Draft Version 1.5d March 7, 1997

6.1.3.7 Event Acknowledge Message
This request acknowledges an event and enables normal operation. This message is necessary only
for events that cause the device to synchronize with the user (see UtilClaim request message
ClaimFlags).

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilEventAck InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

EventIndicator 16 (24)

EventData

:

20 (28)

offset values for 64-bit context field size in ()

Figure 6-9. UtilEventAck Request Message

Fields

EventIndicator The EventIndicator field from the UtilEventRegister reply message.

EventData The EventData field from the UtilEventRegister reply.

The reply includes the information from the request as follows:

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilEventAck InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

EventIndicator 16 (20)

EventData

:

20 (28)

offset values for 64-bit context field size in ()

Figure 6-10. UtilEventAck Reply Message

6.1.3.8 Event Registration Message
This request turns event notification on and off. A variety of event categories exist, and this
message provides independent control of each category. UtilEventRegister enables and disables
events generic to all message classes as well as events specific to each class. The target does not
reply to this message until one of the enabled events occurs. The target generates an event reply
message for each enabled event (one reply per event instance per registered event) until the client
masks off that event. Initially, all events are masked until the client sends an UtilEventRegister
message.

Class Specifications

Draft Version 1.5d March 7, 1997 6-13

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilEventRegister InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

EventMask 16 (24)

offset values for 64-bit context field size in ()

Figure 6-11. UtilEventRegister Request Message

Fields

EventMask Each bit of this field represents a different category of events. If the bit is set,
the event reporting for that category is enabled. If the value is zero, event
reporting for that category is disabled. Bits 0–15 are defined by the specific
message class. The remaining bits are defined in Table 6-4.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilEventRegister InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

EventIndicator 16 (24)

EventData

:

20 (28)

offset values for 64-bit context field size in ()

Figure 6-12. UtilEventRegister Reply Message

Fields

EventIndicator A 32-bit enumerated value specifying the source of the event category that
triggered this event. Only one bit can be set, and its location corresponds to the
event category that triggered this event as described by Table 6-4.

EventData Information about the event. The structure of this field depends on the event
category specified by the EventIndicator, as described in Table 6-5 or by the
specific message class.

The target uses the InitiatorAddress plus the InitiatorContext and TransactionContext of
UtilEventRegister requests to correlate requests. This allows multiple OSMs to each register an
UtilEventRegister with the same device. A single OSM must use the same InitiatorContext and
TransactionContext for all UtilEventRegister requests.

Intelligent I/O Architecture Specification

6-14 Draft Version 1.5d March 7, 1997

Table 6-4. EventIndicator Assignments

Bit Event Name (I2O_EVENT_IND_xxx) Description

31 _STATE_CHANGE Reports changes in the driver’s state, which alters its
capability to perform I/O transactions.

30 _GENERAL_WARNING Reports warnings that eventually may cause the driver to
change state.

29 _CONFIGURATION_FLAG Configuration requested.

28 _ LOCK_RELEASE A lock that caused requests to be rejected has been released.
It is not necessary to send a message if no requests had been
rejected.

27 _CAPABILITY_CHANGE One or more capabilities has changed (e.g., Event Capability).

26 _DEVICE_RESET A device reset has occurred. Assume any programmed state
altered.

25 _EVENT_MASK_MODIFIED Causes a reply to this message (an acknowledgment).

24 _FIELD_MODIFIED Notifies users when a field is changed by a UtilParamsSet
request.

23 _VENDOR_EVENT Provides a dedicated event for vendor specific purposes.

22 _DEVICE_STATE Reports generic device state changes.

Class Specifications

Draft Version 1.5d March 7, 1997 6-15

Table 6-5. EventData for Generic Events

Event Name EventData

StateChange An 8-bit value as follows:

00h = Returned to normal operation
01h = Suspended/quiesced
02h = Reset/restarted
03h = I/O device/service not available – recovery expected
04h = I/O device/service not operational – recovery not expected
05h = Quiesce request received
10h = Failed – recovery expected
11h = Faulted – recovery not expected

GeneralWarning An 8-bit value as follows:

00h = Returned to normal operation
01h = Error threshold exceeded
02h = Media fault detected

ConfigFlag No data

LockRelease No data

CapabilityChange A bit map as follows:

Bit 0 = Category other than the following

Bit 1 = Event capability changed

DeviceReset No data

EventMaskMod New event mask

FieldMod GroupNumber, FieldIdx, and KeyValue (if applicable) of the modified field.

VendorUnique Content is specified by the user. Size of the event data up to the remainder of the
message frame.

DeviceState An 32-bit value as follows:

bit 0 Sensor state change

6.1.3.9 Lock Message
The UtilLock function notifies the target that the initiator temporarily requests exclusive use of its
base class functions. The normal reply to this request is a single transaction reply with no
ReplyPayload. A successful reply indicates that the initiator has exclusive rights until it sends a
UtilLockRelease message. The target either holds or rejects messages received by other initiators
until it receives the UtilLockRelease message. Also see the DeviceReserve message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilLock InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64-bit context field size in ()

Figure 6-13. UtilLock Request Message

Note

Intelligent I/O Architecture Specification

6-16 Draft Version 1.5d March 7, 1997

Because all OSMs use the same TID (001h), a DDM cannot differentiate between OSMs. Once a DDM
accepts an UtilLock, it accepts all messages from the reserving TID. The OS is responsible for any
correlation and locking between OSMs that need to share a resource.

I2O provides the UtilLock and UtilLockRelease messages for supporting devices with multiple paths
and users.

Note

Because these concepts are relatively new, many aspects of locking devices are purposely omitted in this
version of the document. These include how long a resource can remain locked, when a device is locked,
how long requests by other users are held before they are rejected, and how to recover from a dead
initiator.

OSMs and ISMs must only lock a resource for the minimum necessary time. To prevent deadlock,
the target uses the reply error code DEVICE_LOCKED to reject requests from other users. The
target should not reject messages unless the reserve and/or deferred request has exceeded a
reasonable time limit. The target also provides a LockRelease event to notify users that the lock
is released.

6.1.3.10 LockRelease Message
The UtilLockRelease function notifies the target that the initiator is releasing its reservation. The
normal reply to this request is a single transaction reply with no ReplyPayload.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilLockRelease InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64-bit context field size in ()

Figure 6-14. UtilLockRelease Request Message

Note

Because all OSMs use the same TID (001h), a DDM cannot differentiate between OSMs. A DDM accepts
a UtillockRelease without verification. An OSM or ISM must not send a UtilLockRelease unless it
successfully sent the UtilLock.

6.1.3.11 NOP Message
The UtilNOP function contains no payload and does not solicit a reply. TargetAddress and
InitiatorContext should be set to zero. MessageFlags should be set to Request, no_Fail. Upon
receiving a UtilNOPmessage, the IOP returns the message frame to the free list. A module that
receives a UtilNOP message releases the message and does not reply.

Class Specifications

Draft Version 1.5d March 7, 1997 6-17

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize=3 MessageFlags VersionOffset = 01h 0

UtilNOP InitiatorAddress TargetAddress 4

InitiatorContext 8

Figure 6-15. UtilNOP Request Message

6.1.3.12 ParamsGet Message
The UtilParamsGet message allows parameter values to be retrieved from device parameter groups.
The request consists of one or more query operations.

The UtilParamsGet request message contains a SGL specifying one or two buffers. The first buffer
contains read operations. The second buffer is a reply buffer where the target places the results of
those operations. If the SGL contains only one buffer, the target returns the results in the reply
payload.

Parameters are grouped in sets identified by a GroupNumber. Groups of generic parameters are
defined for all device classes and each message class defines additional parameter groups. The
initiator provides an operation list identifying which parameters of which groups the target will
return. The result is a list of those parameter values. The UtilParamsGet request message is shown
in Figure 6-16. The normal reply to the UtilParamsGet request is a single transaction reply with no
ReplyPayload if a reply buffer was specified. Otherwise, the reply is a single transaction reply
with the results listed in the ReplyPayload. The latter provides a low overhead mechanism for
reading a few parameter values.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

UtilParamsGet InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

OperationFlags 16 (24)

SGL

:

20 (28)

offset values for 64-bit context field size in ()

Figure 6-16. UtilParamsGet Request

Field

OperationFlags Reserved

SGL Provides one or two buffers. The first buffer contains the operation list (see
Chapter 3) that identifies which parameters are to be returned. If a second buffer
is present, the target places the results in it as described in Chapter 3. If the
second buffer is not present, then the target places results in the ReplyPayload.

Intelligent I/O Architecture Specification

6-18 Draft Version 1.5d March 7, 1997

VersionOffset A value of 51h for 32-bit context size and 71h for 64-bit context size.

In the absence of errors, the target sets the reply’s ReqStatus field to STATUS_CODE_SUCCESS,
and the reply buffer (or ReplyPayload) contains the result list in the format described in Chapter
3.

Some error conditions prevent the result information from being returned. Under such conditions,
the target sets the reply’s ReqStatus field to STATUS_CODE_ERROR_NO_DATA_TRANSFER. For
errors that allow partial completion, the target sets the reply’s ReqStatus field to
STATUS_CODE_ERROR_PARTIAL_TRANSFER. In either case the DetailedStatusCode field provides
additional information about the error. (See Chapter 3).

In addition to the status codes in the reply message, read operations return error information
identifying the source of the error.

6.1.3.13 ParamsSet Message
See UtilParamsGet message for more details. The UtilParamsSet message modifies the value of
parameters. The SGL of the UtilParamsSet request specifies one or two buffers. The first buffer
contains modify operations specifying the fields and their respective new values. The second
buffer is a reply buffer where the target places the results of those operations. If the SGL contains
only one buffer, the target returns the results in the ReplyPayload.

The initiator provides an operation list identifying which parameters of which groups the target
will modify along with the new values. The result is a status list. The UtilParamsSet request
message is shown in Figure 6-17. The normal reply to the UtilParamsSet request is a single
transaction reply with no ReplyPayload if a reply buffer was specified. Otherwise, the reply is a
single transaction reply with the results list in the ReplyPayload. The latter provides a low-
overhead mechanism for modifying a few parameter values.

The rules for error reports are the same as for the UtilParamsGet message. See Chapter 3 for
DetailedStatusCodes.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

UtilParamsSet InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

OperationFlags 16 (24)

SGL 20 (28)

offset values for 64-bit context field size in ()

Figure 6-17. UtilParamsSet Request Message

Fields

OperationFlags Reserved

SGL Provides one or two buffers. The first buffer contains the operation list (see
Chapter 3) that identifies the parameters to modify. If a second buffer is present,

Class Specifications

Draft Version 1.5d March 7, 1997 6-19

the target places the result in it as described in Chapter 3. If the second buffer is
not present, then the target places the results in the ReplyPayload.

VersionOffset A value of 51h for 32-bit context size and 71h for 64-bit context size.

6.1.3.14 Reply Message Failure Notification
This message is generated by the transport layer when a reply message cannot be delivered. This
message is never sent in response to a reply message with the FAIL bit set in the MessageFlags
field. There is no reply to this message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

UtilReplyFaultNotify InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext (null) 12 (16)

FailureCode Severity HighestVersion LowestVersion 16 (24)

FailingHostUnitID reserved FailingIOP_ID 20 (28)

AgeLimit 24 (32)

Original Message MFA (Low 32 bits) 28 (36)

Original Message MFA (High 32 bits) 32 (38)

offset values for 64-bit context field size in ()

Figure 6-18. UtilReplyFaultNotify Request Message

The message payload is identical to the payload described in the Fault Reply Message Structure
(see Chapter 3 and 6.1.2.1 Message Failure Reply). The differences are:

• This is a request message.
• The FAIL bit in the MessageFlags field is not set.
• InitiatorContext is any arbitrary value.

6.2 Executive Class

Executive class messages are defined in Chapter 4, I2O Shell Interface Specification.

6.3 Device Driver Class

Device driver class messages are defined in Chapter 5, I2O Core Specification.

6.4 Random Block Storage Class

6.4.1 Overview
A block storage device provides random access to a permanent storage medium. The DDM
registers a different BSA class device for each logical drive it provides. The client, typically an

Intelligent I/O Architecture Specification

6-20 Draft Version 1.5d March 7, 1997

OSM, performs block storage operations by sending requests to, and listening for replies from, a
BSA class device.

This section describes the I2O block storage abstraction model for block-oriented storage devices.
Storage devices in this class include: standard disk drives, CD-ROM drives, WORM drives, and
removable media devices, including devices managed by juke boxes. Tape devices and variable
block size devices have their own class definition separate from the block storage class. The I 2O
Block Storage Abstraction (BSA) layer is the primary interface host operating systems use to
access block storage devices.

OSD2147

IDE Controller IDE Device

IDE HDM

SCSI Controller SCSI Device

SCSI HDM

FC Controller SCSI Device

Fiber Channel HDM

Floppy Device SCSI Device

Mass Storage Abstraction

IDE Device

MSA

Embedded Kernel

I O Environment2

Figure 6-19. Block Storage Abstraction

6.4.2 Operational Model
The abstraction layer employs a request/reply model on top of the I 2O messaging interface. The
requester builds a request and sends it to the IOP, where the abstraction layer runs. In a monolithic
DDM, the request is handled internally and the reply is sent to the requester. This might happen

Class Specifications

Draft Version 1.5d March 7, 1997 6-21

with a SCSI device DDM that exposes not only a SCSI device class but also a block storage device
class. A stacked block storage class driver builds a new message targeted at the device’s actual
class driver, for example, the SCSI device class for SCSI devices. The new message is sent to the
lower-level class driver. A reply is eventually received from the lower-level class driver, which
replies to the original request, thus concluding the transaction.

The following sections describe basic operating principles for block storage class DDMs and its
client (typically an OSM). In general, the term device applies to the abstract interface produced by
the message class and DDM refers to the software providing that interface. The client sends
messages to that device by indicating the TID for that device in the message’s TargetAddress field.
The terms physical device and drive refer to the physical device or facility the DDM controls.
Behavior of the device includes the software as well as its physical device(s).

6.4.2.1 Transaction Ordering
Transaction ordering is the responsibility of the host. A DDM need only preserve request ordering
to the level specified in the OrderedRequestDepth parameter from OPERATIONAL_CTL group.
This parameter indicates the number of requests for which a DDM can maintain ordering. If the
OrderedRequestDepth is two and the client sends three requests, ordering is not guaranteed.
The client may try to change this parameter, but the DDM may not honor the request if it cannot
support its depth. The host determines the actual ordering depth supported by performing a Get
after setting this parameter.

If the client issues overlapping requests beyond the OrderedRequestDepth, they are not guaranteed
to occur in the order they arrived.

6.4.2.2 Clearing Error Conditions
In general, when a client receives an operation error, other than a timeout, it assumes that the
DDM attempted to clear the error condition and retried the request. (See Table 6-17,
OPERATIONAL_CONTROL, regarding retry counts.)

Besides retrying the request, the client can choose another method of recovery. As part of the
reply message, the DDM returns a detailed status code that supplies the failed status. The client
should try to recover through the interfaces provided by the block storage abstraction layer (i.e. the
Block Storage class). It should not bypass that layer by dealing with the underlying interfaces (e.g.,
SCSI Device or SCSI Controller classes).

For example, if the physical storage device is a SCSI drive, additional information can be obtained
via the TID of the corresponding SCSI device or the TID of its SCSI adapter.

Resetting the device: In general, the following behavior should be observed.

• A DDM does not, on its own, perform a reset that causes a loss of data to other devices, unless
those devices are not operating.

• When the DDM detects an error condition, it attempts to clear the condition and complete the
request in a non-destructive manner.

 Example: In the case of a SCSI Check Condition, the DDM performs the request-sense
sequence to clear the condition. If successful, a warning is reported back to the host as a
successful operation with retries.

Intelligent I/O Architecture Specification

6-22 Draft Version 1.5d March 7, 1997

• The last status information from an error condition is retained by the DDM for logging
purposes (see section 6.4.7 Get/Set Parameters group = Error_Log)

• Issues with device/bus specific behavior (e.g., freezing queues in SCSI) should be transparent
to the client. That is, the DDM must clear the condition and unfreeze the queue.

6.4.2.3 Timing Out Requests
Many block storage requests have some form of associated timeout. Timeout values are accessible
via a UtilParamsSet (GROUP=Operational_Control) request. Each request function has some
form of associated multiplier or formula to determine the timeout value, as stated in Table 6-6.
Some functions provide a TimeMultiplier in the message that multiplies the timeout for a
particular request. A TimeMultiplier of zero suspends the timeout for that transaction.

Table 6-6. Timeout Formula

Function Timeout Formula

BsaBlockRead TimeMultiplier x (RWVTimeoutBase + (RWVTimeout x size/64k))

BsaBlockReassign TimeMultiplier x timeout_Base

BsaBlockWrite TimeMultiplier x (RWVTimeoutBase + (RWVTimeout x size/64k))

BsaBlockWriteVerify TimeMultiplier x (RWVTimeoutBase + (RWVTimeout x size/64k))

BsaCacheFlush TimeMultiplier x timeout_Base

BsaDeviceReset TimeMultiplier x TimeoutBase

BsaMediaEject no specified timeout

BsaMediaFormat no specified timeout

BsaMediaLock no specified timeout

BsaMediaMount no specified timeout

BsaMediaUnlock no specified timeout

BsaMediaVerify TimeMultiplier x (RWVTimeoutBase + (RWVTimeout x size/64k))

BsaPowerMgt TimeMultiplier x PowerdownTimeout

BsaStatusCheck TimeoutBase uSec

Utility messages TimeoutBase uSec

If TimeMultiplier is zero, then do not timeout.

6.4.2.4 Reset Requests
When the host requests a reset from a block storage device, the following behavior should be
observed:

• A reset of a block storage device, either hard or soft, must not cause data loss to any other
device.
Example: In the case of SCSI-based devices, this means a reset of a device (i.e., SCSI device
reset) does not cause a SCSI bus reset, unless the reset avoids data loss for other devices (e.g.,
tapes with in-progress requests).

• A soft reset of a block storage device clears initiator requests.

Class Specifications

Draft Version 1.5d March 7, 1997 6-23

• A hard reset of a block storage device resets the device. All queued and outstanding requests
return to the initiator with a device reset error code. All initiators that need to re-establish non-
default operating parameters should indicate that in their UtilClaim request and request event
notification with the DeviceReset event enabled. When a hard reset occurs, the DDM replies
to the event notification request with the DeviceReset indicator set. For initiators that
register for ResetSensitivity, the DDM rejects I/O requests from that initiator until an
UtilEventAck request is received. For initiators that do not register for ResetSensitivity, the
DDM continues servicing requests immediately after the device is on-line.

• The host must escalate the reset. That is, if a hard reset to the mass storage TID does not clear
the condition, the host should reset the next device in the hierarchy. The host must locate and
reset the port or bus associated with the device. The host learns the hierarchy by the
UtilParamsGet messages (see section 6.4.7) and examines the logical configuration table
structures. A reset message sent to a TID for a bus controller clears the condition in a
hardware-specific manner.

Example: A soft reset of a SCSI adapter resets the SCSI bus or its interface. A DDM does not
issue a soft SCSI reset unless it will avoid data loss to another device.

A hard reset of a SCSI adapter resets the card itself. A DDM does not issue a hard SCSI
reset unless it can guarantee that doing so will avoid data loss to another device.

6.4.2.5 Event Sensitivity
In the UtilClaim request, the client indicates its sensitivity to particular events. This mechanism
protects the client against device resets, media mounts and dismounts. That is, in-flight requests --
messages sent after an event, but before the client acknowledges it -- must be rejected until state
can be reestablished.

When an event occurs to which the host is sensitive, the DDM rejects all requests, except for utility
requests, until an UtilEventAck is received. This lets the host reestablish state before it enables the
DDM to accept requests.

6.4.2.6 Managing Device State
All operational control for managing the state of media is performed through either the Get/Set
operations or the power management message.

An example initialization sequence from the host for a mass storage device is:

1. Obtain logical configuration table data

2. Identify

3. UtilEventRegister to enable event posting

4. UtilClaim to specify event sensitivity

5. Determine the state of the device from Get operations

6. Power up the device

Intelligent I/O Architecture Specification

6-24 Draft Version 1.5d March 7, 1997

6.4.2.7 Changing Hardware Specific Settings
The configuration dialogue changes hardware specific parameters, such as a SCSI configuration
(SCSI ID). The client is not involved in this type of activity.

Examples of configuration dialogue for SCSI include:

SetSyncData

 SyncOffset – offset in bytes

 SyncPeriod – Period of Synchronous, granularity is 4 ns

SetInitiatorID

 U8 InitiatorID – New initiator ID

... Response

SetAsync

 Async/Sync flag

SetQueuing

 Enable/Disable – for SCSI this is Tagging

SetDisconnect

 Don’tDisconnect

6.4.2.8 Devices With Special Capabilities
The Block Storage class model accommodates devices that support multiple hardware access paths
and dynamic capacity changes.

6.4.2.8.1 Devices Supporting Multiple Hardware Access Paths

Some devices, especially sophisticated storage subsystems, provide multiple hardware access paths
to the device for redundancy, load balancing, or sharing. The client determines this through a
UtilParamsGet request. The host OS must take the appropriate action (see UtilDeviceReserve
message).

6.4.2.8.2 Devices Capable of Dynamic Capacity Changes

The DDM registers capacity changes via event notification. This allows seamless, dynamic
additions to storage devices in the host. Dynamic capacity changes are not yet fully supported.
You can obtain this capability by combining configuration dialogue and capacity event
notification.

6.4.2.9 Device Statistics
The request to get or set operating parameters (UtilParamsGet or UtilParamsSet) defines groups for
controlling and gathering statistical information. Statistical data is not yet defined but will conform
to industry standards.

Class Specifications

Draft Version 1.5d March 7, 1997 6-25

6.4.2.10 Block Storage Hierarchy
Through the UtilParamsGet request, a client learns the hierarchy of devices as well as the logical-
to-physical relationships. The DDM provides logical-to-physical information for storage
subsystem management and does not suggest bypassing the logical device or an abstracted
interface in favor of a physical device or interface.

6.4.2.11 Initialization Hierarchy of a Block Storage Device
When block storage devices come online, the I2O system can initialize them in various ways.

Example 1: host configuration case

1. The DDM for the SCSI port presents the device as a SCSI peripheral with no user.

2. The IOP updates its logical configuration table and sends an ExecLctNotify reply to the host.

3. The host assigns the SCSI device to a mass storage DDM via the ExecDeviceAssign message.
The mass storage driver may be the same DDM that controls the SCSI port, may be provided
by an independent driver, or may be unspecified. If the ExecDeviceAssign message specifies
permanent assignment, the next time the system initializes, the IOP follows example 2;
otherwise, it repeats example 1.

4. The IOP assigns the SCSI device to the mass storage DDM via the DdmDeviceAttach message.
The mass storage driver may be the same DDM that controls the SCSI port or may be provided
by an independent driver. If the device is attached to the same DDM, then next time the
system initializes, the DDM may follow example 3.

5. The mass storage driver claims the device via the UtilClaim message.

6. The SCSI peripheral driver sets the userTID in the logical configuration table to the TID of the
mass storage DDM.

7. The mass storage driver presents the device as a mass storage device with no user.

8. The IOP updates its logical configuration table and sends an ExecLctNotify reply to the host.

9. The host mass storage OSM claims the mass storage device via the UtilClaim message.

10. The mass storage driver sets the mass storage device’s userTID in the logical configuration
table to the TID of the client.

Example 2: IOP configuration case

1. The DDM presents the device as a SCSI peripheral.

2. The IOP updates its logical configuration table and assigns the device to a mass storage device
driver via the DdmDeviceAttach message. The mass storage driver may be the same DDM that
controls the SCSI port, or an independent driver. If the device is attached to the same DDM,
then next time the system initializes, the DDM may follow example 3.

3. The mass storage driver claims the device via the UtilClaim message.

4. The SCSI peripheral driver sets the userTID in the logical configuration table to the TID of the
mass storage DDM.

5. The mass storage driver presents the device as a mass storage device.

6. The IOP updates its logical configuration table and sends an ExecLctNotify reply to the host.

Intelligent I/O Architecture Specification

6-26 Draft Version 1.5d March 7, 1997

7. The host mass storage OSM claims the mass storage device via the UtilClaim message.

8. The mass storage driver sets the mass storage device’s userTID in the logical configuration
table to the TID of the client.

Example 3: immediate configuration case

1. When the device comes on line, the SCSI/mass storage driver immediately presents it as a
mass storage device with no user. In this instance, the DDM presents a SCSI peripheral device
with its own TID as the userTID.

2. The IOP updates its logical configuration table and sends an ExecLctNotify reply to the host.

3. If the DDM receives an DdmDeviceRelease message for the SCSI peripheral, it is
recommended that the next time the system initializes, the DDM responds as in example 1 or
2.

4. The host mass storage OSM claims the mass storage device via the UtilClaim message.

5. The mass storage driver sets the mass storage device’s userTID in the logical configuration
table to the TID of the client.

6.4.2.12 Service and Management
Setting the configuration dialogue bit causes an ExecLctNotify, initiating a configuration dialogue.
The configuration dialogue manages device configuration or reconfiguration. Three examples are:

• Initial device configuration
• Replacing failed drives in RAID subsystems.
• Managing maintenance conditions, such as fan failure.

6.4.3 Device Addressing
The addressing of devices is based on the I2O addressing model, where all devices in the system
have an I2O address (TID) associated with them; that includes disks, CD-ROMs, and tape drives.
Physical interface-specific addressing (e.g., SCSI target IDs or LUNs) is excluded from the model.

The absence of the physical addressing elements reduces the number of special cases within the
message formats and allows new physical interfaces to plug into the model without inventing a
new class.

6.4.4 Block Storage Reply Messages
A reply is generated for every request. The reply structure for block storage requests is the Default
Reply Template for Single Transaction Requests defined in Chapter 3 (see section 6.1.2.2).

Note: The DDM never sets the FAIL bit in the MessageFlags field. If the DDM receives a
request with an unknown Function code or an ill-formed message, it replies with a
Transaction Error Reply Message as specified in Chapter 3.

When a DDM aborts a request because the system state changes, it sends a final reply for each
outstanding transaction as an error (not an abort).

Class Specifications

Draft Version 1.5d March 7, 1997 6-27

6.4.4.1 Block Storage Status Codes

Table 6-7. DetailedStatusCode for Block Storage Operations

DetailedStatusCode Description

BSA_SUCCESS Success – no warnings

BSA_ACCESS_ERROR Protocol retry. A bus protocol error was successfully retried. Retry count
supplied. GET_LAST_LOGGING_DATA can retrieve hardware specific
status.

BSA_ACCESS_VIOLATION The device is locked for exclusive access by another party.

BSA_BUS_FAILURE The operation failed due to a problem with the operation of the bus.

BSA_DEVICE_FAILURE Device does not respond or responds with fault

BSA_DEVICE_NOT_READY Device is not ready for access. Device state may be determined by
UtilParamsGet group = DEVICE_INFO and/or group = POWER_CTL.

BSA_DEVICE_RESET After a reset, all requests aside from utility messages (base class
requests) are returned with DEVICERESET status until the reset is
acknowledged by the user.

BSA_MEDIA_ERROR Media retry. Device was forced to retry to read/write the data. Retry count
supplied. GET_LAST_LOGGING_DATA can retrieve hardware specific
status.

BSA_MEDIA_FAILURE The operation failed due to an error on the medium

BSA_MEDIA_LOCKED Media locked by another party.

BSA_MEDIA_NOT_PRESENT Removable medium not loaded.

BSA_PROTOCOL_FAILURE The operation failed due to a communication problem with the device.

BSA_TIMEOUT The operation failed because the time-out value specified for this request
has been exceeded.

BSA_VOLUME_CHANGED After a volume change, all requests aside from utility messages (base
class requests) are returned with VOLUMECHANGED status until the
event is acknowledged.

BSA_WRITE_PROTECTED The medium is write protected or read only.

DetailedStatusCodes values do not apply equally to transfers, errors, and aborts. The DDM must
report an appropriate code.

6.4.4.2 Successful Completion
For requests that completed without error, the DDM sets the ReqStatus to reflect successful
completion, and the ReplyPayload indicates the total bytes transferred.

Intelligent I/O Architecture Specification

6-28 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

_SUCCESS RetryCount DetailedStatusCode 16 (24)

TransferCount 20 (28)

offset values for 64-bit context field size in ()

Figure 6-20. Successful Completion Reply Message for Block Storage Class

Fields

RetryCount Number of retries to complete the request. A value of zero means
success on the first try. Reason for failures provided in the
DetailedStatusCode.

DetailedStatusCode If non-zero, contains a warning code describing the nature of recovered
operation. See Table 6-7.

TransferCount The number of bytes transferred. For transactions not involving data
transfer this value is set to zero.

6.4.4.3 Aborted Operation
Transactions aborted at the request of the originator have the ReqStatus set to
STATUS_CODE_ABORT_NO_DATA_TRANSFER, STATUS_CODE_ABORT_PARTIAL_TRANSFER, or
STATUS_CODE_ABORT_DIRTY and there is no ReplyPayload.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

AbortCode RetryCount DetailedStatusCode (Table 6-7) 16 (24)

offset values for 64-bit context field size in ()

Figure 6-21. Aborted Operation Reply Message for Block Storage Class

AbortCode Contains a generic status code as specified in chapter 3
(STATUS_CODE_ABORT_NO_DATA_TRANSFER,
STATUS_CODE_ABORT_PARTIAL_TRANSFER or
STATUS_CODE_ABORT_DIRTY).

Class Specifications

Draft Version 1.5d March 7, 1997 6-29

6.4.4.4 Progress Reports
Progress replies address block storage requests that can take a relatively long time to complete,
such as a verify operation of an entire device. Progress replies are only appropriate for certain
requests as indicated by the ProgressReport bit in each request’s ControlFlags field. When
enabled, the DDM sends periodic progress reports, as shown in Figure 6-22. The ReqStatus
value of STATUS_CODE_PROGRESS_REPORT identifies a progress report. Progress replies are
always followed by a reply with a final ReqStatus (e.g., STATUS_CODE_SUCCESS,
STATUS_CODE_ABORT_NO_DATA_TRANSFER, STATUS_CODE_ABORT_PARTIAL_TRANSFER,
STATUS_CODE_ERROR_NO_DATA_TRANSFER, STATUS_CODE_ERROR_PARTIAL_TRANSFER,
STATUS_CODE_ABORT_DIRTY_ERROR_DIRTY). The exception is when the progress report is
returned in response to a BsaStatusCheck request. In this case, the reply is a final message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 0 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

_Progress_Report RetryCount DetailedStatusCode (Table 6-7) 16 (24)

Reserved PercentComplete 20 (28)

offset values for 64-bit context field size in ()

Figure 6-22. Progress Report Reply Message for Block Storage Class

Fields

PercentComplete The percentage complete value, 0-100

Progress messages are in 1% resolution. The DDM determines the rate at which these messages
are sent, although a rate of one progress message per second is a good guideline.

A StatusCheck message is an alternative to enabling progress reporting (see section 6.4.6.14).

6.4.4.5 Error Reports
For requests that do not complete successfully, the Reply’s ReqStatus indicates
STATUS_CODE_ERROR_NO_DATA_TRANSFER, STATUS_CODE_ERROR_PARTIAL_TRANSFER, or
STATUS_CODE_ERROR_DIRTY, the DetailedStatusCode contains a detailed error code, and
location information is returned in the AdditionalInformation (see chapter 3) portion of the reply
message, as shown in Figure 6-23.

Intelligent I/O Architecture Specification

6-30 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 0 0 0 0 x 0 VersionOffset=01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

ReqStatus RetryCount DetailedErrorCode (Table 6-7) 16 (24)

TransferCount 20 (28)

LogicalByteAddress 24 (32)

(64 bits) 28 (36)

offset values for 64-bit context field size in ()

Figure 6-23. Unsuccessful Completion Reply Message for Block Storage Class

Fields

ReqStatus Contains generic status codes as specified in chapter 3
(STATUS_CODE_ERROR_NO_DATA_TRANSFER,
STATUS_CODE_ERROR_PARTIAL_TRANSFER, or
STATUS_CODE_ERROR_DIRTY).

DetailedErrorCode Contains as specific a code as possible to describe the nature of the
failure See Table 6-7.

LogicalByteAddress Points to the location of the error. For a transaction not associated with a
logical byte address (such as device reset), the DDM must set this value
to zero.

If the LogicalByteAddress in the reply differs from the starting address in the request, the
initiator should not assume successful I/O operation to any blocks in between. The content of any
block involved in a write operation that did not complete successfully is unknown. Similarly, any
memory blocks involved in a read operation that did not complete are unknown. The
recommended recovery policy should be to retry the operation for all blocks and not a subset.

6.4.5 Support for Utility Messages

6.4.5.1 Lock
The UtilLock request causes the DDM to guarantee the initiator exclusive access to the device until
a UtilLockRelease request is issued by the same initiator. See the UtilLock message in section
6.1.3.14.

6.4.5.2 Lock Release
A UtilLockRelease request cancels a previous reservation. Issuing a UtilLockRelease request
without completing a UtilLock causes the DDM to fail the request.

Class Specifications

Draft Version 1.5d March 7, 1997 6-31

6.4.5.3 Events
Each Block Storage class device supports generic events specified in section 6.1.3.4 and the
UtilEventRegister request. In addition, each device supports the following block storage events.

Table 6-8. BSA EventIndicator Assignments

Event Name Bit Description

VolumeLoad 0 New medium has been loaded onto the device

VolumeUnload 1 The medium on the device has been unloaded

VolumeUnloadRequest 2 An external unload request and medium is locked. The client must unlock
the medium before the unload request can be honored.

CapacityChange 3 The capacity of the device has changed.

SCSI_SMART 4 Reports SCSI SMART data is received

Table 6-9. EventData for Block Storage Events

Event Name EventData

VolumeLoad No data

VolumeUnload No data

VolumeUnloadRequest No data

CapacityChange No data

SCSI_SMART SCSI ASC and ASCQ (2 bytes)

6.4.5.4 Getting and Setting Parameters
Both the client (service user) and management use the UtilParamsGet and UtilParamsSet utility
messages specified in 6.1.3, Utility Messages, to read and modify parameters for block storage
devices. The list of parameter groups for Block Storage class devices is specified in 6.4.7.

6.4.6 Block Storage Request Messages
Table 6-10 lists requests a client can make to a Block Storage class device. The following sections
define these requests in alphabetic order.

Intelligent I/O Architecture Specification

6-32 Draft Version 1.5d March 7, 1997

Table 6-10. Block Storage Request Messages

Function Description

BsaBlockRead Read from device to memory

BsaBlockReassign Reassign block addresses

BsaBlockWrite Write to the device from memory

BsaBlockWriteVerify Write to the device from memory then verify

BsaCacheFlush Write dirty cache to media

BsaDeviceReset Reset the device

BsaMediaEject Eject a removable medium from drive mechanism

BsaMediaFormat Not defined

BsaMediaLock Prevent media removal

BsaMediaMount Load a removable medium into drive mechanism

BsaMediaUnlock Allow media removal

BsaMediaVerify Verify accessibility of data

BsaPowerMgt Power management

BsaStatusCheck Check device status

All Random Block Storage class messages are single-transaction messages. Typically, the
MessageFlags field for requests should be set to 00h (for 32-bit context size) or 02h (for 64-bit
context size). For a normal completion reply message, the MessageFlags field should contain
C0h (for 32-bit context size) or C2h (for 64-bit context size). Since some requests provide an SGL,
the value of the VersionOffset field depends on the location of the SGL. Since all replies are
single transaction, the VersionOffset field should be set to 01h for all.

6.4.6.1 Block Read
The Read_Block function transfers bytes from a storage device to system memory.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

BsaBlockRead InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

FetchAhead TimeMultiplier ControlFlags 16 (24)

TransferByteCount 20 (28)

LogicalByteAddress 24 (32)

(64 bits) 28 (36)

SGL 32 (40)

n

offset values for 64-bit context field size in ()

Figure 6-24. BsaBlockRead Request Message

Class Specifications

Draft Version 1.5d March 7, 1997 6-33

Fields:

ControlFlags Options flags specifying the DDM actions for this read (see Table 6-11).

FetchAhead Additional amount of data to be prefetched and cached by the DDM, if
possible. Granularity is in one kilobyte increments.

LogicalByteAddress Medium logical address where the operation begins.

SGL Indicates the buffer where the data will be placed.

TargetAddress Address (TID) of the storage device.

TimeMultiplier Multiplier used with RWVTimeoutBase and RWVTimeout (see section
6.4.2.3) to determine request timeout. Zero indicates the timeout is
suspended for this request.

TransferByteCount Number of bytes transferred.

VersionOffset A value of 81h for 32-bit context size and A1h for 64-bit context size.

Although the number of bytes to transfer (TransferByteCount) and the logical media address
(LogicalByteAddress) have byte granularity, the target device must return an error if either field
is not in multiples of the device’s logical block size. Typically, this is 512 bytes.

A TransferByteCount of zero is not an error for Read_Block requests; it simply implies a seek
operation with no need for data transfer. In this case, the SGL might not exist and should be
considered undefined by the DDM and any DMA support hardware.

Table 6-11. Block Read Control Flags

ControlFlags Description

Bit 0 Do not retry the request if it fails.

Bit 1 Solo − the request should not be placed into a hardware queue but handled as an
individual request.

Bit 2 Cache read − the data read should be cached.

Bit 3 Read with prefetch − the prefetch field is valid and the n 1-kilobyte blocks following the end
of the request should be read into the DDM’s cache.

Bit 4 Cache data − the data read should not be transferred, it should be cached by the DDM.
No SGL is provided. The DDM can treat this as an NOP.

Intelligent I/O Architecture Specification

6-34 Draft Version 1.5d March 7, 1997

6.4.6.2 Block Reassign
The BsaBlockReassign request remaps the specified regions on the medium. The DDM must not
issue a completion status reply until the reassignment is complete.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

BsaBlockReassign InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier reserved 16 (24)

SGL 20 (28)

offset values for 64-bit context field size in ()

Figure 6-25. BsaBlockReassign Request Message

VersionOffset A value of 51h for 32-bit context size and 71h for 64-bit context size.

The scatter-gather list describes a set of address/length pairs to reassign. ByteCount must be in
multiples of block size.

31 3 24 23 2 16 15 1 8 7 0 0

ByteCount 0

LogicalByteAddress 4

(64 bits)

Class Specifications

Draft Version 1.5d March 7, 1997 6-35

6.4.6.3 Block Write
The Write_Block function transfers bytes from system memory to a storage device.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

BsaBlockWrite InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

TransferByteCount 20 (28)

LogicalByteAddress 24 (32)

(64 bits) 28 (36)

SGL 32 (40)

n

offset values for 64-bit context field size in ()

Figure 6-26. BsaBlockWrite Request Message

Fields:

ControlFlags Options flags specifying the DDM actions for this write (see Table
6-12).

LogicalByteAddress Media logical address at which the operation begins.

SGL The buffer that holds the source data.

TargetAddress Address of the storage device.

TimeMultiplier Multiplier used with RWVTimeoutBase and RWVTimeout to determine
request timeout (see 6.4.2.3). Zero indicates the timeout is suspended
for this request.

TransferByteCount Number of bytes to transfer.

VersionOffset A value of 81h for 32-bit context size and A1h for 64-bit context size.

Although the number of bytes to transfer (TransferByteCount) and the logical medium address
(LogicalByteAddress) have byte granularity, the target device must return an error if either field
is not in multiples of the device’s logical block size. Typically this is 512 bytes.

Intelligent I/O Architecture Specification

6-36 Draft Version 1.5d March 7, 1997

Table 6-12. Block Write Control Flags

ControlFlags Description

bit 0 Do not retry the request if it fails.

bit 1 Solo − the request should not be placed into a hardware queue but should be handled
as an individual request.

bit 2 Do not cache − the DDM should not cache the write (used on sequential writes).

bit 3 Write through cache − the DDM must make the data durable before the request is
completed.

bit 4 Write to cache − the DDM can reply before the request is durable on the medium,
assuming the data is cached (good for transient, swap pages).

6.4.6.4 Block Write and Verify
The BsaBlockWriteVerify message asks the target to write the data to the medium and verify that the
data is correctly written. Depending on the actual mass storage interface, the DDM may have to
write and read to verify the readability of the data.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

BsaBlockWriteVerify InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

TransferByteCount 20 (28)

LogicalByteAddress 24 (32)

(64 bits) 28 (36)

SGL 32 (40)

offset values for 64-bit context field size in ()

Figure 6-27. BsaBlockWriteVerify Request Message

Fields:

ControlFlags Options flags specifying the DDM actions for this write (see Table
6-13). Other bits reserved.

VersionOffset A value of 81h for 32-bit context size and A1h for 64-bit context size.

Class Specifications

Draft Version 1.5d March 7, 1997 6-37

Table 6-13. Block Write & Verify Control Flags

ControlFlags Description

bit 0 Do not retry the request if it fails.

bit 1 Solo − the request should not be placed into a hardware queue but handled as an
individual request.

bit 2 Do not cache − the DDM should not cache the write (used on sequential writes).

6.4.6.5 Cache Flush
The BsaCacheFlush request causes the DDM to write all dirty-cached data to the medium. The
DDM must not issue a completion status reply until all data is actually on the medium. It is the
DDM’s responsibility to ensure that any dirty data cached downstream is also flushed to the
medium.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

BsaCacheFlush InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (28)

offset values for 64-bit context field size in ()

Figure 6-28. BsaCacheFlush Request Message

Fields:

ControlFlags Specifies options for performing this command.

Bit 7: ProgressReport- When this bit is set, the device posts Progress
Reports (see 6.4.4.4). When it is not set, the device does not post
Progress Reports.

Other bits reserved.

A failure should be reported only if the medium is no longer accessible (removed and hard failure).

6.4.6.6 Device Reset
The BsaDeviceReset function brings the device into a known state. The DDM aborts all
outstanding requests (i.e., those queued for the device, as well as those in progress) and returns
them with an appropriate abort status.

Intelligent I/O Architecture Specification

6-38 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

BsaDeviceReset InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

offset values for 64-bit context field size in ()

Figure 6-29. BsaDeviceReset Request Message

Fields:

ControlFlags Options for performing this command.

Bit 0: Hard/Soft - When this bit is set, the DDM performs a hard reset,
which causes the device to reinitialize. Otherwise, the DDM
completes a soft reset, which clears the protocol to the medium.

Other bits reserved

TimeMultiplier Multiplier used with TimeoutBase to determine request timeout (see
section 6.4.2.3, Timing Out Requests). Zero indicates that the timeout is
suspended for this request.

6.4.6.7 Media Eject for Removable Media
The BsaMediaEject request causes the medium in the drive to eject. If the device is locked as a
result of a prior BsaMediaLock request, the device fails any BsaMediaEject requests until after the
device receives a BsaMediaUnlock request. A failure also results if this device does not support the
ejection.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

BsaMediaEject InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

MediaIdentifier* 16 (24)

offset values for 64-bit context field size in ()

Figure 6-30. BsaMediaEject Request Message

* Optional parameter, -1 indicates whatever is currently mounted on the drive.

Class Specifications

Draft Version 1.5d March 7, 1997 6-39

6.4.6.8 Media Format
The BsaMediaFormat message is not defined in this version of the document. Low-level format is
hardware dependent and few devices support it.

6.4.6.9 Media Lock

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

BsaMediaLock InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

MediaIdentifier* 16 (24)

offset values for 64-bit context field size in ()

Figure 6-31. BsaMediaLock Request Message

* Optional parameter, -1 indicates whatever is currently mounted on the drive.

6.4.6.10 Media Mount for Removable Media

The BsaMediaMount request causes the DDM to attempt to load the removable medium identified
by the MediaIdentifier. If the device cannot automatically load the medium, it should return an
unsupported status. The medium can optionally lock in the device after the load.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

BsaMediaMount InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

MediaIdentifier 16 (24)

Reserved LoadFlags 20 (28)

offset values for 64-bit context field size in ()

Figure 6-32. BsaMediaMount Request Message

OSD2149

07

Reserved
(Set to 0)

Lock Media
0
1

=
=

Do Not Lock Media in Drive
Lock Media in Drive

Figure 6-33. Load Flags for BsaMediaMount

Intelligent I/O Architecture Specification

6-40 Draft Version 1.5d March 7, 1997

6.4.6.11 Media Unlock

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

BsaMediaUnlock InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

MediaIdentifier* 16 (24)

offset values for 64-bit context field size in ()

Figure 6-34. BsaMediaUnlock Request Message

* Optional parameter, -1 indicates whatever is currently mounted on the drive.

6.4.6.12 Media Verify
The BsaMediaVerify message asks the target to verify the readability of the blocks on the medium.
No data transfer occurs during this operation.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

BsaMediaVerify InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (32)

ByteCount 20 (28)

LogicalByteAddress 24 (32)

(64 bits) 28, (36)

offset values for 64-bit context field size in ()

Figure 6-35. BsaMediaVerify Request Message

Fields:

ControlFlags Options for performing this command.

Bit 6: Correction - When this bit is set, the DDM performs error
correction and sparing. When this bit is cleared, the DDM performs
no error correction or sparing.

Bit 7: ProgressReport- When this bit is set, the device posts Progress
Reports (see section 6.4.4.4). When it is not set, the device does not
post Progress Reports.

Other bits reserved

When a progress reply is requested, the DDM is responsible for sending progress messages to the
initiator. A final reply with a status of Success or Failure concludes the request.

Class Specifications

Draft Version 1.5d March 7, 1997 6-41

The BsaMediaVerify failure reply contains the failing address and the number of bytes in the blocks
that failed. For all blocks between the initial LogicalByteAddress in the request and the
LogicalByteAddress in the reply, assume that all status is good. For all blocks past those in the
error message, the status is unknown.

6.4.6.13 Power Management
The BsaPowerMgt command modifies the state of the device.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

BsaPowerMgt InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Operation TimeMultiplier ControlFlags 16 (24)

offset values for 64-bit context field size in ()

Figure 6-36. BsaPowerMgt Request Message

Fields:

ControlFlags Options for performing this command.

Bit 7: ProgressReport- When this bit is set, the device posts Progress
Reports (see section 6.4.4.4). When it is not set, the device does not
post Progress Reports.

Other bits reserved

TimeMultiplier Timeout multiplier

Operation One of the power management operations described in the table below.

Table 6-14. Power Management Operation Values

Operation Description

01h Power up partial − power up the device in a minimal state. The volume need not be made
available (spun up).

02h Power up − power the device up completely.

03h Power up, load − power up the device completely and load medium, if present.

20h Quiesce device − flush any volatile state out to the volume and quiesce device activity.

21h Power down partial − power down the device to a minimal state. A volume should be spun
down, if present, but not unloaded.

22h Power down partial, unload − as above, but unload the volume, if removable.

23h Power down, unload − fully power down the device, unloading the volume, if present.

24h Power down, retain − fully power down the device, retaining the medium.

other values reserved

Intelligent I/O Architecture Specification

6-42 Draft Version 1.5d March 7, 1997

The following table defines the codes used to control the power for SCSI devices.

Table 6-15. Power Management SCSI translation Matrix

Operation SCSI Operation

0001h NA

0002h Start

0003h Start and load medium

0020h Stop

0021h Re-zero

0022h Stop and eject

0023h Stop and eject

0024h Stop

other values reserved

6.4.6.14 Status Check
Issuing a BsaStatusCheck request to a device returns either STATUS_CODE_SUCCESS,
STATUS_CODE_PROGRESS_REPORT, or STATUS_CODE_ERROR0. STATUS_CODE_SUCCESS
indicates that the device is online and operating, while STATUS_CODE_ERROR0 indicates that the
device may be operating or not, depending on the detailed error code in the reply. (See Section
6.4.4.) A STATUS_CODE_PROGRESS_REPORT reply is returned when the device has a FORMAT
or VERIFY operation in progress.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

BsaStatusCheck InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64-bit context field size in ()

Figure 6-37. BsaStatusCheck Request Message

The reply for a BsaStatusCheck depends on the state of the device. The table below describes
replies:

Class Specifications

Draft Version 1.5d March 7, 1997 6-43

Table 6-16. StatusCheck Replies

ReqStatus (STATUS_CODE_xxx) Description

_ABORT_NO_DATA_TRANSFER The StatusCheck request was aborted. The format of this
message is an Abort Report (6.4.4.3)

ERROR NO_DATA_TRANSFER The medium is not available. The reason can be determined by
interpreting the detailed status information. The format of this
message is an Error Report (6.4.4.5)

_PROGRESS_REPORT A request is currently active against the device that supports
PROGRESS replies (a FORMAT or a VERIFY). The format of this
message is a Progress Report (6.4.4.4)

_SUCCESS The medium is available.

6.4.7 Modifying Configuration and Operating Parameters
Both the client (service user) and management utilize the UtilParamsGet and UtilParamsSet utility
messages specified in section 6.1.3, Utility Messages to read and modify parameter for random
block storage devices. The list of parameter groups for the Block Storage class is specified in the
following tables.

Table 6-17. BSA Parameters Group

GroupNumber 0000h

GroupType SCALAR

Name DEVICE INFORMATION
Description Information to describe a block storage device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte DeviceType Type of storage device.

Storage Device Types currently supported:

00 Direct-access read/write
04 Write-once device (WORM)
05 CD-ROM device
07 Optical memory device

1 r 1 byte NumberOfPaths Number of access paths to the medium. To
support dual/multi-ported devices.

2 r 2 bytes PowerState Operation set by the most recent power
management message.

3 r 4 bytes BlockSize Block size (number of bytes). If medium is
removable, report maximum-supported size.

4 r 8 bytes DeviceCapacity Device capacity (number of bytes). If medium is
removable, report maximum-supported capacity.

Intelligent I/O Architecture Specification

6-44 Draft Version 1.5d March 7, 1997

GroupNumber 0000h

GroupType SCALAR

Name DEVICE INFORMATION
Description Information to describe a block storage device.

FieldIdx (r/w) Field Size Parameter Name Description

5 r 4 bytes DeviceCapabilitySupport Device capabilities describes attributes of the
device, such as removable, mountable, lockable,
etc.

Storage Device Capabilities supported:

bit 0 Caching
bit 1 Multi-path accessible
bit 2 Dynamic capacity changes
bit 3 Removable (Media)
bit 4 Removable (Device)
bit 5 Read-only (Security)
bit 6 Lockout (Security)
bit 7 Boot bypass (Security)
bit 8 Compression
bit 9 Data Security
bit 10 RAID

6 r 4 bytes DeviceState Device states

bit 0 Caching
bit 1 PoweredOn
bit 2 Ready
bit 3 Media Loaded
bit 4 Device Loaded
bit 5 Read-only (Security)
bit 6 Lockout (Security)
bit 7 Boot bypass (Security)
bit 8 Compression
bit 9 Data Security
bit 10 RAID

Class Specifications

Draft Version 1.5d March 7, 1997 6-45

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0001

GroupType SCALAR

Name OPERATIONAL_CONTROL
Description Operational control parameters for a block storage device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 1 byte AutoReassign The DDM can auto-reassign blocks.

1 r/w 1 byte ReassignTolerance Number of retries before a block is a candidate for
reassignment.

2 r/w 1 byte RetryAttempts Number of times a DDM/device retries a request
before failing.

3 r 1 byte reserved1

4 r/w 4 bytes ReassignSize Size of the block reassignment (sparing) area. A
write to this may fail.

5 r 4 bytes ExpectedTimeout Longest time expected for any 64-kilobyte I/O
operation (in microseconds). The client uses this
value as guidance.

6 r/w 4 bytes RWVTimeout Read/Write/Verify timeout increment, per 64-
kilobyte block transfer (in microseconds).

7 r/w 4 bytes RWVTimeoutBase Base timeout value to add to the timeout
increment (in microseconds).

8 r/w 4 bytes TimeoutBase Base timeout for standard operations (in
microseconds). The timeout value is subject to a
multiplier determined by the message type.

9 r/w 4 bytes OrderedRequestDepth Indicates the number of requests for which the
device can maintain ordering. If the DDM cannot
support the requested depth, it sets the value to
the maximum supported depth. On a subsequent
inquiry, the host obtains the actual depth.

This parameter operates on a per-initiator basis.
That is, if the host and a peer set the parameter,
each has its own OrderedRequestDepth, which
the DDM maintains.

Most devices/DDMs support a depth of 1.

A value of -1 indicates that the device maintains
ordering for all requests.

10 r 4 bytes AtomicWriteSize Largest size of request (in bytes) that can be
atomically written to the medium.

Intelligent I/O Architecture Specification

6-46 Draft Version 1.5d March 7, 1997

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0002

GroupType SCALAR

Name POWER CONTROL
Description Power control parameters for configuring how a block storage device responds during

inactivity and recovery from a powered down state.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 4 bytes PowerdownTimeout The device powers down if it is not accessed within
the allotted time (in microseconds). A zero value
indicates the device will never power down.

1 r/w 4 bytes OnAccess Determines what the device does when accessed
in a powered down state. Any block storage class
request against the medium constitutes access.

bit 0 PowerUpOnAccess

bit 1 LoadOnAccess

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0003

GroupType SCALAR

Name CACHE CONTROL
Description Information and control parameters for the cache of a block storage device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes TotalCacheSize Total available cache (in bytes).

1 r/w 4 bytes ReadCacheSize Total available cache size for reads (in bytes).

2 r/w 4 bytes WriteCacheSize Total available cache size for writes (in bytes).

3 r/w 1 byte WritePolicy Policy employed by the cache when handling write
requests.

00h None/Disabled
01h WriteToCache
02h WriteThruCache

4 r/w 1 byte ReadPolicy Policy employed by the cache when handling read
requests.

00h None/Disabled
01h ReadCache
02h ReadAheadCache
03h ReadReadAheadCache

5 r/w 1 byte ErrorCorrection Error correction scheme.

00h None/Disabled
01h Unknown
02h Other
03h Parity
04h SingleBitECC
05h MultiBitECC

Class Specifications

Draft Version 1.5d March 7, 1997 6-47

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0004

GroupType SCALAR

Name MEDIA INFORMATION
Description

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes Capacity Formatted capacity (in bytes) for current medium.

1 r 4 bytes BlockSize Block size (in bytes) for current medium.

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0005h

GroupType TABLE

Name ERROR_LOG
Description Table of information for each error encountered. The OSM uses this information for its

system log.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes ErrorDataIndex Unique index that identifies each error log entry.

1 r 1 byte Function The function code of the request that failed.

2 r 1 byte RetryCount The number of times the function was
unsuccessfully tried.

3 r 2 bytes DetailedErrorCode Detailed error code describing the error or failure.

4 r 2 bytes reserved2

5 r 8 bytes TimeStamp Number of microseconds from some fixed
reference. The time interval between any two
events can be found by the difference between
their time stamps.

6 r 4 bytes User Info Additional user information. The structure of this
data varies for different types of access (e.g., SCSI,
ATA) and is well known in the industry.

Intelligent I/O Architecture Specification

6-48 Draft Version 1.5d March 7, 1997

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0180h

GroupType SCALAR

Name OPTIONAL HISTORICAL STATS SUPPORT/CONTROL
Description Identifies optional historical statistics supported and controls the logging of the supported

statistics.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 1 byte StatisticsControl Controls the logging of the optional statistics.

bit 0 Storage Statistics
0 - Disabled
1 - Enabled

bit 1 Cache Statistics
0 - Disabled
1 - Enabled

bits 2-7 Reserved
1 r 1 byte reserved1

2 r 2 bytes reserved2

3 r 4 bytes StorageStatistics Bit encoding (0-31) of the optional storage
statistics supported. Each bit number
corresponds to the same statistic attribute.

0 Statistic not supported
1 Statistic supported

4 r 4 bytes CacheStatistics Bit encoding (0-31) of the optional cache statistics
supported. Each bit number corresponds to the
same statistic attribute.

0 Statistic not supported
1 Statistic supported

Class Specifications

Draft Version 1.5d March 7, 1997 6-49

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0181

GroupType SCALAR

Name STORAGE HISTORICAL STATS - Optional

Description Statistical counters to characterize the number of total read/write accesses and read/write
accesses by size.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes ReadCommands Accumulated count of the number of read commands

1 r 8 bytes WriteCommands Accumulated count of the number of write commands

2 r 1 byte DataUnit Unit of measure for the I/O Range attributes,
expressed as a power of two-bit count

(0=1 bit; 3=1 byte; 4=16 bit word; 5=32 bit word)

3 r 1 byte reserved1

4 r 2 bytes reserved2

5 r 8 bytes IORange1Read Accumulated count of the data units read of the size
of the data unit.

6 r 8 bytes IORange2Read Accumulated count of the data units read of the size
range of two to three times the data unit.

7 r 8 bytes IORange3Read Accumulated count of the data units read of the size
range of four to seven times the data unit.

8 r 8 bytes IORange4Read Accumulated count of the data units read of the size
range of eight times the data unit, or greater.

9 r 8 bytes IORange1Write Accumulated count of the data units written of the
size of the data unit.

10 r 8 bytes IORange2Write Accumulated count of the data units written of the
size range of two to three times the data unit.

11 r 8 bytes IORange3Write Accumulated count of the data units written of the
size range of four to seven times the data unit.

12 r 8 bytes IORange4Write Accumulated count of the data units written of the
size range of eight times the data unit or greater.

13 r 8 bytes NumberSeeks Accumulated count of the seek commands issued.

Intelligent I/O Architecture Specification

6-50 Draft Version 1.5d March 7, 1997

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0182

GroupType SCALAR

Name CACHE HISTORICAL STATS - Optional

Description Historical statistics to characterize cache operational efficiency and failure logging.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes CacheAccess Accumulated count of the times the cache has
been accessed.

1 r 8 bytes CacheHit Accumulated count of the cache hits.

2 r 8 bytes PartailCacheHit Accumulated count of the partial cache hits.

3 r 8 bytes HitDataSize Indicates the number of bytes available in the
cache when a partial hit occurred.

4 r 4 bytes ValidUsage Amount of cache currently holding valid data (in
kilobytes).

5 r 4 bytes DirtyUsage Amount of cache data not yet written to medium (in
kilobytes).

6 r 4 bytes TimeLastFault Number of seconds between power on and the last
detected cache fault or failure.

7 r 4 bytes LastFaultFailure SCSI sense code associated with the most recent
detected cache fault or failure.

Note: The following groups apply to a RAID topology that is mapped after the SCC (SCSI-3
Controller Commands) model.

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0200

GroupType SCALAR

Name VOLUME SET INFORMATION - Optional

Description Only applies to Block Storage SubClass = RAID Disk

FieldIdx (r/w) Field Size Parameter Name Description

0 r 64 bytes Name Name of the volume set.

1 r 8 bytes TotalStorageCapacity Total size of user data space (in bytes).

2 r 8 bytes StripeLength Number of ps_extents that form a user data stripe.
This value is 0 except when the ps_extent group is
used.

3 r 8 bytes InterleaveDepth Number of ps_extents to stripe as a collective set.
This value is 0 except when the ps_extent group is
used.

Class Specifications

Draft Version 1.5d March 7, 1997 6-51

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0201

GroupType SCALAR

Name PROTECTED SPACE EXTENT - Optional

Description Only applies to Block Storage SubClass = RAID Disk

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes StartAddress Starting LBA of the p_extent from which this
ps_extent is derived.

1 r 8 bytes NumberBlocks Number of user data blocks in this ps_extent.

2 r 4 bytes BlockSize Size (in bytes) of the blocks that form this
ps_extent.

3 r 4 bytes DataStripeGranularity The units in which the User Data Stripe Depth is
given.

0 Other
1 Unknown
2 Bits
3 Bytes
4 16BitWords
5 32BitDoubleWords
6 Blocks

4 r 4 bytes DataStripeDepth The number of granularity units that form the stripe
size for this ps_extent.

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0202

GroupType SCALAR

Name AGGREGATE PROTECTED SPACE EXTENT - Optional

Description Only applies to Block Storage SubClass = RAID Disk

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes NumberBlocks The total user data blocks located on both a single
storage device and part or all of a single volume
set. The block size is determined by storage
device association with this aggregate protect
space extent. If no volume set is associated with
an aggregate protect space extent, then this
indicates the number of blocks available.

Intelligent I/O Architecture Specification

6-52 Draft Version 1.5d March 7, 1997

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0203

GroupType SCALAR

Name PHYSICAL EXTENT - Optional

Description Only applies to Block Storage SubClass = RAID Disk

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes StartAddress The starting LBA on a storage device from which
this p_extent is derived.

1 r 8 bytes NumberBlocks Total consecutive blocks contained in this p_extent.

2 r 4 bytes BlockSize Size (in bytes) of the blocks that form this p_extent.
The value of zero shall represent a variable block
size.

3 r 4 bytes GranularityUnit The units in which the following check data and
user data fields are given.

0 Other
1 Unknown
2 Bits
3 Bytes
4 16BitWords
5 32BitDoubleWords
6 Blocks

4 r 8 bytes CheckDataInterleave Number of granularity units of user data to skip
before starting the check data interleave.

5 r 8 bytes CheckData Number of consecutive granularity units to reserve
for check data within the p_extent.

6 r 8 bytes UserData Number of consecutive granularity units to reserve
for user data within the p_extent.

Class Specifications

Draft Version 1.5d March 7, 1997 6-53

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0204

GroupType SCALAR

Name AGGREGATE PHYSICAL EXTENT - Optional

Description Only applies to Block Storage SubClass = RAID Disk

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes NumberBlocks Total consecutive blocks (including check data)
contained in this p_extent. The block size is
determined by the storage device associated with
this aggregate p_extent.

Note: If no redundancy group is associated with an
aggregate p_extent, then this indicates the number
of p_extent blocks available.

1 r 8 bytes CheckData Number of blocks contained in this aggregate
p_extent to be used as check data. If the
aggregate p_extent is available, then this value
should be zero.

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0205

GroupType SCALAR

Name REDUNDANCY - Optional

Description Only applies to Block Storage SubClass = RAID Disk

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte RedundancyType Specifies the type of the redundancy formed.

0 Other
1 Unknown
2 None
3 Copy
4 XOR
5 P+Q
6 S
7 P+S

Intelligent I/O Architecture Specification

6-54 Draft Version 1.5d March 7, 1997

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0206

GroupType TABLE

Name COMPONENT SPARES - Optional

Description Only applies to Block Storage SubClass = RAID Disk

Non-data sparing.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte RowNumber Key for accessing this table.

1 r 1 byte SpareType Specifies the type of redundancy formed.

0 StorageController
1 BusPort

2 r 1 byte ToBeSparedIndex The key into the table identified by the spare type
to reference the specific object to be spared.

3 r 1 byte SparedIndex The key into the table identified by the spare type
to reference the specific object of the spare.

4 r 1 byte SpareFunctioningState Specifies the functioning state of the spare.

0x0 Other
0x1 Unknown
0x2 Inactive/Standby
0x3 Active/Standby
0x4 Load balancing/Active/Standby

Class Specifications

Draft Version 1.5d March 7, 1997 6-55

Table 6-17. BSA Parameters Group (continued)

GroupNumber 0207

GroupType TABLE

Name ASSOCIATION TABLE - Optional

Description Only applies to Block Storage SubClass = RAID Disk

The association table is used to represent the physical and logical topology.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte RowNumber Key for accessing this table.

1 r 1 byte Type Specifies the type of association being made.

00h Physical Organization
01h Logical Organization
02h Logical to Physical Organization
03h Protection Organization
04h Spare Organization
05h Cache Organization
06h Software Organization

2 r 1 byte Object1Type Type of object referred to by object 1 index.
Combined with the object 1 index, forms a
complete reference to a specific object.

00h Storage Controller
01h Storage Device
02h Bus Port
03h Volume Set
04h Protected Space Extent
05h Aggregate Protected Space Extent
06h Physical Extent
07h Aggregate Physical Extent
08h Redundancy Group
09h Cache
0Ah Software

3 r 1 byte Object1Index The key into the table specified by the object 1
type.

4 r 1 byte Object2Type Type of object referred to by object 2 index.
Combined with the object 2 index, a complete
reference is made to a specific object.

00h Storage Controller
01h Storage Device
02h Bus Port
03h Volume Set
04h Protected Space Extent
05h Aggregate Protected Space Extent
06h Physical Extent
07h Aggregate Physical Extent
08h Redundancy Group
09h Cache
0Ah Software

5 r 1 byte Object2Index The key into the table specified by the object 2
type.

Intelligent I/O Architecture Specification

6-56 Draft Version 1.5d March 7, 1997

6.5 Tape Storage Class

6.5.1 Operational Model
A tape storage drive provides sequential access to a permanent storage medium. The DDM
registers a different tape class device for each logical drive it provides. The client, typically an
OSM, performs tape storage operations by sending requests to, and listening for replies from, a
tape class device.

In general, the term device applies to the abstract interface produced by the message class. The
client sends messages to that device by indicating the TID for that device in the message’s
TargetAddress field. The terms physical device and drive refer to the physical device or facility the
DDM controls. Behavior of the device refers to the software as well as its physical device(s).

The Tape Storage class operation is based on the Random Block Storage class (refer to section 6.4)
in general structure. Although the structure is similar, there are several important differences in
the operational model, and thus, the implementation. The following sections describe the
operational model and key characteristics for tape devices. In addition, tape devices have different
mechanical delay characteristics from their block storage counterpart, and thus have different
timeout values. Section 6.5.1.7 defines timeout values for the tape device commands.

6.5.1.1 Sequential Media Access
Tape devices are based on sequential media access where command order is rigidly maintained for
all read, write and access operations. Thus, order must be guaranteed for all operations.

6.5.1.2 Variable/Fixed Block Support
Tape drives support both fixed and variable block addressing. In variable block mode, requests
specify a separate byte count for each operation. In this mode, the block size changes from one
block to the next. In fixed block mode, the request specifies the number of blocks to transfer,
assuming that the fixed block size is already initialized. In fixed block mode, the block size of a
particular tape usually remains the same, although devices may allow changing fixed block sizes in
the middle of the tape. Also, devices may support intermixing variable and fixed block modes on a
tape. A wide range of restrictions and flexibility apply to different devices in this area.

6.5.1.3 Compression and Write Density
Current generation tape drives often support data compression specific to a drive type or its
manufacturer. Also, many tape devices support a software/interface control for writing older,
lower-capacity formats to a tape. In these cases, the tape usually contains device-accessible
information at Beginning of Tape (BOT) that specifies the compression status and write density.
In most cases, write density can only be selected at BOT. For any given tape device, compression
may change in mid tape, or be selected only at BOT.

For read operations, tape devices universally detect the compression status and write density of the
installed tape medium, and perform appropriate read operations for the installed tape.

Class Specifications

Draft Version 1.5d March 7, 1997 6-57

6.5.1.4 File Marks, Set Marks, and Partitions
File marks and set marks are used for two functions. First, they provide a hierarchical structure
that can speed tape access. In this case, file marks are the lower portion of the hierarchy, and set
marks are hierarchically superior. Tape data is generally structured by an application or OS with
file and set marks at critical locations for either for performance or function. Tape applications are
then written using the designed file mark/set mark structure. Filemarks are universally supported
on tape drives, and set marks tend to be more device dependent.

The second use for file marks and set marks is data transfer synchronization. In tapes, the I/O
interface is usually substantially faster than the mechanical tape interface, particularly regarding
start/stop delays. To improve performance, most tape write operations let the device return a
completion status when the write data is in the device cache. Later, the device controls when it
actually writes the cached data to tape. Writing a file mark or set mark is the typical way to force a
flush of cache to tape. Also, file and set marks provide a natural checkpoint in case of subsequent
media failures.

Partitions are above file and set marks in the hierarchy. Partitions are typically device dependent,
and tie closely to the device and media physical characteristics.

6.5.1.5 Error Types and Reporting
Several specific error situations occur in the tape model. Different than disks, tape applications
and I/O subsystems must anticipate and routinely handle these errors.

6.5.1.5.1 Positioning/ILI Errors

Some applications allow foreign formats for which the tape’s block size is unknown. These
applications have established algorithms that allow them to read unknown tapes. The ILI,
positioning errors, and related status information are critical to this type of application. As a
result, ILI and positioning errors are not necessarily medium or device failures, but are important
tape application tools.

6.5.1.5.2 Media Errors

Tape media failures stem from several sources. Those include worn media, dirty heads, extreme
environmental conditions and a faulty device. The experienced tape user expects some media
errors, and the appropriate response is context dependent. The operator may clean the heads and
retry any failed operation. If it is a write tape operation (backup), the operator tends to discard a
failed medium to eliminate a marginal component from the backup set. For read tape operations
(restore), the operator often makes extensive efforts to read a tape if it fails, typically trying the
restore on other compatible devices, if available. Modern tape drives give users and management
software more information and tools to allow intelligent management of media. This class
definition supports all information in this area, and anticipates further improvements in predictive
capabilities from future tape devices.

6.5.1.5.3 Queue Status on Error

When an error occurs and multiple requests are outstanding or cached writes are being used, the
application should refer to the last managed checkpoint where media flush was successfully

Intelligent I/O Architecture Specification

6-58 Draft Version 1.5d March 7, 1997

forced. The safest application behavior is clearing the queue, and rewinding/removing the current
medium. Tape devices vary in their support of subsequent access operations after a command
fails. Unless specific devices are well characterized and understood, operations other than rewind
are problematic.

6.5.1.6 Tape Devices Only
Libraries and Changers not Covered: This class deals strictly with controlling tape devices, not tape
libraries or changers.

6.5.1.7 Timing Out Requests
Many tape storage requests have some form of associated timeout. Timeout values are accessible
via a UtilParamsGet (GROUP=Operational_Control) request (see section 6.5.5). Request
functions have some form of associated multiplier or formula to determine the timeout value, as
stated in Table 6-18. Some functions provide a TimeMultiplier in the request that multiplies the
timeout for that request. A TimeMultiplier of zero suspends the timeout for that transaction.

Timeout policy is enforced at the DDM level when the DDM initiates an action. The client may
have a separate timeout policy.

Table 6-18. Timeout Formula

Message Timeout Formula

TapeCacheFlush TimeMultiplier x (ShortPositionTimeout + RWTimeout)

TapeCmprsnSet TimeMultiplier x ShortPositionTimeout

TapeDataErase TimeMultiplier x EraseTimeout

TapeDataRead Fixed Mode - TimeMultiplier x (ShortPositionTimeout + (RecordCount x RWTimeout))

Variable Mode - TimeMultiplier x (ShortPositionTimeout + RWTimeout)

TapeDataWrite Fixed Mode - TimeMultiplier x (ShortPositionTimeout + (RecordCount x RWTimeout))

Variable Mode - TimeMultiplier x (ShortPositionTimeout + RWTimeout)

TapeDataWriteVerify Fixed Mode - 2 x TimeMultiplier x (ShortPositionTimeout + (RecordCount x RWTimeout))

Variable Mode - TimeMultiplier x (ShortPositionTimeout + RWTimeout)

TapeDensitySet TimeMultiplier x ShortPositionTimeout

TapeDeviceReset TimeMultiplier x (ShortPositionTimeout + RWTimeout)

TapeMarksWrite TimeMultiplier x (ShortPositionTimeout + RWTimeout)

TapeMediaEject TimeMultiplier x MediaMovementTimeout

TapeMediaLoad TimeMultiplier x MediaMovementTimeout

TapeMediaLock TimeMultiplier x ShortPositionTimeout

TapeMediaPosition TimeMultiplier x LongPositionTimeout

TapeMediaUnlock TimeMultiplier x ShortPositionTimeout

TapePartitionCreate TimeMultiplier x LongPositionTimeout

TapePowerMgt TimeMultiplier x PowerDownTimeout

TapeStatusCheck TimeoutBase

If TimeMultiplier is zero, then do not timeout.

Class Specifications

Draft Version 1.5d March 7, 1997 6-59

6.5.2 Tape Storage Reply Messages
The reply message structure and behavior is generally the same as described for Random Block
Storage in section 6.4.4. The reply messages for tape storage are based on those for Random Block
Storage, except that the DetailedStatusCode is divided into two fields: a TapeStatusCode, as
specified in Table 6-20, and a four-bit tape positioning status (TapePos), as specified in Table 6-
19.

Note: The DDM never sets the FAIL bit in the MessageFlags field. If the DDM receives a
request with an unknown Function code or an ill-formed message, it replies with a
Transaction Error Reply Message as specified in Chapter 3.

When the DDM aborts a request because of system state changes, it sends a final reply for each
outstanding transaction as an error.

6.5.2.1 Tape Storage Status Codes

Table 6-19. Tape Position (TapePos) Field definition

Bit Name Definition

12 ILI If the ILI bit is set, the current request results in a data transfer, but the requested
transfer length does not equal the transfer length recorded on the tape. The
TransferCount field gives the number of bytes actually transferred, which is the
lesser of the requested transfer and the block length on the tape medium. The
DDM only sets the ILI bit in reply messages containing an error status.

13 BOT If the BOT bit is set, the current request completed at BOT (beginning of tape).

14 EOT If the EOT bit is set, the current request completed at EOT (end of tape).

15 MK If the MK bit is set, the current request completed in a filemark or set mark
position.

Table 6-20. Tape Detailed Status Code

TapeStatusCode (TAPE_STATUS_xxx) Description

_ACCESS_VIOLATION The device is locked for exclusive access by another party.

_BOT Error status when tape position is at beginning of tape,
preventing successful completion of the Request.

_BUS_ERROR Problem detected with the operation of the device’s bus, but
operation completed with successful retry attempts.
RetryCount supplied in Successful Completion Reply
Message. Reading the Error Log provides hardware-specific
status.

_BUS_FAILURE The operation failed due to a problem with the device’s bus.

_DEFERRED_ERROR Error occurred during a write to media for an unspecified
past write command, where successful status returned
when control flags were set to write-to-cache mode (see 0).

_DEVICE_FAILURE Device does not respond or responds with fault.

Intelligent I/O Architecture Specification

6-60 Draft Version 1.5d March 7, 1997

_DEVICE_NOT_READY The device is not ready for access. The client may
determine the device’s state by using the UtilParamsGet
request with GROUP = DEVICE_INFO and/or GROUP =
POWER_CTL.

_DEVICE_RESET After a reset, all requests aside from utility messages (base
class requests) are returned with DEVICERESET status
until the reset is acknowledged by the user.

_EOD Error status when tape position is at the end-of-data area,
preventing successful completion of the Request.

_EOT Error status when tape position is the end of tape,
preventing successful completion of the Request.

_FILEMARK_DETECTED Error status when device encountered a file mark during an
access operation, preventing successful completion of the
Request. Tape position is past the detected file mark in the
direction of tape motion for the associated request.

_ILLEGAL_BLOCK_TRANSFER Attempt to perform a fixed-block request when BlockSize
parameter of DEVICE_ID group is set to zero.

_ILLEGAL_COMPRESSION_CONTROL Error report condition caused when a TapeCmprsnSet
request occurs, when disallowed by device state or tape
position.

_ILLEGAL_LENGTH_INDICATION Error Report condition caused by read operation with
different record size than the media record size. Examine
TransferCount of Error Log (Table 6-35) to determine the
number of bytes transferred.

_ILLEGAL_LOAD_OPERATION Error report condition caused by an attempt to request a
load, unload, lock or unlock the device does not support, or
is appropriate to the current device state.

_ILLEGAL_SET_DENSITY_REQUEST Error report condition caused when a TapeDensitySet
request occurs that is illegal on a specific device or when
disallowed by the current device state or tape position.

_LOAD/UNLOAD_FAILURE Error occurred during a load or unload

_MEDIA_ERROR Media retry. Device was forced to retry to read/write the
data. Retry count supplied. GET_LAST_LOGGING_DATA
can retrieve hardware-specific status.

_MEDIA_FAILURE The operation failed due to an error on the medium.

_MEDIA_LOCKED Medium locked by another party.

_MEDIA_NOT_PRESENT Removable medium not loaded.

_POWER_RESET_DETECTED A power cycle or device/bus reset was detected.

_PROTOCOL_FAILURE The operation failed due to a communication problem with
the device.

_SETMARK_DETECTED Error status when device encountered a set mark during an
access operation, preventing completion of the request.
Tape position is past the detected set mark in the direction
of tape motion for the associated request.

_SUCCESS_UNCONDITIONAL Successful operation - no reportable retries or exceptions.

_SUCCESS_WITH_RETRIES Successful operation - retries required. RetryCount supplied
available in Successful Completion Reply Message.

Class Specifications

Draft Version 1.5d March 7, 1997 6-61

GET_LAST_LOGGING_DATA can retrieve hardware-
specific status.

_TIMEOUT The operation failed because the time-out value specified
for this request has been exceeded.

_UNSUPPORTED_OPERATION The device received a request for an unsupported
operation.

_VOLUMECHANGED After a volume change, all requests aside from utility
messages (base class requests) return with
VOLUMECHANGED status until the event is
acknowledged.

_WRITE_PROTECTED The medium is write protected or read only.

Note that the above TapeStatusCode values do not apply equally to successful transfers, errors, and aborts. The DDM
must report an appropriate code.

6.5.2.2 Successful Completion
For requests that completed without errors, the ReqStatus is set to reflect successful completion,
and the ReplyPayload indicates the total bytes transferred.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

_SUCCESS RetryCount TapePos TapeStatusCode 16 (24)

TransferCount 20 (28)

offset values for 64-bit context field size in ()

Figure 6.38. Successful Completion Reply Message for Tape Storage Class

Fields

RetryCount Number of retries to complete the request. A value of zero means
success on the first try. Reason for unsuccessful attempts provided in
the TapeStatusCode.

TapePos Bit-specific field as described in Table 6-19.

TapeStatusCode If non-zero, contains a warning code describing the nature of the
recovered operation, as described in Table 6-19.

TransferCount The number of bytes transferred.

6.5.2.3 Aborted Operation
Transactions aborted at the request of the originator have the ReqStatus set to
STATUS_CODE_ABORT_NO_DATA_TRANSFER, STATUS_CODE_ABORT_PARTIAL_TRANSFER or
STATUS_CODE_ABORT_DIRTY and there is no ReplyPayload.

Intelligent I/O Architecture Specification

6-62 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

AbortCode RetryCount TapePos TapeStatusCode 16 (24)

offset values for 64-bit context field size in ()

Figure 6.39. Aborted Operation Reply Message for Tape Storage Class

AbortCode Contains a generic status code, as specified in chapter 3
(STATUS_CODE_ABORT_NO_DATA_TRANSFER,
STATUS_CODE_ABORT_PARTIAL_TRANSFER or
STATUS_CODE_ABORT_DIRTY).

6.5.2.4 Progress Reports
Progress replies are for requests that can take a relatively long time to complete, such as verifying
operation of an entire device. Progress replies are appropriate only for certain requests, as
indicated by the ProgressReport bit in the request’s ControlFlags field. When enabled, the
DDM sends periodic progress reports. The ReqStatus value of
STATUS_CODE_PROGRESS_REPORT identifies a progress report. Progress replies are always
followed by a reply with a final ReqStatus (e.g., STATUS_CODE_SUCCESS,
STATUS_CODE_ABORT_NO_DATA_TRANSFER, STATUS_CODE_ABORT_PARTIAL_TRANSFER,
STATUS_CODE_ERROR_NO_DATA_TRANSFER, STATUS_CODE_ERROR_PARTIAL_TRANSFER,
STATUS_CODE_ABORT_DIRTY, STATUS_CODE_ERROR_DIRTY). The exception is when the
progress report is returned in response to a TapeStatusCheck request. In this case, the reply is a
final message.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 0 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

_Progress_Report RetryCount 0 0 0 0 000h 16 (24)

Reserved PercentComplete 20 (28)

offset values for 64-bit context field size in ()

Figure 6.40. Progress Report Reply Message for Tape Storage Class

Fields

PercentComplete The percentage complete value, 0-100

RetryCount Indicates the number of retries attempted on the current operation.

Progress is measured in 1% resolution. The DDM determines the rate at which these messages are
sent, although a rate of one progress message per second is a good guideline.

Class Specifications

Draft Version 1.5d March 7, 1997 6-63

A StatusCheck message is an alternative to enabling progress reporting (see section 6.5.4.17).

6.5.2.5 Error Reports
For requests that do not complete successfully, the ReqStatus indicates
STATUS_CODE_ERROR_NO_DATA_TRANSFER, STATUS_CODE_ERROR_PARTIAL_TRANSFER, or
STATUS_CODE_ERROR_DIRTY and the TapeStatusCode contains the detailed error code.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

ReqStatus RetryCount TapePos TapeStatusCode 16 (24)

TransferCount 20 (28)

offset values for 64-bit context field size in ()

Figure 6.41. Unsuccessful Completion Reply Message for Tape Storage Class

Fields

ReqStatus Contains a generic status codes as specified in chapter 3
(STATUS_CODE_ERROR_NO_DATA_TRANSFER,
STATUS_CODE_ERROR_PARTIAL_TRANSFER, or
STATUS_CODE_ERROR_DIRTY).

TapeStatusCode Contains as specific a code as possible that describes the nature of the
failure (Table 6-20).

6.5.3 Support for Utility Messages

6.5.3.1 Lock and Lock Release
The UtilLock request causes the DDM to guarantee the initiator exclusive access to the device until
a UtilLockRelease request is issued by the same initiator. See the UtilLock message in 6.1.3.14.
Also see UtilDeviceReserve message for acquiring rights to a device with multiple paths.

A UtilLockRelease request cancels a previous reservation. Issuing a UtilLockRelease request
without completing a UtilLock request causes the DDM to fail the request.

6.5.3.2 Event Notification for Tape Storage Devices
Each Tape Storage class device supports the generic events specified in section 6.1.3.4 and the
UtilEventRegister request. In addition, each device supports the following tape storage events:

Intelligent I/O Architecture Specification

6-64 Draft Version 1.5d March 7, 1997

Table 6-21. Tape EventIndicator Assignments

Event Name Bit Description

VolumeLoad 0 New medium has been loaded into the device

VolumeUnload 1 The medium on the device has been unloaded

VolumeUnloadRequest 2 An external unload request and medium is locked. The client must unlock
the medium before the unload request can be honored.

SCSI_SMART 4 Reports SCSI SMART data is received

Table 6-22. EventData for Tape Events

Event Name EventData

VolumeLoad No data

VolumeUnload No data

VolumeUnloadRequest No data

SCSI_SMART SCSI ASC and ASCQ (2 bytes)

6.5.3.3 Getting and Setting Parameters
Both the client (service user) and management use UtilParamsGet and UtilParamsSet utility
messages (section 6.1.3) to read and modify parameter for tape devices. The list of parameter
groups and their format for Tape Storage class devices is specified in section 6.5.5.

6.5.4 Tape Storage Request Messages
Table 6-23 lists requests that a client can make to a Tape Storage class device. The following
sections define these requests in alphabetic order.

Class Specifications

Draft Version 1.5d March 7, 1997 6-65

Table 6-23. Request Messages for the Tape Storage Class

Function code Description

TapeCacheFlush Write cached data to medium

TapeCmprsnSet Control compression during write operations

TapeDataErase Erase tape medium

TapeDataRead Read number of bytes or blocks from current location

TapeDataWrite Write number of bytes or blocks at current location

TapeDataWriteVerify Write number of bytes or blocks at current location and verify transfer to media

TapeDensitySet Set the write density for the current medium

TapeDeviceReset Reset the device

TapeMarksWrite Write file marks or set marks

TapeMediaEject Eject tape medium from device

TapeMediaLoad Load tape medium into device

TapeMediaLock Lock tape medium into device

TapeMediaPosition Position read/write heads

TapeMediaUnlock Unlock tape medium in device

TapePartitionCreate Create a tape partition

TapePowerMgt Power management

TapeStatusCheck Check device status

All Tape Storage class messages are single-transaction messages. Typically, the MessageFlags
field for requests should be set to 00h (for 32-bit context size) or 02h (for 64-bit context size). For
a normal completion reply, the MessageFlags field should contain C0h (for 32-bit context size)
or C2h (for 64-bit context size). Since some requests provide an SGL the value of the
VersionOffset field depends on the location of the SGL. Since all replies are single-transaction
replies, the VersionOffset field should be set to 01h for all replies.

6.5.4.1 Cache Flush Message
The TapeCacheFlush request causes the DDM to write all dirty cached data to the medium. The
DDM must not issue a completion status reply until all data is actually on the medium. The DDM
must ensure that any data cached downstream also flushes to the medium.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset =01h 0

TapeCacheFlush InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier reserved 16 (24)

offset values for 64-bit context field size in ()

Figure 6.42. TapeCacheFlush Request Message

Intelligent I/O Architecture Specification

6-66 Draft Version 1.5d March 7, 1997

A failure should only be reported if the medium is no longer accessible or an uncorrectable error
occurs.

6.5.4.2 Compression Set Message
The TapeCmprsnSet request controls whether data compression is used in subsequent write
operations. If the CompControl is 0, the device disables data compression in subsequent write
operations to the current partition. If the CompControl is 1, the device enables data compression
in subsequent write operations to the current partition. If the device cannot change compression
modes in its current state or tape position, it returns an ILLEGAL_COMPRESSION_CONTROL in
TapeStatusCode (Table 6-20). For devices supporting multiple tape partitions, the effect of this
command on other partitions is undefined and device dependent.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset =01h 0

TapeCmprsnSet InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved ControlFlags 16 (24)

offset values for 64-bit context field size in ()

Figure 6.43. TapeCmprsnSet Request Message

Fields:

ControlFlags Options for performing this command.

Bit 0: CompControl - When this bit is set, compression is on. When
this bit is cleared, compression is off.

Other bits reserved

6.5.4.3 Data Erase Message
The TapeDataErase request directs the DDM to erase data on the current medium. The device
erases all data on the medium from the current position to the end of the tape. If the SecureFlag
is 0, the DDM performs the minimum necessary to clear the medium (e.g., reformat). If the
SecureFlag is 1, the DDM performs a complete erase of all data blocks on the tape.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset =01h 0

TapeDataErase InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

offset values for 64-bit context field size in ()

Figure 6.44. TapeDataErase Request Message

Class Specifications

Draft Version 1.5d March 7, 1997 6-67

Fields

ControlFlags Specifies specific options for performing this command.

Bit 0: SecureFlag - When this bit is set, the DDM must assure that the
old data is wiped from the medium.

Bit 7: ProgressReport - When this bit is set, the device posts Progress
Reports (see section 6.5.2.4). When it is not set, the device does not
post Progress Reports.

Other bits reserved

6.5.4.4 Data Read Message
The TapeDataRead request causes the DDM to read TransferCount number of bytes or blocks
from the current tape location to a buffer described by the SGL. ControlFlags value specifies
whether the TransferCount is the number of bytes or blocks. If block transfers are specified, the
operation returns an error if the value of the BlockSize parameter (DEVICE_INFORMATION
group, Table 6-27) is zero.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

TapeDataRead InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

TransferCount 20 (28)

SGL 24 (32)

n

offset values for 64-bit context field size in ()

Figure 6.45. TapeDataRead Request Message

Fields

ControlFlags Options for performing this command.

Bit 5: DataMode - When this bit is cleared, the TransferCount defines
number of blocks to transfer (Block mode). When set, the operation
is variable mode, and TransferCount defines number of bytes to
transfer.

Other bits reserved.

TransferCount Depending on DataMode, this field specifies the number of blocks or
bytes to transfer.

VersionOffset A value of 61h for 32-bit context size and 81h for 64-bit context size.

Intelligent I/O Architecture Specification

6-68 Draft Version 1.5d March 7, 1997

6.5.4.5 Data Write Message
The TapeDataWrite request causes the DDM to write TransferCount number of bytes or blocks to
the current tape location from a buffer described by the SGL. ControlFlags value specifies
whether the TransferCount is the number of bytes or blocks. If block transfers are specified, the
operation returns an error if the value of the BlockSize parameter (DEVICE_ INFORMATION
group, Table 6-27) is zero.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

TapeDataWrite InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

TransferCount 20 (28)

SGL 24 (32)

n

offset values for 64-bit context field size in ()

Figure 6.46. TapeDataWrite Request Message

Fields

ControlFlags Specifies specific options for performing this command.

Bit 0: NoRetry - When this bit is set, the request does not retry if it
fails.

Bit 3: WriteThruCache - When this bit is set, the DDM must make the
data durable before the request completes.

Bit 4: WriteToCache - When this bit is set, the DDM can reply before
the request is durable on the medium, assuming the data is cached.

Bit 5: DataMode - When this bit is cleared, the TransferCount defines
number of blocks to transfer (Block mode). When set, the operation
is variable mode, and TransferCount defines number of bytes to
transfer.

Other bits reserved.

TransferCount Depending on DataMode, this field specifies the number of blocks or
bytes to transfer.

VersionOffset A value of 61h for 32-bit context size and 81h for 64-bit context size.

6.5.4.6 Data Write Verify Message
The TapeDataWriteVerify request functions just like the TapeDataWrite request, except that the
DDM must verify the transfer’s accuracy. The DDM must write through any cache to conclude this
operation.

Class Specifications

Draft Version 1.5d March 7, 1997 6-69

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

TapeDataWriteVerify InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

TransferCount 20 (28)

SGL 24 (32)

n

offset values for 64-bit context field size in ()

Figure 6.47. TapeDataWriteVerify Request Message

Fields

ControlFlags Options for performing this command.

Bit 0: NoRetry - When this bit is set, the request should not be retried if
it fails.

Bit 5: DataMode - When this bit is cleared, the TransferCount defines
number of blocks to transfer (Block mode). When set, the operation
is variable mode, and TransferCount defines number of bytes to
transfer.

Other bits reserved

TransferCount Depending on DataMode, this field specifies the number of blocks or
bytes to transfer.

VersionOffset A value of 61h for 32-bit context size and 81h for 64-bit context size.

6.5.4.7 Density Set Message
The TapeDensitySet request changes the write density of the current medium. Support for this
request is drive dependent. In general, the DDM passes the density code to the drive and reports
status, based on its ability to pass that information.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapeDensitySet InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Density TimeMultiplier Reserved 16 (24)

offset values for 64-bit context field size in ()

Figure 6.48. TapeDensitySet Request Message

Fields

Intelligent I/O Architecture Specification

6-70 Draft Version 1.5d March 7, 1997

Density The density code is a drive-specific parameter that controls the write density of
the current medium. The contents of this field and its ability to change density
are drive specific.

6.5.4.8 Device Reset Message
The TapeDeviceReset request returns the device to a known state. The DDM aborts all outstanding
requests (i.e., those queued for the device, as well as those in progress) and returns them with an
appropriate abort status.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapeDeviceReset InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

offset values for 64-bit context field size in ()

Figure 6.49. TapeDeviceReset Request Message

Fields:

ControlFlags Options for performing this command.

Bit 0: HardReset - When this bit is set, the DDM performs a hard reset
and when it is cleared, the DDM performs a soft reset. In general, a
hard reset initializes the device, and a soft reset clears the protocol to
the medium.

Bit 7: ProgressReport - When this bit is set, the device posts Progress
Reports (see section 6.5.2.4). When it is not set, the device does not
post Progress Reports.

Other bits reserved

6.5.4.9 Marks Write Message
The TapeMarksWrite request causes the DDM to write TransferCount number of file or set marks
to the tape at the current location. If TransferCount equals zero, the result equals a Flush request
and the tape position stays the same.

Class Specifications

Draft Version 1.5d March 7, 1997 6-71

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapeMarksWrite InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

TransferCount 20 (28)

offset values for 64-bit context field size in ()

Figure 6.50. TapeMarksWrite Request Message

Fields

ControlFlags Options for performing this command.

Bit 0: MarkType - When this bit is cleared, file marks are written.
When set, the device writes set marks.

Bit 5: DataMode - When this bit is cleared, the TransferCount defines
the number of blocks to transfer (Block mode). When set, the
operation is in variable mode, and TransferCount defines the
number of bytes to transfer.

Bit 7: ProgressReport - When this bit is set, the device posts Progress
Reports (see 6.5.2.4). When it is not set, the device does not post
Progress Reports.

Other bits reserved.

TransferCount Depending on MarkType, this field specifies the number of file marks or
set marks to write.

6.5.4.10 Media Eject Message
The TapeMediaEject request causes the device to eject the medium from the drive. If the device is
locked from a TapeMediaLock request, the device fails any TapeMediaEject requests until the
device receives a TapeMediaUnlock request. A failure also results if this device does not support
the eject operation, as specified in Table 6-27.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapeMediaEject InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

MediaIdentifier* 16 (24)

offset values for 64-bit context field size in ()

Figure 6.51 TapeMediaEject Request Message

Intelligent I/O Architecture Specification

6-72 Draft Version 1.5d March 7, 1997

* Media identifier is an optional parameter. It is currently set at -1, but may change when multiple
tape devices are supported.

6.5.4.11 Media Load Message
When the DDM receives the TapeMediaLoad request, it attempts to load the medium identified by
the MediaIdentifier. If the device cannot automatically load media, it returns an UNSUPPORTED
OPERATION status. If the device supports lock, and the LockMedia bit is set, the DDM locks the
medium in the device.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapeMediaLoad InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Reserved Reserved ControlFlags 16 (24)

MediaIdentifier 20 (28)

offset values for 64-bit context field size in ()

Figure 6.52. TapeMediaLoad Request Message

Fields

ControlFlags Options for performing this command.

Bit 0: LockMedia - When this bit is set, the device locks the medium in
the device. When cleared, the device does not lock the medium.

Other bits reserved

Media Identifier Media identifier is an optional parameter. It is currently set at -1, but
may change when multiple tape devices are supported.

6.5.4.12 Media Lock Message
The TapeMediaLock request causes the DDM to lock the tape medium into the device. Once
locked, a tape cannot be removed from the device, manually or under software control, until the
DDM receives a TapeMediaUnlock request. If the device cannot lock the tape, it returns an
UNSUPPORTED OPERATION status (Table 6-20).

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapeMediaLock InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

MediaIdentifier* 16 (24)

offset values for 64-bit context field size in ()

Figure 6.53. TapeMediaLock Request Message

Class Specifications

Draft Version 1.5d March 7, 1997 6-73

Media identifier is an optional parameter. It is currently set at -1, but may change when multiple
tape devices are supported.

6.5.4.13 Media Position Message
The TapeMediaPosition request causes DDM to position the medium to its beginning, end, or
somewhere in between, depending on the PositioningMode byte.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapeMediaPosition InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

PositioningMode TimeMultiplier ControlFlags 16 (24)

 Distance 20 (28)

(64-bits) 24 (32)

offset values for 64-bit context field size in ()

Figure 6.54. TapeMediaPosition Request Message

Fields

ControlFlags Options for performing this command.

Bit 0: Setmarks - When this bit is cleared, a Mark operation is on file
marks. When set, the operation is on set marks.

Bit 7: ProgressReport - When this bit is set, the device posts Progress
Reports (see section 6.5.2.4). When it is not set, the device does not
post Progress Reports.

Other bits reserved

PositioningMode Specifies the positioning operation, as in Table 6-24.

Intelligent I/O Architecture Specification

6-74 Draft Version 1.5d March 7, 1997

Table 6-24. Media Positioning Modes

Value Positioning Mode Description

00h BYTES_ABSOLUTE Position read/write heads at Logical Byte Address (absolute) =
Distance. A value of 0 positions the read/write heads at the
beginning of the tape. A value of -1 positions the read/write heads
at the end of the tape.

01h BYTES_RELATIVE Position read/write heads at Distance number of bytes relative to
Current Location. The Distance is a signed value. Specifying a
positive value moves the tape forward, and a negative value moves
the tape backward.

02h FILES_ABSOLUTE Position read/write heads at Distance number of file partitions from
the start of tape (absolute). A value of 0 positions the read/write
heads at the beginning of the tape. A value of -1 positions the
read/write heads at the end of the tape.

03h FILES_RELATIVE Position read/write heads at + Distance (relative) number of file
partitions from the Current Partition. Distance is a signed value.
Specifying a positive value moves the tape forward, and a negative
value moves the tape backward. A value of zero positions the tape
at the beginning of the current partition.

04h BLOCKS_ABSOLUTE Position read/write heads at Distance number of blocks (records)
from the start of tape (absolute). A value of 0 positions the
read/write heads at the beginning of the tape. A value of -1
positions the read/write heads at the end of the tape.

05h BLOCKS_RELATIVE Position read/write heads at + Distance (relative) number of blocks
(records) from the current record. Distance is a signed value.
Specifying a positive value moves the tape forward, and a negative
value moves the tape backward. A value of zero positions the tape
at the beginning of the current record.

06h MARKS_ABSOLUTE Position read/write heads at Distance number of file marks or set
marks from the start of tape (absolute). A value of 0 positions the
read/write heads at the beginning of the tape. A value of -1
positions the read/write heads at the end of the tape.

07h MARKS_RELATIVE Position read/write heads at + Distance (relative) number of
filemarks or set marks from the current file. Distance is a signed
value. Specifying a positive value moves the tape forward, and a
negative value moves the tape backward. A value of zero positions
the tape at the beginning of the current record.

08h MARKS_CONSECUTIVE Position the heads after the last of consecutive filemarks or set
marks. The distance field specifies the amount of consecutive
filemarks required for successful completion. Distance is a signed
value. Specifying a positive value moves the tape forward, and a
negative value moves the tape backward. A value of zero positions
the tape at the beginning of the current record.

09h PARTITIONS_ABSOLUTE Position read/write heads at distance number of partitions from the
start of tape (absolute). A value of 0 positions the read/write heads
at the beginning of the tape.

FEh END_OF_MEDIA Position tape at End of Media

Class Specifications

Draft Version 1.5d March 7, 1997 6-75

Value Positioning Mode Description

FFh END_OF_DATA Position tape at End of Data

6.5.4.14 Media Unlock Message
The TapeMediaUnlock request causes the DDM to unlock the drive so the tape can be removed
from the device, manually or under software control. If the device does not support locking, the
DDM returns an UNSUPPORTED OPERATION status (Table 6-20).

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapeMediaUnlock InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

MediaIdentifier* 16 (24)

offset values for 64-bit context field size in ()

Figure 6.55. TapeMediaUnlock Request Message

Media identifier is an optional parameter. It is currently set at -1, but may change when multiple
tape devices are supported.

6.5.4.15 Partition Create Message
The TapePartitionCreate request causes the device to create the requested number of partitions on
the tape. Each partition has an associated length field that describes the size of the partition in
bytes. Devices may round approximate requested addresses and capacities. If the device supports
only fixed parameters, as specified in the DeviceCapabilitySupport field of Table 6-27, the
TapePartitionCreate request causes fixed partitioning and the DDM ignores the PartitionData.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

TapePartitionCreate InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

reserved TimeMultiplier ControlFlags 16 (24)

SGL 20 (28)

:

offset values for 64-bit context field size in ()

Figure 6.56. TapePartitionCreate Request Message

Fields

ControlFlags Options for performing this command.

Intelligent I/O Architecture Specification

6-76 Draft Version 1.5d March 7, 1997

Bit 7: ProgressReport - When this bit is set, the device posts Progress
Reports (see section 6.5.2.4). When it is not set, the device does not
post Progress Reports.

Other bits reserved

SGL Specifies a buffer containing the PartitionData. The SGL Immediate
Data element (see Chapter 3) allows including the PartitionData in the
message frame.

VersionOffset A value of 51h for 32-bit context size and 71h for 64-bit context size.

31 3 24 23 2 16 15 1 8 7 0 0

FunctionFlags PartitionCount (n) 0

reserved 4

PartitionSize 1 8

(64-bit) 12

PartitionSize 2 16

(64-bit) 20

PartitionSize n

(64-bit)

Figure 6.57. Partition Data

Fields

FunctionFlags Options for performing this command. None is yet defined.

PartitionCount The number of PartitionSize elements.

PartitionSize Each specifies the number of bytes in the partition. Partitions are created
in the order listed.

6.5.4.16 Power Management Message
The TapePowerMgt request modifies the operational state of the device.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapePowerMgt InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

PwrAction TimeMultiplier ControlFlags 16 (24)

offset values for 64-bit context field size in ()

Figure 6.58. TapePowerMgt Request Message

Class Specifications

Draft Version 1.5d March 7, 1997 6-77

Fields

ControlFlags Options for performing this command.

Bit 7: ProgressReport - When this bit is set, the device posts Progress
Reports (see section 6.5.2.4). When it is not set, the device does not
post Progress Reports.

Other bits reserved

PwrAction The DDM performs the specified power management operations
described in Table 6-25.

Table 6-25. Tape Power Management Actions

Value Description

01h Power up partial − power up the device in a minimal state. The DDM need not load or tension tape
media and/or heads.

02h Power up − power the device up completely.

03h Power up, load − power up the device completely and load media, if present.

20h Quiesce device − flush any volatile state out to the volume and quiesce device activity.

21h Power down partial − power down the device to a minimal state.

22h Power down partial, unload − as above, but unload the volume, if removable.

23h Power down, unload − fully power down the device, unloading the volume, if present.

24h Power down, retain − fully power down the device, retaining the media.

other
values

reserved

6.5.4.17 Status Check Message
Issuing a TapeStatusCheck request to a device returns either STATUS_CODE_SUCCESS,
STATUS_CODE_PROGRESS_REPORT, or STATUS_CODE_ERROR_NO_DATA_TRANSFER. A
STATUS_CODE_SUCCESS status indicates that the device is on-line and operating, while
STATUS_CODE_ERROR_NO_DATA_TRANSFER indicates that the device may not be operating,
depending on the detailed error code in the reply. (See section 6.4.4) A single
STATUS_CODE_PROGRESS_REPORT reply is returned when the device is currently involved in a
long operation, such as erase or rewind.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

TapeStatusCheck InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64-bit context field size in ()

Figure 6.59. TapeStatusCheck Request Message

Intelligent I/O Architecture Specification

6-78 Draft Version 1.5d March 7, 1997

The reply for a StatusCheck depends on the state of the device. The table below describes replies:

Table 6-26. Status Check Replies

ReqStatus (STATUS_CODE_xxx) Meaning

_ABORT_NO_DATA_TRANSFER The StatusCheck request was aborted. The format of this message
is an Abort Report (6.5.2.3)

_ERROR_NO_DATA_TRANSFER The medium is not available. Determine the reason by interpreting
the detailed status information. The format of this message is an
Error Report (6.5.2.5)

_PROGRESS_REPORT A request is currently active against the device that supports
PROGRESS replies (TapeMediaPosition, TapeDataErase,
TapeMediaPosition, etc.) The format of this message is a Progress
Report (6.5.2.4)

_SUCCESS The medium is available.

6.5.5 Managing Parameters of Tape Devices
Both the client (service user) and management use UtilParamsGet and UtilParamsSet utility
messages specified in section 6.1.3 to read and modify parameters for tape devices. The list of
parameter groups and their format for Tape Storage class devices is specified in the following
tables.

Class Specifications

Draft Version 1.5d March 7, 1997 6-79

Table 6-27. Group 0000h - Tape Storage Device Information Parameter Group

GroupNumber 0000h

Group Type SCALAR

Name DEVICE INFORMATION
Description Information that describes a tape storage device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte DeviceType Refer to Table 6-28. Tape Storage Device Types.

1 r 1 byte NumberOfPaths Number of access paths to the media. For support
of dual/multi-ported devices.

2 r 2 bytes PowerState Operation set by the most recent Power
Management message.

3 r 4 bytes BlockSize Block size (number of bytes). If medium is
removable, report maximum supported size.

4 r 8 bytes DeviceCapacity Device capacity (number of bytes). If medium is
removable, report maximum supported capacity.

5 r 4 bytes DeviceCapabilitySupport Device capabilities describes attributes of the
device and are described in Table 6-29

6 r 4 bytes DeviceState State of the device. See Table 6-30.

7 r/w 4 bytes VariableMode Set to a value of 1 if device in variable block
mode. Cleared if in fixed block mode.

8 r 4 bytes WriteDensity Device specific write density for the current
medium. A value of zero indicates either
selectable densities are not supported, or a legal
device-specific density code.

To obtain values for fields in the Device Information group, the DDM can take any action
necessary to satisfy the request, including repositioning the media.

Table 6-28. Tape Storage Device Types

DeviceType Description

00h 1/2” reel-to-reel

01h QIC

02h 3480 form factor

03h 4mm

04h 8mm

05h DLT

06h Other

other values reserved

Intelligent I/O Architecture Specification

6-80 Draft Version 1.5d March 7, 1997

Table 6-29. Device Capabilities

Capability Description

bit 0 Caching − the device supports some form of caching

bit 1 Multi-path accessible − the device is accessible via multiple paths

bit 2 Supports compression

bit 3 Media removable

bit 4 Media Lockable

bit 5 Supports software load/unload operations

bit 6 Supports variable record sizes

bit 7 Supports fixed block record sizes

bit 8 Device is variable-partition capable

bit 9 Device is fixed-partition capable

bit 10 Device can predict device failures

bit 11 Device can predict media failures

bit 12 Device can informing when a head cleaning operation is required

bit 13 Device is environmental-warning capable

bit 14 Data Security

bit 15 Supports Tape Eject command

Table 6-30. Tape Storage Device State

Device State Description

bit 0 Media present – media are present in the device

bit 1 PoweredOn – device is powered up

bit 2 Current medium is write protected

bit 3 Variable block is currently selected

bit 4 Compression is enabled for subsequent writes

bit 5 Current tape has compressed data for read operations

bit 6 Media locked

bit 7 Device failure predicted

bit 8 Media failure predicted

bit 9 Head cleaning operation is required

bit 10 Device environmental warning

bit 11 Caching

bit 12 Data Security is enabled for subsequent writes

bit 13 Current tape has Data Security data for read operations

Class Specifications

Draft Version 1.5d March 7, 1997 6-81

Table 6-31. Group 0001h - Tape Storage Operational Control Parameter Group

GroupNumber 0001h

Group Type SCALAR

Name OPERATIONAL CONTROL
Description Operational control parameters for a tape storage device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 1 byte RetryAttempts Number of times a DDM/Device will retry a request
before failing.

1 r 1 byte reserved1

2 r 2 bytes reserved2

3 r/w 4 bytes RWTimeout Read/Write timeout increment per block transfer in
microseconds

4 r/w 4 bytes LongPositionTimeout Position timeout in microseconds for longest
position operation.

5 r/w 4 bytes ShortPositionTimeout Position timeout in microseconds for short position
operation, like a backhitch.

6 r/w 4 bytes EraseTimeout Erase timeout in microseconds.

7 r/w 4 bytes TimeoutBase Base Timeout for standard operations. The
timeout value is subject to a multiplier determined
by the message type in microseconds.

Table 6-32. Group 0002h - Tape Storage Power Control Parameter Group

GroupNumber 0002h

Group Type SCALAR

Name POWER CONTROL
Description Configures how the tape storage device responds during inactivity and recovery from a

powered down state.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 4 bytes PowerdownTimeout The device powers down if it is not accessed within
the allotted time (in microseconds). A zero value
indicates the device will never power down.

1 r/w 4 bytes OnAccess Determines what the device does when accessed in
a powered down state. Any block storage class
request against the media constitutes access.

bit 0: PowerUpOnAccess

bit 1: LoadOnAccess

Intelligent I/O Architecture Specification

6-82 Draft Version 1.5d March 7, 1997

Table 6-33. Group 0003h - Tape Storage Cache Control Parameter Group

GroupNumber 0003h

Group Type SCALAR

Name CACHE CONTROL
Description Information and control parameters for the cache of a tape storage device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes TotalCacheSize Total available cache (in bytes).

1 r/w 4 bytes ReadCacheSize Total available cache size for reads (in bytes).

2 r/w 4 bytes WriteCacheSize Total available cache size for writes (in bytes).

3 r/w 1 byte WritePolicy Policy employed by the cache when handling write
requests.

00h None/Disabled

01h WriteToCache

02h WriteThruCache

4 r/w 1 byte ReadPolicy Policy employed by the cache when handling read
requests.

00h None/Disabled

01h ReadCache

02h ReadAheadCache

03h ReadReadAheadCache

5 r 1 byte ErrorCorrection Error correction scheme.

00h None/Disabled

01h Unknown

02h Other

03h Parity

04h SingleBitECC

05h MultiBitECC

Table 6-34. Group 0004h - Tape Storage Media information Parameter Group

GroupNumber 0004h

Group Type SCALAR

Name MEDIA INFORMATION
Description

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes Capacity Formatted capacity (in bytes) for current medium.

1 r 4 bytes BlockSize Block size (in bytes) for current medium.

Class Specifications

Draft Version 1.5d March 7, 1997 6-83

Table 6-35. Group 0005h - Tape Storage Error Log Parameter Group

GroupNumber 0005h

Group Type TABLE

Name ERROR LOG
Description Table of information for each error encountered. The client uses this information for its

system log.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 bytes ErrorDataIndex Unique index that identifies each error log entry.

1 r 1 byte Function The function code of the failed request

2 r 1 byte RetryCount The number of times the function was unsuccessfully
tried

3 r 2 bytes ErrorStatusCode Status Code describing the error or failure as defined
in Table 6-20. The most significant four bits contain
the TapePos code defined in Table 6-19.

4 r 2 bytes reserved2

5 r 4 bytes TransferCount The number of bytes (in variable mode) or records (in
fixed block mode) successfully transferred before
error occurred

6 r 8 bytes TimeStamp Number of microseconds from some fixed reference.
The time interval between any two events can be
found by the difference between their time stamps

7 r 8 bytes UserInfo Additional user information. The structure of this data
varies for different types of access (e.g., SCSI, ATA)
and is well known in the industry.

Intelligent I/O Architecture Specification

6-84 Draft Version 1.5d March 7, 1997

Table 6-36. Group 0100h - Tape Storage Historical Statistics Parameter Group

GroupNumber 0100

Group Type SCALAR

Name STORAGE HISTORICAL STATS
Description

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes DevPowerOnHours Approximate total power-on hours for the device
(zero, if unknown or unsupported)

1 r 4 bytes DevTapeMotionHours Approximate total tape motion hours for the device
(zero, if unknown or unsupported)

2 r 4 bytes MediaWriteRetries Historical count of write retries (device dependent)
for the current medium (zero, if unknown or
unsupported)

3 r 4 bytes MediaReadRetries Historical count of read retries (device dependent)
for the current medium (zero if unknown or
unsupported)

4 r 4 bytes MediaLoadCount Number of times the current medium has been
loaded onto a device (zero if unknown or
unsupported)

Table 6-37. Group 0101h - Tape Storage Runtime Statistics Parameter Group

GroupNumber 0101

Group Type SCALAR

Name STORAGE RUNTIME STATS
Description

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes MediaWriteRetries Current count of write retries (device dependent) for
the entire current medium (zero if unknown or
unsupported)

1 r 4 bytes MediaReadRetries Current count of read retries (device dependent) for
the entire current medium (zero if unknown or
unsupported)

2 r 4 bytes CompressionRate Compression rate for the current partition of the
current medium, multiplied by 1000 (zero if unknown
or unsupported)

Class Specifications

Draft Version 1.5d March 7, 1997 6-85

Table 6-38. Group 0102h - Tape Storage Flexible Statistics Parameter Group

GroupNumber 0102

Group Type SCALAR

Name STORAGE FLEXIBLE STATS
Description

FieldIdx (r/w) Field Size Parameter Name Description

0 tbs.

6.6 SCSI Peripheral Class

The DDM for a SCSI port must support two classes of messages: one manages the SCSI controller
and the second abstracts access to peripherals residing on the SCSI bus. This section defines the
latter.

6.6.1 Overview
The SCSI peripheral class driver exposes an interface to the individual peripheral devices on a
SCSI bus. The interface allows direct manipulation of the individual devices, but does not give
access to the SCSI bus itself. This separation between the SCSI bus and the peripheral devices on
the SCSI bus lets an operating system grant user-level applications access to devices on the SCSI
bus, without possibly interfering with other devices or the SCSI bus itself.

SCSI peripheral class drivers are typically part of a SCSI adapter class driver. A single DDM
exposes both interfaces, but separate TIDs are assigned to the SCSI adapter and to each peripheral
device on the SCSI bus. The DDM is not responsible for policing the interfaces beyond securing
the separation between the various TIDs, where requests to a particular TargetAddress (device)
do not affect other devices. However, resetting the host bus adapter or the SCSI bus may
dramatically affect the operations of devices on the bus. The operating system must restrict access
to the SCSI Adapter class drivers to trusted applications only.

Intelligent I/O Architecture Specification

6-86 Draft Version 1.5d March 7, 1997

OSD2150

SCSI Controller SCSI Device

SCSI HDM

Floppy Device SCSI Device

Mass Storage Abstraction

IDE Device

BSA

Embedded Kernel

I O Environment2

Figure 6-60. SCSI DDM Example

6.6.2 SCSI Reply Messages

Note: The DDM never sets the FAIL bit in the MessageFlags field. If the DDM receives a
request with an unknown Function code or an ill-formed message, it replies with a
Transaction Error Reply Message as specified in Chapter 3.

Replies to SCSI Peripheral requests come in two types: completion status replies and progress
replies.

A completion status reply is generated for every request message. The ReqStatus field conveys
the first-level completion status. For requests that completed without errors, only the ReqStatus
field is set to reflect successful completion, the DetailedStatusCode is set to zero, the
TransferCount field indicates the actual amount of data transferred, and there is no StatusData.

Class Specifications

Draft Version 1.5d March 7, 1997 6-87

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

ReqStatus reserved DetailedStatusCode 16 (24)

TransferCount 20 (28)

Status Data

offset values for 64-bit context field size in ()

Figure 6-61. Reply Message Template for SCSI Peripheral Class

The DDM always sets the TransferCount field to the actual number of bytes transferred. If the
request did not require data transfer, it sets the value to zero.

The DetailedStatusCode is divided into two eight-bit fields, DeviceStatus and AdapterStatus.
The DDM returns the SCSI device completion status associated with the request in the
DeviceStatus field, per Table 6-39. It also returns status of the adapter in the AdapterStatus
field, per Table 6-40. These codes are based on the CAM-1 definitions, but there are exceptions.
First, zero is defined as successful completion. This is in contrast to CAM-1, which defines zero as
operation in progress. Second, the value of one is permanently reserved. This value CAM-1
defines as successful completion. Finally, the presence of sense data is determined from the
AutoSenseTransferCount field. CAM-1 uses a bit flag in the adapter status field to indicate the
presence of sense data.

For requests that did not complete successfully, a detailed error code is returned in the
DetailedStatusCode fields. If the AutoSense flag is set in the ScbFlags of the request, the
DDM executes a request sense command and returns sense data as specified. The DDM indicates
the amount of sense data returned in the AutoSenseTransferCount field. The request either
provides a reply buffer for the sense data or the DDM returns it as part of the reply payload. Up to
40 bytes of sense data may be returned in the reply frame. If a sense buffer is specified, then the
sense data is written to the sense buffer and is excluded from the reply frame. See the SCSI
control block flags in section 6.6.4.2.

Intelligent I/O Architecture Specification

6-88 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

ReqStatus reserved AdapterStatus DeviceStatus 16 (24)

Transfer_Count 20 (28)

AutoSenseTransferCount 24 (32)

SenseData 28 (36)

...

(up to 40 bytes) 60

offset values for 64-bit context field size in ()

Figure 6-62. Unsuccessful Completion Reply Message for SCSI Peripheral Class

The DetailedStatusCode field contains as specific a code as possible to describe the failure.

Table 6-39. SCSI Device Completion Status Codes

DeviceStatus Description

SCSI_SUCCESS Success – no warnings

SCSI_CHECK CONDITION Check condition

SCSI_BUSY Busy

SCSI_RESERVATION_CONFLICT Reservation conflict

SCSI_COMMAND_TERMINATED Command terminated

SCSI_TASK_SET_FULL Task Set Full

SCSI_ACA_ACTIVE ACA Active

Class Specifications

Draft Version 1.5d March 7, 1997 6-89

Table 6-40. SCSI Adapter Status Codes for Device Operations

AdapterStatus Description

HBA_SUCCESS Success – no warnings

HBA_ADAPTER_BUSY Cannot process request

HBA_AUTOSENSE_FAILED AutoSense operation failed

HBA_BDR_MESSAGE_SENT SCSI Bus Device Reset message sent

HBA_CDB_RECEIVED SCSI CDB has been received

HBA_COMMAND_TIMEOUT Timeout on request

HBA_COMPLETE_WITH_ERROR Request completed with an error

HBA_DATA_OVERRUN SCSI data phase overrun

HBA_DEVICE_NOT_PRESENT SCSI device not present

HBA_FUNCTION_UNAVAILABLE Requested function is not available

HBA_IDE_MESSAGE_SENT SCSI Initiator Detected Error message sent

HBA_INVALID_CDB Invalid SCSI CDB received in host target mode

HBA_LUN_ALREADY_ENABLED SCSI LUN is already enabled

HBA_LUN_INVALID LUN supplied is invalid

HBA_MESSAGE_RECEIVED SCSI message received in host target mode

HBA_MR_MESSAGE_RECEIVED SCSI Message Reject message received

HBA_NO_ADAPTER No Host Bus Adapter detected

HBA_NO_NEXUS SCSI nexus is not established

HBA_PARITY_ERROR_FAILURE Uncorrectable SCSI bus parity error

HBA_PATH_INVALID Path supplied is invalid

HBA_PROVIDE_FAILURE Unable to provide required capability

HBA_QUEUE_FROZEN Adapter queue frozen with this error

HBA_REQUEST_ABORTED Request aborted by the host

HBA_REQUEST_INVALID Request is invalid

HBA_REQUEST_LENGTH_ERROR Request length supplied is inadequate

HBA_REQUEST_TERMINATED Request terminated by the host

HBA_RESOURCE_UNAVAILABLE Resource unavailable

HBA_SCSI_BUS_BUSY SCSI bus is busy

HBA_SCSI_BUS_RESET SCSI bus reset occurred

HBA_SCSI_IID_INVALID SCSI initiator ID is invalid

HBA_SCSI_TID_INVALID SCSI target device ID supplied is invalid

HBA_SELECTION_TIMEOUT SCSI device did not respond to selection

HBA_SEQUENCE_FAILURE SCSI bus phase sequence failure

HBA_UNABLE_TO_ABORT Cannot abort request

HBA_UNABLE_TO_TERMINATE Cannot terminate request

HBA_UNACKNOWLEDGED_EVENT Unacknowledged event by host

HBA_UNEXPECTED_BUS_FREE Unexpected SCSI bus free

Intelligent I/O Architecture Specification

6-90 Draft Version 1.5d March 7, 1997

6.6.3 Support for Utility Messages

6.6.3.1 Events
The SCSI peripheral driver supports the generic events specified in section 6.1.3.8, Table 6-4 for
UtilEventRegister. In addition, the following SCSI events are specified.

Table 6-41. SCSI EventIndicator Assignments

Event Name Bit Description

SCSI_SMART 4 Reports SCSI SMART data indication

Table 6-42. EventData for SCSI Events

Event Name Event Data

SCSI_SMART SCSI ASC and ASCQ (2 bytes)

6.6.3.2 Getting and Setting Parameters
Both the client (service user) and management use the UtilParamsGet and UtilParamsSet utility
messages to read and modify parameters for the SCSI Peripheral class devices. Refer to section
6.1.3, Utility Messages. The list of parameter groups for SCSI Peripheral class devices is specified
in Table 6-45. The UtilParamsGet utility request (Group = DEVICE_INFORMATION) causes the
DDM to return the current operating parameters associated with the device.

6.6.4 SCSI Peripheral Request Messages
Table 6-43 shows requests that can be made to SCSI Peripheral class objects.

Table 6-43. Request Messages for the SCSI Peripheral Class

Function Description

ScsiDeviceReset Reset the target device

ScsiScbAbort Terminate the SCB

ScsiScbExec Execute the SCB on the target unit

All SCSI Peripheral class messages are single-transaction messages. Typically, the
MessageFlags field for requests should be set to 00h (for 32-bit context size) or 02h (for 64-bit
context size). For a normal completion reply message, the MessageFlags field should contain
C0h (for 32-bit context size) or C2h (for 64-bit context size). Since some requests provide an SGL,
the value of the VersionOffset field depends on the location of the SGL. Since all replies are
single-transaction replies, the VersionOffset field should be set to 01h for all replies.

Class Specifications

Draft Version 1.5d March 7, 1997 6-91

6.6.4.1 Device Reset
The ScsiDeviceReset request causes the DDM to soft reset the SCSI device associated with the
TargetAddress (e.g., issue a bus device reset command). All requests currently queued at the
DDM for execution are aborted and returned immediately with an ABORTED status before the
reset command is complete.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

ScsiDeviceReset InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64-bit context field size in ()

Figure 6-63. ScsiDeviceReset Request Message

6.6.4.2 SCSI Control Block Abort
The ScsiScbAbort request causes the DDM to remove the SCB from the execution queue if the
SCB has not yet been sent to the device. If the SCB is already sent, the DDM attempts abort the
SCB at the device. If the DDM removes the SCB from its queue or aborts its execution at the
device, it returns a STATUS_CODE_SUCCESS completion code for this request and an aborted
completion message for the aborted request.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

ScsiScbAbort InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

TransactionContextToAbort 20 (24)

offset values for 64-bit context field size in ()

Figure 6-64. ScsiScbAbort Request Message

6.6.4.3 SCSI Control Block Execute
The ScsiScbExec request causes the DDM to send the accompanying CDB to the device associated
with the TargetAddress for execution.

If no data transfer will take place, the ByteCount and SGL are not present and the total length of
this request’s message size is reduced to 36 bytes.

Intelligent I/O Architecture Specification

6-92 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

ScsiScbExec InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

ScbFlags Reserved CdbLen 16 (24)

CDB 20 (28)

... 24 (32)

... 28 (36)

(16 Bytes) 32 (40)

ByteCount 36 (44)

SGL 40 (48)

offset values for 64-bit context field size in ()

Figure 6-65. ScsiScbExec Request Message

Fields

VersionOffset A value of 0A1h for 32-bit context size and C1h for 64-bit context size.

CdbLen Number of actual bytes of CDB in CDB field.

ScbFlags The ScbFlags impose additional requirements on the command
execution phase, as defined in Table 6-44. These requirements are for
the duration of this SCB only.

Class Specifications

Draft Version 1.5d March 7, 1997 6-93

Table 6-44. ScbFlags Bit Definitions

Bits: Definition:

Bit 15 Bit 14 TransferDirection
0 0 NO_DATA_TRANSFER
0 1 FROM_DEVICE_TO_SYSTEM
1 0 FROM_SYSTEM_TO_DEVICE
1 1 Reserved

Bit 13: DisconnectMode
0 DISABLE_DISCONNECT
1 ENABLE_DISCONNECT

Bits 12-10: reserved bits

Bit 9 Bit 8 Bit 7 TagType
0 0 0 NO_TAG_QUEUEING
0 0 1 SIMPLE_TAG
0 1 0 HEAD_OF_QUEUE_TAG
0 1 1 ORDERED_QUEUE_TAG
1 0 0 ACA_QUEUE_TAG

Bit 6 Bit 5 AutoRequestSense
0 0 DISABLE_AUTOSENSE
0 1 RETURN_SENSE_DATA_IN_REPLY_MESSAGE_FRAME
1 0 Reserved
1 1 RETURN_SENSE_DATA_IN_REPLY_BUFFER

Bits 4-0: reserved bits

When the TagType field is set to NO_TAGGED_COMMAND_QUEUING, it overrides the current
operating parameters and sends the command without tagging it. To accomplish this, the DDM
may have to wait for outstanding tagged commands to complete.

If the AutoRequestSense is not disabled, the DDM executes a request sense command as
required. The sense data is either returned in the reply frame, or in a separate sense buffer, as
specified. If the ScbFlags indicates RETURN_SENSE_DATA_IN_REPLY_MESSAGE_FRAME, up to
40 bytes of sense data can be returned. In this case, the SGL does not specify a request sense
buffer. The AutoSenseTransferCount field contains the actual size of sense data returned.

If the ScbFlags indicates RETURN_SENSE_DATA_IN_REPLY_BUFFER, then the SGL specifies the
sense buffer. In this case, no sense data is returned in the reply frame. The sense data buffer is
always second in the SGL. The first buffer contains the data transfer associated with execution of
the SCSI CDB. If the SCSI CDB requires a sense buffer, but not a data transfer, then a zero-length
buffer must be the first buffer.

6.6.5 Managing SCSI Peripheral Parameters
Both the client (service user) and management use UtilParamsGet and UtilParamsSet utility
messages in section 6.1.3 to read and modify parameter for SCSI peripheral. The list of parameter
groups and their format for SCSI peripheral class devices is specified in the following tables.

Intelligent I/O Architecture Specification

6-94 Draft Version 1.5d March 7, 1997

Table 6-45. SCSI Peripheral Parameter Groups

GroupNumber 0000h

GroupType SCALAR

Name DEVICE_INFORMATION
Description Describes the capabilities of the SCSI peripheral device.

FieldIdx (r/w) Field Size Parameter Description

0 r 1 byte DeviceType SCSI Device Types

00h Direct-access read/write storage device (e.g., magnetic
disk)

01h Sequential-access storage device (e.g., magnetic tape)
02h Printer device
03h Processor device
04h Write-one storage device (e.g., WORM disk)
05h CD-ROM device
06h Scanner device
07h Optical Memory device (e.g., MO disks)
08h Medium Changer device (e.g.,jukeboxes)
09h Communications device
0Ah, 0Bh Defined by ASC IT8 (graphic arts pre-press

device)
0Ch Array controller device (e.g., RAID array controller)
0Dh-1Eh Reserved
1Fh Unknown or no device type
20h-FFh Reserved

Note:

See SCSI-2 or SCSI-3 for further details.

1 r/w 1 byte Flags Bit 0: SCSI Peripheral Type
0 - Parallel
1 - Serial

Bit 1 : Reserved
Bit 2 : Disconnect/Reconnect

0 - Disable Disconnect/Reconnect
1 - Enable Disconnect/Reconnect

Bits 3 & 4: MODE
00 = Set Parameters from Message Payload
01 = Ignore Payload and Set Parameters to default
10 = Ignore Payload and Set Parameters to Safest

possible
11 = reserved

Bits 5 & 6 : MAXIMUM DATA WIDTH
00 = 8 bits
01 = 16 bits
10 = 32 bits
11 = Reserved

Bit 7: AcknowledgmentSynchronous Negotiations
0 = Do not initiate acknowledgmentsynchronous

negotiations
1 = Initiate acknowledgmentsynchronous negotiations

Class Specifications

Draft Version 1.5d March 7, 1997 6-95

GroupNumber 0000h

GroupType SCALAR

Name DEVICE_INFORMATION
Description Describes the capabilities of the SCSI peripheral device.

FieldIdx (r/w) Field Size Parameter Description

2 r 2 bytes Reserved2

3 r 4 bytes Identifier The SCSI target/initiator ID for this device

4 r 8 bytes LUN Logical unit information, per the SCSI-3 Controller Commands
Standard. SCSI-2 compatible LUNs go into byte offset 1.

5 r/w 4 bytes QueueDepth Maximum number of CDBs that can be sent to the device. To
find the largest number supported by this device, issue a
UtilParamSet message with this field set to -1, then issue a
UtilParamGet message to read the largest value supported.
The DDM adjusts the value to the largest the device can
support, if it can be determined. Otherwise, the value of -1 is
returned. The number of CDBs issued to the device can be
limited by some other resource.

Sending a Queue Depth value of 0 (zero) causes the DDM to
choose a default value. Setting the Queue Depth to 1 (one)
causes the DDM to disable tagged command queuing.

6 r 1 byte Reserved1

7 r/w 1 byte NegOffset The negotiated synchronous offset for this device. A
UtilParamGet value of 0 indicates the transfer mode is
asynchronous.

8 r/w 1 byte NegDataWidth Negotiated data width (in bits).

9 r 1 byte Reserved1

10 r 8 bytes NegSyncRate Reading this value returns the current negotiated transfer rate,
in kilo-transfers per seconds, for this device. A value of 0
shall represent asynchronous mode. Setting the value to -1
indicates that the transfer rate should be set to the maximum
possible..

GroupNumber 0001

GroupType SCALAR

Name BUS PORT INFORMATION
Description Describes the bus port of the SCSI peripheral device.

FieldIdx (r/w) Field Size Parameter Name Description

Intelligent I/O Architecture Specification

6-96 Draft Version 1.5d March 7, 1997

GroupNumber 0001

GroupType SCALAR

Name BUS PORT INFORMATION
Description Describes the bus port of the SCSI peripheral device.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte Physical/Electrical Physical and/or electrical characteristics of the bus port.

01h Other
02h Unknown
03h SCSI Parallel Interface
04h SCSIFibre Channel Protocol
05h SCSI Serial Bus Protocol (1394)

06h SCSI Serial Storage Architecture

1 r 1 byte Electrical Interface Electrical interface characteristics of the bus port.

01h Other
02h Unknown
03h Single Ended
04h Differential
05h Low Voltage Differential
06h Optical

2 r 1 byte Isochronous Indicates if the bus port supports isochronous transfers.

00h Does not support isochronous transfers

01h Supports isochronous transfers

02h Unknown
3 r 1 byte ConnectorType Physical connection for this bus port.

01h Other
02h Unknown
03h None
04hS CSI (A) High-Density Shielded (50 pins)

05h SCSI (A) High-Density Unshielded (50 pins)

06h SCSI (A) Low-Density Shielded (50 pins)

07h SCSI (A) Low-Density Unshielded (50 pins)

08h SCSI (P) High-Density Shielded (68 pins)

09h SCSI (P) High-Density Unshielded (68 pins)

0Ah SCSI SCA-I (80 pins)

0Bh SCSI SCA-II (80 pins)

0Ch SCSI Fibre Channel DB9 (Copper)

0Dh SCSI Fibre Channel (fibre)

0Eh SCSI Fibre Channel SCA-II (40 Pins)

0Fh SCSI Fibre Channel SCA-II (20 Pins)

10hSCSI Fibre Channel BNC

4 r 1 byte ConnectorGender Indicates the gender of the connector.

01h Other
02h Unknown
03h Female
04h Male

5 r 1 byte Reserved1

6 r 2 bytes Reserved2

Class Specifications

Draft Version 1.5d March 7, 1997 6-97

GroupNumber 0001

GroupType SCALAR

Name BUS PORT INFORMATION
Description Describes the bus port of the SCSI peripheral device.

FieldIdx (r/w) Field Size Parameter Name Description

7 r 4 bytes MaxNumberDevices Maximum directly addressable entities supported by bus
ports protocol.

6.7 Bus Adapter Class

When an adapter contains one or more ports attaching some number of peripheral devices, the
DDM abstracts each peripheral as an individual device. This abstraction provides control for each
individual device independent from the others. A number of bus characteristics and functions
affect all of the peripherals concurrently, and thus can not be abstracted by any single device.
Therefore the Bus Adapter Class provides for the management and control of the secondary bus
independent of the underlying technology.

An example is a SCSI adapter that provides access to a SCSI bus (SCSI channel) attaching a
number of SCSI devices. The SCSI Peripheral class provides the abstraction of each SCSI
peripheral device. The DDM for the adapter registers a SCSI peripheral device for each peripheral
device on the bus. In addition, the DDM registers a bus adapter device for the SCSI bus controller
(adapter).

This section defines the messages and behavior of such bus adapter devices.

6.7.1 Overview
The Host Bus Adapter (HBA) class device exposes an interface for controlling the bus adapter and
its secondary bus. Access to this class driver is assumed to be under the control of the OS and its
security policies. This means that the primary user is the OS or one of its agents. Other facilities
needing the services provided by the HBA device must claim as secondary or authorized users.

For multi-channel adapters, the DDM registers each secondary bus as a HBA class device and thus
associates each bus with a different TargetAddress. Some operations, such as resetting an
adapter entirely, can affect all secondary buses on that adapter.

6.7.2 Reply Messages
The DDM generates a completion status reply for every received request message. The
ReqStatus field conveys the first-level completion status. The DetailedStatusCode is divided
into two eight-bit fields; AdapterStatus and a reserved field. The DDM sets the reserved field to
zero and returns the status of the adapter in the AdapterStatus field, per Table 6-46.

For requests that complete successfully, the DDM sets the ReqStatus field to reflect successful
completion and sets the DetailedStatusCode to zero or a code that identifies conditions that were
overcome in completing the request.

Intelligent I/O Architecture Specification

6-98 Draft Version 1.5d March 7, 1997

For requests that do not complete successfully, the DDM returns an error code in the
AdapterStatus field.

The ReplyPayload field is reserved for future definition. The DDM must set MessageSize to
indicate no reply payload.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize 1 1 0 0 0 0 x 0 VersionOffset = 01h 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

ReqStatus reserved AdapterStatus reserved 16 (24)

ReplyPayload

20 (28)

offset values for 64-bit context field size in ()

Figure 6-66. Reply Message Structure for Bus Adapter Class

Note: The DDM never sets the FAIL bit in the MessageFlags field. If the DDM receives a
request with an unknown Function code or an ill-formed message, it replies with a
Transaction Error Reply Message as specified in Chapter 3.

The AdapterStatus field contains as specific a code as possible to describe the failure.

Class Specifications

Draft Version 1.5d March 7, 1997 6-99

Table 6-46. AdapterStatus Values (part of DetailedStatusCode)

AdapterStatus Description

HBA_SUCCESS Success – no warnings

HBA_ADAPTER_BUSY Cannot process request

HBA_COMMAND_TIMEOUT Timeout on request

HBA_COMPLETE_WITH_ERROR Request completed with an error

HBA_FUNCTION_UNAVAILABLE Requested function is not available

HBA_NO_ADAPTER No Host Bus Adapter detected

HBA_PARITY_ERROR_FAILURE Uncorrectable bus parity error

HBA_PATH_INVALID Path supplied is invalid

HBA_PROVIDE_FAILURE Unable to provide required capability

HBA_QUEUE_FROZEN Adapter queue frozen with this error

HBA_REQUEST_ABORTED Request aborted by initiator

HBA_REQUEST_INVALID Request is invalid

HBA_REQUEST_LENGTH_ERROR Request length supplied is inadequate

HBA_REQUEST_TERMINATED Request terminated by initiator

HBA_RESOURCE_UNAVAILABLE Resource unavailable

HBA_BUS_BUSY Secondary bus is busy

HBA_BUS_RESET Secondary bus reset occurred

HBA_ID_INVALID Secondary target device ID supplied is invalid

HBA_SEQUENCE_FAILURE Secondary bus phase sequence failure

HBA_UNABLE_TO_ABORT Cannot abort request

HBA_UNABLE_TO_TERMINATE Cannot terminate request

HBA_UNACKNOWLEDGED_EVENT Unacknowledged event by user

HBA_UNEXPECTED_BUS_FREE Unexpected secondary bus release

6.7.3 Support for Utility Messages

6.7.3.1 Events
The bus adapter supports the generic events specified in section 6.1.3.8, Table 6-1 for
UtilEventRegister. No additional events are defined.

6.7.3.2 Getting and Setting Parameters
Both the client (service user) and management use the UtilParamsGet and UtilParamsSet utility
messages to read and modify parameters for the bus adapter class devices. Refer to section 6.1.3,
Utility Messages. The list of parameter groups for bus adapter class devices is in Table 6-48. The
UtilParamsGet utility request (Group = 0000h) causes the DDM to return the operating parameters
associated with the bus.

6.7.4 Bus Adapter Class Request Messages
Table 6-47 shows base class requests that can be made to Bus Adapter class devices.

Intelligent I/O Architecture Specification

6-100 Draft Version 1.5d March 7, 1997

Table 6-47. Request Messages for the Bus Adapter Class

Function Description

HbaAdapterReset Reset the Adapter

HbaBusQuiesce Suspends I/O to all devices on the secondary bus

HbaBusReset Reset the secondary bus

HbaBusScan Scan the secondary bus

All Bus Adapter class messages are single-transaction messages. Typically, the MessageFlags
field for requests should be set to 00h (for 32-bit context size) or 02h (for 64-bit context size). For
a normal reply, it should contain C0h (for 32-bit context size) or C2h (for 64-bit context size).
Since no request provides a SGL, and all replies are single-transaction, the VersionOffset field
should be set to 01h for both requests and replies.

6.7.4.1 Reset Host Bus Adapter
The HbaAdapterReset request causes the DDM to hard reset the bus adapter. Resetting the bus
adapter does not always reset the bus itself. When an adapter is reset, the DDM aborts all
outstanding requests to all devices on any buses connected to the adapter. All aborted requests
return with the ABORTED status before the HbaAdapterReset request completes.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

HbaAdapterReset InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64-bit context field size in ()

Figure 6-67. HbaAdapterReset Request Message

6.7.4.2 Bus Quiesce
This message enables and disables (quiesces) secondary bus activity. An odd value in the Flags
field means quiesce the bus. An even value in this field means resume normal bus function.
While quiesced, the adapter does not source commands or data on the secondary bus.

The behavior of a HbaBusQuiesce shall be as follows:

1. The HDM receives the HbaBusQuiesce request with Flags = quiesce.

2. If the primary user registered for StateSensitive (see UtilClaim message) and registered for
I2O_EVENT_IND_ STATE_CHANGE (see UtilEventRegister message), then the DDM sends the
primary user an UtilEventRegister reply and waits for the UtilEventAck message. If the DDM
receives a HbaBusQuiesce request with Flags = quiesce before it receives the
UtilEventAck message, then it rejects the original HbaBusQuiesce request. Otherwise the
DDM accepts the HbaBusQuiesce request.

3. For any peripheral class messages processed after the HDM accepts the HbaBusQuiesce,
the HDM either:

Class Specifications

Draft Version 1.5d March 7, 1997 6-101

a) immediately generates a busy status (TransactionError reply message with
I2O_Detail_Status_Device_Busy detailed status code) reply, OR

b) queues the request until full, then it issues the ‘device busy’ reply to subsequent requests.

4. The HDM waits for all outstanding commands to complete, returning the appropriate reply.

5. The HDM returns complete to the original HbaBusQuiesce request.

6. The HDM generates the I2O_EVENT_IND_STATE_CHANGE
(StateChange=SUSPENDED)event for each peripheral served by the bus.

7. For base class messages sent to any of those peripheral devices, the HDM continues to queue
commands or issue the ‘adapter busy’ reply until it receives a HbaBusQuiesce request
with Flags = normal. (Note: the HDM must have queue space for HbaBusQuiesce to
resume normal bus operation. Thus when queue depth reaches a value of maximum -1, the
HDM must return ‘adapter busy status.)

8. When the HDM receives the HbaBusQuiesce request with Flags = normal, the HDM
resumes normal operation and the HDM generates an I2O_EVENT_IND_STATE_CHANGE
event for each peripheral indicating ‘return to normal operation’.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

HbaBusQuiesce InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

Flags 16 (24)

offset values for 64 bit context field size in ()

Figure 6-68. HbaBusQuiesce Request Message

Gross timeouts at the ISM and OSM level should be resolved by hints provided by the HDM at
initialization time.

6.7.4.3 Bus Reset
The HbaBusReset request tells the DDM to perform a hard reset on the secondary bus associated
with TargetAddress. For a multi-channel adapter, resetting one channel should not affect the
operation of the other channel. However, if the design of the adapter prevents separating the
channels, all outstanding requests on all channels should be aborted with an ABORTED status.

If the bus reset causes the peripheral devices to be reset, then each peripheral device generates a
state change event (StateChange=Reset/restarted).

Intelligent I/O Architecture Specification

6-102 Draft Version 1.5d March 7, 1997

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

HbaBusReset InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64-bit context field size in ()

Figure 6-69. HbaBusReset Request Message

6.7.4.4 Bus Scan
When it receives the HbaBusScan request, the DDM scans the secondary bus associated with the
TargetAddress for additional peripherals and confirms previously registered peripherals. The
BusType specific parameter tables provide bounds that limit the DDM’s search.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset = 01h 0

HbaBusScan InitiatorAddress TargetAddress 4

InitiatorContext 8

TransactionContext 12 (16)

offset values for 64-bit context field size in ()

Figure 6.70. HbaBusScan Request Message

6.7.5 Modifying Configuration and Operating Parameters
Both the client (service user) and management use the UtilParamsGet and UtilParamsSet utility
messages to read and modify parameter for Bus Adapter devices. The list of parameter groups for
the Bus Adapter class is specified in the following tables:

Class Specifications

Draft Version 1.5d March 7, 1997 6-103

Table 6-48. Bus Adapter Parameter Groups

GroupNumber 0000h

GroupType SCALAR

Name CONTROLLER_INFORMATION
Description Describes the capabilities of the bus adapter.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte BusType Indicates secondary bus type and its version.

00h generic bus
01h SCSI
10h Fibre Channel

1 r 1 byte BusState value as per Table 6-5 EventData for StateChange.

2 r 2 bytes reserved2

3 r 12 byte BusName ASCII sting

GroupNumber 0100

GroupType SCALAR

Name HISTORICAL_STATS
Description Statistical information for the bus controller.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes TimeLastPowerUp The amount of time (in seconds) since this controller
was last powered on.

1 r 4 bytes TimeLastReset The amount of time (in seconds) since last bus reset.

Intelligent I/O Architecture Specification

6-104 Draft Version 1.5d March 7, 1997

GroupNumber 0200h

GroupType SCALAR - conditional on BusType = SCSI

Name SCSI_CONTROLLER_INFORMATION
Description Describes the capabilities of the SCSI bus adapter.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte ScsiType Indicates secondary bus type and its version.

00h unknown
01h SCSI-1
02h SCSI-2
03h SCSI-3

1 r 1 byte ProtectionManagement Indicates whether or not the controller provides
redundancy or protection against device failures.

00h Other
01h Unknown
02h Unprotected
03h Protected
04h Protected through SCC standard

2 r/w 1 byte Settings bit 0 Parity Checking
0 - Disabled
1 - Enabled

bit 1 Scan Order
0 - Low-to-High
1 - High-to-Low

bit 2 Initiator ID
0 - Initiator ID is default
1 - Initiator ID is specified

bit 3 SCAM
0 - Disabled
1 - Enabled

bit 4-6 Reserved
bit 7 Controller Type

0 - Parallel
1 - Serial

Note: When ControllerType=1, only Fields 0, 1, 2,
3 and 7 apply.

3 r 1 byte Reserved1

4 r/w 4 bytes InitiatorID

5 r/w 8 bytes ScanLun0Only Bit position of a set bit indicates the SCSI-parallel
target ID for which only LUN 0 should be scanned.

6 r/w 2 bytes DisableDevice Bit position of a set bit indicates the SCSI-parallel
target ID of the device to be disabled.

(e.g. for a value of 0001h, Target ID 0 will not be
scanned)

7 r 1 byte MaxOffset The maximum synchronous offset that this adapter
can support.

8 r 1 byte MaxDataWidth Maximum data width supported by this adapter.

9 r 8 bytes MaxSyncRate Theoretical maximum transfer rate, in kilo-transfers-
per-seconds, that this adapter can achieve.

Class Specifications

Draft Version 1.5d March 7, 1997 6-105

GroupNumber 0201

GroupType SCALAR - conditional on BusType = SCSI

Name SCSI_BUS_PORT_INFORMATION
Description Describes the capabilities of the SCSI bus controller.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte PhysicalElectrical Physical / electrical characteristics of the bus port.

01h Other
02h Unknown
03h SCSI Parallel Interface
04h SCSI Fibre Channel Protocol
05h SCSI Serial Bus Protocol (1394)

06h SCSI Serial Storage Architecture

1 r 1 byte ElectricalInterface Electrical interface characteristics of the bus port.

01h Other
02h Unknown
03h Single Ended
04h Differential
05h Low Voltage Differential
06h Optical

2 r 1 byte Isochronous Indicates if the bus port supports isochronous transfers.

00h Does not support isochronous transfers

01h Supports isochronous transfers

02h Unknown
3 r 1 byte ConnectorType Physical connection for this bus port.

01h Other
02h Unknown
03h None
04h SCSI (A) High-Density Shielded (50 pins)

05h SCSI (A) High-Density Unshielded (50 pins)

06h SCSI (A) Low-Density Shielded (50 pins)

07h SCSI (A) Low-Density Unshielded (50 pins)

08h SCSI (P) High-Density Shielded (68 pins)

09h SCSI (P) High-Density Unshielded (68 pins)

0Ah SCSI SCA-I (80 pins)

0Bh SCSI SCA-II (80 pins)

0Ch SCSI Fibre Channel DB9 (Copper)

0Dh SCSI Fibre Channel (fibre)

0Eh SCSI Fibre Channel SCA-II (40 Pins)

0Fh SCSI Fibre Channel SCA-II (20 Pins)

10h SCSI Fibre Channel BNC

4 r 1 byte ConnectorGender Indicates the gender of the connector.

01h Other
02h Unknown
03h Female
04h Male

5 r 1 byte Reserved1

6 r 2 bytes Reserved2

7 r 4 bytes MaxNumberDevices Maximum number of directly-addressable entities
supported by bus port’s protocol.

Intelligent I/O Architecture Specification

6-106 Draft Version 1.5d March 7, 1997

8 r/w 4 bytes DeviceIdBegin First device to include in search when scanning SCSI
bus for devices.

9 r/w 4 bytes DeviceIdEnd Last device to include in search.

10 r/w 8 bytes LunBegin First LUN to include in search.

11 r/w 8 bytes LunEnd Last LUN to include in search.

GroupNumber 0300h

GroupType SCALAR - conditional on BusType = Fibre Channel

Name FCA_CONTROLLER_INFORMATION
Description Describes the capabilities of the Fibre Channel bus adapter.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 1 byte FcaType Indicates secondary bus type and its version.

00h unknown
01h Fibre Channel AL

1 tbd tbd

GroupNumber 0301

GroupType SCALAR - conditional on BusType = Fibre Channel

Name FCA_PORT_INFORMATION
Description Describes the capabilities of the Fibre Channel port controller.

FieldIdx (r/w) Field Size Parameter Name Description

0 tbd tbd tbd tbd

1 tbd tbd tbd tbd

6.8 IDE Adapter Class

Not defined at this time – to be supplied at a later date.

6.9 Floppy Adapter Class

Not defined at this time – to be supplied at a later date.

6.10 LAN Class

This section describes the I2O LAN abstraction model for LAN adapters and their ports. LAN
types in this class include: Ethernet/IEEE802.3, 100BaseVG, IEEE802.5 Token Ring, FDDI, and
Fibre Channel as a network. Wide Area Networks such as ATM have their own class definition
and are not covered by the LAN class. The I2O LAN abstraction layer is the primary interface host
operating systems use to access LAN ports.

Class Specifications

Draft Version 1.5d March 7, 1997 6-107

A LAN port provides access to a network. The DDM registers a different LAN class device for
each port it provides. The user, typically an OSM, performs LAN operations by sending requests
to, and listening for replies from, a LAN class device. The term device applies to the abstract
interface produced by the message class. The client sends messages to that device by indicating
the TID for that device in the message’s TargetAddress field. The term adapter refers to the
physical device or facility the DDM controls.

Note: The DDM never sets the FAIL bit in the MessageFlags field. If the DDM receives a
request with an unknown Function code or an ill-formed message, it replies with a
Transaction Error Reply Message as specified in Chapter 3.

6.10.1 Overview
Both sending and receiving can be in bursts, using batches and buckets, respectively. An
additional level of batching in the IOP’s communication layer’s handles replies on interrupts. The
effect is cumulative.

This version of the specification lets a LAN device generate its own MAC headers on packet
transmissions. For receiving packets, only basic address filtering is provided.

6.10.2 Sends
The user (e.g., the LAN OSM) sends packets using the LanPacketSend or the LanSduSend request.
For the LanPacketSend, the user supplies the complete packet. However, for LanSduSend, the LAN
device supplies the MAC header and the user supplies the rest of the packet. If a packet is small
enough to fit in the payload of a request frame, the user may supply it by immediate data mode
(i.e., the packet is contained in the SGL element). For larger packets, arbitrary lists of packets, each
containing arbitrary lists of memory fragments, can be supplied by a single message using any
SGL addressing mode.

The DDM adds padding as required to meet media-specific, minimum packet size. The DDM does
not need to perform any other length checking on the packet. The user must generate valid
packets that contain sufficient data for valid addressing, and do not exceed the declared maximum
packet length, as specified in the ClassInfo structure in Parameter Group 0.{}

The LAN device indicates whether it can generate its own MAC headers. If it can, the user may
pass packets to the LAN device that do not contain MAC headers using the LanSduSend request.
Otherwise, the user passes packets that include MAC headers exactly as they will transmit on the
medium, using the LanPacketSend request.

The LAN class uses batch replies. That is, a single reply may acknowledge multiple packet
transmissions of multiple requests. All packets acknowledged by a single reply have the same
Transmission status. Typically, the user is concerned less with the timeliness of the transmission
status than with the return of its resources. Since errors should occur infrequently and all packets
reported in the same reply must have the same status, the LAN device cannot batch send replies for
packets with errors.

When a batch of packets is supplied to the DDM for transmission, it owns the memory they are in
until transmission completes. Then, transmission status is reported and ownership returns to the
user.

Intelligent I/O Architecture Specification

6-108 Draft Version 1.5d March 7, 1997

The user may reclaim packets posted for sending using the UtilAbort request.

6.10.2.1 Processing Send Replies
The LAN device returns results of send requests (i.e., LanPacketSend and LanSduSend messages)
to the user by posting replies. Every reply contains an InitiatorContext that is an exact copy of the
InitiatorContext value from some send request. Allocating the InitiatorContext field is OS-
specific, with the assumption that the OS routes the reply to the LAN user based on this field. In
addition, each packet has an associated Transaction Context field. For each packet transmitted,
the DDM returns the packet’s TransactionContext.

The LAN class is unusual in that there can be 0, 1, or many replies to a particular request. When
the user receives a LanPacketSend or LanSduSend reply, it inspects each Transaction Context
and matches the packet with a request. The user determines which sends are complete by using the
TransactionContext data in the reply. The user must use the same InitiatorContext value for all
LanPacketSend and LanSduSend requests.

6.10.2.2 Loopback of Transmitted Packets
Different medium types have different characteristics. One characteristic is the ability to receive
the packet it sends, as specified in the table below.

Table 6-49. LAN Loopback Requirements

Media Type Loopback Requirements

Ethernet No Loopback

100BaseVG No Loopback

Token Ring Loopback

FDDI Loopback

Fibre Channel Loopback

Loopback means that when the DDM sends a packet containing a destination address normally
received by the port, that packet is expected to appear in a receive bucket. The transmit control
word of a send message may inhibit loopback for a particular send.

6.10.3 Receives
All received packets are transferred from the DDM using buckets. The initiator (e.g., the host
LAN OSM) allocates memory, and describes this memory using a scatter-gather list. Each buffer
marked in the scatter-gather list corresponds to a bucket. The DDM writes incoming packets into
these buckets. Buckets do not have to be physically contiguous. The DDM describes each of the
buckets it consumes, their order, and the location and length of each packet within those buckets
by building a Packet Descriptor Block (PDB). The LAN device places the PDB in the reply
message.

For media other than Fibre Channel, the LAN device places the packet in the bucket exactly as it
arrived from the medium, including the MAC header information. For Fibre Channel, which
generates MAC headers on transmission and transforms them on reception, bytes 0 through 7 of
the buffer contain the destination MAC address, and bytes 8 through 15 contain the source MAC
address. When IEEE 48-bit MAC addresses are used, they occupy the first six bytes of each field.

Class Specifications

Draft Version 1.5d March 7, 1997 6-109

A packet can be returned in multiple buckets. This efficiently supports media with potentially
large, but typically small packet sizes. If any bucket holding part of a packet is returned, all
buckets containing any part of the packet must be returned. The user can require that a minimum
number of bytes of a packet fit in the bucket (PacketOrphanLimit). For example, an OSM can
specify that if a bucket contains the start of a packet, it contains at least the first F bytes.

The user specifies the amount of head space (PacketPrePad) the DDM leaves before the first
packet in the first bucket and between subsequent packets. Each packet is preceded by the user-
specified PacketPrePad field. This field is intended for OS use. The end of each packet is
rounded up to a 32-bit boundary. The PacketPrePad is always in the same bucket as the start of
the packet. If the PacketOrphanLimit prevents placing the next packet in a bucket, then the
PacketPrePad is also placed in the next bucket.

A bucket must accommodate the PacketPrePad, plus at least PacketOrphanLimit bytes of the
packet. In theory, a bucket could be as small as four bytes. In practice, a bucket should hold at
least one typical packet for the medium in use.

The user tracks buckets using a BucketContext, analogous to the TransactionContext in
messages, which is passed to the DDM in the scatter-gather list and reported back in the PDB. The
Bucket Context is written into the scatter-gather list by the user .

When buckets are posted to the DDM, the DDM owns them. When a packet is received, the DDM
(or its hardware) copies the packet into one or more buckets, depending on its size and the space
remaining in a particular bucket. When the DDM reports a packet buffer back in the PDB, then
ownership of the bucket returns to the user, and the DDM does not touch that bucket again unless
it is reposted by the user.

The DDM can use buckets in arbitrary order.

The user can post buckets of varying sizes.

6.10.3.1 Posting Buckets
The LanReceivePost message posts a list of buckets, each marked by the end-of-buffer entry in the
scatter-gather list (SGL). Each bucket must start on a 32-bit boundary and be an integral number
of 32-bit words. The first SGL element (excluding ignore elements) of each bucket contains a
BufferContext field. The first 32 bits of the BufferContext contains the BucketContext value
for that bucket. The user recovers posted receive buckets using the UtilAbort message.

6.10.3.2 Indicating Receive Packets
A set of rules governs when a DDM indicates received packets (see section 6.10.7, LAN
Configuration and Operating Parameters Batch Mode Control). Under low load, the DDM
indicates a received packet immediately. Under a heavy load, the DDM collects received packets
until a threshold is exceeded or a timer expires. In either case, the LAN device indicates the
received packets with the LanReceivePost reply. This message lets the DDM provide a list of
packets in the message payload.

6.10.3.2.1 Bucket Format

When a bucket has been (partially) filled it has the following format:

Intelligent I/O Architecture Specification

6-110 Draft Version 1.5d March 7, 1997

Table 6-50. Returned Bucket Format

PACKET BUFFER: Per-packet pattern, repeated for each packet in the bucket...

Field Size Name Description

n x 32 bits PacketPrePad Size set by initiator using UtilParamsSet message. Always starts on a 32-
bit boundary.

n x bytes PacketData Always starts on 32-bit boundary. Length is in the PDB, not here.

0-3 bytes RoundUp Round up to next 32-bit boundary – structure always starts and ends on a
32-bit boundary.

n x 32 bits unused Additional space before next Packet Buffer (i.e., next PacketPrePad). The
length is arbitrary and determined by the DDM.

A bucket may begin with the end of a packet pattern from a previous bucket, and end with part of a
packet pattern continued in the next bucket. In fact, the bucket may contain just an intermediate
portion of a very large packet.

6.10.3.2.2 Packet Descriptor Block

A Packet Descriptor Block (PDB) is included in the reply message frame

The PDB contains a list of buckets and their packet descriptors. The packet descriptor indicates
where this portion of the packet starts, the length of data, if the packet is continued from a previous
bucket, if the packet is continued in the next bucket, if it is the last packet in the bucket, and if it is
the last packet descriptor in the PDB.

Table 6-51. Packet Descriptor Block

Array of Bucket Descriptions

32/64
bits

BucketContext
(1st Bucket Descriptor)

This is the initiator (OSM) provided context field, which is simply copied
out of the BufferContext field in the SGL. The size of this field is constant
and either 32 or 64 bits.

32 bits FirstPacketOffset Low 24 bits are offset, in bytes, of the start of the packet data from the
start of the bucket. PrePacketPad precedes this location if applicable.
High 8 bits are flags, interpreted as:

xxxx-xx00 = valid packet
xxxx-xx01 = packet received with errors
xxxx-x010 = space to be skipped (the Packet Descriptor Block

itself is in such a space)
xxxx-000x = packet wholly contained in this bucket
xxxx-x1xx = packet continued from previous bucket
xxxx-1xxx = packet continued in next bucket
x1xx-xxxx = last packet in this bucket
11xx-0xxx = last packet in last bucket

If a packet spans multiple buckets, multiple entries return, i.e., an entry
for each bucket containing part of the packet.

Class Specifications

Draft Version 1.5d March 7, 1997 6-111

Array of Bucket Descriptions

32 bits FirstPacketLength Low 24 bits are Length, in bytes of the packet, excluding any
PacketPrePad requested by the OS and not counting the RoundUp
bytes.
If a packet runs into next bucket, length is the number of bytes in this
bucket. Next BucketDescriptor gives length of the rest of the packet.

High eight bits are error status. The LAN device only indicates bad
packets when requested (see parameter group 4, Media Operations)
Error status values are:

00h = No Error
01h = Bad CRC
02h = Alignment Error
03h = Packet Too Long
04h = Packet Too Short
05h = Receive Overrun
FFh = Other Error

32 bits SecondPacketOffset Same as FirstPacketOffset.

32 bits SecondPacketLength Same as FirstPacketLength.

(n-2) x
64 bits

3rd thru nth PacketOffset +
PacketLength fields

3rd through nth PacketOffset and PacketLength fields – same as
FirstPacketOffset and FirstPacketLength fields where n= number of
packets in this bucket.

32/64
bits

BucketContext
(2nd Bucket Descriptor)

As above

32 bits FirstPacketOffset As above

32 bits FirstPacketLength As above

32 bits SecondPacketOffset As above

32 bits SecondPacketLength As above

(n-2) x
64 bits

3rd thru nth PacketOffset +
PacketLength fields

As above

3rd through nth Bucket Descriptor (as described above, i.e., BucketContext + number of PacketOffset &
PacketLength fields) where n= number of Buckets

6.10.3.3 Processing Receive Replies
The user must use the same InitiatorContext for all LanReceivePost requests. The user determines
which buckets contain received packets and thus can be processed by the BucketContext in the
reply’s PDB. The PDB gives the user a list of packet buffers that contain the received packets in
the order the DDM received them.

6.10.4 Batch and Error Control
Using the UtilParamsGetand UtilParamsSet messages, the user can query and adjust various control
parameters of the LAN port. Two sets of parameters that affect performance are batch control and
error control.

Error control specifies which transaction errors to report in the transaction status. Since the
protocol stacks above the user (and the user itself) use various timeouts on packets, it may be

Intelligent I/O Architecture Specification

6-112 Draft Version 1.5d March 7, 1997

pointless to report most errors. Therefore, the DDM supports turning off reporting of individual
transmission errors. If a packet encounters a transmission error when they are disabled, the
transaction is reported as successful. Other errors, such as in the format of the packets or their
batch list, are always reported.

Batch control specifies how to batch up received packets into buffers before replying to notify the
user of their arrival. (Such notification does not imply an interrupt, since the IOP does
message/interrupt batching in addition to the packet batching described here.) Under a light load,
the DDM writes a few packets into each bucket and returns them quickly, to minimize latency.
Under a heavy load, the DDM attempts to fill buckets with packets and report multiple, perhaps
many, buckets with a single reply. Batch control specifies the load conditions when the DDM
switches between batch and light load modes, and how much to batch in batch mode.

See Table 6-60 for more details.

6.10.5 Events
The LAN driver supports the generic events specified in section 6.1.3.4 for UtilEventRegister . In
addition, the following LAN events are specified.

Table 6-52. LAN EventIndicator Assignments

Event Name Bit Description

LinkDown 0 The link to the physical medium is lost

LinkUp 1 The link to the physical medium is (re)established

MediaChange 2 The media changed (HDX/FDX, Line Rate, Connector type, etc.). The
user should re-read the connector/connection type.

6.10.6 Messages
Table 6-53 shows requests that can be made of LAN class objects.

Table 6-53. Base LAN Class Request Messages

Function Description

LanPacketSend Send batch of packets

LanSduSend Send batch of packets using Auto MAC Insertion

LanReceivePost Post buckets to receive incoming packets

All LAN class messages are multiple-transaction messages. Typically, the MessageFlags field
for requests should be set to 10h (for 32-bit context size) or 12h (for 64-bit context size). For a
normal reply, it should contain D0h (for 32-bit context size) or D2h (for 64-bit context size). Since
some requests provide a SGL, the value of the VersionOffset field depends on the SGL’s location.
Since some replies contain a TRL, the value of the VersionOffset field depends on the location of
the TRL.

Class Specifications

Draft Version 1.5d March 7, 1997 6-113

6.10.6.1 Packet Send
The LanPacketSend message sends an arbitrary number of packets, each of which might contain
multiple memory fragments. The SGL is a scatter-gather list of fragments, in which the last
fragment for any given packet is marked with the End-Of-Buffer bit. Each buffer is a packet to be
transmitted. The first SGL element of each buffer contains a BufferContext field. The first 32 or
64 bits of the BufferContext contain the TransactionContext for the packet.

Unless the DDM indicated NoDaInSGL (in the TxModes in parameter group 7), the next 64 bits of
BufferContext contain the Destination MAC address of the packet in media format (the order in
which it is to be transmitted). Within the eight bytes of Destination Address when it is present,
standard IEEE 48-bit MAC addresses occupy the first six bytes, followed by two bytes of zeros.
The user and the DDM must support messages with DA in the SGL.

Each buffer contains a complete packet, exactly as it will transmit, including the MAC header.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

LanPacketSend InitiatorAddress TargetAddress 4

InitiatorContext 8

TransmitControlWord 12 (16)

SGL 16 (24)

offset values for 64-bit context field size in ()

Figure 6-71. LanPacketSend Request Message

Fields

TransmitControlWord A set of flags that identify how this send request will execute. The
Transmit Control Word is described in Table 6-54. All packets of a
request transmit with the same attributes specified by
TransmitControlWord

VersionOffset A value of 41h for 32-bit context size and 61h for 64-bit context size.

Completion status can be reported directly by a reply to the send, or a single reply can complete
multiple sends.

The memory described by the scatter-gather list can be reused by the user only after transmission
completion is reported.

Intelligent I/O Architecture Specification

6-114 Draft Version 1.5d March 7, 1997

Table 6-54. Definition of the TransmitControlWord field

Bits Description

Bits 2-0 Access Priority. Exact application is defined by particular medium type.

Bit 3 Suppress CRC Generation. This bit is set when the packet data contains the FCS field and
the hardware does not generate that CRC value. This bit may be set only if CrcSuppression
bit in the TxModes field of parameter group 7 is 1.

Bit 4 Suppress Loopback. This bit is set when receiving the transmitted packet is not desired.
Useful during promiscuous receive mode and when transmitting broadcast messages on
media that receive transmitted messages. This bit may be set only if LoopBackSuppression
bit in the TxModes field of parameter group 7 is 1.

Bits 31-30 Reply Mode: Identifies the type of response requested by the host. Note that the latter two
modes are valid only for messages that have immediate data.

 0 0 Use batch rules for combining this reply with others

 0 1 Reply as soon as transmission attempt is complete

 1 0 Reply only if cannot transmit successfully

 1 1 No reply required

Table 6-55. Packet Structures for Various Media

DA Six-byte destination addresses field in
format specified by AddressFormat in
LAN Parameter Group 0000h

SA Six-byte source addresses field in format
specified by AddressFormat in LAN
Parameter Group 0000h

AC One-byte access control field

FC One-byte frame control field

SDU Variable-size MAC payload, includes
the Routing Information field if
present. For Ethernet/802.3 and

100BaseVG, the SDU includes the Type/Length field.

FCS Four-byte frame check sequence, only present if the SUPPRESS CRC GENERATION bit is set in
the TransmitControlWord.

The reply structure for reporting transmission completion is shown in Figure 6-72.

Media Type Packet Structure

Ethernet/802.3 DA, SA, SDU, FCS

100BaseVG DA, SA, SDU, FCS

Token Ring AC, FC, DA, SA, SDU,
FCS

FDDI FC, DA, SA, SDU, FCS

Fibre Channel SDU, FCS

Class Specifications

Draft Version 1.5d March 7, 1997 6-115

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

Function InitiatorAddress TargetAddress 4

InitiatorContext 8

TRL Control Word 12 (16)

ReqStatus reserved DetailedStatusCode 16 (24)

Transaction Context 1 20 (28)

Transaction Context 2 24 (36)

Transaction Context n

Offset in () signifies offset for 64-bit context fields

Figure 6-72. LanPacketSend Reply Message

Fields

ReqStatus This field conveys the general status of the transaction, per Chapter 3.

DetailedStatusCode This field is reserved for a more detailed description of the status when
required. Values for this field are defined in Table 6-56.

TransactionContext These are the TransactionContext values associated with each packet
transmitted. All transactions reported in a single reply have the same
ReqStatus and DetailedStatusCode. TransactionContext are not in
any particular order.

VersionOffset A value of 51h for 32-bit context size and 71h for 64-bit context size.

If there is an error in transmission, and error reporting is suppressed, the packet is reported as
successful and included with other successful transactions as appropriate.

If there is a transmission error in a packet and error reporting is not suppressed, then a separate
reply is required to report the error. Error reports should be sent immediately and not batched.

Intelligent I/O Architecture Specification

6-116 Draft Version 1.5d March 7, 1997

Table 6-56. DetailedStatusCodes

Status Description

LAN_SUCCESS Success - no warnings

LAN_BAD_PACKET_DETECTED Malformed packet detected

LAN_BUCKET_OVERRUN DDM out of receive buckets.

LAN_CANCELED The send or receive was canceled by the user.

LAN_DESTINATION_ADDRESS_DETECTED A destination address was detected in the bucket
context(s) of a Send Batch request message when it
was not expected.

LAN_DESTINATION_ADDRESS_OMITTED A destination address is required in the bucket
context(s) of a Send Batch request message, but not
present.

LAN_DESTINATION_NOT_FOUND The destination specified in message not found

LAN_DEVICE_FAILURE Device does not respond or responds with fault

LAN_DMA_ERROR Error occurred when attempting to DMA information
between Device and user

LAN_INVALID_TRANSACTION_CONTEXT A buffer specified in the SGL did not contain a
transaction context or the transaction context did not
match a current transaction. May also indicate that
the context field was the wrong size.

LAN_IOP_INTERNAL_ERROR IOP detected an internal error

LAN_OUT_OF_MEMORY IOP out of memory

LAN_PARTIAL_PACKET_RETURNED The maximum number of buckets was returned in the
Receive Reply message. The entire packet could not
be described.

LAN_RECEIVE_ABORTED Data receive aborted by user

LAN_RECEIVE_ERROR Error on data receive

LAN_TRANSMISSION_ABORTED Transmission of data aborted by user

LAN_TRANSMIT_ERROR Error on transmit of data

6.10.6.2 SDU Send
The LanSduSend message sends an arbitrary number of packets, each of which might be
composed of multiple memory fragments. The SGL is a scatter-gather list of fragments, in which
the last fragment for any given packet is marked with the End-Of-Buffer bit. Each buffer is a
packet to be transmitted. The first SGL element of each buffer contains a BufferContext field.
The first 32 or 64 bits of the BufferContext contain the TransactionContext for the packet.

The next 64 bits of BufferContext contain the Destination MAC address of the packet in media
format (the order in which it is to be transmitted). Within the eight bytes of Destination Address
when it is present, standard IEEE 48-bit MAC addresses occupy the first six bytes, followed by
two bytes of zeros.

Class Specifications

Draft Version 1.5d March 7, 1997 6-117

Each buffer contains a packet, exactly as it is to be transmitted, excluding the MAC header. The
MAC header is generated by the DDM. The Buffer Context always contains the destination MAC
address of the packet in media format.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

LanSduSend InitiatorAddress TargetAddress 4

InitiatorContext 8

TransmitControlWord 12 (16)

SGL 16 (24)

offset values for 64-bit context field size in ()

Figure 6-73. LanSduSend Request Message

Fields

TransmitControlWord A set of flags that identify how this send request will be executed. The
Transmit Control Word is described in Table 6-54. All packets of a
batch send transmit with the same attributes specified by
TransmitControlWord.

VersionOffset A value of 41h for 32-bit context size and 61h for 64-bit context size.

The behavior of the LanSduSend request is exactly the same as the LanPacketSend request. It uses
same reply structure as shown in Figure 6-72 and the same DetailedStatusCode values in Table
6-56.

Table 6-57. Packet Structures for Various Media

SDU Variable-size MAC payload, includes
the Routing Information field if
present. For Ethernet/802.3 and
100BaseVG, the SDU includes the
Type/Length field.

FCS Four-byte frame check sequence, only
present if the SUPPRESS CRC
GENERATION bit is set in the
TransmitControlWord.

Media Type Packet Structure

Ethernet/802.3 SDU, FCS

100BaseVG SDU, FCS

Token Ring SDU, FCS

FDDI SDU, FCS

Fibre Channel SDU,FCS

Intelligent I/O Architecture Specification

6-118 Draft Version 1.5d March 7, 1997

6.10.6.3 Post Receive Buckets
The scatter-gather list describes a set of buckets in memory. The end of each bucket is marked
with an End-Of-Buffer entry, just as the ends of packets are for a send. The DDM fills buckets as
described in section 6.10.3.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

LanReceivePost InitiatorAddress TargetAddress 4

InitiatorContext 8

BucketCount 12 (16)

SGL 16 (24)

offset values for 64-bit context field size in ()

Figure 6-74. LanReceivePost Request Message

VersionOffset A value of 41h for 32-bit context size and 61h for 64-bit context size.

6.10.6.4 Receive Reply
The reply message shown in Figure 6-75 is used to post buckets to the user. Posted buckets are
described in 6.10.3.1.

31 3 24 23 2 16 15 1 8 7 0 0

MessageSize MessageFlags VersionOffset 0

LanReceivePost InitiatorAddress TargetAddress 4

InitiatorContext 8

TrlFlags=80h Reserved=00h TrlElementSize=2 TrlCount 12 (16)

ReqStatus reserved DetailedStatusCode 16 (24)

BucketsRemaining 20 (28)

PdbArray (TRL) 24 (32)

offset values for 64-bit context field size in ()

Figure 6-75. LanReceivePost Reply Message

Fields

BucketsRemaining The running count of buckets that the DDM has left to consume. The
host judges how badly the DDM needs more buckets by this field.

DetailedStatusCode If the DDM runs out of buckets, it posts an OverRun code.

PdbArray Array of Bucket Descriptors as described in Table 6-51.

VersionOffset A value of 61h for 32-bit context size and 81h for 64-bit context size.

Class Specifications

Draft Version 1.5d March 7, 1997 6-119

6.10.7 LAN Configuration and Operating Parameters
Reading and modifying LAN parameters is performed by the UtilParamsGet and UtilParamsSet
utility messages specified in 6.1.3.13. The list of parameter sets for the LAN class and their format
are specified in the following tables.

Table 6-58. LAN Group 0000h - Device Information Parameter Group

GroupNumber 0000h

GroupType SCALAR

Name LAN_DEVICE_INFO
Description Identifies the physical configuration of this LAN port.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 2 Bytes LANType Type of LAN.

0030h Ethernet
0040h 100base VG
0050h IEEE802.5/Token-Ring
0060h ANSI X3T9.5 FDDI
0070h Fibre Channel

1 r 2 Bytes Flags bit 0 0=physical LAN port
1=emulated LAN (ATM, FC)

bit 1 0=simplex
1=full duplex

2 r 1 Byte AddressFormat The format of the address used.
00h = 48 Bit Universally administered IEEE

address. Addresses are reported in media
format. That is, the first byte transmitted is
in the low order byte and the last two bytes
are pad (0000h).

3 r 1 Byte reserved1 reserved

4 r 2 Bytes reserved2 reserved

5 r 4 Bytes MinPacketSize Minimum size of a packet, as seen by the initiator.

6 r 4 Bytes MaxPacketSize Maximum packet size (number of bytes including
MAC header). The DDM treats a received packet
greater than this size as follows:
If passing error packets up, then truncates packet
at MaxPacketSize bytes and sets error =
PACKET_TOO_LONG.
Otherwise discards packet. Maximum size
including MAC header.

7 r 8 Bytes HardwareAddress MAC address stored permanently in the adapter.

8 r 8 Bytes MaxTxWireSpeed Maximum transmission speed (in bps) of the port.

9 r 8 Bytes MaxRxWireSpeed Maximum receive speed (in bps) of the port.

Intelligent I/O Architecture Specification

6-120 Draft Version 1.5d March 7, 1997

Table 6-59. LAN Group 0001h - MAC Address Parameter Group

GroupNumber 0001h

GroupType SCALAR

Name LAN_MAC_ADDRESS
Description Provides MAC Address administration and Reception attributes.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 8 bytes ActiveAddress This is the MAC address in media format that the
card is listening for. The last two bytes are
padding.

1 r/w 8 Bytes CurrNetworkAddress MAC address that can be modified by software,
referred to as the Locally Administered Address
(LAA).

2 r/w 8 Bytes FunctionalAddressMask A bit-specific address, in MAC address format,
specifying the functional address mask for media
that support functional addressing such as Token
Ring.

3 r/w 4 bytes FilterMask Broadcast, Multicast, Functional Addresses,
packet types, MAC packets, UserData packets,
etc. May be read only. See Table 6-83.

4 r 4 bytes HardwareFilterMask Mask indicating which of the FilterMask
capabilities are implemented in hardware.

5 r 4 bytes MaxSizeMulticastTable Number of multicast addresses.

6 r 4 bytes MaxFilterPerfect Maximum number of multicast addresses for which
perfect filtering can be done

7 r 4 bytes MaxFilterImperfect Maximum number of multicast addresses for which
imperfect filtering can be done

Table 6-60. LAN Parameter Group 0002h - Multicast MAC Address Table

GroupNumber 0002h

GroupType TABLE

Name LAN_MULTICAST_ MAC_ADDRESS
Description This table specifies all the Multicast Addresses that the LAN Adapter is filtering on.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 8 bytes MulticastMACAddress Multicast MAC address in media format. The last
two bytes are padding.

Class Specifications

Draft Version 1.5d March 7, 1997 6-121

Table 6-61. LAN Parameter Group 0003h - Batch Control

GroupNumber 0003h

GroupType SCALAR

Name LAN_BATCH_CONTROL
Description Controls whether and when the DDM switches from batch mode to immediate mode and

back. In immediate mode, a reply reports to the host every packet’s arrival as soon as the
packet is complete. In batch mode, packets are batched up and notification is sent for the
group.

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 4 bytes BatchFlags Bit-specific field:

Bit 0 = If true receive batch mode is disabled,
always return one packet per bucket and
post reply immediately. A 0 indicates
receive batch mode is enabled.

Bit 1 = True if current receive mode is batch
mode, else false.

Bit 2 = True if receive batch mode has been
forced on, 0 indicates automatic switching
in and out of batch mode when enabled.

1 r/w 4 bytes RisingLoadDelay When the received packet rate exceed
RisingLoadThreshold for longer than
RisingLoadDelay (in 10ms), turn on batch mode.

2 r/w 4 bytes RisingLoadThreshold See RisingLoadDelay

3 r/w 4 bytes FallingLoadDelay When the received packet rate falls below the
FallingLoadThreshold for longer than
FallingLoadDelay (in 10ms), switch out of batch
mode into immediate post mode.

4 r/w 4 bytes FallingLoadThreshold See FallingLoadDelay

5 r/w 4 bytes MaxBatchCount When in batch mode, post notification when this
many packets have been received. Ignore if 0.

6 r/w 4 bytes MaxBatchDelay When in batch mode, post notification any time a
received packet has been held for this long. In
milliseconds. Ignore if 0.

A delay counter is reset to this value whenever
packet notification is posted. It starts counting
down whenever a packet is received. If it ever
goes off, all packets in hand are posted.

7 r/w 4 bytes TransCompDelay Transmission Completion Reporting delay, in
milliseconds. Similar behavior to MaxBatchDelay,
but it decides whether to piggyback transmission
completion onto a receive or post it directly.

Intelligent I/O Architecture Specification

6-122 Draft Version 1.5d March 7, 1997

Table 6-62. LAN Parameter Group 0004h

GroupNumber 0004h

GroupType SCALAR

Name LAN_OPERATION
Description Manages how the DDM responds to the user

FieldIdx (r/w) Field Size Parameter Name Description

0 r/w 4 bytes PacketPrePad Length of per-packet prepad, number of 32-bit
words.

1 r/w 4 bytes UserFlags Bit 0: (T/F) If true then transmission error
reporting is turned on, and any
transmission error is reported. If false
then transmission error reporting is off,
and such errors are ignored and the
packet reported as if no error occurred.
Only errors involving ill-formed packets
and the like are reported.

2 r/w 4 bytes PacketOrphanLimit If an entire packet does not fit in a bucket, then at
least PacketOrphanLimit bytes of the packet must
appear in the first bucket that any part of the
packet is in. This value includes the
PacketPrePad. 0 is a legal value.

Class Specifications

Draft Version 1.5d March 7, 1997 6-123

Table 6-63. LAN Parameter Group 0005h

GroupNumber 0005h

GroupType SCALAR

Name LAN_MEDIA_OPERATION
Description Manipulates media specific items. Different structures are defined for various media types

(Ethernet, token ring, etc.) which manage how the DDM responds to the user.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 32 ConnectorType Type of connector being used to physically attach
this port to the LAN.

0 OTHER
1 UNKNOWN
2 AUI
3 UTP
4 BNC
5 RJ45
6 STP DB9
7 Fiber MIC
8 Apple AUI
9 MII
10 Copper DB9, 1.0625 GBd
11 Copper AW{ HSSDC, 1.0625 Gdb
12 Optical LW, 1.0625 Gbd 100-SM-LL_L
13 Serial Interface Protocol
14 Optical SW, 1.0625 Gbd 100-M5-SN-I

1 r 4 bytes ConnectionType See Table 6-64

2 r 8 bytes CurrentTxWireSpeed Actual transmission speed, in bits per second, of
the physical connection. LAN emulation over other
media should report the actual speed here, not the
speed of the emulated medium.

3 r 8 bytes CurrentRxWireSpeed Actual receive speed in bits per second of the
physical connection. LAN emulation over other
media should report the actual media speed here,
not the speed of the emulated medium.

4 r 1 byte FullDuplexMode 0 = HDX; -1=FDX

5 r 1 Byte LinkStatus Status of the medium.
0 UNKNOWN (initializing, true state not yet

known)

1 Normal

2 Failure

3 Reset, Recovered

255 Other

6 r/w 1 byte BadPacketHandling Flags whether the host wishes to see bad
packets. If set to -1, the DDM will pass all bad
packets, including those with CRC errors,
alignment errors, and runt and oversized packets
up to the host.

Intelligent I/O Architecture Specification

6-124 Draft Version 1.5d March 7, 1997

Table 6-64. LAN Connection Types

0000h UNKNOWN

Ethernet Types:
0301h AUI
302h 10Base5
0303h FOIRL
0304h 10BASE2
0305h 10BROAD36
0306h 10BASE-T
0307h 10BASE-FP
0308h 10BASE-FB
0309h 10BASE-FL
030Ah 100BASE-TX
030Bh 100BASE-FX
030Ch 100BASE-T4

100BaseVG Types
0401h 100BASE-VG

Token Ring Types
0501h 4 Mbit/Sec
0502h 16 Mbit/Sec

FDDI Types
0601h 125 Mbaud/Sec fiber

Fibre Channel Types
0701h Point to Point
0702h Arbitrated Loop
0703h Public Loop
0704h Fabric

Other Types
0F00h Emulation over other media
0F01H Other

Table 6-65. LAN Parameter Group 0006h

GroupNumber 0006h

GroupType TABLE - optional

Name LAN_ALTERNATE_ ADDRESS
Description This table specifies all the unicast MAC addresses that the LAN Adapter is filtering on.

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes AlternateAddress Alternate address.

Class Specifications

Draft Version 1.5d March 7, 1997 6-125

Table 6-66. LAN Parameter Group 0007h

GroupNumber 0007h

GroupType SCALAR

Name LAN_TRANSMIT_INFO
Description Identifies the Port’s Transmit attributes

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes TxMaxPacketSG The maximum number of Scatter Gather entries
allowed per packet. This is a hard limit.

1 r 4 bytes TXMaxChainSG The maximum number of Scatter Gather entries
allowed in a chained block. This is a hard limit..

2 r 4 bytes TXMaxPktsOut The maximum number of outstanding packets.
This is a soft limit.

3 r 4 bytes TXMaxReqPkts The maximum number of packets per transmit
request. This is a soft limit.

4 r 4 bytes TxModes This is a bit specific field:

Bit 0 reserved.

Bit 1: NoDaInSGL - when set, this device does not
requre the DA to be in the Buffer Context
field for LanPacketSend requests.

Bit 2: CrcSuppression - When this bit is set, this
device supports suppression of the CRC.
Otherwise CRC is always generated by
hardware.

Bit 3: LoopSuppression - When this bit is set, this
device supports suppression of receiving the
transmitted packet. Otherwise the packet
loop backs as defined by the media type.

Bit 4: MAC Insertion - when set, this device can
accept LanSduSend requests and generate
the MAC header.

Bit 5: RIF Insertion - when set, this device can
accept LanSduSend requests and generate
the MAC header and the Routing
Information Field.

Bit 6: IPChecksum - when set, this device is
capable of calculating IP checksum.

Other bits reserved

Intelligent I/O Architecture Specification

6-126 Draft Version 1.5d March 7, 1997

Table 6-67. LAN Parameter Group 0008h

GroupNumber 0008h

GroupType SCALAR

Name LAN_RECEIVE_ INFO
Description Identifies the Port’s Receive attributes

FieldIdx (r/w) Field Size Parameter Name Description

0 r 4 bytes RXMaxChain The maximum size of a chain element in a receive bucket.
This is a hard limit.

1 r 4 bytes RXMaxBuckets The maximum number of receive buckets. This is a soft
limit.

Table 6-68. LAN Parameter Group 0100h

GroupNumber 0100h

GroupType SCALAR - Required

Name LAN_HISTORICAL_STATS
Description LAN Historical Statistics

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes TotalPacketsTransmitted Total packets transmitted.

1 r 8 bytes TotalBytesTransmitted Total bytes transmitted. Actual number of bytes
between starting and ending delimiters.

2 r 8 bytes TotalPacketsReceived Total packets received.

3 r 8 bytes TotalBytesReceived Total bytes received. Actual number of bytes
between starting and ending delimiters.

4 r 8 bytes TotalTransmitErrors Total transmit errors of any type.

5 r 8 bytes TotalReceiveErrors Total receive errors of any type.

6 r 8 bytes ReceiveNoBuffer Number of packets dropped due to lack of receive
buffers

9 r 8 bytes AdapterResetCount Number of times the adapter was reset due to
internal failure or external request.

Class Specifications

Draft Version 1.5d March 7, 1997 6-127

Table 6-69. LAN Parameter Group 0180h

GroupNumber 0180h

GroupType SCALAR

Name LAN_SUPPORTED_OPTIONAL_HISTORICAL_STATS

Description Specifies which statistics are supported

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes StatisticsSupported Each bit (0-63) corresponds to the field index of
the Optional Historical Statistics group 0181h.

0 Statistic not supported

1 Statistic supported

Intelligent I/O Architecture Specification

6-128 Draft Version 1.5d March 7, 1997

Table 6-70. LAN Parameter Group 0181h

GroupNumber 0181h

GroupType SCALAR

Name LAN_OPTIONAL_HISTORICAL_STATS

Description

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes TxRetryCount Number of times a transmit was retried due to
some sort of failure

1 r 8 bytes ReceiveCRCErrorCount Number of packets received with a CRC error
2 r 8 bytes DirectedBytesTx Number of bytes transmitted to a specific MAC

address
3 r 8 bytes DirectedPacketsTx Number of packets transmitted to a specific MAC

address
4 r 8 bytes MulticastBytesTx Number of bytes transmitted to a multicast

address
5 r 8 bytes MulticastPacketsTx Number of packets transmitted to a multicast

address
6 r 8 bytes BroadcastBytesTx Number of bytes transmitted to a broadcast

address
7 r 8 bytes BroadcastPacketsTx Number of packets transmitted to a broadcast

address
8 r 8 bytes DirectedBytesRx Number of bytes received with a specific MAC

destination address
9 r 8 bytes DirectedPacketsRx Number of packets received with a specific MAC

destination address
10 r 8 bytes MulticastBytesRx Number of bytes received with a multicast

destination address
11 r 8 bytes MulticastPacketsRx Number of packets received with a multicast

destination address
12 r 8 bytes BroadcastBytesRx Number of bytes received with a broadcast

destination address
13 r 8 bytes BroadcastPacketsRx Number of packets received with a broadcast

destination address
7 r 8 bytes TotalGroupAddrTxCount Total packets transmitted to a group destination

address.

8 r 8 bytes TotalGroupAddrRxCount Total packets received at a group destination
address.

Class Specifications

Draft Version 1.5d March 7, 1997 6-129

Table 6-71. LAN Parameter Group 0200h

GroupNumber 0200h

GroupType SCALAR

Name LAN_802_3_HISTORICAL_STATS

Description

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes RxAlignmentError Number of misaligned packets received

1 r 8 bytes TxOneCollision Number of packets transmitted that experienced a
single collision

2 r 8 bytes TxMultipleCollisions Number of packets transmitted that experienced
multiple collisions

3 r 8 bytes TxDeferred Number of packets transmitted OK after deferral

4 r 8 bytes TxLateCollision Number of packets transmitted that experienced a
collision outside the nominal window

5 r 8 bytes TxMaxCollisions Number of packets transmitted that had to be
restarted due to maximum collisions

6 r 8 bytes TxCarrierLost Number of packets transmitted in which carrier
sense was not present or was lost during
transmission

7 r 8 bytes TxExcessiveDeferrals Total packets transmitted that experience excessive
deferrals

Table 6-72. LAN Parameter Group 0280h

GroupNumber 0280h

GroupType SCALAR

Name LAN_SUPPORTED_802_3_HISTORICAL_STATS

Description Specifies which statistics are supported

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes StatisticsSupported Each bit (0-63) corresponds to the FieldIdx of the
Optional Historical Statistics group 0281h.

0 Statistic not supported

1 Statistic supported

Intelligent I/O Architecture Specification

6-130 Draft Version 1.5d March 7, 1997

Table 6-73. LAN Parameter Group 0281h

GroupNumber 0281h

GroupType SCALAR

Name LAN_OPTIONAL_802_3_HISTORICAL_STATS

Description

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes RxOverrun Number of times the adapter could not keep up with
the wire on receive (usually because the IOP was
too slow reading data), causing a dropped packet.

1 r 8 bytes TxUnderrun Number of times the adapter could not keep up with
the wire on transmit (usually because the IOP was
too slow writing data), causing transmission of a
packet with bad CRC

2 r 8 bytes TxHeartbeatFailure Number of packets transmitted without a valid
heartbeat (linkbeat)

Class Specifications

Draft Version 1.5d March 7, 1997 6-131

Table 6-74. LAN Parameter Group 0300h

GroupNumber 0300h

GroupType SCALAR

Name LAN_802_5_HISTORICAL_STATS

Description

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes LineErrors Number of packets with invalid Frame Check
Sequence or with a code violation

1 r 8 bytes LostFrames Number of packets transmitted that failed to return

2 r 8 bytes ACError Number of SMP packets received with invalid A and
C values

3 r 8 bytes TxAbortDelimiter Number of times an abort delimiter is transmitted

4 r 8 bytes BurstErrors Number of burst-five errors detected

5 r 8 bytes FrameCopiedErrors Number of directed packets received with FS field
bits set to 1

6 r 8 bytes FrequencyErrors Number of times the incoming signal frequency is
out of range

7 r 8 bytes InternalError Number of recoverable internal errors

8 r 8 bytes LastRingStatus Last reported ring status, with the following bit
values:

Bit15: Signal Loss

Bit14: Hard Error

Bit13: Soft Error

Bit12: Transmit Beacon

Bit11: Lobe Wire Fault

Bit10: Auto-Removal Error 1

Bit9: Reserved

Bit8: Remove Received

Bit7: Counter Overflow

Bit6: Single Station

Bit5: Ring Recovery

Bit4-0: Reserved

9 r 8 bytes TokenError Number of times the active monitor detects TVX
timer expiration

10 r 8 bytes UpstreamNodeAddress MAC Address of the upstream node (in the low
order 6 bytes of the field, in line order, low order
byte first)

11 r 8 bytes LastRingID Value of the local ring

12 r 8 bytes LastBeaconType Value of the last beacon type

Intelligent I/O Architecture Specification

6-132 Draft Version 1.5d March 7, 1997

Table 6-75. LAN Parameter Group 0380h

GroupNumber 0380h

GroupType SCALAR

Name LAN_SUPPORTED_802_5_HISTORICAL_STATS

Description Specifies which statistics are supported

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes StatisticsSupported Each bit (0-63) corresponds to the FieldIdx of the
Optional Historical Statistics group 0381h.

0 Statistic not supported

1 Statistic supported

Table 6-76. LAN Parameter Group 0381h

GroupNumber 0381h

GroupType SCALAR

Name LAN_OPTIONAL_802_5_HISTORICAL_STATS

Description Place holder only. No optional statistics defined for 802.5

Class Specifications

Draft Version 1.5d March 7, 1997 6-133

Table 6-77. LAN Parameter Group 0400h

GroupNumber 0400h

GroupType SCALAR

Name LAN_FDDI_HISTORICAL_STATS

Description

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes ConfigurationState ANSI fddiSMTCFState, with the following values:

0: Isolated 7: wrap_ab
1: Local_a 8: wrap_s
2: Local_b 9: c_wrap_a
3: Local_ab 10: c_wrap_b
4: Local_s 11: c_wrap_s
5: wrap_a 12: through
6: wrap_b

1 r 8 bytes UpstreamNode ANSI fddiMACUpstreamNbr (0 if unknown)

2 r 8 bytes DownstreamNode ANSI fddiMACDownstreamNbr (0 if unknown)

3 r 8 bytes FrameErrors Number of packet errors detected by this MAC which
were not already detected by another MAC

4 r 8 bytes FramesLost Number of times a packet was stripped on reception
due to format errors

5 r 8 bytes RingMgmtState Current value of the Ring Management State, with the
following values:

0: Isolated
1: Non-Op
2: Rind-Op
3: Detect
4: Non-Op-Dup
5: Ring-Op-Dup
6: Directed
7: Trace

r 8 bytes LCTFailures Number of times the Link Confidence Test failed during
connection management

7 r 8 bytes LEMRejects Number of times a link is rejected

8 r 8 bytes LEMCount Aggregate Link Error Monitor error count

9 r 8 bytes LConnectionState Current State of this port’s PCM state machine, with the
following values:

0: Off
1: Break
2: Trace
3: Connect
4: Next
5: Signal
6: Join
7: Verify
8: Active
9: Maintenance

Intelligent I/O Architecture Specification

6-134 Draft Version 1.5d March 7, 1997

Table 6-78. LAN Parameter Group 0480h

GroupNumber 0480h

GroupType SCALAR

Name LAN_SUPPORTED_FDDI_HISTORICAL_STATS

Description Specifies which statistics are supported

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes StatisticsSupported Each bit (0-63) corresponds to the FieldIdx of the
Optional Historical Statistics group 0481h.

0 Statistic not supported

1 Statistic supported

Table 6-79. LAN Parameter Group 0481h

GroupNumber 0481h

GroupType SCALAR

Name LAN_OPTIONAL_FDDI_HISTORICAL_STATS

Description Place holder only. No optional statistics defined for FDDI

Table 6-80. LAN Parameter Group 0500h

GroupNumber 0500h

GroupType SCALAR

Name LAN_FC_HISTORICAL_STATS

Description Place holder only. No required statistics defined for Fibre Channel

Table 6-81. LAN Parameter Group 0580h

GroupNumber 0580h

GroupType SCALAR

Name LAN_SUPPORTED_FC_HISTORICAL_STATS

Description Specifies which statistics are supported

FieldIdx (r/w) Field Size Parameter Name Description

0 r 8 bytes StatisticsSupported Each bit (0-63) corresponds to the FieldIdx of the
Optional Historical Statistics group 0581h.

0 Statistic not supported

1 Statistic supported

Class Specifications

Draft Version 1.5d March 7, 1997 6-135

Table 6-82. LAN Parameter Group 0581h

GroupNumber 0581h

GroupType SCALAR

Name LAN_OPTIONAL_FC_HISTORICAL_STATS

Description Place holder only. No optional statistics defined for Fibre Channel

Table 6-83. FilterMask

Bits Parameter Name Description

0 UserDataFramesDisable 0=reception of user data packets is enabled. 1=disabled

1 PromiscuousEnable 0=normal
1=receive all packets, regardless of their address

2 PromiscuousMcEnable 0=normal
1=receive all multicast group packets regardless of their address

8 BroadcastDisable 0=reception of broadcast packets is enabled
1=disabled

9 MulticastDisable 0=reception of multicast group packets is enabled
1=disabled

10 FunctionalAddressesDisable 0=reception of functional addresses is enabled
1=disabled

12,11 MACreportingMode 0,0 = Do not pass MAC packets to user

0,1 = Pass only priority MAC packets to user

1,0 = Pass all received MAC packets to user

1,1 = Receive all MAC packets regardless of their address and
pass to the user

6.11 WAN Class

Not defined at this time – to be supplied at a later date.

6.12 Fibre Channel Class

Not defined at this time – to be supplied at a later date.

Intelligent I/O Architecture Specification (Draft)

6-136 Version 0.95 March 7, 1997

Draft Version 1.5d March 7, 1997 A-1

A.
Differences from Previous Version

This appendix identifies the main differences from version 1.0 of this specification.

A.1 Technical Changes

For consistency, the term adapter is used for controllers and add-in cards. The term I2O object
was changed to I2O device or device.

Added detail to DDM upgrading safeguards.

Added missing details to configuration Dialogue.

Changed usage of InitiatorAddress and TargetAddress fields in reply message such that the
target no longer swaps addresses for replies.

Modified the message for installing and loading DDMs to include downloading/storage of any
software module including the IRTOS itself. Also provided for uploading software modules.

Enhanced sections on IOP and DDM initialization. Provided for BIOS initialization and OS
takeover. Enhanced IOP status to include information needed prior to full OS I 2O drivers
being loaded.

Provided for both 32-bit and 64-bit context values.

Enhanced requirements for PCI operation that eliminate the potential offset between an IOP’s
PCI bus and the system bus. Also redefined local memory access attributes so DDMs can
allocate appropriate memory based on its ability to be accessed by adapters.

Changed from the host identifying public address space such that private space was all else to
the host expressly specifying private space.

Defined additional optional IOP facilities/capabilities such as battery-backed RAM for data
caches and non-volatile memory.

Extensive changes to the scatter-gather list. Changes include: use of local address, immediate
data and bit bucket elements, non data elements, transport element, SGL attributes (e.g.,
foreign page frame sizes, hints), and adding direction bit for data buffers.

Defined a formal Transaction Reply List for replying to multiple transactions with a single
reply using multiple formats. Modified LAN class receive PDB (moved bit positions for
LastElement and LastTransaction).

Changed Transport Status in message header to indicate SGL/TRL location in message.

Changed default request and reply structures from recommended to required and moved them
from chapter 6 to chapter 3. Transaction context required in fixed location(s).

Added message status to indicate dirty abort and faults as well as process aborts.

Enhanced Claim process to support a single primary user with optional service for alternate
users, peer service, and management service.

Intelligent I/O Architecture Specification

A-2 Draft Version 1.5d March 7, 1997

Enhanced Params Get/Set operations to include tables and allow operation on individual fields.
Replaced messages such as Identify and GetFamily utility messages with definition of
parameter groups.

Reduced requirement of number of outstanding message frames for inbound queue.

Added PCI system interrupt capability to IOP.

Added executive class message to read configuration registers of hidden devices. Also added
configuration validation message. Revised load and install messages adding an upload
message. Changed SysTabSet and SysModify commands to indicate private space instead of
public space.

Made the host’s page frame size the default size for all IOPs.

Specified requirement for IOP to maintain certain information across resets.

Added fields to DDM’s module header.

Defined TCL scripts for configuration dialog, and defined TCL Script table in module’s
header.

Defined private message class mechanism.

The following utility messages have been removed: ConfigResponse, GetExtensions,
GetFamilyID, Identify, GetParamsImmediate, SetParamsImmediate.

Expanded UtilAbort to allow wildcard mataches and specify only clean aborts. Redefined
UtilClaim message. Added page number to UtilConfigDialog message.

Tape class defined in Chapter 6.

All Message classes enhanced.

Event Indicator assignments for the UtilEventRegister (old EventNotify) message
have been reapportioned such that only the first 16 bits are available for class-specific
assignment. This affects Block storage and Tape class assignment. Additional generic
assignment have been added.

A.2 Naming Conventions

All field names with an underscore (_) had the underscore removed. Constants are listed in
all UPPERCASE and use underscore for readability.

Applying the noun/verb naming convention changed the name of most messages. The
following tables correlate the old message names with the new names.

Differences from Previous Version

Draft Version 1.5d March 7, 1997 A-3

A.2.1 Message Names
Class Old Name New Name

Executive ExecAdapterRead (new)
Executive ExecConfigValidate (new)
Executive ExecSwUpload (new)
Executive AssignDevice ExecAdapterAssign
Executive AssignObject ExecDeviceAssign
Executive ClearIOP ExecIopClear
Executive ConnectIOP ExecIopConnect
Executive ConnSetup ExecConnSetup
Executive CreateStaticMF ExecStaticMfCreate
Executive DestroyDDM ExecDdmDestroy
Executive EnableDDM ExecDdmEnable
Executive EnablePath ExecPathEnable
Executive EnableSys ExecSysEnable
Executive EventNotify UtilEventNotify
Executive GetHRT ExecHrtGet
Executive GetStatus ExecStatusGet
Executive GetXCT ExecXctGet
Executive InitOutbound ExecOutboundInit
Executive InstallDDM ExecSwDownload (revised)
Executive LCTNotify ExecLctNotify
Executive LoadDDM ExecSwDownload (revised)
Executive ModifySys ExecSysModify
Executive QuiesceDDM ExecDdmQuiesce
Executive QuiescePath ExecPathQuiesce
Executive QuiesceSys ExecSysQuiesce
Executive ReleaseDevice ExecAdapterRelease
Executive ReleaseObject ExecDeviceRelease
Executive ReleaseStaticMF ExecStaticMfRelease
Executive RemoveDDM ExecSwRemove (revised)
Executive ResetDDM ExecDdmReset
Executive ResetIOP ExecIopReset
Executive ResetPath ExecPathReset
Executive SetBiosInfo ExecBiosInfoSet
Executive SetBootDevice ExecBootDeviceSet
Executive SetSysTab ExecSysTabSet
Executive SuspendDDM ExecDdmSuspend

Intelligent I/O Architecture Specification

A-4 Draft Version 1.5d March 7, 1997

Class Old Name New Name

Utility NOP UtilNOP
Utility Abort UtilAbort
Utility Identify see UtilParamsGet

Utility GetFamilyID see UtilParamsGet

Utility GetExtensions see UtilParamsGet

Utility GetParams UtilParamsGet
Utility GetParamsImm see UtilParamsGet

Utility SetParams UtilParamsSet
Utility SetParamsImm see UtilParamsSet

Utility MessageFail UtilReplyFaultNotify
Utility Claim UtilClaim
Utility ClaimRelease UtilClaimRelease
Utility Reserve UtilReserve
Utility ReserveRelease UtilReserveRelease
Utility EventNotify UtilEventRegister
Utility EventAck UtilEventAck
Utility ConfigDialog UtilConfigDialog
Utility ConfigResponse not needed

Differences from Previous Version

Draft Version 1.5d March 7, 1997 A-5

Class Old Name New Name

DDM ConnModify See DdmDeviceReset

DDM ConnResume See DdmDeviceResume

DDM ConnSuspend See DdmDeviceSuspend

DDM DDM_Reset DdmSelfReset
DDM DDM_Resume DdmSelfResume
DDM DDM_Suspend DdmSelfSuspend
DDM DeviceAttach DdmAdapterAttach
DDM DeviceReconfig DdmAdapterReconfig
DDM DeviceRelease DdmAdapterRelease
DDM DeviceResume DdmAdapterResume
DDM DeviceSuspend DdmAdapterSuspend
DDM ObjectAttach DdmDeviceAttach
DDM ObjectRelease DdmDeviceRelease
DDM Path_Reset DdmDeviceReset
DDM Path_Resume DdmDeviceResume
DDM Path_Suspend DdmDeviceSuspend
DDM SystemChange DdmSystemChange
DDM SystemEnable DdmSystemEnable
DDM SystemHalt DdmSystemHalt

A.2.2 Field Name Changes
Class Old Name New Name

SG_List SGL

MsgFlags MessageFlags

Version/Status VersionOffset

Intelligent I/O Architecture Specification

A-6 Draft Version 1.5d March 7, 1997

Index

—A—

aborted transactions, 6-6

access unit, 2-37

access unit, 2-36

adapter

-accessible memory, 2-47

common structures, 3-42

non-intelligent, 3-1

object, 2-48, 5-58

private, 2-2

system I/O, 2-2

adapter object, 5-60

creating, 5-60

add-in card, 2-42

address

byte order, 2-33

domains, 2-14, 2-33

initiator, 4-11, 4-60, 5-4

local, 2-36

physical, 3-24

remote, 2-36

size, 2-34

space, 2-35

target, 4-11, 4-60, 5-5

translation, 5-6, 5-58

unit, 2-16

translation unit. See ATU

addressing

chain, 3-27

immediate data, 3-18

page

frame, 3-18

list, 3-30

simple, 3-18, 3-33

ANSI Standard C Library, 5-92

application processor, 1-9

architecture, hardware, 2-1

arithmetic functions, 5-95

ATU, 2-15, 2-44

—B—

base message, 3-16

batch, 1-9

control, 6-112

BIOS, 3-1, 4-65

extension, 3-1, 4-66

Block Storage, 6-25

boot

device, 4-66

remote, 4-66

BsaBlockRead, 6-22

BsaBlockRead, 6-32

BsaBlockReassign, 6-22, 6-32, 6-34

BsaBlockWrite, 6-22

BsaBlockWrite, 6-32

BsaBlockWriteVerify, 6-22, 6-32, 6-36

BsaCacheFlush, 6-22, 6-32, 6-37

BsaDeviceReset, 6-22, 6-32, 6-37

BsaMediaEject, 6-22, 6-32, 6-38

Index

Draft Version 1.2 March 7, 1997 7

BsaMediaFormat, 6-22, 6-32, 6-39

BsaMediaLock, 6-22, 6-32

BsaMediaMount, 6-22, 6-32, 6-39

BsaMediaUnlock, 6-22, 6-32

BsaMediaVerify, 6-22, 6-32, 6-40, 6-41

BsaPowerMgt, 6-22, 6-32, 6-41

BsaStatusCheck, 6-22, 6-32, 6-42

bucket, 1-9

buffer

management, 3-35

bus

access, 5-5

master, 2-44

devices, 5-5

elements, 2-36

object, 2-48

slave elements, 2-36

system, 4-5

type, 3-42

bus master devices, 5-15

—C—

C functions, 5-92

chain addressing, 3-27

class

codes, 6-1

IOP local memory, 2-45

message, 1-4

specifications, 6-1

Class_ID, 6-1

communication, 2-32

channel, 2-18

layer, 2-32

model, 2-1

service, 2-4

configuration, 2-23

DDM, 4-68

dialog, 5-3

dialogue, 3-2, 6-24

dialogue, 1-9

facilities, 2-11

immediate, 6-25

IOP, 4-67

service, 1-9

connecting DDMs, 5-4

connection

closing, 2-20

conventions, 1-12

core

interface, 2-7, 2-27

specification, 5-1

creating static message, 5-57

—D—

data

movement, 2-35, 2-37

pulling, 2-17

pushing, 2-17

transfer, 2-17, 5-5

DDM, 1-9, 2-3, 2-5

communication, 4-1

components, 5-45

configure, 4-68

connections between, 5-4

Intelligent I/O Architecture Specification

8 Draft Version 1.2 March 7, 1997

creating memory partition, 5-5

environment, 2-17

initialization, 5-3, 5-7

installation, 4-68, 5-2, 5-7

invoking, 5-43

load, 4-68

loading, 5-2

operation, 5-42

requirements, 3-3

structure, 5-21

DdmAdapterAttach, 5-3, 5-8, 5-9, 5-11, 5-13

DdmConfigDialog, 5-3

DdmDeviceAttach, 5-3, 5-4, 5-8, 6-25

DdmDeviceRelease, 6-26

device

addressing, 6-26

assignment, 2-18

class, 1-2

configuration, 3-73, 6-26

descriptor, 5-49

domains, 2-14

driver

configuration, 2-11

module, 1-9

split, 1-2

stackable, 1-3

hidden, 3-2

registration, 2-30

DeviceAttach, 5-60

dispatch table, 5-53

dispatching message, 5-54

DMA, 2-40, 2-44

engine, 2-36

object, 2-48, 5-6

unit, 2-37

DMA, 5-14

driver

installation, 1-9

load, 1-9

loadable, 4-1

requirements, 3-3

splitting, 2-1

—E—

embedded

I/O processor, 1-9

kernel layer, 1-10

environment

execution, 2-9

memory, 2-33

error control, 6-111

errors, 6-21

event

create, 5-54

handler, 5-43, 5-52

handlers, 5-42

pool, 5-55

priority, 5-54

queue, 5-4, 5-14, 5-52, 5-54

hierarchical, 5-43

event handler

declaration, 5-43

ExecAdapterAssign, 4-11, 4-15, 4-27, 4-64, 4-68

Index

Draft Version 1.2 March 7, 1997 9

ExecAdapterRead, 4-11

ExecAdapterRelease, 4-11, 4-17, 4-27, 4-64, 4-68

ExecBiosInfoSet, 4-11

ExecBootDeviceSet, 4-11, 4-66

ExecConfigValidate, 4-11

ExecConnSetup, 4-11, 4-19, 4-67

ExecDdmDestroy, 4-11, 4-21, 4-68

ExecDdmEnable, 4-11, 4-22

ExecDdmQuiesce, 4-11, 4-22, 4-70

ExecDdmReset, 4-11, 4-23

ExecDdmSuspend, 4-11, 4-24, 4-70

ExecDeviceAssign, 4-11, 4-24, 4-68, 4-70, 5-8, 6-25

ExecDeviceRelease, 4-11, 4-25, 4-68, 5-5

ExecHrtGet, 4-11, 4-25, 4-26, 4-63

ExecLctNotify, 4-11, 4-32, 4-67, 6-25, 6-26

ExeclopClear, 4-8, 4-11, 4-28, 4-70

ExeclopConnect, 4-11, 4-29, 4-67

ExeclopReset, 4-8, 4-11, 4-28, 4-30, 4-32, 4-70

ExecOutboundInit, 4-8, 4-12, 4-33, 4-63

ExecPathEnable, 4-12, 4-35, 4-36

ExecPathQuiesce, 4-12, 4-35, 4-70

ExecPathReset, 4-12, 4-36

ExecStaticMfCreate, 4-12, 4-37

ExecStaticMfRelease, 4-12, 4-38

ExecStatusGet, 4-8, 4-12, 4-30, 4-38, 4-63, 4-64

ExecSwDownload, 4-12, 4-41

ExecSwRemove, 4-12, 4-45

ExecSwUpload, 4-12, 4-43

ExecSysEnable, 4-8, 4-9, 4-12, 4-22, 4-35, 4-36, 4-46, 4-
64, 4-69

ExecSysModify, 4-8, 4-12, 4-46, 4-69

ExecSysQuiesce, 4-8, 4-12, 4-28, 4-32, 4-47, 4-70

ExecSysTabSet, 4-8, 4-12, 4-47, 4-64, 4-66, 4-69

execution environment, 1-10

Executive class, 4-11

executive function, 3-2

expansion

bus, 2-35, 2-43, 5-5

external connection table. See XCT

—F—

FIFO, 4-2, 5-54

files

include, 1-6

Free_List FIFO, 4-2

—G—

GetStatus, 4-50, 4-59

glossary, 1-8

groups

parameter, 3-63

—H—

hardware

access, 5-5

architecture, 2-1, 2-2

configuration, 2-34

device module, 2-3. See HDM

objects, 5-58

resource table. See HRT

hardware settings, 6-24

HbaAdapterReset, 6-100

HbaBusQuiesce, 6-100

HbaBusReset, 6-100, 6-101

HbaBusScan, 6-100, 6-102

Intelligent I/O Architecture Specification

10 Draft Version 1.2 March 7, 1997

HDM, 1-10, 2-3

hidden device, 2-2

host

configuration, 6-25

IOP communication, 4-10

messages, 2-20

node, 1-10, 2-1

operating system, 1-10

OS, 3-2

requirements, 3-1

HRT, 1-10

—I—

I/O

class

LAN, 6-20, 6-56

random block storage, 6-20, 6-106

SCSI Adapter, 6-97

SCSI Peripheral, 6-85

device domains, 2-13

object, 1-10

I/O class

Executive, 4-11

I/O platform. See IOP

I2O

include files, 1-6

Special Interest Group, 1-14

standards, 1-1

system

overview, 1-1

I2O

-aware BIOS, 3-1

behavior, 4-60

bridging, 2-12

components, 3-1

configuring, 2-11

environment, 2-12

initializing, 2-11

interfaces, 2-6

object

registration, 5-1

real-time OS. See IRTOS

routing, 2-12

segments, 2-12

subsystems, 2-23

system

functions, 3-2

initialization, 4-60

table, 4-64

i2oAdapterBusGet, 5-61

i2oAdapterBusGet(), 5-59, 5-60, 5-76

i2oAdapterConfigRead..., 5-61, 5-76

i2oAdapterConfigWrite..., 5-61, 5-76

i2oAdapterIntLock, 5-61

i2oAdapterIntLock(), 5-60, 5-76

i2oAdapterIntUnlock, 5-61

i2oAdapterIntUnlock(), 5-60, 5-76

i2oAdapterPhysLocGet, 5-61

i2oAdapterPhysLocGet(), 5-60, 5-76

i2oBusLocal(), 5-59, 5-76

i2oBusRead..., 5-59

i2oBusRead…, 5-76

i2oBusSystem(), 5-59, 5-76

Index

Draft Version 1.2 March 7, 1997 11

i2oBusTranslate(), 5-58

i2oBusTranslate(), 5-59, 5-76

i2oBusWrite..., 5-59

i2oBusWrite…, 5-76

i2oBusyWait(), 5-76

i2oContextGet(), 5-76

i2oDdmCreate(), 5-7, 5-45, 5-46, 5-48

i2oDdmMpbStore(), 5-46, 5-49

i2oDdmTidRelease(), 5-46, 5-49

i2oDevCreate(), 5-8, 5-48, 5-49, 5-52

i2oDevEventQGet(), 5-48

i2oDevGet(), 5-46

i2oDevLctFlagsSet(), 5-48

i2oDevLctInfoGet(), 5-48

i2oDevNvramRead(), 5-73

i2oDevNvramSizeGet(), 5-73

i2oDevNvramSizeSet(), 5-72

i2oDevNvramWrite(), 5-73

i2oDevTidGet(), 5-48, 5-49

i2oDevUserTidSet(), 5-48

i2oDispatchCreate(), 5-53

i2oDispatchTblCreate(), 5-52

i2oDispatchTblGet(), 5-48

i2oDmaXfer(), 5-42, 5-45

i2oDmaXferFrag(), 5-42

I2oDmaXferList(, 5-45

i2oDmaXferList(), 5-42

i2oErrorAction(), 5-34, 5-76

i2oErrorSet(), 5-34

i2oEventQCreate(), 5-41

i2oEventQPost(), 5-41

i2oEventQPriEnableGet(), 5-41

i2oEventQPriEnableSet(), 5-41

i2oEventQPriMaskGet(), 5-41

i2oEventQPriMaskSet(), 5-41

i2oEventQPriPending(), 5-41

i2oEventQThreadGet(), 5-41

i2oEvtQPriEnableGet(), 5-40

i2oEvtQPriEnableSet(), 5-40

i2oEvtQPriMaskGet(), 5-40

i2oEvtQPriMaskSet(), 5-40

i2oEvtQPriPending(), 5-41

i2oFrameAlloc(), 5-55, 5-57

i2oFrameFree, 5-56, 5-57

i2oFrameSend(), 5-55, 5-57

i2oInitiatorContextBuild(), 5-56

i2oIntCreate(), 5-73

i2oIntEventPost(), 5-42, 5-45, 5-73, 5-76

i2oIntInIsr, 5-76

i2oIntInIsr(), 5-73, 5-75

i2oIntLock(), 5-60, 5-73, 5-76

i2oIntUnlock(), 5-73, 5-76

i2oIntUnlock(),, 5-60

i2olopConfigGet (), 5-91

i2olopTidlsLocal(), 5-91

i2oMemFree(), 5-66

i2oNvramRead(), 5-72

i2oNvramWrite(), 5-72

i2oObjContextGet(), 5-33, 5-39, 5-40

i2oObjContextSet(), 5-39, 5-40

i2oObjDestroy(), 5-39, 5-57

i2oObjNameGet(), 5-39, 5-40

Intelligent I/O Architecture Specification

12 Draft Version 1.2 March 7, 1997

i2oObjNameSet(), 5-39, 5-40

i2oObjOwnerGet(), 5-39

i2oPageAddrGet(), 5-70

i2oPageAlloc(), 5-68

i2oPageAllocContig(), 5-70

i2oPageAllocContig(), 5-42

i2oPageAllocN(), 5-69

i2oPageBbuEnableGet(), 5-71

i2oPageBbuEnableSet(), 5-71

i2oPageBbuNotify(), 5-71

i2oPageBbuNotify(), 5-42

i2oPageBbuStatus(), 5-70

i2oPageCountGet(), 5-70

i2oPageFree(), 5-68

i2oPageSetCreate(), 5-68

i2oPageSizeGet(), 5-70

i2oSemGive(), 5-76

i2oStaticMsgCreate(), 5-42, 5-45, 5-57

i2oStaticMsgSend(), 5-57

i2oThreadErrorActionSet(), 5-33

i2oTimerCreate(), 5-77

i2oTimerRepeat(), 5-42

I2oTimerStart(, 5-77

i2oTimerStart(), 5-42

Identify, 6-23

ignore entry, 3-28

initialization, 2-11

DDM, 5-3, 5-7

I
2O system, 4-60

initiator

address, 4-11, 4-60, 5-4

context, 4-60

interfaces

core, 2-7

I2O

core, 1-4

message-based, 1-4

shell, 1-4

Intermediate Service Module. See ISM

interrupt object, 5-73

interrupts

IOP CPU, 5-76

intEvtHandler(), 5-74

IOP, 1-10, 2-1, 2-23, 2-34, 2-38

address space, 2-15

configuration, 4-67

configuration, 6-25

host communication, 4-10

initialization, 5-8

local memory classes, 2-45

logical configuration table, 4-67

message

queues, 4-3

operations, 2-27, 5-7

requirements, 3-3

state, 4-7

system interface, 4-2

IRTOS, 1-10, 5-7

objects, 5-44

ISM, 1-10, 2-3

ISR, 5-42, 5-75

isrHandler(), 5-74

Index

Draft Version 1.2 March 7, 1997 13

—L—

LAN class, 6-20, 6-56

LanPacketSend, 6-107, 6-112

LanReceivePost, 6-109, 6-111, 6-112

LanSduSend, 6-107, 6-112, 6-116

LCT, 1-11

local

bus, 2-35, 2-40, 5-5

logical

configuration table, 3-40, 4-67, 5-9. See LCT

device, 1-9, 1-11

—M—

memories, 2-36

memory

partition, 2-41

creating, 5-5

private, 2-15

shared, 2-12, 2-15

structures, 2-33

system, 2-15

types, 2-15

message

layer, 3-2

receiving, 5-4

reply, 3-4

request, 3-4

sending, 5-4

message

base, 3-16

base class, 6-1

-based interface, 2-8

categories, 3-4

class specifications, 6-1, 6-3

classes, 1-4

consumer, 4-2

data structures, 3-4

delivery, 2-4

dispatch table, 5-52

dispatching, 5-54

failure, 3-12, 3-14, 6-3, 6-19

fault reply structure, 3-12

frame, 2-32, 4-2, 4-4

handler, 1-11, 2-29

declaration, 5-53

header, 2-32, 2-33, 3-5

interfaces, 2-6

normal reply, 6-3

structures, 3-9

passing interface, 4-9

payload, 2-32, 3-7

private, 3-16, 6-1

producer, 4-2

queue, 4-2

inbound, 4-6

queue initialization, 4-3

reply, 4-12, 6-4

status codes, 3-10

styles, 3-36

reply status codes, 3-11

request

structures, 3-7

send, 5-55

Intelligent I/O Architecture Specification

14 Draft Version 1.2 March 7, 1997

sending, 2-20

sending packets, 6-107

service, 2-5, 5-4

structure, definitions, 3-4

utility, 3-16, 4-13, 6-1

utility, 6-4

MessageFail, 3-12

messaging layer, 1-11, 2-3, 2-6

messenger, 2-4

MessengerInstance, 1-11, 2-6

MFA, 3-14, 4-2, 4-6

modify operations, 3-55

module

descriptor header, 5-21

device driver, 2-3

hardware device, 2-3

intermediate service, 2-3

OS-specific, 2-3

parameter block, 1-11, 5-3

registration, 2-29

multiple transaction request, 3-8

model, 3-17

—N—

node

host, 2-1

I/O processor, 2-1

—O—

operating system

module, 2-3

service module. See OSM

vendor information, 1-8

operation

cascaded, 2-35

DDM, 5-42

errors and failures, 3-61

FIELD_GET, 3-49

FIELD_SET, 3-56

LIST_GET, 3-50

LIST_SET, 3-57

MORE_GET, 3-51

nested, 2-35

ROW_ADD, 3-59

ROW_DELETE, 3-60

SIZE_GET, 3-52

TABLE_CLEAR, 3-60

TABLE_GET, 3-53

OSM, 1-11, 2-3, 3-2

path, 4-67

overview

technical, 2-1

—P—

page list addressing, 3-30

path, 4-67

OSM, 4-67

PCI

bus, 4-5

PCI bus, 2-25

peer-to-peer

communication, 4-11, 5-4

connection, 2-18

messages, 2-20

Index

Draft Version 1.2 March 7, 1997 15

permanent storage, 2-40

physical

device

access, 5-14

location, 1-11

physical device, 1-8, 1-11

access, 2-14, 5-60

platforms

private, 3-3

Post_List FIFO, 4-2

private

memory, 2-15

message, 3-16

processor, 2-36, 2-39

progress replies, 6-28, 6-62

—Q—

queue

inbound, 1-10, 4-6

message, 4-2, 5-14

outbound, 1-11

queuing model, 2-9

—R—

random block storage class, 6-20, 6-106

read operations, 3-47

Read_Block, 6-32

recovery

system, 4-69

reply

messages, 6-3

normal, 6-3

request sense, 6-87

reserved, 1-11

ResetAck, 3-11

RTOS service, 2-5

—S—

scatter-gather

list, 6-118

scatter-gather list, 3-17

typical structure, 3-19

SCSI

Adapter class, 6-97

Peripheral class, 6-85

reply messages, 6-86

ScsiDeviceReset, 6-90, 6-91

ScsiScbAbort, 6-90, 6-91

ScsiScbExec, 6-91

ScsiSchExec, 6-90

semaphores, 5-76

serial number, 3-39

service, 2-8

communication, 2-4

message, 2-5, 2-8

OS, 2-8

RTOS, 2-5

transport, 2-5, 2-8

transport, 5-14

services

OS, 5-7

SetBiosInfo, 4-66

SetSysTab, 3-13, 4-59

SGL, 3-17

Intelligent I/O Architecture Specification

16 Draft Version 1.2 March 7, 1997

shared memory, 2-15

shell

interface, 2-26

specification, 4-1

simple addressing, 3-33

single transaction request, 3-7

model, 3-17

software

architecture, 2-5

components, 2-45

split driver, 2-2

static message

create, 5-57

swapping initiator and target addresses, 5-4

system

memory, 5-14

system

bus, 2-35, 2-40, 4-5, 5-5

configuration table, 1-11

I/O

adapter, 2-1

device, 2-1

memory, 2-15

recovery, 4-69

resource manager, 2-10, 3-2

vendor information, 1-8

—T—

TapeCacheFlush, 6-65

TapeCmprsnSet, 6-66

TapeDataErase, 6-66

TapeDataRead, 6-67

TapeDataWrite, 6-68

TapeDataWriteVerify, 6-68

TapeDensitySet, 6-69

TapeDeviceReset, 6-70

TapeMarksWrite, 6-70

TapeMediaEject, 6-71

TapeMediaLock, 6-72

TapeMediaPosition, 6-73

TapeMediaUnlock, 6-75

TapePartitionCreate, 6-75

TapePowerMgt, 6-76

TapeStatusCheck, 6-77

target address, 4-11, 4-60, 5-5

target ID. See TID

TID, 1-11, 2-32, 2-33, 4-10, 5-14

assign, 5-49

release, 5-49

table, 5-49

timer object, 5-76

transaction ordering, 6-21

transferring data, 5-5

transport

functions, 2-48

layer, 1-12

service, 2-5, 5-5

services, 5-14

sublayer, 2-6

—U—

Unlock, 6-75

user parameters

setting, 5-3

Index

Draft Version 1.2 March 7, 1997 17

UtilAbort, 6-4

UtilClaim, 5-8, 6-4, 6-6, 6-23, 6-26

UtilClaimRelease, 6-4, 6-9

UtilConfigDialog, 4-67, 4-68, 6-4, 6-9

UtilDevice Release, 6-4

UtilDeviceReserve, 6-4

UtilEventAck, 6-4, 6-8, 6-12, 6-23, 6-100

UtilEventRegister, 4-8, 4-14, 4-32, 4-66, 4-69, 6-4, 6-12, 6-

23, 6-30, 6-90, 6-99, 6-112

utility

function, 6-22

message, 3-16, 4-13, 6-4

UtilLock, 6-4, 6-16, 6-63

UtilLockRelease, 6-4, 6-15, 6-16, 6-30, 6-63

UtilNOP, 4-7, 6-4, 6-16

UtilParamSet, 6-4

UtilParamsGet, 4-13, 4-67, 4-69, 6-4, 6-17, 6-23, 6-24, 6-
111

UtilParamsSet, 4-14, 6-18, 6-24, 6-111

UtilReplyFaultNotify, 6-4, 6-19

UtilReserve, 5-8

UtilReserveRelease, 5-8

—V—

vendors, 1-8

—W—

Write_Block, 6-35

—X—

XCT, 1-10

