
 i

Computational Disclosure Control

A Primer on Data Privacy Protection

by

Latanya Sweeney

Computational Disclosure Control 01/08/01 8:22 AM

ii

Table of Contents

Chapter 0 Preface .. 13
0.1 Description of work... 13

0.1.1 Computational disclosure control.. 13
0.1.2 Contributions of this work... 15
0.1.3 Learning information about entities .. 15

0.2 Intended audiences.. 16
0.3 How this work is organized... 17
0.4 Computer technology used.. 18

Chapter 1 Non-Technical Overview .. 19
1.1 Towards all the data on all the people... 20
1.2 Unique and unusual values in statistical data .. 20
1.3 Linking to re-identify de-identified data ... 21
1.4 Probabilistic inference to re-identify individuals .. 21
1.5 Re-constructing unreleased data.. 21
1.6 Using patterns to re-identify individuals ... 22
1.7 Summary of problems producing anonymous data ... 23
1.8 Related work ... 23
1.9 Formal methods... 24
1.10 Scrub System... 24
1.11 Datafly II System .. 25
1.12 µ-Argus System... 26
1.13 The k-Similar algorithm .. 26
1.14 Putting the systems into action .. 27
1.15 Medical privacy legislation ... 27
1.16 Challenge to society .. 28
1.17 Summary ... 28

Chapter 2 Introduction... 30
2.1 Tensions in releasing data ... 30
2.2 Introduction to privacy in medical data... 35

2.2.1 Privacy protection and the Hippocratic oath ... 36
2.2.2 Role of information technology... 36
2.2.3 Past policy efforts and computational disclosure control .. 37
2.2.4 Public concern over privacy.. 37
2.2.5 Sharing medical data offers benefits to society ... 38
2.2.6 Lots of medical data available from many sources.. 38
2.2.7 Problems have been found .. 39

2.3 All the data on all the people... 39
2.4 Problems producing anonymous data.. 43

2.4.1 A single attribute ... 44
2.4.2 More than one attribute ... 44
2.4.3 Learned from the examples ... 47
2.4.4 Real-world examples... 48

Chapter 3 Background ... 52
3.1 Statistical databases... 53
3.2 Multi-level databases .. 54
3.3 Computer security is not privacy protection.. 56
3.4 Multiple queries can leak inference... 57
3.5 Research on population uniqueness .. 57

Computational Disclosure Control 01/08/01 8:22 AM

iii

3.6 Inference, learning and artificial intelligence .. 57
3.7 The k-nearest neighbor algorithm.. 58

Chapter 4 Methods... 60
4.1 Survey of disclosure limitation techniques.. 60
4.2 Reasoning about disclosure control... 62
4.3 Formal protection models ... 68
4.4 Future work ... 79

Chapter 5 Methods Extended – Preferred Minimal Generalization Algorithm.. 80
5.1 The k-anonymity protection model ... 80
5.2 Generalization and suppression as disclosure limitation techniques ... 82

5.2.1 Generalization including suppression.. 84
5.3 Minimal generalization of a table.. 85

5.3.1 Distance vectors and generalization strategies .. 89
5.4 Minimal distortion of a table... 92
5.5 An algorithm for determining a minimal generalization with minimal distortion 96

5.5.1 Unsorted matching attack against k-anonymity... 98
5.5.2 Complementary release attack against k-anonymity.. 99
5.5.3 Temporal attack against k-anonymity.. 103
5.5.4 MinGen as an anonymous data system.. 104

5.6 Future work ... 105
Chapter 6 Results: Datafly II ... 107

6.1 Overview of the Datafly System.. 107
6.2 Abstract of the Datafly algorithm.. 112
6.3 Comparison to MinGen... 118

6.3.1 Complexity of the core Datafly algorithm...118
6.3.2 Correctness of the core Datafly algorithm... 119
6.3.3 Summary data attack thwarted by the core Datafly algorithm... 120
6.3.4 Distortion and the core Datafly algorithm... 121

6.4 Datafly as an anonymous data system... 123
6.5 Future work ... 124

Chapter 7 Results: µ-Argus.. 125
7.1 Overview of the µ-Argus System.. 125
7.2 Abstract of the µ-Argus System .. 126
7.3 Comparison to Mingen.. 152

7.3.1 Complexity of the µ-Argus algorithm ... 152
7.3.2 Correctness of the µ-Argus algorithm ... 154
7.3.3 Summary data attack on µ-Argus results... 157
7.3.4 Distortion and the µ-Argus algorithm ... 159

7.4 Comparison to Datafly .. 161
7.5 µ-Argus as an anonymous data system.. 161
7.6 Future work ... 162

Chapter 8 Results: k-Similar .. 165
8.1 Overview of the k-Similar algorithm... 165
8.2 Abstract of the k-Similar algorithm... 166

8.2.1 Distance vectors expanded.. 166
8.2.2 The k-Similar algorithm .. 170

8.3 Comparison to Mingen.. 190
8.3.1 Complexity of the k-Similar algorithm.. 190
8.3.2 Correctness of the k-similar algorithm .. 191

8.4 Comparison to Datafly and µ-Argus ... 192
8.5 k-Similar as an anonymous data system .. 192
8.6 Future work ... 193

Chapter 9 Results: Scrub ... 195
9.1 Overview of the Scrub System.. 195

Computational Disclosure Control 01/08/01 8:22 AM

iv

9.2 Human approach ... 198
9.3 Computer approach ... 199

9.3.1 Replacement Strategies. .. 202
9.4 Results... 203
9.5 Discussion ... 203
9.6 Scrub as an anonymous data system.. 204

Chapter 10 Discussion ... 206

Computational Disclosure Control 01/08/01 8:22 AM

v

INDEX OF FIGURES

FIGURE 1 OPTIMAL RELEASES OF DATA.. 31
FIGURE 2. RECIPIENT’S NEEDS OVERPOWER PRIVACY CONCERNS ... 32
FIGURE 3 DATA HOLDER AND PRIVACY CONCERNS OVERPOWER OUTSIDE USES OF THE DATA 33
FIGURE 4. AN OPTIMAL BALANCE IS NEEDED BETWEEN PRIVACY CONCERNS AND USES OF THE DATA 33
FIGURE 5. DATA HOLDER AND PRIVACY CONCERNS LIMIT USES OF THE DATA.. 34
FIGURE 6 GLOBAL DISK STORAGE PER PERSON... 40
FIGURE 7 ESTIMATED GROWTH IN DATA COLLECTIONS (PER ENCOUNTER) IN ILLINOIS (IN BYTES)............................. 41
FIGURE 8 LEVELS OF ACCESS RESTRICTIONS BY DATA HOLDERS TO PERSON-SPECIFIC DATA...................................... 42
FIGURE 9 FREQUENCY OF BIRTH YEARS IN CAMBRIDGE VOTER LIST ... 44
FIGURE 10 DATA THAT LOOK ANONYMOUS.. 45
FIGURE 11 DE-IDENTIFIED DATA .. 46
FIGURE 12 DISTRIBUTIONS OF GENDER AND RACE IN FIGURE 11.. 47
FIGURE 13 CANCER REGISTRY THAT LOOKS ANONYMOUS ... 48
FIGURE 14 ATTRIBUTES OFTEN COLLECTED STATEWIDE .. 48
FIGURE 15 LINKING TO RE-IDENTIFY DATA .. 49
FIGURE 16 VALUE UNIQUENESS IN VOTER LIST .. 50
FIGURE 17 DISCLOSURE LIMITATION TECHNIQUES ... 61
FIGURE 18 RELEASE USING DE-IDENTIFICATION ... 63
FIGURE 19 RELEASE USING ENCRYPTION ... 64
FIGURE 20 RELEASE USING SWAPPING ... 65
FIGURE 21 RELEASE USING GENERALIZATION .. 66
FIGURE 22 GENERALIZING AN ATTRIBUTE.. 67
FIGURE 23 VALUES FOR S, P, PT, QI, U AND E.. 75
FIGURE 24 RELATIVE COMPARISON OF TECHNIQUES .. 77
FIGURE 25 EXAMPLE OF K-ANONYMITY, WHERE K=2 AND QI={ETHNICITY, BIRTH, GENDER, ZIP}........................... 81
FIGURE 26 EXAMPLES OF DOMAIN AND VALUE GENERALIZATION HIERARCHIES .. 83
FIGURE 27 EXAMPLES OF GENERALIZED TABLES FOR PT... 84
FIGURE 28 ZIP DOMAIN AND VALUE GENERALIZATION HIERARCHIES INCLUDING SUPPRESSION................................. 85
FIGURE 29 ETHNICITY DOMAIN AND VALUE GENERALIZATION HIERARCHIES INCLUDING SUPPRESSION...................... 85
FIGURE 30 GENERALIZATION HIERARCHY GHT AND STRATEGIES FOR T = <E0,Z0> .. 89
FIGURE 31 PREFERRED MINGEN ALGORITHM ... 97
FIGURE 32 VALUE GENERALIZATION HIERARCHIES FOR { ZIP, GENDER, RACE, BIRTHDATE}................................... 100
FIGURE 33 VALUE GENERALIZATION HIERARCHIES FOR { ZIP, GENDER, RACE, BIRTHDATE} WITH SUPPRESSION 101
FIGURE 34 PRIVATE TABLE PT.. 102
FIGURE 35 K-MINIMAL DISTORTIONS FOR PT IN FIGURE 34 WHERE K=2 .. 102
FIGURE 36 TABLE RESULTING FROM LINKING GT1 AND GT3 IN FIGURE 35 .. 103
FIGURE 37. DATA HOLDER OVERVIEW OF THE DATAFLY SYSTEM.. 107
FIGURE 38. ANONYMITY GENERALIZATIONS FOR CAMBRIDGE VOTERS’ DATA WITH CORRESPONDING VALUES OF K. 109
FIGURE 39 CORE DATAFLY ALGORITHM.. 113
FIGURE 40 GENERALIZE(), SUPPORTING METHOD FOR CORE DATAFLY ALGORITHM ... 114
FIGURE 41 DATAFLY VECTORADD ALGORITHM... 114
FIGURE 42 SUPPRESS() AND RECONSTRUCT(), SUPPORTING METHODS FOR CORE DATAFLY ALGORITHM 115
FIGURE 43 TABLE MGT RESULTING FROM DATAFLY, K=2, QI={RACE, BIRTHDATE, GENDER, ZIP} 116
FIGURE 44 FREQ AT AN INTERMEDIATE STAGE OF THE CORE DATAFLY ALGORITHM .. 118
FIGURE 45 FREQ AT ANOTHER INTERMEDIATE STAGE OF THE CORE DATAFLY ALGORITHM 118
FIGURE 46 SUMMARY DATA FOR PT IN FIGURE 34 .. 121
FIGURE 47 GENERALIZATION OF PT IN FIGURE 34 ... 121
FIGURE 48 PRIMARY PHASES OF µ-ARGUS ALGORITHM ... 127

Computational Disclosure Control 01/08/01 8:22 AM

vi

FIGURE 49 COMBINATIONS OF MORE, MOST, IDENTIFYING TESTED BY µ-ARGUS ... 128
FIGURE 50 µ-ARGUS ALGORITHM .. 130
FIGURE 51 µ-ARGUS FREQSETUP ALGORITHM ... 131
FIGURE 52 µ-ARGUS FREQCONSTRUCT ALGORITHM .. 131
FIGURE 53 µ-ARGUS VECTORADD ALGORITHM ... 132
FIGURE 54 µ-ARGUS FREQMIN ALGORITHM... 132
FIGURE 55 µ-ARGUS GENERALIZE ALGORITHM .. 133
FIGURE 56 µ-ARGUS COMBINATIONTEST ALGORITHM... 134
FIGURE 57 µ-ARGUS MARKOUTLIERS ALGORITHM.. 135
FIGURE 58 µ-ARGUS MARKOUTLIERS2 ALGORITHM.. 135
FIGURE 59 µ-ARGUS MARKOUTLIERS3 ALGORITHM.. 136
FIGURE 60 µ-ARGUS MARGINALUPDATE ALGORITHM ... 136
FIGURE 61 µ-ARGUS RESETOUTLIERS ALGORITHM .. 137
FIGURE 62 µ-ARGUS SUPPRESSOUTLIERS ALGORITHM .. 137
FIGURE 63 FREQ AFTER FREQSETUP() IN µ-ARGUS ALGORITHM STEP 2 ... 142
FIGURE 64 FREQ AFTER GENERALIZE LOOPS IN µ-ARGUS ALGORITHM, STEP 3... 143
FIGURE 65 V AT MOST × MORE IN COMBINATIONTEST(), STEP 5.1 ... 143
FIGURE 66 FREQ AND V AT MOST × MORE IN COMBINATIONTEST(), STEP 5.1 .. 144
FIGURE 67 FREQ AND V AT MORE X MORE IN COMBINATIONTEST(), STEP 5.2.1 ... 144
FIGURE 68 FREQ AND V AT MORE X MORE X MOST IN COMBINATIONTEST(), STEP 5.2.2 ... 145
FIGURE 69 FREQ AND V AT MOST X MORE X IDENTIFYING IN COMBINATIONTEST(), STEP 6.1 146
FIGURE 70 FREQ AND V AT MOST X MORE X IDENTIFYING IN COMBINATIONTEST(), STEP 6.1 147
FIGURE 71 FREQ AND V AT MORE X IDENTIFYING IN COMBINATIONTEST(), STEP 6.2 .. 147
FIGURE 72 V AT MORE X IDENTIFYING IN COMBINATIONTEST(), STEP 6.2... 148
FIGURE 73 FREQ AND V AT MOST X IDENTIFYING IN COMBINATIONTEST(), STEP 7.1... 148
FIGURE 74 FREQ AT SUPPRESSOUTLIERS() IN µ-ARGUS ALGORITHM, STEP 8 ... 149
FIGURE 75 RESULT FROM µ-ARGUS ALGORITHM LISTED IN FIGURE 50 .. 150
FIGURE 76 ACTUAL RESULT FROM THE REAL µ-ARGUS PROGRAM ... 150
FIGURE 77 FREQ AFTER GENERALIZE ZIP .. 151
FIGURE 78 FREQ WITH OUTLIERS UPDATED .. 151
FIGURE 79 RESULTING TABLE FROM µ-ARGUS ALGORITHM WITH MANUAL GENERALIZE ZIP................................... 152
FIGURE 80 TABLE FROM µ-ARGUS ALGORITHM (FIGURE 79) WITH COMPLEMENTARY SUPPRESSION ADDED 158
FIGURE 81 TABLE FROM µ-ARGUS ALGORITHM (FIGURE 75) WITH COMPLEMENTARY SUPPRESSION ADDED 159
FIGURE 82 COMBINATIONS OF ATTRIBUTES CONTAINING OUTLIERS ... 164
FIGURE 83 COMBINATIONS OF ATTRIBUTES CONTAINING OUTLIERS ... 164
FIGURE 84 PRIVATE TABLE PT.. 168
FIGURE 85 CLIQUE SHOWING DISTANCE VECTORS BETWEEN TUPLES OF FIGURE 84 ... 168
FIGURE 86 EUCLIDEAN PROPERTIES OF DISTANCE FUNCTION... 169
FIGURE 87 RELATIONS ON DISTANCE VECTORS.. 169
FIGURE 88 BASIC OPERATION OF K-SIMILAR ALGORITHM... 172
FIGURE 89 K-SIMILAR ALGORITHM... 173
FIGURE 90 CLIQUECONSTRUCT ALGORITHM .. 173
FIGURE 91 DISTANCE VECTOR ALGORITHM.. 174
FIGURE 92 KSIMILARRUN ALGORITHM... 174
FIGURE 93 KSIMILARRUNPARTS ALGORITHM .. 175
FIGURE 94 TABLECONSTRUCT ALGORITHM ... 176
FIGURE 95 ADDTUPLE ALGORITHM.. 177
FIGURE 96 ADDTUPLEMIN ALGORITHM ... 178
FIGURE 97 GENERALIZETUPLE ALGORITHM... 179
FIGURE 98 GENERATEMINIMUMS ALGORITHM .. 179
FIGURE 99 FINDCOMPLEMENTS ALGORITHM ... 180
FIGURE 100 TRAVERSE ALGORITHM .. 182

Computational Disclosure Control 01/08/01 8:22 AM

vii

FIGURE 101 PARTITION ALGORITHM .. 183
FIGURE 102 COMMONTUPLES ALGORITHM .. 184
FIGURE 103 RESULTING MINS FROM GENERATEMINIMUMS() .. 187
FIGURE 104 RESULT FROM K-SIMILAR APPLIED TO PT IN FIGURE 84 ... 188
FIGURE 105 CLIQUE SHOWING DISTANCE VECTORS BETWEEN TUPLES OF FIGURE 34 ... 189
FIGURE 106 RESULTING MINS FROM GENERATEMINIMUMS() .. 189
FIGURE 107. SAMPLE LETTER REPORTING BACK TO A REFERRING PHYSICIAN. ... 197
FIGURE 108. SCRUB SYSTEM APPLIED TO SAMPLE IN FIGURE 107. .. 197
FIGURE 109. SEARCH-AND REPLACE APPLIED TO SAMPLE IN FIGURE 1-8. .. 198
FIGURE 110 SAMPLES OF PERSONAL INFORMATION. .. 199
FIGURE 111 SOME OF THE ENTITIES RECOGNIZED BY SCRUB ARE LISTED ABOVE IN RELATIVE ORDER OF PRECEDENCE. 200
FIGURE 112 BLOCK DIAGRAM OF SCRUB DETECTION SYSTEM. .. 201
FIGURE 113 SAMPLES OF TEMPLATES AND THEIR PROBABILITIES... 202
FIGURE 114 COMPARISONS OF SCRUB TO STANDARD TECHNIQUES.. 203
FIGURE 115 SAMPLE DE-IDENTIFIED TEXT.. 204
FIGURE 117. CONTRACTUAL REQUIREMENTS FOR RESTRICTED USE OF DATA BASED ON FEDERAL GUIDELINES AND THE DATAFLY

SYSTEM. .. 208

Computational Disclosure Control 01/08/01 8:22 AM

8

This work is dedicated to

Carrie Sweeney

Though her death took her from me while I was still quite young and my

life has never been quite the same, she left me with three important gifts

that have served me well during my lifetime: (1) the unconditional love

she gave me has made it possible for me to love others; (2) my personal

relationship with God, which she fostered, has carried me through many

difficult times; and, (3) her belief in education made this work possible.

9

Abstract

Today’s globally networked society places great demand on the dissemination and sharing of

person-specific data for many new and exciting uses. Even situations where aggregate statistical

information was once the reporting norm now rely heavily on the transfer of microscopically detailed

transaction and encounter information. This happens at a time when more and more historically public

information is also electronically available. When these data are linked together, they provide an

electronic shadow of a person or organization that is as identifying and personal as a fingerprint even

when the information contains no explicit identifiers, such as name and phone number. Other distinctive

data, such as birth date and ZIP code, often combine uniquely and can be linked to publicly available

information to re-identify individuals. Producing anonymous data that remains specific enough to be

useful is often a very difficult task and practice today tends to either incorrectly believe confidentiality is

maintained when it is not or produces data that are practically useless.

The goal of the work presented in this book is to explore computational techniques for releasing

useful information in such a way that the identity of any individual or entity contained in data cannot be

recognized while the data remain practically useful. I begin by demonstrating ways to learn information

about entities from publicly available information. I then provide a formal framework for reasoning

about disclosure control and the ability to infer the identities of entities contained within the data. I

formally define and present null-map, k-map and wrong-map as models of protection. Each model

provides protection by ensuring that released information maps to no, k or incorrect entities, respectively.

The book ends by examining four computational systems that attempt to maintain privacy while

releasing electronic information. These systems are: (1) my Scrub System, which locates personally-

identifying information in letters between doctors and notes written by clinicians; (2) my Datafly II

System, which generalizes and suppresses values in field-structured data sets; (3) Statistics Netherlands'

µ-Argus System, which is becoming a European standard for producing public-use data; and, (4) my k-

Similar algorithm, which finds optimal solutions such that data are minimally distorted while still

providing adequate protection. By introducing anonymity and quality metrics, I show that Datafly II can

overprotect data, Scrub and µ-Argus can fail to provide adequate protection, but k-similar finds optimal

results.

Computational Disclosure Control 01/08/01 8:22 AM

10

Acknowledgments

I thank Professor Hal Abelson at MIT for his professional guidance, for his reading hundreds of

pages that were excluded from this document, for his constantly setting deadlines and for his exhibiting

patience as each deadline was missed or extended. He has been an good role model and guide to

academic life. Thank you.

I also thank Peter Szolovits at MIT for providing an environment that made it possible for me to

learn about and explore the early part of my work in this area independently, in the fulfillment of my own

vision, with little financial concern and with no lack of quality time. A special thanks also goes to Daniel

Weitzner for making time to review this material and for his patience during its creation.

Also at MIT, I thank Patrick Winston for being there over the years. In those occasions when I

sought him out, he was always there, willing to give an ear or lend a hand and in those pivot points, he

made the difference. Professor Sussman made me feel so connected to MIT and I thank him for his

inquisitive spirit and lively conversations on any topic in any part of math, science or engineering. Also

thanks to Patrick Thompson and Jon Doyle for reviewing and commenting on the earliest drafts of my

work in this area. Also thanks to Norman Margolis and Tyrone Sealy for their general support and

assistance. Finally at MIT, I thank the graduate students, staff and faculty of the Laboratory for

Computer Science and of the Artificial Intelligence Lab for a fun and fascinating environment. In the

Boston area, I thank the medical informatics community for sharing data with me so I could take a first

look at issues regarding patient confidentiality, and along these lines, a special thanks goes to Isaac

Kohane at Children’s Hospital and to Octo Barnett at Massachusetts General Hospital.

The latter parts of this work were conducted at Carnegie Mellon University. I thank Mark

Kamlet for his tremendous support and willingness to make my transition to the faculty a fantastic

opportunity at every turn. Enormous gratitude goes to Debra Dennison for her administrative support.

The H. John Heinz III School of Public Policy and Management has been an incredibly challenging and

stimulating environment as so many disciplines come together under one roof and the willingness of the

faculty to extend themselves is outstanding. Special thanks in general to Rema Padman, George Duncan,

Marty Gaynor, Stephen Roehrig, Susan McElroy, Janet Cohen and Linda Babcock. I also thank Tom

Computational Disclosure Control 01/08/01 8:22 AM

11

Mitchell, Diane Stidle, Steve Fienberg and the members of the Center for Automated Learning in the

School for Computer Science for a stimulating and fun environment.

In terms of the wider privacy community, I have to first give special thanks to Beverly

Woodward. While we may not always agree on solutions or even characterizations of problems, her

willingness to provide critical analysis and review and to take the time to read and comment on my work

is greatly appreciated. It has strengthened my work and my thinking. Thank you Beverly.

In the privacy community, I have participated in more than 50 public debates, talks, presentations

and investigations. I thank all who hosted these events and invited me to participate. These include

Deanna Mool, Virginia deWolf, Laura Zayatz, and Bill Winkler. Among the organizations are the

American Psychiatric Association, the medical societies of Maryland and of Massachusetts, the U.S.

Bureau of the Census, the American Statistical Association, the American Medical Informatics

Association, the U.S. Department of Health and Human Services, the National Library of Medicine, the

National Research Council, the Centers for Disease Control Prevention, and the U.S. Senate, to name a

few. Thanks to all those who shared a debate or a discussion with me, in public or private, and who

hurled a criticism or a compliment, for you have all contributed in one way or another to this work.

Special recognition is extended to A.G. Breitenstein, Denise Nagel, Robert Gellman, and Janlori

Goldman. I also want to recognize David Korn, L.J. Melton, and Elliot Stone.

In conducting this work, I traveled extensively and shared ideas and thoughts with many

researchers from many different areas. Thanks again to Bill Winkler at the U.S. Bureau of Census for

introducing me to his work and that of other statisticians. Thanks to Hundepool at Statistics Netherlands

for public conversations and for a copy of µ-Argus software. Thanks to all who hosted me and who

shared a discussion or two, good or bad, down the right path or the wrong path, because they all helped

me find my way. These include Gio Wiederhold at Stanford, members of the Database Group at

Stanford, and members of the security group at SRI, including Pierangela Samarati, Steve Dawson, and

Pat Lincoln.

I also thank those supporters, critics and discussion sharers who wish to remain anonymous and

all those who would like to have been identified but whom I did not explicitly identify.

Computational Disclosure Control 01/08/01 8:22 AM

12

Let me also take this opportunity for a more personal note. I have been blessed to have to have

in my life those who can see value in the roughest of ordinary looking rocks. They behold beauty where

most of us see nothing of interest, and by their faith alone they transform stone into diamonds for us all

to see. I gratefully acknowledge Chang Sook Barrett, Sylvia Barrett and Joseph Barrett for motivating

and inspiring this work. Their commitment and belief in education continue to inspire and influence all

who know them, and their unwavering belief in me will never be forgotten. I also thank Henry Leitner

and Harvard University DCE for their continued support and commitment to providing educational

opportunities to all. Finally, but not least, I humbly thank Joyce Johnson, Sylvia Barrett, Chang Barrett

and Joseph Barrett for giving me love for a lifetime. This work has been supported in part by a Medical

Informatics Training Grant (1 T15 LM07092) from the National Library of Medicine, a grant from the

U.S. Bureau of the Census, and the H. John Heinz III School of Public Policy and Management at

Carnegie Mellon University.

Computational Disclosure Control 01/08/01 8:22 AM

13

Chapter 0 Preface

In this chapter, I describe the organization of this embodiment of work. This is done by:

(1) describing the work and my contributions;

(2) identifying the intended audiences; and then,

(3) outlining the overall organization of this book.

0.1 Description of work

In the following paragraphs I describe the work reported in this book by describing it in terms of

its broader implications and promise as a line of research.

0.1.1 Computational disclosure control

The overall objective of the line of research encouraged by this work is to create architectural,

algorithmic and technological foundations for the maintenance of the privacy of individuals, the

confidentiality of organizations, and the protection of sensitive information, despite the requirement that

information be released publicly or semi-publicly. Data holders are finding it increasingly difficult to

produce anonymous and declassified information in today’s globally networked society. Most data

holders do not even realize the jeopardy at which they place financial, medical, or national security

information when they erroneously rely on security practices of the past. Technology has eroded

previous protections, leaving the information vulnerable. In the past, a person seeking to reconstruct

private information was limited to visiting disparate file rooms and engaging in the labor-intensive

review of printed material in geographically distributed locations. Today, one can access voluminous

worldwide public information using a standard handheld computer and ubiquitous network resources.

Thus, from seemingly innocuous anonymous data and available public and semi-public information, one

can draw damaging inferences about sensitive information.

However, one cannot seriously propose that all information with any links to sensitive

information be suppressed. Society has developed an insatiable appetite for all kinds of detailed

information for many worthy purposes, and modern systems tend to distribute information widely. A goal

of this work is to control the disclosure of data such that inferences about identities of people and

Computational Disclosure Control 01/08/01 8:22 AM

14

organizations and about sensitive information contained in the released data cannot reliably be made. In

this way, information that is practically useful can be shared freely with guarantees that it is sufficiently

anonymous and declassified. I call this effort the study of computational disclosure control.

Motivation for disclosure control

Computational disclosure control is inspired by the astonishing proliferation of public

information made available on the Internet and recent access to inexpensive, fast computers with large

storage capacities. These may now render many declassification standards ineffective. Shockingly, there

remains a common incorrect belief that if data look anonymous, it is anonymous. Data holders will often

remove all explicit identifiers, such as name, address, and phone number, from data so that other

information contained in the data can be shared, incorrectly believing the identities of entities contained

in the data cannot be inferred. Quite the contrary, de-identifying information provides no guarantee of

anonymity. For example, released information often contains other data, such as birth data and ZIP code

that in combination can be linked to publicly available information to re-identify individuals. As another

example, when somewhat aged information is declassified differently by the Department of Defense than

by the Department of Energy, the overall declassification effort suffers; by using two partial releases, the

original may be reconstructed in its entirety.

Promise of computational disclosure control

Because computational disclosure control can provide a responsible means for providing detailed

medical data to researchers, financial information to economists, and military intelligence information to

analysts, society can reap tremendous benefits in allocation of resources, financial efficiencies, and

protection of national information interests. Of course, this is only possible because the abstracted data

does not compromise individuals, organizations or national interests. Computational disclosure control

provides the means to coordinate information from vast numbers of distributed data holders so that

intended disclosure and declassification policies can be collectively enforced, even when related

inferences may not have been explicitly stated. Determining optimal results requires new insight into

measuring the usefulness of anonymous data and the effectiveness of the protection provided.

Computational Disclosure Control 01/08/01 8:22 AM

15

0.1.2 Contributions of this work

The major contributions to computer science stemming from this work include: (1) a formal

framework for reasoning about disclosure control problems; (2) methods for integrating disclosure

limitation techniques to achieve a given level of anonymity; (3) the introduction of formal protection

models; and, (4) the definition of metrics to assess quality and anonymity. The major contributions to

computer science and to public policy concern: (1) identifying the nature of disclosure control problems

in today’s technological and legal settings; (2) demonstrating how today’s policies, practices and

legislation do not provide adequate privacy protection; and (3) proposing directions for new policies that

incorporate new disclosure control technology.

0.1.3 Learning information about entities

In more traditional computer science terms, this work can be characterized as one on learning –

in particular, the learning of information about entities from data. Society is experiencing tremendous

growth in the number and variety of data collected and shared about individuals, companies and other

entities. When these seemingly innocuous facts are combined, strategic or sensitive knowledge can be

learned about entities. Data linkage is the study of algorithms for learning information about entities

from disparate pieces of entity-specific information. An example is linking information gathered on the

World Wide Web with publicly available databases to reveal information about personal behaviors or

relationships between people.

On the other hand, there is often an expectation of privacy (e.g., medical information) or a pledge

of confidentiality (e.g., censuses and surveys) that accompanies shared data. Disclosure control is the

study of algorithms for releasing information about entities such that the privacy of the individuals or

other sensitive inferences that can be drawn from the data are controlled while the data remain

practically useful.

There exists a symbiotic relationship between data linkage and disclosure control. Data linkage

algorithms that exploit disclosure vulnerabilities in data identify ways in which disclosure control must

improve. Conversely, if disclosure control is to provide data that are useful, such algorithms must

identify the inferences that remain.

Computational Disclosure Control 01/08/01 8:22 AM

16

Over the past twenty-five years, pursuits in record linkage (a subset of data linkage that relies on

the technique of probabilistic linking) and in disclosure control have utilized various statistical

approaches. However, the nature and extent of data available today has led to a re-examination of these

approaches as well as to the development of new computational methods, which are presented in this

book.

0.2 Intended audiences

This book is intended for graduate students who want to learn to be data protectors in order to

limit the knowledge others can gain from information that is publicly released. Conversely, students also

learn to be data detectives in order to understand ways to gain strategic knowledge about individuals and

other entities. It is assumed that the student reading this book has a working knowledge of computer

programming, data structures and algorithms. In a class setting, students may be responsible for

uncovering sensitive information about individuals by conducting experiments similar to those reported

in Chapter 2. Then, students could assume the responsibility of producing public information for a data

holder using privacy protection methods like those described in chapters 4 through 9. Students could then

attempt to compromise each other’s released data and assess the anonymity of each release. Because of

the sensitive nature of this work, it is imperative that students consider the related ethical and societal

pressures inherent in this work. These issues are underscored in Chapter 2 and the broader challenges to

society posed by the work are discussed further in the last chapter.

Other audiences

Maintaining the privacy of individuals and the confidentiality of organizations which are

contained in electronic information released for public or semi-public use affects a wide range of

audiences whose concerns are as diverse as information warfare, financial credit, epidemiological

research and data warehousing, to name a few. In addition there is growing public concern over privacy

and confidentiality as they relate to information made available over the Internet. As a result, the systems

and techniques discussed in this book are quite timely. Demand for information about my work has been

constant and immediate and has stemmed from a wide range of audiences including national security

efforts, the United States Bureau of the Census, the Massachusetts Department of Education, statistical

offices, other government agencies, medical organizations and federal and state legislative committees

working on medical privacy laws. Each of these contexts has brought additional richness to the work that

Computational Disclosure Control 01/08/01 8:22 AM

17

extends beyond differences in vocabularies to also offer unique ways of looking at similar problems

given different traditions and practical experiences.

Releasing medical information

In this book, I present technical solutions in the context of real-world problems. For brevity, the

bulk of the book concerns problems and solutions in releasing medical information even though some

emphasis is placed on important distinctions necessary for other audiences such as those concerned with

statistical, financial or marketing data. Producing anonymous medical information is often very difficult,

as I show herein, and attempting to furnish such data provides fertile ground on which to explore the

general nature of disclosure control problems and the effectiveness of proposed solutions. The tension

between maintaining the privacy of the individual and sharing information for the benefit of society is

more taut and more transparent with medical data than with other kind of person-specific data, which is

why I use medical data as the primary example throughout.

0.3 How this work is organized

This book consists of three major parts. The first part, consisting of chapter 2, briefly reports on

re-identification experiments I designed and conducted using publicly available information as a means

of demonstrating the difficulties encountered when attempting to produce anonymous information in

today’s technical setting. Simultaneously, this chapter shows how in today’s setting, publicly available

information can be exploited to reveal sensitive information about individuals and so, it therefore serves

as a reflection on explorations in data linkage techniques. The second part of this book, consisting of

chapters 3 through 5, includes a formal framework I defined for reasoning about these kinds of problems

and a formal presentation I devised that examines the use of common techniques to thwart unwanted data

linkage efforts. In chapters 6 through 9, I present four computational systems, three of which I created

and produced, that attempt to produce anonymous information for public use. Comparative results are

provided to demonstrate the effectiveness of these systems in light of the re-identification experiments

conducted in the first part. In the final part of this book, consisting of chapters 10, the problems and

proposed computational solutions are briefly examined in terms of their potential impact on privacy

legislation, practices and policies.

Computational Disclosure Control 01/08/01 8:22 AM

18

0.4 Computer technology used

Two different machines were used for the re-identification experiments reported in chapter 1, but

much of the work could have been performed with only one machine and that machine need not have

been as powerfully configured. However, these machines were available for the tasks. Each is described

below.

Dell Inspirion 3200 laptop computer

Pentium II, 144MB RAM, 6GB hard drive, CDROM

External 1GB Jaz drive with SCSI PCMCIA adapter

Ethernet (and 56K modem) connection to Internet

Windows 98 operating system

Office 97 with Access

Dell Precision 610

Pentium II, 1GB RAM, 40GB hard drive, CDROM

Internal 1GB SCSI Jaz drive

Ethernet connection to Internet

Windows NT operating system

Office 97 with Access, Oracle, SQL Server

19

Chapter 1 Non-Technical Overview

The purpose of this chapter is to provide a concise, non-technical overview of a new emerging

area of study, which I term computational disclosure control. An objective of this document is to provide

fundamental principles on which subsequent work in this area may build. It includes references to my

work beyond what is actually covered in later chapters. This chapter is intended as an overview for the

non-technical reader, who may not read some or all of the subsequent chapters. Other readers can skip

this chapter with no loss of information.

Organizations often release and receive person-specific data with all explicit identifiers, such as

name, address and telephone number, removed on the assumption that privacy is maintained because the

resulting data look anonymous. However, in most of these cases, the remaining data can be used to re-

identify individuals by linking or matching the data to other data bases or by looking at unique

characteristics found in the fields and records of the data base itself. When these less apparent aspects

are taken into account, each released record can be altered to map to many possible people, providing a

level of anonymity that the record-holder determines. The greater the number of candidates per record,

the more anonymous the data.

In this book, I present four general-purpose computer programs for maintaining privacy when

disclosing person-specific information. They are:

• my Scrub System, which locates and suppresses or replaces personally identifying

information in letters, notes and other textual documents;

• my Datafly II System, which generalizes values based on a profile of the data recipient at the

time of disclosure;

• Statistics Netherlands’ µ-Argus System, a somewhat similar system which is becoming a

European standard for disclosing public use data; and,

• my k-Similar algorithm, which finds optimal results such that the data are minimally

distorted yet adequately protected.

These systems have limitations. When they are completely effective, wholly anonymous data

may not contain sufficient details for all uses. Care must be taken when released data can identify

Computational Disclosure Control 01/08/01 8:22 AM

20

individuals and such care must be enforced by coherent policies and procedures that incorporate the

constantly changing challenges posed by technology.

1.1 Towards all the data on all the people

There has been tremendous growth in the collection of information being collected on

individuals and this growth is related to access to inexpensive computers with large storage capacities.

Therefore, the trend in collecting increasing amounts of information is expected to continue. As a result,

many details in the lives of people are being documented in databases somewhere and that there exist

few operational barriers to restrict the sharing of collected information. In a related work, I proposed a

formal mathematical model for characterizing real-world data sharing policies and defined privacy and

risk metrics to compare policies. These metrics were applied to the real-world practices of sharing

hospital discharge data. Findings include: (1) 25 of the 44 states that collect hospital discharge data share

the information on a public or semi-public basis; (2) the number of people eligible to receive a copy of

the data is greater than the number of people whose information is contained in the data; and, (3)

publicly available data tends to be overly distorted and so more copies of the more sensitive, semi-

publicly available data are more commonly distributed. Having so much sensitive information available

makes it even more difficult for other organizations to release information that are effectively

anonymous.

1.2 Unique and unusual values in statistical data

I conducted experiments using 1990 U.S. Census summary data to determine how many

individuals within geographically situated populations had combinations of demographic values that

occurred infrequently. It was found that combinations of few characteristics often combine in

populations to uniquely or nearly uniquely identify some individuals. Clearly, data released containing

such information about these individuals should not be considered anonymous. Yet, health and other

person-specific data are publicly available in this form. Here are some surprising results using only three

fields of information, even though typical data releases contain many more fields. It was found that 87%

(216 million of 248 million) of the population in the United States had reported characteristics that likely

made them unique based only on {5-digit ZIP, gender, date of birth}. About half of the U.S. population

(132 million of 248 million or 53%) are likely to be uniquely identified by only {place, gender, date of

birth}, where place is basically the city, town, or municipality in which the person resides. And even at

Computational Disclosure Control 01/08/01 8:22 AM

21

the county level, {county, gender, date of birth} are likely to uniquely identify 18% of the U.S.

population. In general, few characteristics are needed to uniquely identify a person.

1.3 Linking to re-identify de-identified data

I conducted experiments that demonstrated how de-identified health data can be linked to a

population register in order to re-identify by name the persons who are the subjects of the health

information. Using the voter list for Cambridge, Massachusetts, I showed how a few demographics

combine to uniquely identify individuals. It was found that 12% of the 54,805 voters had unique birth

dates (month, day and year of birth). Therefore, any information on these individuals that included birth

date and city, would almost certainly be specific to the named individuals. Further, birth date and gender

together were unique for 29%, birth date and a 5-digit ZIP (postal code) were unique for 69% and birth

date and the full 9-digit ZIP were unique for 97% of the voters. These results demonstrate that

combinations of characteristics can combine to construct a unique or near-unique identifier which is

termed a quasi-identifier. These results further show that the typical de-identification technique applied

when releasing information for public-use in the United States, does not render the result anonymous.

1.4 Probabilistic inference to re-identify individuals

I conducted an experiment in which five patients in a proposed release of cancer incidence

information consisting of {diagnosis, date of diagnosis (month and year), ZIP (5 digits)} were accurately

identified using only publicly available information. The method of re-identification concerned

probabilistic inferences drawn from the Social Security Death Index based on population demographics

and the specifics of the diseases. Four of the five cases had a diagnosis of Kaposi’s Sarcoma which when

found in young men is an indicator of AIDS. The fifth case concerned Neuroblastoma in a child and the

re-identification was successful even though there is far less information available about children than

about adults. It is difficult to believe that such seemingly minimal information could have been so easily

re-identified.

1.5 Re-constructing unreleased data

I conducted an experiment in which a birth certificate database is reconstructed from publicly

available information even though the state’s vital records department did not release any of the

information used. A total of 313 explicitly identified birth notices appeared in the Peoria Daily Record

Computational Disclosure Control 01/08/01 8:22 AM

22

for April 1991. Hospital births found in publicly available health data reported 321 births for the same

area during that time period which demonstrates a compliance of newspaper birth notices of 313/321 (or

98%). The combination of {hospital, gender, date of birth, ZIP/place} was unique for 234/313 (or 75%)

of the births. The other 79 cases are described as follows. Twins (5 cases) and notices that could not be

distinguished from one other notice (44 notices) were partitioned into 27 sets of two and accounted for

54 (or 17%) of the babies. In these cases, released information would be specific to one of the two named

individuals. Similarly, there was one set of triplets and 18 other notices that could not be distinguished

from two others; these were partitioned into 7 sets and accounted for 21 (or 7%) of the babies. Lastly,

there were four notices that could not be distinguished on the basis of these attributes; these accounted

for four (or 1%) of the notices. Additional sensitive inferences can be weakly implied from birth notices,

such as the ethnicity of the child based on family name, family income based on residence, the child’s

general health at birth based on the timing of birth notices and the parent’s marital status based on the

absence of a father’s name. Inferences from related hospital information can concern payment means or

birth complications and anomalies, some of which may provide inferences to the mother’s lifestyle or

health. The resulting data can be used as a population register to re-identify individuals who later become

the subjects of other releases of sensitive information.

1.6 Using patterns to re-identify individuals

I conducted a series of experiments that demonstrate how person-specific neuroblastoma

incidence data, believed to be anonymous and being considered for release, could be re-identified using

publicly available information. The proposed release consisted of 319 Illinois residents reported as being

diagnosed with neuroblastoma from January 1986 through April 1998. Given only {date of diagnosis

(month and year), ZIP (5-digit postal code in which each person resided)}, I employed linking and

pattern matching techniques to re-identify these Illinois residents from seemingly innocent information.

What is further surprising is that these experiments are among the most difficult possible because there is

less publicly available information on children, who are the primary subjects, and because neuroblastoma

is not a single, identified diagnosis code in health data. Instead, I showed that a series of diagnoses imply

neuroblastoma. Information used for these experiments included Web pages, email discussion archives,

health care data, Social Security death index, and birth notices. I correctly identified 20 of the 23

sampled (or 87%), uniquely identified 18 of the 23 sampled (or 78%) and incorrectly identified 0 of the

23 sampled.

Computational Disclosure Control 01/08/01 8:22 AM

23

1.7 Summary of problems producing anonymous data

Consider the re-identification experiments just described over the previous paragraphs. They

reveal an array of problems encountered in attempting to produce anonymous information in today’s

technological setting. These problems center on:

(1) knowledge the recipient may hold or bring to bear on the data;

(2) unique and unusual combinations of values appearing within the data;

(3) an inability to prove a given release is anonymous.

Finding operational solutions to these problems is the topic of this work.

1.8 Related work

Prior related work comes from work in the statistics community on statistical databases and in

the computer security community on multi-level databases, access control and authentication and

inference control with respect to multiple queries to a database. While many techniques from these fields

seek to effect disclosure control, they do so in different and more limited contexts than are explored in

this work.

The reason for examining disclosure control in a broader context results from the dramatic

increase in the availability of person-specific information from autonomous data holders. In the case of

statistical databases, current demand centers on person-specific details and not aggregated summaries. In

the case of multi-level databases, solutions can result from having absolute control over the entire

collection and dissemination process. Such conditions are not possible with today’s decentralized

collections where release decisions are autonomously determined.

For the most part, computer security as a field has not addressed issues concerning data privacy

that are separate and distinct from those of hardware security. Clearly, having competent hardware

security can limit unwanted access to the information contained within the system, but having good

security cannot guarantee privacy. As examples, consider the re-identification experiments mentioned

earlier. In those cases, breaches of privacy resulted from data that were given out freely; no security

breaches occurred.

Computational Disclosure Control 01/08/01 8:22 AM

24

1.9 Formal methods

There are numerous disclosure limitation techniques that can be brought to bear, but previously

no formal protection models existed. I developed a formal framework for reasoning about disclosure

control and the ability to infer the identities of entities contained within data. I also defined an

anonymous database system as one that makes individual and entity-specific data available such that

individuals and other entities contained in the released data cannot be reliably identified. I then

introduced formal protection models, named null-map, k-map and wrong-map. Each model provides

protection by ensuring that released information maps to no, k or incorrect entities, respectively.

Anonymous databases differ in many significant ways from statistical databases and from multi-

level databases. Here are a few differences:

(1) all if not most of the data are released rather than a small sample;

(2) the integrity of entity-specific details must be maintained rather than an overall aggregate

statistic; and,

(3) suppressing explicit identifiers, such as name and address, is not sufficient since

combinations of other values, such as ZIP and birth date, can combine uniquely to re-identify

entities.

My formal framework and protection models provide a basis for characterizing and comparing

proposed anonymous database systems. Below are four real-world systems that are proposed to be

anonymous database systems.

1.10 Scrub System

My Scrub System concerns maintaining privacy in textual documents. In field-structured

databases, explicit identifiers, which provide a means to directly communicate with the person who is the

subject of the data, appear within the data, grouped by a field name, such as {name, phone number}.

Locating explicit identifiers in unrestricted text, however, becomes a problem unto itself. In the Scrub

System, I define a new computational approach to locating and replacing personally identifying

information in textual documents that extends beyond straight search-and-replace procedures, which was

the previous norm. The system’s approach is based on a model of how humans de-identify textual

Computational Disclosure Control 01/08/01 8:22 AM

25

documents. The basic idea is to construct a system of detectors that work in parallel, where each detector

specializes in recognizing a particular kind of explicit identifier.

While the Scrub System was proven to be quite effective, accurately locating 98-100% of all

explicit identifiers found in letters to referring physicians, the final analysis reveals that de-identifying

textual documents (i.e., removal of explicit identifiers) is not sufficient to ensure anonymity. Therefore,

Scrub is not an anonymous database system. Nonetheless, de-identifying textual documents remains in

great demand primarily due to archives of email messages, personal web pages and other information

found on the World Wide Web and a lack of understanding of what renders data sufficiently anonymous.

1.11 Datafly II System

My Datafly II System concerns field-structured databases. Both my Datafly and Datafly II

System use computational disclosure techniques to maintain anonymity in entity-specific data by

automatically generalizing, substituting and removing information as appropriate without losing many of

the details found within the data. For the discussion in this chapter, the terms Datafly and Datafly II can

be consider to refer to the same basic system because the differences between them are not reflected in

the issues presented here. Decisions are made at the attribute (field) and tuple (record) level at the time

of database access, so the approach can be used on the fly in role-based security within an institution, and

in batch mode for exporting data from an institution. As I mentioned in the experiments earlier,

organizations often release person-specific data with all explicit identifiers, such as name, address, phone

number, and social security number, removed in the incorrect belief that the identity of the individuals is

protected because the resulting data look anonymous. However, the experiments showed that in most of

these cases, the remaining data can be used to re-identify individuals by linking or matching the data to

other databases or by looking at unique characteristics found in the attributes and tuples of the database

itself. When these less apparent aspects are taken into account, as is done in my Datafly II System, each

released tuple can be made to ambiguously map to many possible people, providing a level of anonymity

that the data provider determines.

I term this model of protection k-map protection. In my Datafly and Datafly II System, the k is

enforced on the data itself, resulting in a special form of k-map protection called k-anonymity. This is

attractive because adherence to k-anonymity can be determined by the data holder’s data alone and does

not require omniscience. Further, in the Datafly System the data holder assigns to each attribute, the

Computational Disclosure Control 01/08/01 8:22 AM

26

amount of tolerance for distortion that is desirable. Conversely, the provider of the data assigns to each

attribute, the amount of protection necessary. In this way, the Datafly II System transforms the disclosure

limitation problem into an optimization problem. As a consequence, the final results are adequately

protected while remaining useful to the recipient. It is shown that Datafly is an anonymous database

system.

1.12 µ-Argus System

The µ-Argus System is a computational disclosure system produced by Statistics Netherlands

that is similar to my Datafly System. Both systems utilize the same disclosure limitation techniques to

enforce k-anonymity and in both systems, the data provider assigns to each attribute, the amount of

protection necessary though the granularity of this specification is far more coarse in µ-Argus. These

similarities are especially surprising given that the systems were developed at roughly the same time and

with no prior knowledge of each other; and, each work stems from a different academic tradition. But the

systems differ in significant ways. In Datafly II each release is guaranteed to adhere to k-anonymity

where such is not necessarily the case in µ-Argus. However, µ-Argus tends to provide less distortion than

Datafly II so more of the specificity in the values themselves remains, making the data often more useful.

It is shown that µ-Argus is not an anonymous database system.

1.13 The k-Similar algorithm

My k-Similar algorithm finds optimal solutions such that data are minimally distorted while still

providing adequate protection. By introducing anonymity and quality metrics, I show to what extent

Datafly II can over distort data, while Scrub and µ-Argus can fail to provide adequate protection in a

given release. In contrast, my k-similar algorithm produces optimal releases that are not overly distorted

nor under-protected. It does so by looking at the computational disclosure control problem as one of data

clustering. In the well-known k-cluster algorithm, for example, data are partitioned into k groups based

on minimizing a distance between tuples. In contrast, the k-similar algorithm divides data into groups

such that the size of each group consists of k or more of the “closest” tuples; in this case, closeness is

based on a minimal distance measure derived from the anonymity and quality metrics. In terms of

computational speed, k-Similar operates in real-time under certain circumstances, but can become

combinatoric in others. It is not nearly as fast as Datafly and µ-Argus. However, the resulting releases

Computational Disclosure Control 01/08/01 8:22 AM

27

from k-Similar are guaranteed to be minimally distorted yet sufficiently protected which is not the case

with the other systems.

1.14 Putting the systems into action

Revisiting the linkage experiments described in the earlier sections, given the computational

solutions described in the later sections, shows that these solutions can effectively thwart the described

re-identification efforts. Using the quality and anonymity metrics related to my formal methods, I

conducted an experiment that demonstrated that public-use medical data available today is typically over-

distorted yet still inadequately protected. This is not surprising given that these releases do not use any of

the disclosure control systems presented here and do not employ any formal protection models. So, the

impact of this work in the future should be significant.

1.15 Medical privacy legislation

While there may be many other possible academic approaches to protecting privacy, most of

them are not practical in today’s social settings. Therefore, it is important for those working in this area

to understand the constraints the social setting places on the disclosure control problem. Consider

medical privacy legislation, policies and best practices.

Policy makers appear to be unaware of the kinds of disclosure control problems examined herein

and the role that technology plays in rendering our past approaches to privacy policies futile. Basically,

no medical privacy legislation proposed by Congress addresses the problems demonstrated in the earlier

sections. That is, if any were to pass, the problems would remain. Major shortcomings center on:

(1) an incorrect belief that de-identifying data renders the result anonymous;

(2) an incorrect belief that data linkage and re-identification can be controlled by encryption

alone;

(3) an incorrect belief that following established computer security practices provides adequate

privacy protection; and,

(4) an inability to construct a policy framework for privacy legislation that does not require

enumerating all sources, recipients and uses of data a priori.

Computational Disclosure Control 01/08/01 8:22 AM

28

New technology offers better choices than the all-or-nothing positions voiced in the medical

privacy debates, but technical solutions alone remain inadequate. Technology must work with policy for

the most effective solutions.

1.16 Challenge to society

While medical data has been used to motivate the work described here, the problem is certainly

not limited to medical data. Given the explosion in the collection and sharing of person-specific

information described earlier, along with the growing ability to automatically process video and speech

surveillance data and the ease of collecting information over the World Wide Web, populations are

coming under increasingly intense data surveillance. For the United States, this is especially alarming

because it undermines the philosophical cornerstones of the American way of life. It is not clear what

terms like “freedom” and “liberty” mean in the absence of personal privacy. An inability to release

entity-specific information that is anonymous is becoming one of the biggest and most significant

challenges facing today’s society.

For example, the Freedom of Information Act has historically provided a mechanism to help

ensure government accountability, but when many such releases are not effectively anonymous, they can

easily become weapons to reveal sensitive information about individuals or businesses. Conversely, this

becomes grounds on which the government refuses to release many of the kinds of information currently

reported. Similarly, the American legal system requires law enforcement to acquire search warrants

based on a review of evidence by a judge. However, by using the linkage techniques described earlier,

law enforcement can gain access to sensitive information about members of the population without the

protection of a search warrant or even a reported case. These are just two examples that show how an

inability to provide entity-specific data that are not anonymous tears at the underpinnings of American

society and begs for society to re-examine itself in the wake of these problems.

1.17 Summary

On the one hand, having so much information available about entities provides many new and

interesting ways to conduct research, but on the other hand, having so much information available about

entities makes it increasingly difficult to provide personal privacy. So, this book focuses on several of my

contributions including a formal framework for reasoning about these kinds of problems, 3

computational solutions to tackle this problem and a set of anonymity and quality metrics to help

Computational Disclosure Control 01/08/01 8:22 AM

29

characterize solutions. Despite these contributions, care must be taken to use policy to tie the technology

that brought forth the problem with the technology that can offer solutions.

Computational Disclosure Control 01/08/01 8:22 AM

30

Chapter 2 Introduction

Society is experiencing exponential growth in the number and variety of data collections as

computer technology, network connectivity and disk storage space become increasingly affordable. Data

holders, operating autonomously and with limited knowledge, are left with the difficulty of releasing

information that does not compromise privacy, confidentiality or national interests. In many cases the

survival of the database itself depends on the data holder’s ability to produce anonymous data because

not releasing such information at all may diminish the need for the data, while on the other hand, failing

to provide proper protection within a release may create circumstances that harm the public or others.

Ironically, the broad availability of public and semi-public information makes it increasingly difficult to

provide data that are effectively anonymous.

Let me begin by introducing my terminology and explaining my use of medical privacy as a

constant example. In general, I will discuss collections of information whose granularity of details are

specific to an individual, a business, an organization or other entities and I term such collections, entity-

specific data. If the entities represented in the data are individuals, then I may refer to the collection as

person-specific data; however, even in these cases, the concepts being presented typically apply to

broader collections of entity-specific data as well. By primarily using person-specific data and focusing

on issues surrounding medical privacy, the motivations and risks often become transparent even though

the underlying issues apply to many other kinds of data such as financial, statistical and national security

information.

2.1 Tensions in releasing data

In the next two subsections, I look at different ways in which society has made decisions about sharing

data, and I provide a way to reason about these findings. In the end, this examination motivates my use of

medical data as an example throughout this work, even though the issues presented are not limited to

medical data.

Computational Disclosure Control 01/08/01 8:22 AM

31

Quality versus anonymity

There is a natural tension between the quality of data and the techniques that provide anonymity

protection. Consider a continuum that characterizes possible data releases. At one end of the continuum

are person-specific data that are fully identified. At the other end are anonymous data that are derived

from the original person-specific data, but in which no person can be identified. Between these two

endpoints is a finite partial ordering of data releases, where each release is derived from the original data

but for which privacy protection is less than fully anonymous. See Figure 1.

The first realization is that any attempt to provide some anonymity protection, no matter how

minimal, involves modifying the data and thereby distorting its contents. So, as shown in Figure 1,

movement along the continuum from the fully identified data towards the anonymous data adds more

privacy protection, but renders the resulting data less useful. That is, there exists some tasks for which

the original data could be used, but those tasks are not possible with the released data because the data

have been distorted.

So, the original fully identified data and the derived anonymous data are diametrically opposed.

The entire continuum describes the domain of possible releases. Framed in this way, a goal of this work

is to produce an optimal release of data so that for a given task, the data remain practically useful yet

rendered minimally invasive to privacy.

identifiable anonymous

more privacy more useful

Figure 1 Optimal releases of data

Tug-of-war between data holders and recipients

The second realization that emerges from Figure 1 is that the usefulness of data is determined by

the task to which the recipient puts the data. That is, given a particular task, there exists a point on the

continuum in Figure 1 that is as close to anonymous as possible, yet the data remain useful for the task. A

release of data associated with that point on the continuum is considered optimal. In the next paragraphs,

I provide a skeletal depiction of current practices that determine who gets access to what data. I show

that the result can be characterized as a tug-of-war between data holders and data recipients.

Computational Disclosure Control 01/08/01 8:22 AM

32

In general, the practices of data holders and related policies do not examine tasks in a vacuum.

Instead, the combination of task and recipient together are weighed against privacy concerns. This can be

modeled as a tug-of-war between the data holder and societal expectations for privacy on one side, and

the recipient and the recipient’s use for the data on the other. In some cases such as public health

legislation, the recipient’s need for the data may overshadow privacy protections, allowing the recipient

(a public health agent) to get the original, fully identified health data. See Figure 2 in which a tug-of-war

is modeled. The privacy constraints on the data holder versus the recipient’s demand for the data are

graphically depicted by the sizes of the images shown. In the case illustrated, the recipient receives the

original, fully identified data.

Accuracy, qualityDistortion, anonymity

Holder

Recipient

A nn 10/2/61 02139 cardiac
A be 7/14/61 02139 canc er
A l 3 /8/61 02138 liver

Figure 2. Recipient’s needs overpower privacy concerns

Figure 3 demonstrates the opposite extreme outcome to that of Figure 2. In Figure 3, the data holder and

the need to protect the confidentiality or privacy of the information overshadows the recipient and the

recipient’s use for the data and so the data is completely suppressed and not released at all. Data collected

and associated with national security concerns provides an example. The recipient may be a news-

reporting agent. Over time the data may eventually be declassified and a release that is deemed

sufficiently anonymous provided to the press, but the original result is as shown in Figure 3, in which no

data is released at all.

Computational Disclosure Control 01/08/01 8:22 AM

33

Recipient

Holder

A ccuracy, qualityD istortion, anonym ity

.

Figure 3 Data holder and privacy concerns overpower outside uses of the data

Figure 2 and Figure 3 depict situations in which society has made explicit decisions based on the

needs of society as a whole. But secondary uses of medical data, for example, by marketing firms,

pharmaceutical companies, epidemiological researchers and others do not in general lend themselves to

such an explicit itemization. Figure 4 demonstrates situations in which the needs for privacy are weighed

equally against the demand for the data itself. In such situations, a balance should be found in which the

data are rendered sufficiently anonymous yet remain practically useful. As an example, this situation

often occurs with requests by researchers for patient-specific medical records in which researchers seek

to undertake clinical outcomes, or administrative research that could possibly provide benefits to society.

At present, decisions are primarily based on the recipient receiving the original patient data or no data at

all. Attempts to provide something in-between typically results in data with poor anonymity protection or

data that is overly distorted. This work seeks to find ways for the recipient to get data that has adequate

privacy protection, therefore striking an optimal balance between privacy protection and the data’s

fitness for a particular task.

Holder

A* 1961 0213* cardiac
A* 1961 0213* cancer
A* 1961 0213* liver

Recipient

Accuracy, qualityDistortion, anonymity

Figure 4. An optimal balance is needed between privacy concerns and uses of the data

Computational Disclosure Control 01/08/01 8:22 AM

34

At present, many data holders often make decisions arbitrarily or by ad hoc means. Figure 5

portrays the situation some state and federal agencies find themselves when they seek to produce public-

use files for general use. Over the past few years, there has been a tremendous effort to make more data

that is collected by government agencies available over the World Wide Web. In these situations,

protecting the reputation of the agency, and the guarantees for privacy protection for which some

agencies are legally bound, outweighs the demands of the recipient. In many of these cases, a strongly

distorted version of the data is often released; the released data are typically produced with little or no

consideration to the tasks required. Conversely, many other state and federal agencies release poorly

protected data. In these cases, the individuals contained in the data can be easily re-identified. Examples

of both of these kinds of released data are found in publicly and semi-publicly available hospital

discharge data.

Neither way of releasing data yields optimal results. When strongly distorted data are released,

many researchers cannot use the data, or have to seek special permission to get far more sensitive data

than what are needed. This unnecessarily increases the volume of sensitive data available outside the

agency. On the other hand, data that do not provide adequate anonymity may harm individuals.

Holder

Recipient

Jcd cardiac
Jwq cancer
Jxy liver

Accuracy, qualityDistortion, anonymity

Figure 5. Data holder and privacy concerns limit uses of the data

In examining the different struggles between privacy and the sharing of person-specific data, I

make the following claims:

Informal claim 1. Many current policies and practices support crude decisions. A recipient today

too often receives the sensitive data itself, no data at all, overly distorted data that is of little or

no use, or poorly protected data in which individuals can be re-identified.

Computational Disclosure Control 01/08/01 8:22 AM

35

Informal claim 2. Ultimately, the data holder must be held responsible for enforcing privacy

protection because the data holder typically reaps a benefit and controls both data collection and

dissemination.

While the claims above are independent of the content of data, the study of secondary uses of

medical data in particular provides a natural incentive to find optimal solutions between researchers and

data holders. After all, there are no legislative guidelines to empower one party so that it can overwhelm

the other as was shown in Figure 2 and Figure 3. Also, state and federal agencies tend to be small in

number and highly visible in comparison to the dramatic number of holders of medical data. Because

there are so many holders of health data, it is hard to scrutinize their actions, and the resulting damage to

individuals can be devastating yet hard to prove. And there exists strong financial incentives not to

provide adequate protection in health data. On the other hand, research from data may lower health costs

or save lives. For these reasons, focusing on the collection and sharing of medical data throughout this

work provides motivation for finding optimal releases of data and for integrating technology with policy

for maximal benefit. Even though I focus on anonymity protection in medical data, the issues presented

are just as pertinent to the confidentiality of businesses, governments and other entities in financial,

marketing and other forms of data.

2.2 Introduction to privacy in medical data

I begin with some informal definitions. Identifiable personal health information refers to any

information concerning a person’s health or treatment in which the identity of the person can be

determined. The expressions personal health information and patient-specific health data refer to health

information that may or may not identify individuals. As I will show, in many releases of personal health

information, individuals can be recognized. Anonymous personal health information, by contrast,

contains details about a person’s medical condition or treatment but the identity of the person cannot be

determined.

In general usage, confidentiality of personal information protects the interests of the organization

while privacy protects the autonomy of the individual; but, in medical usage, both terms often mean

privacy.

Computational Disclosure Control 01/08/01 8:22 AM

36

2.2.1 Privacy protection and the Hippocratic oath

The historical origin and ethical basis of medical confidentiality begin with the Hippocratic

Oath, which was written between the sixth century BC and the first century AD:

“Whatsoever I shall see or hear in the course of my dealings with men, if it be what should not be

published abroad, I will never divulge, holding such things to be holy secrets.”

Various professional associations world-wide reiterate this oath, and by pledging this oath,

clinicians – licensed professionals such as doctors, nurses, pharmacists, radiologists, and dentists who

access in the line of duty identifiable personal health information – assume the responsibility of securing

this information. The resulting trust is the cornerstone of the doctor-patient relationship, allowing

patients to communicate with their physicians and to share information regarding their health status.

However, the doctor-patient privilege offers very limited protection to patients regarding the

confidentiality of their health information. Legal protection is very narrow, only applying in some cases

when a physician is testifying in court or in related proceedings.

2.2.2 Role of information technology

The role of information technology is critical to confidentiality. On the one hand, information

technology offers comprehensive, portable electronic records that can be easily accessed on behalf of a

given patient no matter where or when a patient may need medical care [1]. That very portability, on the

other hand, makes it much easier to transmit quickly and cheaply records containing identifiable personal

health information widely and in bulk, for a variety of uses within and among health care institutions and

other organizations and agencies. The Office of Technology Assessment (OTA) found that current laws

generally do not provide consistent or comprehensive protection of personal health information [2].

Focusing on the impact of computer technology, OTA concluded that computerization reduces some

concerns about privacy of personal health information while increasing others.

Computational Disclosure Control 01/08/01 8:22 AM

37

2.2.3 Past policy efforts and computational disclosure control

Previous policy efforts to protect the privacy of personal health information were limited to

decisions about who gets access to which fields of information. I examine here four new computer

programs that attempt to disclose information in such a way that individuals contained in the released

data cannot be identified. These programs provide a spectrum of policy options. Decisions are no longer

limited to who gets which fields of information, but to how much generality or possible anonymity will

exist in the released information.

2.2.4 Public concern over privacy

The public’s concern about the confidentiality of personal health information is reflected in a

1993 poll conducted by Harris and Associates for Equifax. The results of the survey found that 96

percent of the respondents believed federal legislation should designate all personal health information as

sensitive, and should impose severe penalties for unauthorized disclosure. Eighty percent of respondents

were worried about medical record privacy, and 25 percent had personal experience of abuse related to

personal health information [3].

A 1994 Harris-Equifax consumer privacy survey focused on how the American public felt about

having their medical records used for medical research and how safeguards would affect their opinions

about such systems and uses. Among a list of thirteen groups and organizations, doctors and nurses

ranked first in terms of the percentage of Americans who were “very” confident (43 percent) that this

group properly handled personal and confidential information. After hearing a description about how

medical records are used by researchers to study the causes of disease, 41 percent of Americans surveyed

said they would find it at least somewhat acceptable if their records were used for such research without

consent. Twenty-eight percent of those who initially opposed having their records used would change

their position if a federal law made it illegal for any medical researcher to disclose the identity or any

identifiable details of a person whose health records had been used. This would increase acceptance of

this practice to over half those surveyed (58 percent) [4]. By extension, this survey implies strong public

support for releases of personal health information in which persons contained in the information could

not be identified.

Computational Disclosure Control 01/08/01 8:22 AM

38

2.2.5 Sharing medical data offers benefits to society

Analysis of the detailed information contained within electronic medical records promises many

social advantages, including improvements in medical care, reduced institutional costs, the development

of predictive and diagnostic support systems [5], and the integration of applicable data from multiple

sources into a unified display for clinicians [6]. These benefits, however, require sharing the contents of

medical records with secondary viewers such as researchers, economists, statisticians, administrators,

consultants, and computer scientists, to name a few. The public would probably agree that these

secondary parties should know some of the information in the record, but such disclosure should not risk

identifying patients.

2.2.6 Lots of medical data available from many sources

Beverly Woodward makes a compelling argument that, to the public, patient confidentiality

implies that only people directly involved in one’s health care will have access to one’s medical records,

and that these health professionals will be bound by strict ethical and legal standards that prohibit further

disclosure [7]. The public is not likely to accept the notion that records are “confidential” if large

numbers of people have access to their contents.

In 1996, the National Association of Health Data Organizations (NAHDO) reported that 37

states had legislative mandates to electronically gather copies of personal health information from

hospitals [8] for cost-analysis purposes. Community pharmacy chains, such as Revco, maintain

electronic records for over 60 percent of the 2.4 billion outpatient prescriptions dispensed annually.

Insurance claims typically include diagnosis, procedure and medication codes along with the name,

address, birth date, and SSN of each patient. Pharmaceutical companies run longitudinal studies on

identified patients and providers. As more health maintenance organizations and hospitals merge, the

number of people with authorized access to identifiable personal health information will increase

dramatically because, as the National Research Council (NRC) recently warned, many of these systems

allow full access to all records by any authorized person [9]. For example, assume a billing clerk at

hospital X can view all information in all medical records within the institution. When hospital X

merges with hospitals Y and Z, that same clerk may then be able to view all records at all three hospitals,

even though the clerk may not need to know information about the patients at the other institutions.

Computational Disclosure Control 01/08/01 8:22 AM

39

2.2.7 Problems have been found

The NRC report also warns against inconsistent practices concerning releases of personal health

information. If I approach a hospital as a researcher, I must petition the hospital’s institutional review

board (IRB) and state my intentions and methodologies; then the IRB decides whether I get data and in

what form. But, if I approach the same hospital as an administrative consultant, data are given to me

without IRB review. The decision is made and acted on locally.

Recent presentations by the secretary of the Department of Health and Human Services

emphasize the threats to privacy stemming from misuse of personal health information [10]. There have

been abuses; here are just a few:

• A banker reportedly cross-referenced a list of patients with cancer against a list of people

who had outstanding loans at his bank. Where he found matches, he called in the

outstanding loans [11].

• A survey of 87 Fortune 500 companies with a total of 3.2 million employees found that 35

percent of respondents used medical records to make decisions about employees [12].

• Cases have been reported of snooping in large hospital computer networks by hospital

employees [13], even though the use of a simple audit trail – a list of each person who

looked up a patient’s record – could curtail such behavior [14].

• Consumer Reports found that 40 percent of insurers disclose personal health information to

lenders, employers, or marketers without customer permission [15].

Abuses like the preceding underscore the need to develop safeguards.

2.3 All the data on all the people

Before I look at inference problems inherent in producing anonymous information, I first want to

consider why concern over the problem appears to be escalating. There is currently unprecedented

growth in the number and variety of person-specific data collections and in the sharing of this

information. The impetus for this explosion has been the proliferation of inexpensive fast computers

with large storage capacities operating in ubiquitous network environments.

Computational Disclosure Control 01/08/01 8:22 AM

40

In an attempt to characterize the growth in person-specific data, I introduce a new metric termed

global disk storage per person or GDSP, which is measured in megabytes per person. GDSP is the total

rigid disk drive space in megabytes of new units sold in a year divided by the world population in that

year. Figure 6 uses GDSP figures to compute the amount of a person’s time that can be documented on a

page of text using a regularly spaced fixed font.

 1983 1996 2000
 Storage space (TB) 90 160,623 2,829,288
 Population (million) 4,500 5,767 6,000
 GDSP (MB/person) 0.02 28 472
 Time per page 2 months 1 hour 3.5 minutes

GDSP over Time

0

50

100

150

200

250

300

350

400

450

500

1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003
Year

G
D

S
P

 (
M

B
/p

er
so

n
)

Figure 6 Global disk storage per person

In 1983 a half a page could be used to document each month of a person’s life in that year.

These recordings included itemized long distance phone calls, credit card purchases, volume of

electricity used, and so forth. In 1996, a page could be used to document each hour of a person’s life.

Recordings expanded in both size and number. Examples of new collections included items purchased at

the grocery store, web sites visited, and the date and time in some locations a car proceeded through a

tollbooth. By the year 2000, with 20 gigabyte drives leading the industry, it is projected that a page could

be used to document every 3.5 minutes of a person’s life. Most likely collections will expand to include

biometric information such as, heart rate, pulse and temperature. One of the leading proponents of the

information explosion is the health care industry, acting in the belief that having such information will

help reduce cost and improve care.

Computational Disclosure Control 01/08/01 8:22 AM

41

Examples 1983 1996
Each birth 280 1864
Each hospital visit 0 663
Each grocery visit 32 1272

Figure 7 Estimated growth in data collections (per encounter) in Illinois (in bytes)

Figure 7 demonstrates how some data collections expanded from 1983 to 1996 for some person-

specific encounters in the State of Illinois. The values are the number of bytes (letters, digits and other

printable characters) that were stored for each person per encounter in the collection shown.

These examples exemplify recent behavioral tendencies recently found in the collection practices

of person-specific data. These informally observed “trends” are enumerated below.

Behavior 1. Given an existing person-specific data collection, expand the number of fields being

collected. I casually refer to this as the “collect more” trend.

Behavior 2. Replace an existing aggregate data collection with a person-specific one. I casually

refer to this as the “collect specifically” trend.

Behavior 3. Given a question or problem to solve or merely provided the opportunity, gather

information by starting a new person-specific data collection related to the question, problem or

opportunity. I causally refer to this as the “collect it if you can” trend.

No matter how you look at it, all three tendencies result in more and more information being

collected on individuals. Not only has there been a dramatic increase in the collection of person-specific

data, but also in the sharing of collected data. I define four classes of access restrictions to person-

specific data based on current practices. These are described in Figure 8.

Computational Disclosure Control 01/08/01 8:22 AM

42

Insiders only (Pr) “private”.
Data collections that are available to authorized “insiders only” are considered to be privately held
information because the only people who gain access are almost exclusively those who directly
collected the information.

Limited Access (SPr) “ semi-private”.
Data collections denoted as having “limited access” are those where access extends beyond those who
originally collected the information, but only an identifiable small number of people are eligible for
access in comparison to a substantially larger number of people who are not eligible for access. This
access policy typically includes an extensive application and review process.

Deniable Access (SPu) “ semi-public”.
Data collections having “deniable access” are those where an application and review process may
exist but only an identifiable small number of people are denied access in comparison to a
substantially larger number of people who are eligible for access.

No restrictions (Pu) “ public” .
Data collections having “no restrictions” are those where an application process may or may not exist,
but the data collections are generally made available to all who request them.

Figure 8 Levels of access restrictions by data holders to person-specific data

There is no doubt that society is moving towards an environment in which society could have

almost all the data on all the people. As a result, data holders are increasingly finding it difficult to

produce anonymous and declassified information in today’s globally networked society. Most data

holders do not even realize the jeopardy at which they place financial, medical, or national security

information when they erroneously rely on security practices of the past. Technology has eroded

previous protections leaving the information vulnerable. In the past, a person seeking to reconstruct

private information was limited to visiting disparate file rooms and engaging in labor-intensive review of

printed material in geographically distributed locations. Today, one can access voluminous worldwide

public information using a standard handheld computer and ubiquitous network resources. Thus from

seemingly anonymous data, and available public and semi-public information, one can often draw

damaging inferences about sensitive information. However, one cannot seriously propose that all

information with any links to sensitive information be suppressed. Society has developed an insatiable

appetite for all kinds of detailed information for many worthy purposes, and modern systems tend to

distribute information widely.

Primarily society is unaware of the loss of privacy and its resulting ramifications that stem from

having so much person-specific information available. When this information is linked together it can

Computational Disclosure Control 01/08/01 8:22 AM

43

provide an image of a person that can be as identifying as a fingerprint even if all explicit identifiers like

name, address, and phone number are removed. Clearly a loss of dignity, financial income and credit

worthiness can result when medical information is widely and publicly distributed. A goal of the work

presented in this book is to control the release of data such that inferences about the identities of people

and organizations and other sensitive information contained in the released data cannot be reliably made.

In this way, information that is practically useful can be shared with guarantees that it is sufficiently

anonymous and declassified. I call this effort the study of computational disclosure control.

In the next section, I introduce the basic problems of producing anonymous data.

2.4 Problems producing anonymous data

I now present examples that demonstrate why the problem of producing anonymous data is so

difficult. Consider the informal definition of anonymous data below. While it is easy to understand what

anonymous data mean, I will show by examples that it is increasingly difficult to produce data that are

anonymous.

Definition (informal). anonymous data

The term anonymous data implies that the data cannot be manipulated or linked to identify an

individual.

A common incorrect belief is that removing all explicit identifiers from the data will render it

anonymous; see the informal definition of de-identified data below. Many policies, regulations and

legislation in the United States equate de-identified data and anonymous data.

Definition (informal). de-identified data

De-identified data result when all explicit identifiers such as name, address, and phone number

are removed, generalized, or replaced with a made up alternative.

Data holders often collect person-specific data and then release derivatives of collected data on a

public or semi-public basis after removing all explicit identifiers, such as name, address and phone

Computational Disclosure Control 01/08/01 8:22 AM

44

number. Evidence is provided in this chapter that this process is not sufficient to render data anonymous

because combinations of attributes often combine uniquely to re-identify individuals.

2.4.1 A single attribute

The frequency with which a single characteristic occurs in a population can help identify

individuals based on unusual or outlying information. Figure 9 contains a frequency distribution of birth

years found in the list of registered voters for Cambridge, Massachusetts as of February 1997 [16]. It is

not surprising to see fewer people present with earlier birth years. Clearly, a person born in 1900 in

Cambridge is unusual and by implication less anonymous in data.

0

500

1000

1500

2000

2500

3000

3500

N
u

m
b

er
 o

f
P

eo
p

le

1900 1908 1916 1924 1932 1940 1948 1956 1964 1972 1980

Birth Year

Figure 9 Frequency of birth years in Cambridge Voter List

2.4.2 More than one attribute

What may be more surprising is that combinations of characteristics can combine to occur even

less frequently than the characteristics appear alone.

Computational Disclosure Control 01/08/01 8:22 AM

45

ZIP Birth Gender Race
60602 7/15/54 m Caucasian
60140 2/18/49 f Black
62052 3/12/50 f Asian

Figure 10 Data that look anonymous

Consider Figure 10. If the three records shown were part of a large and diverse database of

information about Illinois residents, then it may appear reasonable to assume that these three records

would be anonymous. However, the 1990 federal census [17] reports that the ZIP (postal code) 60602

consisted primarily of a retirement community in the Near West Side of Chicago and therefore, there

were very few people (less than 12) of an age under 65 living there. The ZIP code 60140 is the postal

code for Hampshire, Illinois in Dekalb county and reportedly there were only two black women who

resided in that town. Likewise, 62052 had only four Asian families and the census further revealed that

each of these households were headed by Filipino women and all their children were under 18 years of

age. In each of these cases, the uniqueness of the combinations of characteristics found could help re-

identify these individuals.

As another example, Figure 11 contains de-identified data. Each row contains information on a

distinct person, so information about 12 people is reported. The table contains the following fields of

information {Race/Ethnicity, Date of Birth, Gender, ZIP, Medical Problem}.

Computational Disclosure Control 01/08/01 8:22 AM

46

Race Birth Gender ZIP Problem
Black 09/20/65 m 02141 short of breath
Black 02/14/65 m 02141 chest pain
Black 10/23/65 f 02138 hypertension
Black 08/24/65 f 02138 hypertension
Black 11/07/64 f 02138 obesity
Black 12/01/64 f 02138 chest pain
White 10/23/64 m 02138 chest pain
White 03/15/65 f 02139 hypertension
White 08/13/64 m 02139 obesity
White 05/05/64 m 02139 short of breath
White 02/13/67 m 02138 chest pain
White 03/21/67 m 02138 chest pain

Figure 11 De-identified data

In Figure 11, there is information about an equal number of African Americans (listed as Black)

as there are Caucasian Americans (listed as White) and an equal number of men (listed as m) as there are

women (listed as f), but in combination, there appears only one Caucasian female. No Asian Americans

are listed in Figure 11. These distributions are shown in Figure 12.

Computational Disclosure Control 01/08/01 8:22 AM

47

0

1

2

3

4

5

6

Male Female

0

1

2

3

4

5

6

Black White Asian

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BlackMale BlackFemale WhiteMale WhiteFemale AsianMale AsianFemale

Figure 12 Distributions of gender and race in Figure 11

2.4.3 Learned from the examples

These examples demonstrate that in general, the frequency distributions of combinations of

characteristics have to be examined in combination with respect to the entire population in order to

determine unusual values and cannot be generally predicted from the distributions of the characteristics

individually. Of course, obvious predictions can be made from extreme distributions --such as values that

do not appear in the data will not appear in combination either. As an example, there were no Asians

listed in Figure 11 and so, there were no Asian females or Asian males listed either.

Computational Disclosure Control 01/08/01 8:22 AM

48

2.4.4 Real-world examples

 Diagnosis Diagnosis date ZIP
 … … …
 … … …
 … … …
 … … …
 … … …

Figure 13 Cancer registry that looks anonymous

Recently, a state Department of Public Health received a Freedom of Information request from a

newspaper that was researching occurrences of a rare cancer in a small region of the state. Although the

paper only wanted diagnosis, date of diagnosis (month, day and year) and ZIP code (5 digits) for each

patient in question, the state refused claiming that sensitive information might be gleamed from these

data. In an attempt to discover how anonymous such information in question could be, I conducted an

experiment. Within a few hours the name, and in some cases the Social Security number of five out of

five patients submitted were accurately identified using only publicly available information. Further,

four of the five cases had a diagnosis of Kaposi’s Sarcoma which when found in young men is an

indicator of AIDS and revealing such may have been prohibited by state law. Figure 13 shows an

example of this data schema. A more extensive re-identification experiment, using similar data and

achieving similar results was performed on cancer data with respect to children. It is difficult to believe

that such seemingly innocuous information can be so easily re-identified.

• Patient ZIP Code
• Patient Birth Date
• Patient Gender
• Patient Racial Background
• Patient Number
• Visit Date
• Principal Diagnosis Code (ICD9)
• Procedure Codes (up to 14)
• Physician ID#
• Physician ZIP code
• Total Charges

Figure 14 Attributes often collected statewide

I will now demonstrate how linking can be used to perform such re-identifications. The National

Association of Health Data Organizations (NAHDO) reported that 37 states have legislative mandates to

collect hospital level data and that 17 states have started collecting ambulatory care data from hospitals,

Computational Disclosure Control 01/08/01 8:22 AM

49

physicians offices, clinics, and so forth [18]. Figure 14 contains a subset of the fields of information, or

attributes, that NAHDO recommends these states accumulate. The few attributes listed in Figure 14

include the patient’s ZIP code, birth date, gender, and ethnicity. Clearly, the data are de-identified. The

patient number in earlier versions was often the patient's Social Security number and in subsequent

versions was a scrambled Social Security number [19]. By scrambled I mean that the digits that compose

the Social Security number are moved around into different locations. If a patient’s record is identified

and their Social Security number known, then the scrambling algorithm can be determined and used to

identify the proper Social Security numbers for the entire data set.

Ethnicity

Visit date

Diagnosis

Procedure

Medication

Total charge

ZIP

Birth
date

Sex

Name

Address

Date
registered

Party
affiliation

Date last
voted

Medical Data Voter List

Figure 15 Linking to re-identify data

For twenty dollars I purchased the voter registration list for Cambridge Massachusetts and

received the information on two diskettes [20] in an attempt to complete the re-identification. Figure 15

shows that these data included the name, address, ZIP code, birth date, and gender of each voter. This

information can be linked using ZIP code, birth date and gender to the medical information described in

Figure 14, thereby linking diagnosis, procedures, and medications to particularly named individuals. The

question that remains of course is how unique would such linking be.

The 1997 voting list for Cambridge Massachusetts contained demographics on 54,805 voters. Of

these, birth date, which is the month, day, and year of birth, alone could uniquely identify the name and

address of 12% of the voters. One could identify 29% of the list by just birth date and gender; 69% with

only a birth date and a five-digit zip code; and 97% when the full postal code and birth date were used.

Computational Disclosure Control 01/08/01 8:22 AM

50

Notice that these are only one and two way combinations and do not include three way combinations or

beyond. These values are summarized in Figure 16.

 Attribute Combinations Uniqueness

 Birth date alone (mm/dd/yr) 12%
 Birth date and gender 29%
 Birth date and 5-digit ZIP 69%
 Birth date and full postal code 97%

Figure 16 Value uniqueness in voter list

In general I can say that the greater the number and detail of attributes reported about an entity,

the more likely that those attributes combine uniquely to identify the entity. For example, in the voter

list, there were 2 possible values for gender and 5 possible five-digit ZIP codes; birth dates were within a

range of 365 days for 100 years. This gives 365,000 unique values, but there were only 54,805 voters.

I conducted experiments using 1990 U.S. Census summary data to determine how many

individuals within geographically situated populations had combinations of demographic values that

occurred infrequently. It was found that 87% (216 million of 248 million) of the population in the United

States had reported characteristics that likely made them unique based only on {5-digit ZIP, gender, date

of birth}. About half of the U.S. population (132 million of 248 million or 53%) are likely to be uniquely

identified by only {place, gender, date of birth}, where place is basically the city, town, or municipality

in which the person resides. And even at the county level, {county, gender, date of birth} are likely to

uniquely identify 18% of the U.S. population. In general, few characteristics are needed to uniquely

identify a person.

In Massachusetts, the Group Insurance Commission (GIC) is responsible for purchasing health

insurance for state employees. GIC collected de-identified patient-specific data with nearly one hundred

fields of information per encounter along the lines of the fields discussed in the NAHDO list for

approximately 135,000 state employees and their families. Because the data were believed to be

anonymous, GIC gave a copy of the data to researchers and sold a copy to industry [21]. William Weld

was governor of Massachusetts at that time and his medical records were in that data. Governor Weld

lives in Cambridge Massachusetts. According to the Cambridge Voter list, six people had his particular

birth date; only three of them were men; and, he was the only one in his five-digit zip code.

Computational Disclosure Control 01/08/01 8:22 AM

51

Clearly the risks of re-identifying data depend both on the content of released data and on other

related information. Most municipalities and states sell population registers such as voter lists, local

census data, birth records and motor vehicle information. There are other sources of population registers

such as trade and professional association lists. Such information can often be uniquely linked to de-

identified data to provide names, addresses, and other personal information.

These real-world examples demonstrate two major difficulties in providing anonymous data: (1)

knowledge a viewer of the data may hold or bring to bear on the data is usually not known beforehand by

the data holder at the time of release; and, (2) unique and unusual values and combinations of values

appearing within the data themselves often makes identification of related entities easier. The examples

also underscore the need to develop solutions that limit the ability to link external information to data

and therefore control the inferences that can be drawn.

The outline for the remainder of this work is as follows. In the next chapter, chapter 3, I discuss

related work. I then survey disclosure control techniques and the nature of disclosure control in chapter

4. A formal presentation with accompanying definitions of protection models is also presented in chapter

4. Finally, four systems are presented and compared in chapter 5.

Computational Disclosure Control 01/08/01 8:22 AM

52

Chapter 3 Background

The problem of controlling inferences that can be drawn from released data is not new. There are

existing works in the statistics community on statistical databases and in the computer security

community on multi-level databases to consider. However, none of these works provide solutions to the

broader problems experienced in today’s setting that are the topic of this work. Before examining these

traditions, I establish a common vocabulary by adopting the following definitions.

Unless otherwise stated, the term data refers to entity-specific information that is conceptually

organized as a table of rows (or records) and columns (or fields). Each row is termed a tuple. A tuple

contains a relationship among the records or set of values associated with an entity. Tuples within a table

are not necessarily unique. Each column is called an attribute and denotes a field or semantic category of

information that is a set of possible values; therefore, an attribute is also a domain. Attributes within a

table are unique. So by observing a table, each row is an ordered n-tuple of values <d1, d2, …, dn> such

that each value dj is in the domain of the j-th column, for j=1, 2, …, n where n is the number of columns.

In mathematical set theory, a relation corresponds with this tabular presentation, the only difference is

the absence of column names. Ullman provides a detailed discussion of relational database concepts [22].

Throughout the remainder of this work each tuple is assumed to be specific to one entity and no

two tuples pertain to the same entity. This assumption simplifies discussion without loss of applicability.

To draw an inference is to come to believe a new fact on the basis of other information. A

disclosure means that explicit or inferable information about an entity was released that was not

intended. This definition may not be consistent with colloquial use but is used in this work consistent

with its meaning in statistical disclosure control. So, disclosure control attempts to identify and limit

disclosures in released data. Typically the goal of disclosure control with respect to person-specific data

is to ensure that released data are anonymous.

3.1 Statistical databases

Federal and state statistics offices around the world have traditionally been entrusted with the

release of statistical information about all aspects of the populace [23]. The techniques, practices and

Computational Disclosure Control 01/08/01 8:22 AM

53

theories from this community however, have historically had three tremendous advantages. First, most

statistics offices held centralized, sole-source exhaustive collections of information and therefore could

often determine the sensitivity of many values using their data alone. Second, statistics offices primarily

produced summary data, which by the nature of aggregation could often hide entity-specific information

though care still had to be taken to protect against inferences. Finally, statistics offices previously

released information in an environment whose computational power and access to other data was

extremely limited. These advantages have been eroded in today’s environment. Today’s producers of

useful publicly available data must contend with autonomous releases of entity-specific information by

other data holders and with recipients who are technologically empowered.

Like other data holders, statistics offices are also facing tremendous demand for entity-specific

data for applications such as data mining, cost analysis, fraud detection and retrospective research. But

many of the established statistical database techniques, which involve various ways of adding noise [24]

to the data while still maintaining some statistical invariant [25, 26], often destroy the integrity of tuples

and so, for many new uses of data, these established techniques are not appropriate. I will further discuss

disclosure limitation techniques commonly employed to protect the confidentiality of statistical

databases in chapter 4; Willenborg and De Waal [27] provide more extensive coverage. However, I will

mention Markov perturbation now as an example of a technique used in statistical disclosure control

[28].

Given local census data that includes income, number of children and age, values can be slightly

perturbed so overall statistics remain the same, but specific values are no longer available, thereby

making it harder to link the information to other sources with confidence. Examples of such actions

include: (1) decrementing the value associated with the child attribute in one tuple and then incrementing

the value associated with a child attribute in another; and, (2) reducing the value associated with a salary

attribute by $10,000 in one tuple and then adding $5000 to the values of two others. Unfortunately, many

new applications that learn from data and detect correlation rely on the integrity of the tuple. Also many

statistical disclosure limitation techniques have severely limited applicability because many new data

collections are characterized as having primarily categorical attributes and not continuous ones. In a

medical database, for example, how does one perturb a diagnosis of lung cancer?

Summary data is the result of aggregating information. Even in releases of summary data

statistical offices are finding their established practices failing given the increase of entity-specific data

Computational Disclosure Control 01/08/01 8:22 AM

54

and the proliferation of computing power because more data and more powerful tools are available for

unwanted linking. The European Union in response to these growing concerns has recently funded a

tremendous effort to develop solutions. Their first computational result was µ-Argus from Statistics

Netherlands [29]. I will examine this system in chapter 5 and show the first release of µ-Argus does not

provide adequate protection.

3.2 Multi-level databases

Another related area is aggregation and inference in multi-level databases [30, 31, 32, 33, 34, 35]

which concerns restricting the release of lower classified information such that higher classified

information cannot be derived. Denning and Lunt [36] described a multilevel relational database system

(MDB) as having data stored at different security classifications and users having different security

clearances.

Su and Ozsoyoglu [37] formally investigated inference in MDB. They showed that eliminating

precise inference compromise due to functional dependencies and multi-valued dependencies is NP-

complete. By extension to this work, the precise elimination of all inferences with respect to the

identities of the individuals whose information is included in person-specific data is typically impossible

to guarantee. Intuitively this makes sense. Consider two fictitious people named Bob and Alice and Bob

is asked to protect his home against invasion from Alice. First, Bob puts locks on his doors and windows.

Alice then breaks the glass of a window. Bob responds by installing bars on the windows. Alice now

drills through the ceiling. Bob is baffled. The problem is Bob cannot consider a priori every possible

attack. This is the case in trying to produce anonymous data as well, so this works seeks to primarily

protect against known attacks. As was discussed in chapter 2, the biggest problems result from inferences

that can be drawn after linking the released data to other knowledge, so in this work, it is the ability to

link the result to foreseeable data sources that must be controlled.

Morgenstern [38] introduced a framework for MDB concerning imprecise inference analysis. His

approach involved "spheres of influence" to characterize inference. In comparison to this work, the

forward-chained inference process employed in spheres of influence is analogous to linking in this work.

That is, Figure 15 could be extended to link more and more data collections beyond the medical data and

voter list shown until a chain of links emerged; in this sense, the links extend the sphere. However in this

work, attributes are assumed to be independent and only their association with other attributes in a data

Computational Disclosure Control 01/08/01 8:22 AM

55

collection relates them. Morgenstern provides an example in which protecting a person’s address should

include the person’s telephone number because the address can determine the single area code and a

limited set of exchanges. Clearly, knowledge from such inferences exploits the semantic relationships

between attributes. To combat this problem in this work, I do not require such knowledge be explicitly

recognized, but instead rely on the ability to link related attributes. This work assumes related attributes

appear in the same collections and in data sources that contain related attributes. For example, phone

directories typically contain name, address and phone number as attributes. Therefore, any linking to a

phone directory will automatically relate these attributes and protecting one reveals a need to consider

the others sensitive.

Catalytic inference analysis was introduced by Hinke [39] and formalized by Hale and Shenoi

[40]. Common sense knowledge and discoveries of indirect but related information can provide

additional inference when to brought to bear on sensitive information. The approaches taken by Hinke

and by Hale and Shenoi are computationally intensive, combating NP-complete problems with dynamic

programming used on small data sets. In contrast, this work concerns large and very large databases with

algorithms that typically work in real-time. Complexity is substantially reduced by leveraging the fact

that the choice of attributes in a collection is an artifact of society and their natural grouping implies a

relationship between them [41]. This of course does not capture all the possible ways and kinds of other

information that could be brought to bear on the data, which work on catalytic inference analysis

attempts to address. In this work, attention is narrowly focused on directly linking data sources using

their stated attributes.

Buczkowski [42] used Bayesian probability to estimate security risks due to imprecise inference.

In this work however, it is the actual inferred information that is needed and not an estimate of the

probability to which a value is inferred.

Many aggregation inference problems can be solved by database design [43, 44], but this

solution is not practical in the entity-specific data setting described in chapter 2. In today’s environment,

information is often divided and partially replicated among multiple data holders and the data holders

usually operate autonomously in making disclosure control decisions. The result is that disclosure control

decisions are typically made locally with incomplete knowledge of how sensitive other holders of the

information might consider replicated data. For example, when somewhat aged information on joint

projects is declassified differently by the Department of Defense than by the Department of Energy, the

Computational Disclosure Control 01/08/01 8:22 AM

56

overall declassification effort suffers; using the two partial releases, the original may be reconstructed in

its entirety. In general, systems that attempt to produce anonymous data must operate without the degree

of omniscience and level of control typically available in the traditional aggregation problem.

In both aggregation and MDB, the primary technique used to control the flow of sensitive

information is suppression, where sensitive information and all information that allows the inference of

sensitive information are simply not released [45]. Suppression can drastically reduce the quality of the

data, and in the case of statistical use, overall statistics can be altered, rendering the data practically

useless. When protecting national interests, not releasing the information at all may be possible, but the

greatest demand for entity-specific data is in situations where the data holder must provide adequate

protections while keeping the data useful, such as sharing person-specific medical data for research

purposes. In chapters 4 and 5, I will present other techniques and combinations of techniques that

produce more useful data than using suppression alone.

3.3 Computer security is not privacy protection

An area that might appear to have a common ancestry with disclosure control is access control

and authentication, which are traditional areas associated with computer security. Work in this area

ensures that the recipient of information has the authority to receive that information. While access

control and authentication protections can safeguard against direct disclosures, they do not address

disclosures based on inferences that can be drawn from released data. The more insidious problem in

disclosure control is not so much whether the recipient can get access or not to the information as much

as what values will constitute the information the recipient will receive. A general doctrine of the work

presented herein is to release all the information but to do so in a way in which designated properties are

protected. Therefore, disclosure control lies outside of traditional work on access control and

authentication.

3.4 Multiple queries can leak inference

Denning [46] and others [47, 48] were among the first to explore inferences realized from

multiple queries to a database. For example, consider a table containing only (physician, patient,

medication). A query listing the patients seen by each physician, i.e., a relation R(physician, patient),

may not be sensitive. Likewise, a query itemizing medications prescribed by each physician may also not

be sensitive. But the query associating patients with their prescribed medications may be sensitive

Computational Disclosure Control 01/08/01 8:22 AM

57

because medications typically correlate with diseases. One common solution, called query restriction,

prohibits queries that can reveal sensitive information. This is effectively realized by suppressing all

inferences to sensitive data. In contrast, this work poses a real-time solution to this problem by

advocating that the data be first rendered sufficiently anonymous, and then the resulting data used as the

basis on which queries are processed.

3.5 Research on population uniqueness

Skinner and Holmes [49] developed and tested methods for estimating the percent of unique

values in the general population based on a smaller database. These methods are based on subsampling

techniques and equivalence class structure. Unfortunately, even if these methods provide near-perfect

answers they are of limited use in this setting. For example, Figure 16 reports that 12% of the Cambridge

voters had unique birth dates. Knowing such underscores the sensitivity of the attribute, but when

releasing person-specific information about Cambridge voters, knowing that fact does not help identify

which persons in a data collection need their birth date information protected.

3.6 Inference, learning and artificial intelligence

Privacy protection, profiling and link analysis have not been traditional areas within artificial

intelligence (AI). However, the American Association for Artificial Intelligence held a symposium a

couple of years ago to introduce AI researchers to link analysis recognizing that such work could draw on

techniques from semantic networks, ontological engineering, graph theory, social network analysis and

knowledge discovery in data [50]. These areas, as well as most areas within AI, are concerned with some

kind of inference [51]. The best understood is deduction, which logically draws true conclusions from

true premises. A second kind of inference is abduction, which is the process of generating explanations

from observations and causal relationships. A third kind of inference is induction, which is more

commonly known as learning because it occurs when particular examples are used to reach general

conclusions. Both abduction and induction can allow false conclusions; nevertheless, they are very

useful. While linking data is primarily a deductive process, disclosure control uses all three kinds of

inference. Understanding the sensitivity of attributes and the interpretation of associated values often

result from abductive and inductive processes.

Computational Disclosure Control 01/08/01 8:22 AM

58

3.7 The k-nearest neighbor algorithm

One of the oldest and most analyzed inductive learning procedures is the well-known k-nearest

neighbor algorithm. Cover and Hart [52] present early theoretical results. Duda and Hart [53] provide a

good overview. In this kind of learning method, examples are simply stored as points in n-dimensional

space. Neighboring points are measured in terms of Euclidian distances between points. The overall

space is divided into k partitions such that each partition is considered a class. Then, when a new

instance is encountered, its relationship to previously stored examples is examined and a classification

made based on the Euclidian distance from the new point to neighboring points and therefore, by the

division or class in which the new point resides.

While these methods are a cornerstone of the machine learning or knowledge discovery in data

field, they have not been used in disclosure control. Yet, such methods could be applied to tabular data.

Let each attribute in a table corresponds to a dimension. Let the values themselves, or alternatively the

domains of the values, have a numeric presentation with Euclidian properties. Then, a table with n

attributes and m tuples corresponds to m points in n-dimensional space. The k-nearest neighbor algorithm

could then be applied, though admittedly, the results would be of limited use, if of any use at all, to

disclosure control.

One problem is the number of attributes found in a table. As the number of attributes increases

so do the number of dimensions; and, as the number of dimensions increases, finding similarity matches

in high dimensional space becomes extremely difficult because of troubles measuring distance. Weights

can be applied to each dimension in cases where some dimensions are considered more or less important

than others [54]. This equates to lengthening or shortening the axes in Euclidean space. Moore and Lee

[55] provide strategies for eliminating the least relevant dimensions from the space. In particular, they

provide efficient ways to repeatedly leave one dimension out and then examine the results in order to

validate the utility of each dimension.

Another problem concerns the benefit of the results to disclosure control. What is needed is a

way to detect the closeness of unusual values in data as the data are being distorted to provide anonymity

protection. So in this work, I will present a related algorithm I developed, which I term k-Similar, that

produces sufficiently anonymous data. This algorithm divides data into groups such that the size of each

group consists of k or more of the “closest” tuples based on a metric with Euclidian properties.

Computational Disclosure Control 01/08/01 8:22 AM

59

Summary

In summary, the catalyst for now examining disclosure control in a broader context has been the

dramatic increase in the availability of entity-specific data from autonomous data holders. These changes

have expanded the scope and nature of inference control problems and exasperated established operating

practice. The goal of this work is to provide comprehensive models for understanding, evaluating and

constructing computational systems that control inferences in this setting.

Computational Disclosure Control 01/08/01 8:22 AM

60

Chapter 4 Methods

This chapter ends with a formal presentation and real-world systems are evaluated with respect

to the formalism in the next chapter. But first, I provide a framework for reasoning about disclosure

control and I survey some disclosure limitation techniques using this framework.

4.1 Survey of disclosure limitation techniques

I begin by introducing commonly employed disclosure limitation techniques; Figure 17 contains

a listing. Here is a quick description of each technique though some were introduced earlier. De-

identification [56] and suppression [57] were introduced earlier. Encryption is a process of making

values secret by replacing one value with another in such a way that certain properties with respect to

reversing the process are maintained. Swapping values involves exchanging the values associated with an

attribute in two tuples where the value from the first tuple becomes the value for the second and vice

versa. Generalization replaces a value with a more general, less specific alternative. Substitution replaces

a value with another value in its equivalence class. Sampling restricts the number of tuples that will be

released. Scrambling is a reordering of tuples and is used when the order of appearance of tuples in a

release allows inference1. Changing outliers to medians requires detecting unusual values and replacing

them with values that occur more commonly. Perturbation involves making changes to values, usually to

maintain some overall aggregate statistic. Rounding is often used on continuous variables to group values

into ranges. Adding additional tuples dilutes the number of tuples containing real information but values

within the newly generated tuples can be chosen to maintain certain aggregate properties. Additive noise

involves the random incrementing or decrementing of values.

1 This is slightly inconsistent with the relational model, but in practical use is often an issue.

Computational Disclosure Control 01/08/01 8:22 AM

61

 'H�LGHQWLILFDWLRQ� 6XEVWLWXWLRQ�
Value and Attribute 6XSSUHVVLRQ� 2XWOLHU�WR�PHGLDQV�

Based (QFU\SWLRQ� 3HUWXUEDWLRQ�
 6ZDS�YDOXHV� 5RXQGLQJ�
 *HQHUDOL]H�YDOXHV� $GGLWLYH�QRLVH�

Tuple based 6DPSOLQJ� �
 $GG�WXSOHV� �
 6FUDPEOH�WXSOHV� �

Other 4XHU\�UHVWULFWLRQ� �
 6XPPDULHV� �

Figure 17 Disclosure limitation techniques

Query restriction [58] and summary data [59] described earlier are not disclosure limitation

techniques but rather special circumstances in which disclosure control is required. In summary data and

query restriction, values are often suppressed so as not to reveal sensitive information. This work poses a

solution to many problems in query restriction and summarizing by basing queries and summaries on

data released from data already determined to be sufficiently anonymous.

Notice that all of these techniques have the advantage that a recipient of the data can be told

what was done to the data in terms of protection. For data to be useful and results drawn from data to be

properly interpreted, it is critical to share what techniques and associated parameters were employed in

protecting the confidentiality of entities within the data. Of course usefulness is determined from the

point of view of a recipient of the data and what is useful to one recipient is not necessarily beneficial to

another. For example, using perturbation can render data virtually useless for learning entity-specific

information from the data or identifying entity-specific correlation. On the other hand, using suppression

can render data virtually useless for statistical purposes.

During the application of any technique, decisions must be made and these decisions can

dramatically impact the data’s fitness for a particular purpose. For example, consider a situation in which

it is necessary to suppress either values associated with the attribute ethnicity or those associated with the

attribute ZIP. If the recipient of the data is an epidemiologist studying cancer rates near toxic waste sites,

then the suppression of ZIP may render the data useless. Conversely, if the epidemiologist was studying

the prevalence of heart disease among various ethnic groups, then the suppression of Ethnicity may have

the same ill result. Notice that the data holder cannot release both versions, because doing so may allow

the two releases to be linked and reveal all information. Data holders must typically decide a priori for

Computational Disclosure Control 01/08/01 8:22 AM

62

which uses released information will be best suited in order to select the disclosure limitation techniques

most appropriate for the task.

4.2 Reasoning about disclosure control

The goal of this section is to provide a framework for constructing and evaluating systems that

release information such that the released information limits what can be revealed about properties of the

entities that are to be protected. For convenience, I focus on person-specific data and the property to be

protected is the identity of the subjects whose information is contained in the data. A disclosure implies

that an identity was revealed. Consider the informal definition below. Basically, an anonymous data

system seeks to effect disclosure control. I use the framework presented in this section to describe the

requirements of an anonymous data system and in the next section I formally define such.

Definition (informal). anonymous data system

An anonymous data system is one that releases entity-specific data such that particular

properties, such as identity, of the entities that are the subject of the data cannot be inferred from

the released data.

I can be more specific about how properties are selected and controlled. Recall the real-world

examples provided in chapter 2. In those cases, the need for protection centered on limiting the ability to

link released information to other external collections. So the properties to be controlled are

operationally realized as attributes in the privately held collection. The data holder is expected to identify

all attributes in the private information that could be used for linking with external information. Such

attributes not only include explicit identifiers such as name, address, and phone number, but also include

attributes that in combination can uniquely identify individuals such as birth date and gender. The set of

such attributes has been termed a quasi-identifier by Dalenius [60] and an identificate by Smith [61]. So

operationally, an anonymous data system releases entity-specific data such that the ability to link to other

information using the quasi-identifier is limited.

Computational Disclosure Control 01/08/01 8:22 AM

63

External Information Released Information

Ann 10/2/61 02139 diagnosis

Ann
Abe
Al

Dan

Don

Dave

Jcd

Jwq

Jxy

Private Information

c

f

g1

Subjects

Population

Universe

g2

Ann 10/2/61 02139 marriage

10/2/61 02139 diagnosis

Figure 18 Release using de-identification

Figure 18 provides an overview of the disclosure control process. Population consists of persons

who are identified as {Dan, Don, Dave, Ann, Abe, Al}, A subset of Population called Subjects is the set

of people, in this case {Ann, Abe, Al}, whose information appears in PrivateInformation. Universe

consists of Population and the set of pseudo-entities {Jcd, Jwq, Jxy}. Pseudo entities are not considered

real individuals, as are the members of Population. Instead, the existence of a pseudo-entity is implied

by a set of values, which are associated with attributes that identify people, when in fact no such person

is associated with that particular set of values.

There exists a collection function c: Subjects → PrivateInformation that maps information

about members of Subjects into PrivateInformation. The function f is a disclosure limitation function

such that f: PrivateInformation → ReleasedInformation. In the example shown in Figure 18, f simply

de-identifies tuples from PrivateInformation; and so, the explicit identifier Ann is not found in

ReleasedInformation.

ExternalInformation results from joining all publicly (and semi-publicly) available information.

The relations g1 and g2 illustrate how a tuple in ReleasedInformation can be linked to a tuple in

ExternalInformation to re-identify Ann, the original subject. The problem of producing anonymous

information can be described as constructing the function f such that some desired invariant exists or

some specific assertion can be made about g1 and g2. Such an invariant or assertion forms the basis for

protection.

Computational Disclosure Control 01/08/01 8:22 AM

64

In the example shown in Figure 18, the function f is simply the de-identification function and the

functions g1 and g2 show that f is not sufficient; it allows a disclosure. Therefore, merely suppressing

explicit identifiers is inadequate.

External Information Released Information

Ann 10/2/6102139 diagnosi
s

Ann
Abe
Al

Dan

Don

Dave

Jcd

Jwq

Jxy

Private Information

c

f

g

Subjects

Population

Universe

Jcd diagnosisAnn 10/2/61 02139 marriag
e

Figure 19 Release using encryption

Consider Figure 19. The function f seeks to protect the entire quasi-identifier {name, birth date,

ZIP} by simply encrypting the associated values. If strong encryption is used and the encrypted values

are not used with other releases, then as the diagram in Figure 19 illustrates, the relation g will map to a

pseudo-entity, being unable to link to ExternalInformation. If on the other hand, f used weak encryption

then the relation g would be able to map directly to Ann by simply inverting f. Using this approach with

strong encryption clearly provides adequate protection, but such protection is at the cost of rendering the

resulting information of limited use. Similar results are realized if f involved suppression rather than

encryption. As shown in Figure 19, the only attribute that remains practically useful is diagnosis with no

consideration to age or geographical location.

Computational Disclosure Control 01/08/01 8:22 AM

65

External Information Released Information

Ann 10/2/6102139 diagnosi
s

Ann
Abe
Al

Dan

Don

Dave

Jcd

Jwq

Jxy

Private Information

c

f

g1

Subjects

Population

Universe

g2

Al 3/8/6102138 marriage

Al 3/8/61 02138 diagnosi
s

Figure 20 Release using swapping

In Figure 20, the function f uses swapping [62]. The values associated with the attributes of the

quasi-identifier are swapped among tuples. This clearly destroys the integrity of the tuples themselves;

however, it maintains overall aggregate statistics. Enforced at the attribute level, this technique can cause

extensive distortion. For example if the data are medical information and swapping is employed at the

attribute level, a resulting tuple could imply that a 10 year old boy gave birth to a 50 year old woman.

Such data would not be very useful for discovering entity-specific patterns pertaining to healthcare cost,

outcome or fraud.

A less severe deployment of swapping is shown in Figure 20. In this depiction, the attributes of

the quasi-identifier are swapped as a unit among the tuples. A tuple in ReleasedInformation contains

the demographic information of Al associated with Ann’s diagnosis. The relations g1 and g2 show that this

tuple can be linked to ExternalInformation because after all, Al is a real entity. Suppose Al’s original

diagnosis involved a cancer whose typical long-term prognosis is excellent, but Ann’s diagnosis involved

a cancer that is almost always terminal in the short-term. After swapping, Al is reported as having the

more serious illness. Statisticians who use this technique typically post a notice that warns that the

integrity of tuples has been compromised. Even still, the warning usually appears separate and distinct

from the data themselves and so, the warning may not be considered during the use of the data and the

results can be damaging. For example, the consequences to Al in terms of life insurance, employment and

credit worthiness may be quite severe and the source of confusion may not be recognized. Also, if the

Computational Disclosure Control 01/08/01 8:22 AM

66

entities whose information is the subject of ReleasedInformation all have cancer, then while a recipient

of ReleasedInformation may not know the seriousness of Al’s cancer, a recipient does know that Al has

cancer. This underscores an important point. Implicit attributes often exist in ReleasedInformation and

their associated values are the same for all tuples --namely, the identity of the source of the information

and the date and time of its creation. Sensitive particulars about the source and/or creation time may be

available in ExternalInformation and therefore allow unwanted inferences.

External Information Released Information

Ann 10/2/61 02139 diagnosis

Ann
Abe
Al

Dan

Don

Dave

Jcd

Jwq

Jxy

Private Information

c

f

Subjects

Population

Universe

A l 3 /8 /6 1 0 2 1 3 8 m a rria g e2

A n n 1 0 /2 /6 1 0 2 1 3 9 m a rria g e1 A* 1961 0213* diagnosis

Figure 21 Release using generalization

Consider Figure 21. The function f generalizes the attributes of the quasi-identifier. I will take a

moment to discuss what is meant by generalizing an attribute and then I will return to this scenario for

disclosure limitation.

The idea of generalizing an attribute is really a simple concept. A value is simply replaced by a

less specific, more general value that is faithful to the original value. In Figure 21 the original ZIP codes

{02138, 02139} can be generalized to 0213*, thereby stripping the rightmost digit and semantically

indicating a larger geographical area. Likewise {02141, 02142} are generalized to 0214*, and {0213*,

0214*} could be further generalized to 021**.

Computational Disclosure Control 01/08/01 8:22 AM

67

Z2={021**} 021**
Î
Z1={0213*,0214*} 0213* 0214*
Î
Z0={02138, 02139, 02141, 02142} 02138 02139 02141 02142

Postal (ZIP) code

E1={person} person

E0={Asian,Black,White} Asian Black White

Ethnicity

Figure 22 Generalizing an attribute

Generalization is effective because substituting values with their more generalized values

typically increases the number of tuples having the same values. The single term requirement on the

maximal element insures that all values associated with an attribute can eventually be generalized to a

single value. All values of all attributes can be semantically organized into generalization hierarchies.

Notice in Figure 22 that the values {Asian, Black, White} generalize to Person. This means that a

generalization of an Ethnicity attribute given this hierarchy is similar to suppressing the entire attribute.

This demonstrates that generalizing an attribute to its maximal element provides almost the same

protection and distortion as suppressing the attribute. The relationship between generalization and

suppression will be further discussed in chapter 5.

I now return to Figure 21. The disclosure limitation function f generalizes the attributes of the

quasi-identifier to produce ReleasedInformation. Tuples in ReleasedInformation can then be linked

to ExternalInformation ambiguously. In Figure 21, the tuple shown in ReleasedInformation links to

both Al and Ann in ExternalInformation and so, it relates back to both of them in Subjects. The

disclosed diagnosis cannot be confidently attributed to either Al or Ann. In fact, a k can be chosen such

that f generalizes tuples from PrivateInformation in such a way that there are at least k possible entities

to which each released tuple may refer. Additional protection can often be realized when tuples in

ReleasedInformation are ambiguously linked to tuples in ExternalInformation such that the resulting

Computational Disclosure Control 01/08/01 8:22 AM

68

identifications do not only refer to entities in Subjects but also refer to other entities in Universe that

are not in Subjects.

A problem however is choosing the right size for k. It is based on several parameters including

direct and economical communication connections to Subjects. Here is an example. I reviewed some

archives from old email exchanges on a newsgroup list and found a couple of email messages pertaining

to a chance encounter in Cambridge, Massachusetts between a young woman, whom I will call Alice,

and a young man, whom I will call Bob. During the brief conversation between Alice and Bob, no names,

addresses or phone numbers were exchanged. Several days later Alice engaged in an email exchange on a

newsgroup list in which she provided a casual description of Bob. I constructed a composite of Bob from

the email messages. Here is an overview of the details. Bob was about 5’8” in height with dark features.

His parents were from Greece. He was believed to live near the water, to enjoy playing soccer and to be

an MIT graduate student in electrical engineering or computer science. Given this basic description, I

sent a single email message to all members of the electrical engineering and computer science

department at MIT. Approximately 1,000 people could have received the message. Five replies were

received. All of them had one name, which turned out to be the correct individual. The man himself was

quite shocked because he had merely had a private conversation carried in a personal situation and he

had not even given his name, phone number, or address. With respect to this disclosure control model, k

would be about 100 in this case and still that was not sufficient because of the direct and economical

communication connection to all-possible subjects and sources of additional information.

This concludes my survey of disclosure limitation techniques and introduction of this framework

for reasoning about disclosure control. In the next section I introduce formal models of protection.

Following that, I compare and contrast some real-world systems in the next chapter.

4.3 Formal protection models

In this section, I formally bring the pieces together; namely, the lessons learned in the real-world

examples from chapter 2, the issues presented in the discussion of related work in chapter 3 and the

framework for reasoning about disclosure control that was presented earlier in this chapter. Terms

mentioned casually and defined informally will be presented formally. So, I begin this section by

formally defining the terms I have been using, leading up to the definition of a basic anonymous data

system termed ADS0. From there, I introduce basic protection models termed null-map, k-map and

Computational Disclosure Control 01/08/01 8:22 AM

69

wrong-map which provide protection by ensuring that released information maps to no, k or incorrect

entities, respectively. The non-technical reader may elect to skip this section altogether and continue with

the next chapter, which examines four real-world systems that attempt to effect disclosure control.

As stated earlier, I assume the classical relational model of databases [63]. The definition below

defines a table and attributes consistent with this model.

Definition. attributes

Let B(A1,…,An) be a table with a finite number of tuples. The finite set of attributes of B are

{ A1,…,An}.

Given a table B(A1,…,An), {Ai,…,Aj} ⊆ {A1,…,An}, and a tuple t∈B, I use t[Ai,…,Aj] to denote

the sequence of the values, vi,…,vj, of Ai,…,Aj in t. I use B[Ai,…,Aj] to denote the projection, maintaining

duplicate tuples, of attributes Ai,…Aj in B.

Definition. entity

Let pi = { (Ai, vi) : Ai is an attribute and vi is its associated value}. I say pi is an entity.

U = {pi : pi is an entity} is a finite set I term a population of entities.

Definition. collection function

Given a population of entities U and a table T, I say fc is a collection function on U.

That is, fc: U → T is a collection function and T is an entity-specific table. I say that T is a

person-specific table if the entities are people.

If T is an entity specific table containing information about entities in U and T contains no

additional tuples, then each tuple in T corresponds to information on at least one entity in U. This is

memorialized in the following theorem.

Computational Disclosure Control 01/08/01 8:22 AM

70

Theorem 1

Given a population of entities U, a table T(A1,…,An), a collection function fc: U → T, and

{ Ai,…,Aj} ⊆ {A1,…,An}:

fc is onto ⇒ ∀t[Ai,…,Aj]∈T, ∃pi∈U such that ∀(Ax , vx)∈pi where Ax∈{ Ai,…,Aj} and vx = t[Ax].

Proof.

By definition, a function fc from U to T is onto (or a surjection) if and only if for every element

in t∈T there is an element p∈U with fc(p)=t.

Example.

Let T be a table of visits to a hospital emergency room. Let U reflect the population of people

within the geographical area serviced by the hospital. Then, fc: U → T is the process for

recording hospital visits. Notice that fc is the collection function and fc is onto.

Definition. disclosure control function

Given a table T and a finite set of tables B, I say f is a disclosure control function on {T}. That

is, f: {T} → B is a disclosure control function .

Definition. re-identification relation

Given a population of entities U, an entity-specific table T and fc: U → T,

I say fg is a re-identification relation if and only if:

∃pi∈U such that pi∈ fg(fc(pi)) and |fg(fc(pi))| = k, where 1 ≤ k << |U|.

I also say that fg is a re-identification of pi and I say that fg uniquely identifies pi if k=1.

Pseudo entities are not real entities but their existence is implied by a set of values, one or more

of which are false, that are associated with attributes that seem to identify them as entities. This is

described in the definition below.

Computational Disclosure Control 01/08/01 8:22 AM

71

Definition. pseudo-entities

Given a population of entities U, an entity-specific table T, fc: U → T and a re-identification

relation fg: T → U’ where U ⊆ U’. I say (U’-U) is the finite set of pseudo-entities.

The following definition formally introduces a quasi-identifier [64] as set of attributes whose

associated values may be useful for linking to re-identify the entity that is the subject of the data.

Definition. quasi-identifier

Given a population of entities U, an entity-specific table T(A1,…,An), fc: U → T and fg: T → U’,

where U ⊆ U’. A quasi-identifier of T, written QT, is a set of attributes {Ai,…,Aj} ⊆ {A 1,…,An}

where:

∃pi∈U such that fg(fc(pi)[QT]) = pi.

Example.

Let V be the voter-specific table described earlier in Figure 15 as the voter list. A quasi-identifier

for V, written QV, is {name, address, ZIP, birth date, gender}.

Linking the voter list to the medical data as shown in Figure 15, clearly demonstrates that {birth

date, ZIP, gender} ⊆ QV. However, {name, address} ⊆ QV because these attributes can also appear in

external information and be used for linking.

The goal of disclosure control is to limit the extent to which released information can be

confidently linked to other available information. In the case of anonymity, it is usually publicly

available data on which linking is to be prohibited and so attributes which appear in private data and also

appear in public data are candidates for linking; therefore, these attributes constitute the quasi-identifier

and the disclosure of these attributes must be controlled. It is believed that these attributes can be easily

identified by the data holder.

Computational Disclosure Control 01/08/01 8:22 AM

72

Assumption.

The data holder can identify attributes in their private information that may also appear in

external information.

Consider an instance where this assumption is incorrect; that is, the data holder misjudges which

attributes are sensitive for linking. In this case, the released data may be less anonymous than what was

required, and as a result, individuals may be more easily identified. Clearly, this risk cannot be perfectly

resolved by the data holder because the data holder cannot always know what each recipient of the data

knows but policies and contracts can help. Also, the data holder may find it necessary to release data that

are only partially anonymous. Again, policies, laws and contracts can provide complementary

protections. These are discussed in chapter 6. In the remainder of this work, I assume a proper quasi-

identifier has been recognized.

Definition. explicit-identifier

Let T(A1,…, An) be a person-specific table and QT(Ai,…,Aj) be a quasi-identifier for T. Further,

let {Ax,…,Ay} ⊆ QT and D be the set of direct communication methods, such as email, telephone,

postal mail, etc., where with no additional information, gd∈D is a relation from T[Ax,…, Ay] to

the population reachable by gd’s communication method. Let X(s) be a random variable on the

sample space s={|gd(t[Ax,…, Ay])| : t∈ T}. I say {Ax,…,Ay} is an explicit identifier of T if the

expected value of X(s) is 1 and 1/σ of X(s)≈∞.

Basically, the definition above states that an explicit identifier is a set of attributes than can be

used together with a direct communication method, and no additional information, to distinctly and

reliably contact the entity that is the subject of those values for the attributes. Recognizing that such

communications are not perfect, the definition implies the method should be almost perfect.

Definition. explicit-identifiers

Let T(A1,…, An) be an entity-specific table and QT(Ai,…,Aj) be a quasi-identifier for T. The

explicit identifiers of T, written, ET = {ei : ei is an explicit identifier of T}.

Computational Disclosure Control 01/08/01 8:22 AM

73

The definition above states that the explicit identifiers of a table is a set of attribute sets, where

each member set is an explicit identifier of the table.

Lemma.

The explicit identifiers of table T is ET if and only if the explicit identifiers of a quasi-identifier

of T is ET.

Example.

The following are examples of explicit identifiers: {email address}, {name, address}, {name,

phone number}. The following are quasi identifiers, but are not explicit identifiers: {name},

{Social Security number}, {phone}, {phone, Social Security number}.

Given entity-specific data, an anonymous data system releases entity-specific data such that the

identities of the entities that are the subject of the original data are protected. Such protection typically

relies on a quasi-identifier for the original entity-specific data. The definition below defines a basic

anonymous data system.

Definition. basic anonymous data system

A basic anonymous data system, ADS0, is a nine-tuple (S, P, PT, QI, U, R, E, G, f), where the

following conditions are satisfied:

1. S is the finite set of entities with attributes to be protected.

2. P is the finite set of possible entities. S ⊆ P.

3. PT is the finite multi-set of privately held information about each member of S. There exists

a collection function, fc : S→ PT, where PT={k • ts : ts = fc(s) and |fc
-1(fc(s))| = k, ∀s∈ S }.

4. QI is the quasi-identifier of PT denoting attributes to be protected.

5. U is a finite set of possible entities and pseudo-entities. P ⊆ U.

6. R is the set of possible releases. Each release RT∈ R is a finite multi-set.

7. E is the collection of possible external information.∀Ti=1,…,m where Ti is a collection of

external information about a subset of the members of P, then E =T1 × … × Tn.

8. G is the set of possible relations from R → U.

{ }UERwhereggggG gg →→= 21

2121 :),(o

Computational Disclosure Control 01/08/01 8:22 AM

74

Given a QI for PT, written QIPT= Ai,…,Aj, a release RT∈R where RT = f(PT[QI]), and a set

of explicit identifiers named EIg2 where g2(g1(RT)[EIg2]) ⊆ U, then

g1(RT) = {k • tu[A1,…,Am] : tu[QIPT] ∈ RT, tu[EIg2] ∈ E and |tu[QIPT,,EIg2| = k,

∀tu∈E, QIPT ⊆ A1,…,Am and EIg2 ⊆ A1,…,Am }.

g2 and g2 are relations and g2 is a direct communication method.

9. f is a disclosure control function such that f:{ PT} → R and given a release RT∈ R where

RT = f(PT[QI]), one of the following conditions must be satisfied:

a. if ∃ g ∈ G, ∃ t ∈ RT, where f(fc(s)) = t and g(f(fc(s))) = s then ∃ u∈U, such that u ≠ s and

g(f(fc(s))) = u.

b. if ∃ (g1, g2) ∈ G where GT = g1(f(ts[QI])), ∃ ts[QI]∈ RT and ts[QI, EIg2]∈ GT where fc(s)

= ts and g2(g1(f(ts[QI]))[EIg2]) = s, then ∃ tu[QI, EIg2]∈ GT such that ts≠ tu and g2(tu[QI,

EIg2]) = s.

c. Given PT(A1,…,An) and RT (Aw,…,Ay) , let Ap,…Aq = ({A1,…,An} - QI) ∩ {Aw,…,Ay}. If

∃ g ∈ G, ∃ ts1 [Ap,…,Aq] ∈ RT, where fc(s) = ts1 and g(f(ts1[QI])) = s and ts1[Ap,…,Aq]≠φ

and if ∃ ts2[Ap,…,Aq] ∈ PT such that fc(s) = ts2 and f(ts2) = ts1 and ts2[Ap,…,Aq] =

ts1[Ap,…,Aq], then condition (a) or condition (b) above must be satisfied on ts1.

The overall concept is of an anonymous data system is that a derivate of privately collected data

are released such that the subjects of the data cannot be confidently or uniquely identified.

The main property is property 9. It says that if f produces a release RT∈R based on PT[QI], then

there can not exist a function or composite of functions which can confidently associate any of the

original subjects uniquely with their information in PT.

If an entity is correctly associated with a released tuple in RT, then the three conditions required

in property 9 are: (1) there must be more than one such entity to which the tuple in the release could be

associated; (2) there must be more than one such tuple in the release that could be associated with the

subject; or, (3) the non-controlled information, if present, can not be accurate.

Computational Disclosure Control 01/08/01 8:22 AM

75

Properties 3, 7 and 8 describe multiset collections of information where collections of elements

can occur as a member more than once.

The definition above describes what is termed a basic anonymous data system. The word “basic”

is used and the subscript 0 attached because the definition does not allow for probabilistic linking or the

temporal nature of data quality (i.e., older data can be less reliable). For anonymous data systems to be

defined to include these issues requires a modification and extension to ADS0 and so, the naming

convention reserves ADS1 and ADS2 and so on, for future enhancements.

Remark.

The level of protection provided by an ADS0 depends on the correctness of the selection of

attributes within QI, on the specifics of f and on assertions and invariants that can be made about

g1 and g2, ∀(g1, g2)∈G. The validity of this remark stems directly from the definition of an

ADS0.

S = {(name, Ann), (name, Abe), (name, Al)}
P = {(name, Dan), (name, Don), (name, Dave), (name, Ann), (name, Abe),
(name, Al)}
PT(name, birth date, ZIP, diagnosis) :

Name Birth date ZIP Diagnosis
Ann 10/2/61 02139 Cardiac
Abe 7/14/61 02139 Cancer
Al 3/8/61 02138 Liver

QI = {name, birth date, ZIP}
U = {(name, Jcd), (name, Jwq), (name, Jxy), (name, Dan), (name, Don), (name,
Dave),

(name, Ann), (name, Abe), (name, Al) }
E(name, birth date, ZIP) :

Name Birth date ZIP
Ann 10/2/61 02139
Abe 7/14/61 02139
Al 3/8/61 02138

g2 = a direct communication channel that operates on the name attribute.
G as the set of all possible relations from R to U consistent with property 8 in the definition of an
ADS0

Figure 23 Values for S, P, PT, QI, U and E

Computational Disclosure Control 01/08/01 8:22 AM

76

In the following examples, I assume the values for S, P, PT, QI, U, and E shown in Figure 23.

These values are consistent with the presentations in Figure 18, Figure 19, Figure 20 and Figure 21.

Example (identity release).

Given the assignments in Figure 23, and the following definition for f that constructs RT as a

copy of PT, the system A(S, P, PT, QI, U, {RT}, E, G, f) is not an ADS0.

f is defined as follows:

step 1. Let RT be ∅

step 2. ∀t∈PT, RT ← RT ∪ {t}

Note. RT is a multi-set, so duplicates are maintained.

Proof:

Let g1 be the relation g1(name, birth date, ZIP, diagnosis) on RT.

Therefore A is insecure and a disclosure is made, so A is not an ADS0.

Example (complete suppression).

Given the definitions in Figure 23, and the following definition for f that constructs RT as a

blank table, the system A(S, P, PT, QI, U, {RT}, E, G, f) is an ADS0.

f is defined as follows:

step 1. Let RT be ∅

step 2. ∀t∈PT, RT ← RT ∪ {null, null, null, null}

Note. RT is a multi-set, so duplicates are maintained.

Proof:

The first two conditions of property 9 in the definition of an ADS0 are both satisfied ∀t∈RT.

Therefore A is considered secure, so A is an ADS0.

The two examples above demonstrate the natural tension that exists in disclosure control. At one

end is specificity and usefulness, which is not secure, and at the other end is distortion and security,

which is not useful. These opposites pose a continuum of disclosure control options along which

Computational Disclosure Control 01/08/01 8:22 AM

77

tradeoffs must be made. I defined and used an information theoretic (entropy) metric [65] and measured

the distortion to data caused by common disclosure limitation techniques and then plotted the measures

along the continuum. The relative ordering of the results is shown below in Figure 24.

Identity
release

Complete
suppression

cell
generalization

cell
suppression

attribute
generalization

attribute
suppression

Stronger protection
more entropy

more useful data

Figure 24 Relative comparison of techniques

The technique cell generalization is generalization enforced at the cell level and likewise cell

suppression is suppression enforced at the cell level. Similarly, attribute generalization is generalization

enforced at the attribute level and attribute suppression is suppression enforced at the attribute level. Do

not interpret the tick marks along the continuum as points. Each of these techniques had results in a range

along the continuum and the ranges overlapped; further there was significant variation depending on the

character of the data. However, the tick marks do provide a relative ordering of the medians of average

case results.

I now present three protection models for ADS0. These are wrong-map, null-map and k-map as

defined below.

Definition. null-map protection

Let A be an ADS0, f(PT) = RT and R∈RT. If ∀t∈RT, there does not exist g∈G where g(t) ∈S,

then A adheres to null map protection.

In null-map protection each tuple in the released information may or may not map to an actual

entity in the population P, but none of the tuples can be mapped to an entity in the set of subjects S.

Examples of disclosure limitation techniques that can achieve null-map protection include strong

encryption of the QI, extensive swapping of the values in QI and systematic use of additive noise. Figure

19 provides an example.

Computational Disclosure Control 01/08/01 8:22 AM

78

Definition. wrong-map protection

Let A be an ADS0, f(PT) = RT and R∈RT. If |RT| > 2 and ∀t∈RT, ∃g∈G where f(fc(s)) = t, and

g(f(fc(s))) =s and there does not exist g’∈G where g’≠g such that g’(t)∈S, then A adheres to

wrong map protection.

Wrong map protection requires each tuple in the released information to be identified to only one

entity in subjects but that entity is not the entity to which the original information was collected. The

ADS0 requirement ensures the values with attributes outside QI contained in the release are not the same

as those originally collected. Notice if there exists only one entity in the subjects S, then wrong-map

protection cannot be done and with only two entities in S, the release is compromised. An example of a

disclosure limitation technique that can achieve wrong map protection is swapping the attributes of QI as

a unit. Figure 20 provides an example.

Definition. k-map protection

Let A be an ADS0, f(PT) = RT and R∈RT. If∀t∈RT, ∃ g ∈ G, where f(fc(s)) = t and g(f(fc(s))) =

s and {u1, u2, uk-1} ∈ U such that for i=1,…, k-1, ui≠s, and g(f(fc(s))) = ui, then A adheres to k-

map protection.

k-map protection maintains the invariant that each tuple in the released information refers

indistinctly to at least k members of U. Notice that k does not rely on |S| > k or on |RT| > k. Figure 21

provides an example.

The protection models k-map, null-map and wrong-map provide a means for characterizing the

kind of protection provided to a release of information. Of course a release may be anonymous, but

proving it in the absence of a protection model is extremely difficult. Optimal releases that offer

adequate protection with minimal distortion are believed to typically require a combination of disclosure

limitation techniques as well as a combination of protection models.

Computational Disclosure Control 01/08/01 8:22 AM

79

4.4 Future work

1. The protection models defined in this chapter, namely, k-map, wrong-map and null-

map, are not necessarily a complete set of all possible protection models. Develop a

new protection model or compare and contrast the relative protection provided by

each of these models.

2. Recall the word “basic” is used and the subscript 0 attached to a basic anonymous

data system (ADS0) because the definition does not allow for probabilistic linking or

the temporal nature of data quality (i.e., older data can be less reliable). For

anonymous data systems to be defined to include these issues requires a modification

and extension to ADS0 and so, the naming convention reserves ADS1 and ADS2 and

so on, for future enhancements. Extend ADS0 along these lines.

Computational Disclosure Control 01/08/01 8:22 AM

80

Chapter 5 Methods Extended – Preferred Minimal Generalization
Algorithm

The goal of this chapter is to extend the formal methods provided in the previous chapter and

formally present an algorithm that adheres to k-map protection using generalization and suppression. The

real-world systems Datafly [66], µ-Argus [67] and k-Similar [68] motivate this extension.

5.1 The k-anonymity protection model

As you may recall, the k-map protection model [69] states an anonymity constraint that requires

certain characteristics and combinations of characteristics found in the data to combine to match at least

k individuals. To determine how many individuals each released tuple actually matches requires

combining the released data with externally available data and analyzing other possible attacks. Making

such a determination directly can be an impossible task for the data holder who releases information.

Although I can assume the data holder knows which data in PT also appear externally, and therefore

what constitutes a quasi-identifier, the specific values of external data and knowledge of other possible

inference attacks cannot be assumed. I therefore seek to protect the information by satisfying a slightly

different constraint on released data, which I term the k-anonymity requirement. This is a special case of

k-map protection where k is enforced on the released data.

Definition. k-anonymity

Let RT(A1,...,An) be a table and QIRT be the quasi-identifier associated with it. RT is said to

satisfy k-anonymity if and only if each sequence of values in RT[QIRT] appears with at least k

occurrences in RT[QIRT].

Computational Disclosure Control 01/08/01 8:22 AM

81

 Ethnicity Birth Gender ZIP Problem
t1 Black 1965 m 0214* short breath
t2 Black 1965 m 0214* chest pain
t3 Black 1965 f 0213* hypertension
t4 Black 1965 f 0213* hypertension
t5 Black 1964 f 0213* obesity
t6 Black 1964 f 0213* chest pain
t7 White 1964 m 0213* chest pain
t8 White 1964 m 0213* obesity
t9 White 1964 m 0213* short breath

t10 White 1967 m 0213* chest pain
t11 White 1967 m 0213* chest pain

Figure 25 Example of k-anonymity, where k=2 and QI={Ethnicity, Birth, Gender, ZIP}

Example.

Figure 25 provides an example of a table T that adheres to k-anonymity. The quasi-identifier for

the table is QIT= {Ethnicity, Birth, Gender, ZIP} and k=2. Therefore, for each of the tuples

contained in the table T, the values of the tuple that comprise the quasi-identifier appear at least

twice in T. That is, for each sequence of values in T[QIT] there are at least 2 occurrences of those

values in T[QIT]. In particular, t1[QIT] = t2[QIT], t3[QIT] = t4[QIT], t5[QIT] = t6[QIT], t7[QIT] =

t8[QIT] = t9[QIT], and t10[QIT] = t11[QIT].

Lemma.

Let RT(A1,...,An) be a table, QIRT =(Ai,…, Aj) be the quasi-identifier associated with RT, Ai,…,Aj

⊆ A1,…,An, and RT satisfy k-anonymity. Then, each sequence of values in RT[Ax] appears with

at least k occurrences in RT[QIRT] for x=i,…,j.

Example.

Figure 25 provides an example of a table T that adheres to k-anonymity. The quasi-identifier for

the table is QIT= {Ethnicity, Birth, Gender, ZIP} and k=2. Therefore, each value that appears in a

value associated with an attribute of QI in T appears at least k times. |T[Ethnicity ="black"]| = 6.

|T[Ethnicity ="white"]| = 5. |T[Birth ="1964"]| = 5. |T[Birth ="1965"]| = 4. |T[Birth ="1967"]| =

2. |T[Gender ="m"]| = 6. |T[Gender ="f"]| = 5. |T[ZIP ="0213*"]| = 9. And, |T[ZIP ="0214*"]| =

2.

It can be trivially proven that if the released data RT satisfies k-anonymity with respect to the

quasi-identifier QIPT, then the combination of the released data RT and the external sources on which

QIPT was based, cannot link on QIPT or a subset of its attributes to match fewer than k individuals. This

Computational Disclosure Control 01/08/01 8:22 AM

82

property holds provided that all attributes in the released table RT which are externally available in

combination (i.e., appearing together in an external table or in a possible join of external tables) are

defined in the quasi-identifier QIPT associated with the private table PT. This property does not

guarantee individuals cannot be identified in RT; there may exist other inference attacks that could

reveal the identities of the individuals contained in the data. However, the property does protect RT

against inference from linking to known external sources; and in this context, the solution can provide an

effective guard against re-identifying individuals.

As an aside, there are many ways in which I could expand the notion of a quasi-identifier to

provide more flexibility and granularity. Both Datafly [70] and µ-Argus [71] weight the attributes of the

quasi-identifier. For my purposes in this chapter, however, I begin by considering a single quasi-

identifier based on attributes, without weights, appearing together in an external table or in a possible

join of external tables; and then later in this chapter, I add weights to specify preferences among the

attributes of the quasi-identifier.

5.2 Generalization and suppression as disclosure limitation techniques

In this section, I formally present the disclosure limitation techniques known as generalization

[72] and suppression [73]. This chapter ends by my proposing an algorithm that produces a version of PT

such that a given k-anonymity requirement is satisfied by re-coding values to make them more general

(i.e., using generalization and suppression).

In a classical relational database system, domains are used to describe the set of values that

attributes assume. For example, there might be a ZIP code domain, a number domain and a string

domain. I extend this notion of a domain to make it easier to describe how to generalize the values of an

attribute. In the original database, where every value is as specific as possible, every attribute is

considered to be in a ground domain. For example, 02139 is in the ground ZIP code domain, Z0. In

order to achieve k-anonymity I can make ZIP codes less informative. I do this by saying that there is a

more general, less specific domain that can be used to describe ZIP codes, say Z1, in which the last digit

has been replaced by 0 (or removed altogether). There is also a mapping from Z0 to Z1, such as 02139

→ 02130.

Computational Disclosure Control 01/08/01 8:22 AM

83

Given an attribute A, I say a generalization for an attribute is a function on A. That is, each f: A

→ B is a generalization. I also say that:

n
fff

o AAA n→→→ −110
1 K

is a generalization sequence or a functional generalization sequence.

Given an attribute A of a private table PT, I define a domain generalization hierarchy DGHA

for A as a set of functions fh : h=0,…,n-1 such that:

n
fff

o AAA n→→→ −110
1 K

A=A0 and |An| = 1. DGHA is over: U
n

h
hA

0=

Clearly, the fh’s impose a linear ordering on the Ah’s where the minimal element is the ground

domain A0 and the maximal element is An. The singleton requirement on An ensures that all values

associated with an attribute can eventually be generalized to a single value. Since generalized values are

used in place of more specific ones, it is important that all domains in the hierarchy be compatible.

Using the same storage representation form for all domains in the generalization hierarchy can ensure

compatibility. In my ZIP code example above, replacing the last digit with 0, rather than removing it or

changing it to *, maintains the 5 digit storage representation. In this presentation I assume Ah, h=0,…,n,

are disjoint; if an implementation is to the contrary and there are elements in common, then DGHA is

over the disjoint sum of Ah’s and subsequent definitions change accordingly.

Z2={02100} 02100
Î E1={person} person
Z1={02130,02140} 02130 02140
Î

Z0={02138, 02139, 02140, 02141} 02138 02139 02141 02142 E0={Asian,Black,White} Asian Black White

 DGHZ0 VGHZ0 DGHE0 VGHE0

Figure 26 Examples of domain and value generalization hierarchies

Computational Disclosure Control 01/08/01 8:22 AM

84

Eth:E0 ZIP:Z0 Eth:E1 Zip:Z0 Eth:E1 ZIP:Z1 Eth:E0 ZIP:Z2 Eth:E0 ZIP:Z1
Asian 02138 Person 02138 Person 02130 Asian 02100 Asian 02130
Asian 02139 Person 02139 Person 02130 Asian 02100 Asian 02130
Asian 02141 Person 02141 Person 02140 Asian 02100 Asian 02140
Asian 02142 Person 02142 Person 02140 Asian 02100 Asian 02140
Black 02138 Person 02138 Person 02130 Black 02100 Black 02130
Black 02139 Person 02139 Person 02130 Black 02100 Black 02130
Black 02141 Person 02141 Person 02140 Black 02100 Black 02140
Black 02142 Person 02142 Person 02140 Black 02100 Black 02140
White 02138 Person 02138 Person 02130 White 02100 White 02130
White 02139 Person 02139 Person 02130 White 02100 White 02130
White 02141 Person 02141 Person 02140 White 02100 White 02140
White 02142 Person 02142 Person 02140 White 02100 White 02140
 PT GT[1,0] GT[1,1] GT[0,2] GT[0,1]

Figure 27 Examples of generalized tables for PT

Given a domain generalization hierarchy DGHA for an attribute A, if vi∈Ai and vj∈Aj then I say vi

≤ vj if and only if i ≤ j and:

()() jiij vvff =− KK1

This defines a partial ordering ≤ on: U
n

h
hA

0=

Such a relationship implies the existence of a value generalization hierarchy VGHA for

attribute A. Figure 26 illustrates an example of domain and value generalization hierarchies for domain

Z0, representing ZIP codes for Cambridge, MA, and E0 representing ethnicity.

5.2.1 Generalization including suppression

In the value generalization hierarchy VGHE0 shown in Figure 26, the values {Asian, Black,

White} generalize to Person. This means that a generalization of Ethnicity is similar to suppressing that

value for the attribute. Generalizing an attribute to its maximal element provides almost the same

protection and distortion as suppressing the attribute.

Therefore, I can expand my presentations of generalization to include suppression by imposing

on each value generalization hierarchy a new maximal element, atop the old maximal element. The new

maximal element is the attribute’s suppressed value. The height of each value generalization hierarchy is

therefore incremented by one. No other changes are necessary to incorporate suppression into the earlier

presentation of generalization. Figure 28 and Figure 29 provide examples of the domain and value

generalization hierarchies shown earlier in Figure 26, but expanded here to include the suppressed

Computational Disclosure Control 01/08/01 8:22 AM

85

maximal element. From now on, all references to generalization include the new maximal element atop

each domain and value generalization hierarchy.

Z3={*****} *****
Î
Z2={021**} 021**
Î
Z1={0213*,0214*} 0213* 0214*
Î
Z0={02138, 02139, 02141, 02142} 02138 02139 02141 02142

 DGHZ0 VGHZ0

Figure 28 ZIP domain and value generalization hierarchies including suppression

Z2={******} ******
Î
Z1={Person} Person
Î
Z0={Asian,Black,White} Asian Black White

 DGHE0 VGHE0

Figure 29 Ethnicity domain and value generalization hierarchies including suppression

5.3 Minimal generalization of a table

Given a private table PT, generalization can be effective in producing a table RT that is based on

PT but that adheres to k-map protection because values in RT are substituted with their generalized

replacements. The number of distinct values associated with each attribute is non-increasing, and so the

substitution tends to map values to the same generalized result, thereby possibly decreasing the number

of distinct tuples in RT.

A generalization function on tuple t with respect to A1,…, An is a function ft on A1×…×An such

that:

() () ()()ntntnt AfAfAAf ,,,, 111 KK =

where for each i: 1,…,n, fti is a generalization of the value t[Ai]. The function ft is a set function. I say ft

is generated by the fti’s.

Given f, A1,…,An, a table T(A1,…,An) and a tuple t∈T, i.e., t(a1,…,an)

Computational Disclosure Control 01/08/01 8:22 AM

86

() ()(){ }ktffandTttfkTg =∈⋅= −1:)(

The function g is a multi-set function. I say that g is the multi-set function generated by f and by

the fi’s. Further, I say that g(T) is a generalization of table T. This does not mean, however, that the

generalization respects the value generalization hierarchy for each attribute in T. To determine whether

one table is a generalization with respect to the value generalization hierarchy of each attribute requires

analyzing the values themselves.

Let DGHi be the domain generalization hierarchies for attributes Ali where i=1,…,An Let

Tl[Al1,…,AlAn] and Tm[Am1,…,AmAn] be two tables such that for each i:1,..,n, Ali,Ami∈DGHi. Then, I say

table Tm is a generalization of table Tl, written Tl ≤ Tm, if and only if there exists a generalization

function g such that g[Tl] = Tm and is generated by fi’s where: ∀tl∈Tl, ali ≤ fi(ali) = ami and fi : Ali →

Ami and each fi is in the DGHi of attribute Ali. From this point forward, I will use the term generalization

to denote a generalization of a table. Otherwise, I will explicitly refer to the set or multi-set function

when it is not otherwise clear from context.

In this work, I examine cell, or value-level generalization, as well as, generalization enforced at

the attribute level. When decisions about the values an attribute can assume are specific to a single

domain – that is, each value associated with an attribute in a table must be a member of the same domain

in the domain generalization hierarchy specific to that attribute -- then I say the decision is at the attribute

level. On the other hand, if different values associated with the same attribute in a table can have

different domains in the domain generalization hierarchy specific to that attribute, then I say the decision

is at the cell or value level.

Definition. k-anonymity requirement

Let T(A1,…,An) be a generalized table, QIT={Ai,…,Aj} be the quasi-identifier associated with it

where {Ai,…,Aj} ⊆ {A1,…,An}, t∈T[QIT] and kt be the integer denoted in g for f(t). T is said to

satisfy a k-anonymity requirement of k with respect to QIT if ∀t∈T[QIT], kt ≥ k.

The k-anonymity requirement of a generalized table forms the basis for k-map protection. Given

a table PT(A1,…,An), a QIPT={Ai,…,Aj}, where {Ai,…,Aj} ⊆ {A1,…,An}, and a generalization of PT with

Computational Disclosure Control 01/08/01 8:22 AM

87

respect to QIPT named RT(Ai,…,Aj), satisfaction of the k-anonymity requirement guarantees each t∈RT

is indistinguishable from at least k-1 other members of table RT[QIPT].

Example

Consider the table PT illustrated in Figure 27 and the domain and value generalization

hierarchies for E0 and Z0 illustrated in Figure 28 and Figure 29. The remaining four tables in the

figure are examples of generalized tables for PT where generalization is enforced at the attribute

level. For the clarity of the example, every table reports, together with each attribute, the domain

for the attribute in the table. With respect to k-anonymity: GT[0,1] satisfies k-anonymity for k =

1,2; GT[1,0] satisfies k-anonymity for k = 1, 2, 3; GT[0,2] satisfies k-anonymity for k = 1,...,4; and,

GT[1,1] satisfies k-anonymity for k = 1,...,6.

It is easy to see that the number of different domain generalizations of a table T, when

generalization is enforced at the attribute level, is equal to the number of different combinations of

domains that the attributes in the table can assume. Suppose I have domain generalization hierarchies

DGHi for Ai, i:1,…,n; then, the number of generalizations, enforced at the attribute level, for table

T(A1,…,An) is:

()∏
=

+
n

i
i

1

1DGH

Equation 1

Similarly, when generalization is enforced at the cell level, the number of different

generalizations of a table T is equal to the number of different combinations of values the cells within T

can assume. Given domain generalization hierarchies DGHi for Ai, i:1,…,n; then, the number of

generalizations, enforced at the cell level, for table T(A1,…,An) is:

()∏
=

+
n

i
i

1

1
T

DGH

Equation 2

Clearly, not all such generalizations are equally satisfactory. A trivial possible generalization,

for instance, is the one that generalizes each attribute to the highest possible level of generalization, thus

collapsing all tuples in the table to the same list of values. This provides k-anonymity at the price of a

strong generalization of the data. Such extreme generalization is not needed if a less generalized table

Computational Disclosure Control 01/08/01 8:22 AM

88

(i.e., containing more specific values) exists which satisfies k-anonymity. This concept is captured by

the following definition of k-minimal generalization.

Definition. k-minimal generalization

Let Tl(A1,…,An) and Tm(A1,…,An) be two tables such that Tl[QIT] ≤ Tm[QIT], where

QIT={Ai,…,Aj} is the quasi-identifier associated with the tables and {Ai,…,Aj} ⊆ {A1,…,An}. Tm

is said to be a minimal generalization of a table Tl with respect to a k anonymity requirement

over QIT if and only if:

1. Tm satisfies the k-anonymity requirement with respect to QIT

2. ∀Tz: Tl ≤ Tz, Tz ≤ Tm, Tz satisfies the k-anonymity requirement with respect to QIT ⇒

Tz[A1,…,An] = Tm[A1,…,An].

Example.

Figure 27 shows examples of generalizations of the table labeled PT with respect to the quasi-

identifier {Ethnicity, ZIP}. Each of these generalizations, enforced at the attribute level, satisfy

k-anonymity for k=2. That is, each tuple in the released tables, labeled GT[1,0], GT[1,1], GT[0,2],

GT[0,1], appears at least 2 times. GT[0,1] shows that generalizing ZIP one level up its domain

generalization hierarchy is sufficient to achieve k=2. Similarly, GT[1,0] shows that generalizing

Ethnicity one level up its domain generalization hierarchy is sufficient to achieve k=2. Therefore,

GT[1,1], and GT[0,2] perform more generalization than is necessary, because table GT[0,2], which

satisfies the anonymity requirement, is a generalization of GT[0,1]. Analogously, GT[1,1] cannot be

minimal, being a generalization of both GT[1,0] and GT[0,1]. Further, because both GT[0,1] and

GT[1,0] satisfy the requirement and are minimal, there may exist a preference among these

minimal generalizations.

Intuitively, a table Tm, generalization of Tl, is k-minimal if it satisfies k-anonymity and there does

not exist any generalization of Tl, which satisfies k-anonymity and of which Tm is a generalization.

It is trivial to see that a table that satisfies k-anonymity has a unique k-minimal generalization,

which is itself. It is also easy to see that the necessary and sufficient condition for a table T to satisfy k-

anonymity is that the cardinality of the table must be least k, as stated the following theorem. The

Computational Disclosure Control 01/08/01 8:22 AM

89

requirement of the maximal elements of each DGHi to be a singleton ensures the sufficiency of the

condition.

Theorem 2

Let T be a table and k be a natural number. If |T| ≥ k, then there exists at least a k-minimal

generalization for T. If |T| < k there is no k-minimal generalization for T.

5.3.1 Distance vectors and generalization strategies

I introduce a distance vector metric with Euclidean properties that measures distances between

tuples and between tables based on the number of generalizations or on the length of the functional

generalization sequence required to have the tuples or tables share the same generalized values.

Definition. Distance vector

Given DGHAli, with fh : h=0,…,p, where i=1,…,n, and tables Tl(Al1,…,Aln) and Tm(Am1,…,Amn)

such that Tl≤Tm, the distance vector of Tl to Tm is the vector DVl,m = [d1,…,dn] where each di is

the length of the unique path between Alh,which is Ali in DGHAli, and Amh, which is Amz in DGHAli

or simply mh-lh.

(E1,Z2) (E1,Z2) (E1,Z2) (E1,Z2)
Î Î Î

(E1,Z1) (E0,Z2) (E1,Z1) (E1,Z1) (E0,Z2)
Î Î Î

(E1,Z0) (E0,Z1) (E1,Z0) (E0,Z1) (E0,Z1)
Î Î Î

(E0,Z0) (E0,Z0) (E0,Z0) (E0,Z0)

GHT GS1 GS2 GS3

Figure 30 Generalization hierarchy GHT and strategies for T = <E0,Z0>

Intuitively the distance vector captures how many generalizations table Tm is from Table Tj for

each attribute. To illustrate, consider private PT and its generalized tables illustrated in Figure 27. The

distance vectors between PT and its different generalizations are the vectors appearing as subscripts to

GT for each table.

Computational Disclosure Control 01/08/01 8:22 AM

90

The relationship between distance vectors and minimal generalizations, which is the basis of the

correctness of my approach, is stated by the following theorem.

Theorem 3

Given tables Tl and Tm such that Tl ≤ Tm and Tm satisfies k-anonymity. Tm is k-minimal ⇔ there

does not exist a Tz such that Tz ≠ Tl, Tz ≠ Tm and Tl ≤ Tz and Tz≤Tm, Tz satisfies k-anonymity,

and DVl,z ≤ DVl,m.

Intuitively, the minimal generalizations of table Tl are exactly those tables Tj satisfying k-

anonymity with minimal distance vectors DVl,m. For instance, with reference to the generalized tables

illustrated in Figure 27, I have already noticed how, for k=3, GT[1,1] cannot be minimal because GT[0,1]

and GT[1,0] also satisfy k-anonymity. Recall that the subscript indicates the distance vector of the

generalized table GT from PT.

Given DGHAi, with fAih : h=0,…,pAi, where i=1,…,n, and table T(A1,…,An), the set of all possible

generalizations of T comprise a generalization hierarchy, GHT = DGHA1 × ... × DGHAn, assuming the

Cartesian product is ordered by imposing coordinate-wise order [74]. GHT defines a lattice whose

minimal element is T. For instance, Figure 30 illustrates the generalization hierarchy GH(E0,Z0) where the

domain generalization hierarchies of E0 and Z0 are as illustrated in Figure 26.

The generalization hierarchy of table T defines different ways in which T can be generalized. In

particular each path from T to the unique maximal element of GHT in the graph describing GHT defines a

possible alternative path they can be followed in the generalization process. I refer to the set of nodes in

each such path together with the generalization relationships between them as generalization strategy for

GHT. The different generalization strategies for GH(E0,Z0) are illustrated in Figure 30. The number of

different possible strategies for a generalization hierarchy is stated by the following theorem.

Theorem 4

Given DGHAi, with fAih : h=0,…,pAi, where i=1,…,n, and table T(A1,…,An), the number of

different generalization strategies for T is:

Computational Disclosure Control 01/08/01 8:22 AM

91

!

!

1

1

∏

∑

=

=

n

i
Ai

n

i
Ai

p

p

where each pAi is the length of the path from Ai to the maximal element in DGHAi.

For each strategy a minimal local generalization can be defined as the table satisfying k-

anonymity, with sequence of domains DT’ belonging to the strategy such that there are no other tables

satisfying k-anonymity with sequence of domains DT’’ in the strategy and such that DT’’ ≤ DT’. This says

the strategy is a total order and the minimal local generalization is always unique. The following

theorem states the correspondence between k-minimal generalization and the local minimal

generalization with respect to a strategy.

Theorem 5

Let T(A1,...,An) be a table to be generalized and let GHT be a generalization hierarchy for T.

Every k-minimal generalization of T is a local minimal generalization for some strategy of GHT.

The converse is not true; a local minimal generalization with respect to a strategy may not

correspond to a k-minimal generalization. For instance, consider the table PT and its generalized tables

illustrated in Figure 27, whose minimal results have been discussed in a previous example. For k = 3 the

minimal local generalizations are: GT[1,0] for strategy 1, GT[1,1] for strategy 2 and GT[0,2] for strategy 3.

However, as I have shown in a previous example, GT[1,1] is not k-minimal for k = 3. For k = 2 the

minimal local generalizations are: GT[1,0] for strategy 1 and GT[0,1] for strategies 2 and 3. Directly from

Theorem 5, a table has at most as many generalizations as the number of generalization strategies of its

generalization hierarchy. The number of k-minimal generalizations can be smaller if the generalized

table, locally minimal with respect to a strategy, is a generalization of a table locally minimal to another

strategy (GT[1,1] for k = 3 in the example above), or if different strategies have the same local minimal

generalization (GT[0,1] for k = 2 in the example above).

5.4 Minimal distortion of a table

When different minimal generalizations exist, preference criteria can be applied to choose a

preferred solution among them. For example, tables which generalize (or not) specific attributes, or

Computational Disclosure Control 01/08/01 8:22 AM

92

which return the highest number of distinct tuples can be preferred. For instance, for a k-anonymity

requirement with k = 2, GT[1,0] and GT[0,1] are both minimal, as shown in Figure 27, but GT[0,1] may be

preferred because it contains a larger number of distinct tuples.

A natural measure for preferring one minimal generalization over another is based on selecting

the minimal generalization whose information is least distorted. The application of any disclosure

limitation technique [75] to a table T results in a table T’ that has less information than T, and is

therefore less pure than T; I say T’ is a distorted version of T. In order to define the information loss

precisely and specifically to the disclosure limitation techniques employed, I define an information

theoretic metric that reports the amount of distortion of a table caused by generalization and suppression.

While entropy is the classical measure commonly used in information theory to characterize the purity of

data [76], and while information loss can therefore be simply expressed as the expected increase in

entropy resulting from the application of a disclosure limitation technique, a metric based on the

semantics of particular disclosure limitation techniques can be shown to be more discriminating than the

direct comparison of the encoding lengths of the values stored in the table.

I can measure the distortion in a cell of the generalized table RT by computing the ratio of the

domain of the value found within the cell to the height of the attribute’s domain generalization hierarchy.

The sum of the distortions found in each cell of the table RT provides an overall measure of the

distortion of the table. The definition below defines the precision of a generalized table RT to be one

minus the sum of the distortions found in the cells of the table (normalized by the total number of cells).

Definition. precision metric

Let PT(A1,...,ANa) be a table, tPj∈PT, RT(A1,...,ANa) be a generalization of PT, tPj∈PT, each

DGHA be the domain generalization hierarchy for attribute A, and fi’s be generalizations on A.

The precision of RT, written Prec(RT), based on generalization and suppression is:

() []()() []iRjiPjh
A

N

i

N

j Ai AtAtffwhere
N

h

Prec

A

=
•

−=
∑∑

= =
KK1

1 1
1

RT

DGH
RT

Computational Disclosure Control 01/08/01 8:22 AM

93

Example.

Consider the trivial case where PT = RT. I that case, each value found within RT is in the

ground domain of its attribute’s domain generalization hierarchy and so each hij= 0; therefore,

Prec(RT) = 1. Conversely, consider the trivial case where each value in each cell of RT is

suppressed –i.e., the maximal element found in its attribute's domain generalization hierarchy. In

that case, each hij=|DGHAi|; and so, Prec(RT) = 0.

Example.

Using the domain generalization hierarchies found in Figure 28 and Figure 29, I can compute the

precision of the generalizations of the table labeled PT with respect to the quasi-identifier

{ Ethnicity, ZIP} that are found in Figure 27. The Prec(PT) = 1 because all values in this table

are in their ground domains. Prec(GT[1,0]) = 0.75, the Prec(GT[1,1]) = 0.58, Prec(GT[0,2]) = 0.67,

and Prec(GT[0,1]) = 0.83. Each of these generalizations satisfy k-anonymity for k=2, but GT[0,1]

does so with minimal distortion.

As was shown in the previous example, there is inherent bias within Prec based on the height of

the domain generalization hierarchies associated with the attributes of the table. Primarily,

generalizations based on attributes with taller domain generalization hierarchies maintain precision better

than generalizations based on attributes with shorter domain generalization hierarchies. For example,

from Figure 27, GT[1,0] and GT[0,1] each generalize values up one level of an attribute's domain

generalization hierarchy. But, from Figure 28 and Figure 29, |DGHEthnicity| = 2 and |DGHZIP| = 3 and so,

Prec(GT[0,1]) > Prec(GT[1,0]).

Requirement on domain generalization hierarchies

For the semantics of the precision metric to be most accurate, domain generalization hierarchies

used within the computation must be streamlined to contain no unnecessary or unattainable domains.

Otherwise, the height of the domain generalization hierarchy will be arbitrarily increased and the

precision metric cannot reach 0 with respect to the attribute. For example, if suppression is fixed atop the

domain generalization hierarchy, then it should be removed from the precision analysis in cases where

suppression cannot be achieved.

Of course the usefulness of a generalized table is specific to the application to which the data

will be put [77]. Therefore, determining which minimal generalization is most useful relies on user-

Computational Disclosure Control 01/08/01 8:22 AM

94

specific preferences. These preferences can be provided as: (1) weights incorporated in the weighted

precision metric defined below; and, (2) a selection process for selecting among a set of minimal

generalizations all of which have the same weighted precision.

Definition. weighted precision metric

Let PT(A1,...,ANa) be a table, tPj∈PT, RT(A1,...,ANa) be a generalization of PT, tPj∈PT, each

DGHA be the domain generalization hierarchy for attribute A, fi’s be generalizations on A, and W

be the set of weights to specify preference where wij∈W is a weight assigned to tPj[Ai] such that 0

≤ PrecW(RT) ≤ 1. The precision of RT, written PrecW(RT), based on generalization and

suppression is therefore:

()
A

N

i

N

j
ij

Ai

W N

w
h

Prec

A

•

•

−=
∑∑

= =

RT

DGH
RT

1 1
1

[]()() [] () 101 ≤≤= RTWiRjiPjh PrecandAtAtffwhere KK

Example.

Recall in a previous example involving generalization enforced at the attribute level, both GT[0,1]

and GT[1,0] in Figure 27 were found to be minimal generalizations of PT [78]. A preference

among minimal generalizations can be based on merely summing the level of generalization of

each attribute with respect to the heights of the domain generalization hierarchies for those

attributes. One level of generalization corresponds to the values within the table being associated

with the next domain up the domain generalization hierarchy. In these cases preference is based

on the minimal generalizations having the smallest sum of values found in the corresponding

distance vectors. The weight wij in the weighted precision metric in this case is:

∑
=

•
=

AN

k
Ak

AAi
ij

N
w

1

DGH

DGH

Equation 3

Computational Disclosure Control 01/08/01 8:22 AM

95

This simplifies PrecW to:

()
∑

∑

=

=−=
AN

1k

DGH
RT

Ak

N

i
i

W

A

h
Prec 11

The weighted precision for the generalizations in Figure 27 using the weight in Equation 3 is:

PrecW(GT[1,0])=0.8, PrecW(GT[1,1])=0.6, PrecW(GT[0,2])=0.6, and PrecW(GT[0,1])=0.8. In this

scheme, the minimal generalizations GT[0,1] and GT[1,0] are of equal preference and minimal

distortion.

Notice that the regular precision metric Prec is a special case of the weighted precision metric

PrecW, where ∀wij∈W, wij = 1. In that case, Prec(T) = PrecW(T). As was shown in the earlier example,

not all minimal generalizations are equally distorted and preference can be based on the minimal

generalization having the most precision. This concept is captured by the following definition of k-

minimal distortion.

Definition. k-minimal distortion

Let Tl(A1,…,An) and Tm(A1,…,An) be two tables such that Tl[QIT] ≤ Tm[QIT], where

QIT={Ai,…,Aj} is the quasi-identifier associated with the tables and {Ai,…,Aj} ⊆ {A1,…,An} and

∀x=i,…,j, DGHAx are domain generalization hierarchies for QIT. Tm is said to be a minimal

distortion of a table Tl with respect to a k anonymity requirement over QIT if and only if:

1. Tm satisfies the k-anonymity requirement with respect to QIT

2. ∀Tz: Prec(Tl) ≥ Prec(Tz), Prec(Tz) ≥ Prec(Tm), Tz satisfies the k-anonymity requirement

with respect to QIT ⇒ Tz[A1,…,An] = Tm[A1,…,An].

Example.

Figure 27 shows examples of generalizations of the table labeled PT with respect to the quasi-

identifier {Ethnicity, ZIP}. Of these, only GT[0,1] is a k-minimal distortion.

Computational Disclosure Control 01/08/01 8:22 AM

96

A k-minimal distortion is based on the precision metric Prec. Domain generalization with

different heights can provide different Prec measures for the same table. So a k-minimal distortion is

specific to a table, a quasi-identifier and a set of domain generalization hierarchies for the attributes of

the quasi-identifier.

Also, the definition of k-minimal distortion can be modified to use the weighted precision metric

PrecW rather than Prec. I term this result a weighted k-minimal distortion.

It is trivial to see that a table that satisfies k-anonymity has a unique k-minimal distortion, which

is itself. It is also easy to see that a generalized table RT that is a k-minimal distortion of table PT is also

a k-minimal generalization of PT, as stated in the following theorem.

Theorem 6

Given tables Tl and Tm such that Tl ≤ Tm and Tm satisfies k-anonymity. Tm is a k-minimal

distortion of Tl ⇒ Tm is k-minimal generalization of Tl.

5.5 An algorithm for determining a minimal generalization with minimal distortion

Figure 31 presents an algorithm, called MinGen, which, given a table PT(Ax,…,Ay), a quasi-

identifier QI={ A1,…,An}, where {A1,…,An} ⊆ {Ax,…,Ay}, a k-anonymity constraint, domain

generalization hierarchies DGHAi, produces a table MGT which is a k-minimal distortion of PT[QI]. It

assumes that k < |PT|, which is necessary and sufficient condition for the existence of a minimal

generalized table (see Theorem 2). The MinGen algorithm ties together the formal methods presented in

this chapter and provides a model against which real-world systems will be compared in subsequent

chapters.

Computational Disclosure Control 01/08/01 8:22 AM

97

Preferred Minimal Generalization (MinGen) Algorithm
Input: Private Table PT; quasi-identifier QI = (A1, …, An), k-anonymity constraint k;

domain generalization hierarchies DGHAi, where i=1,…,n,
and preference specifications a preferred() function.

Output: MGT containing a minimal distortion of PT[QI] with respect to k-anonymity chosen
according to the preference specifications

Assumes: |PT |≥ k
Method:
3. if PT[QI] satisfies k-anonymity requirement with respect to k then do

3.1 MGT ← { PT } // PT is the solution
4. else do

4.1 allgen ← {Ti : Ti is a generalization of PT over QI}
4.2 protected ← {Ti : Ti ∈ allgen ∧ Ti satisfies k-anonymity requirement of k}
4.3 MGT ← {Ti : Ti ∈ protected ∧ there does not exist Tz ∈ protected such that Prec(Tz) > Prec(Ti) }
4.4 MGT ← preferred(MGT) // select the preferred solution

5. return MGT.

Figure 31 Preferred MinGen Algorithm

There are few steps in the MinGen algorithm. Step 1 determines if the original table, named PT,

itself satisfies the k-anonymity requirement; and if so, it is the k-minimal distortion. Step 2 is the core of

the algorithm executed in all other cases. Sub-step 2.1 stores the set of all possible generalizations of PT

over the quasi-identifier QI in allgens. Recognizing that some of the generalizations in allgens satisfy the

k-anonymity requirement and others do no, sub-step 2.2 stores those generalizations in allgens that do

satisfy the k-anonymity requirement in protected. Sub-step 2.3 filters out those generalizations from

protected that are not minimally distorted with respect to Prec and stores the resulting generalizations in

MGT. Notice that ∀GT1, GT2∈ MGT, Prec(GT1) = Prec(GT2). That is, after sub-step 2.3, MGT is the

set of all k-minimal distortions of PT. It is guaranteed that |MGT| ≥ 1. The function preferred() in sub-

step 2.4 selects a single generalization from MGT based on user-defined specifications.

The algorithm is straightforward, so its correctness relies on the definitions of generalization

[79], the k-anonymity requirement [80], and Prec [81]. It can be proved that a generalization of a table T

over a quasi-identifier QI, that satisfies a given k-anonymity requirement, and has the least amount of

distortion of all possible generalizations of T over QI, is a k-minimal distortion of T over QI with respect

to Prec. From Theorem 6, the solution is also a k-minimal generalization of T over QI.

Computational Disclosure Control 01/08/01 8:22 AM

98

The MinGen algorithm assumes there are at least k tuples in PT. The maximal element

requirement atop each domain generalization hierarchy assures |protected| ≥ 1 in all cases. For example,

protected always includes the table consisting of tuples which are all the same and indistinguishable,

where each value within each tuple is the maximal generalized element for its attribute.

With respect to complexity, MinGen makes no claim to be efficient. The |allgens| was expressed

in Equation 1, if generalization is enforced at the attribute level, and in Equation 2, if generalization is

enforced at the cell level. In both cases, the computational cost is tremendous, making an exhaustive

search of all possible generalizations impractical on even the most modest of tables.

Care must be taken that the domain generalization hierarchies used by MinGen contain domains

that are attainable by MinGen; otherwise, the height of the domain generalization hierarchy is inflated

and so, Prec can never be 0. For example, the domain generalization hierarchies based on the depictions

in Figure 32 include only those domains that can be attained by the MinGen algorithm. The depictions in

Figure 33 include an additional domain atop each hierarchy, where the additional domain contains the

suppressed value for the attribute. However, the MinGen algorithm would never provide a solution that

contained any suppressed values given those hierarchies. Therefore, the hierarchies in Figure 33 when

used by MinGen fail the requirement that Prec can achieve 0 [82]; so, the hierarchies in Figure 32 should

be used with MinGen.

In sub-step 2.4 of the MinGen algorithm, in cases where |MGT| > 1, each table in MGT is a

solution, but the preferred() function can return only one table as a solution. This single solution

requirement is a necessary condition because the chosen solution is then considered to become part of the

join of external information against which subsequent linking and matching must be protected. This

places additional constraints on the subsequent release of any other tables in MGT and of other

generalizations of the privately held information. Here are three related attacks and their solutions.

5.5.1 Unsorted matching attack against k-anonymity

This attack is based on the order in which tuples appear in the released table. While I have

maintained the use of a relational model in this discussion, and so the order of tuples cannot be assumed,

in real-world use this is often a problem. It can be corrected of course, by randomly sorting the tuples of

the solution. Otherwise, the release of a related table can leak sensitive information.

Computational Disclosure Control 01/08/01 8:22 AM

99

Example.

Using a weighted precision metric with the weight described in Equation 3, GT[0,1] and GT[1,0] in

Figure 27 are both k-minimal distortions of PT, where k=2. If GT[0,1] is released and a

subsequent release of GT[1,0] is then performed, but where the position of the tuples in each table

correspond to the same tuple in PT, then direct matching of tuples across the tables based on

tuple position within the tables reveals sensitive information. On the other hand, if the positions

of the tuples within each table are randomly determined, both tables can be released.

5.5.2 Complementary release attack against k-anonymity

In the previous example, all the attributes in the generalized tables were in the quasi-identifier.

That is typically not the case. It is more common that the attributes that constitute the quasi-identifier are

themselves a subset of the attributes released. As a result, when a k-minimal solution, which I will call

table T is released, it should be considered as joining other external information. Therefore, subsequent

releases of generalizations of the same privately held information must consider all of the released

attributes of T a quasi-identifier to prohibit linking on T, unless of course, subsequent releases are

themselves generalizations of T.

Example.

Consider the private table PT in Figure 34. The tables GT1, GT2 and GT3 in Figure 35 were

identified by MinGen (after step 2.3) as k-minimal distortions of PT, where k=2, the quasi-identifier

QI={Race, BirthDate, Gender, ZIP} and the domain generalization hierarchies are based on the

depictions in Figure 32. Suppose table GT1 is released as the preferred k-minimal solution. If

subsequently GT3 is also released, then the k-anonymity protection will no longer hold, even if the tuple

positions are randomly determined in both tables. Linking GT1 and GT3 on {Problem} reveals the table

LT shown in Figure 36. Notice how [white, 1964, male, 02138] and [white, 1965, female,

02139] are unique in LT and so, LT does not satisfy the k-anonymity requirement enforced by GT1 and

GT3. This problem would not exist if GT3 used the quasi=identifier QI ∪ {Problem} or if a

generalization of GT1 had been released instead of GT3.

Computational Disclosure Control 01/08/01 8:22 AM

100

 021**

 0213* 0214*

02138 02139 02141 02142

 ZIP code

 human

male female

 Gender

 person

Asian Black White

 Race

10 year range: 1960-69

5 year ranges: 1960-64 1965-69

1 year range 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

month/year

full date

Birth Date
Figure 32 Value generalization hierarchies for {ZIP, Gender, Race, BirthDate}

Computational Disclosure Control 01/08/01 8:22 AM

101

 021**

 0213* 0214*

02138 02139 02141 02142

 ZIP code

 human

male female

 Gender

 person

Asian Black White

 Race

10 year range: 1960-69

5 year ranges: 1960-64 1965-69

1 year range 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

month/year

full date

Birth Date

********Suppressed value

Figure 33 Value generalization hierarchies for {ZIP, Gender, Race, BirthDate} with suppression

Computational Disclosure Control 01/08/01 8:22 AM

102

id Race BirthDate Gender ZIP Problem
t1 black 9/1965 male 02141 short of breath
t2 black 2/1965 male 02141 chest pain
t3 black 10/1965 female 02138 painful eye
t4 black 8/1965 female 02138 wheezing
t5 black 11/1964 female 02138 obesity
t6 black 12/1964 female 02138 chest pain
t7 white 10/1964 male 02138 short of breath
t8 white 3/1965 female 02139 hypertension
t9 white 8/1964 male 02139 obesity

t10 white 5/1964 male 02139 fever
t11 white 2/1967 male 02138 vomiting
t12 white 3/1967 male 02138 back pain

Figure 34 Private Table PT

Race BirthDate Gender ZIP Problem Race BirthDate Gender ZIP Problem
black 1965 male 02141 short of breath black 1965 male 02141 short of breath
black 1965 male 02141 chest pain black 1965 male 02141 chest pain
person 1965 female 0213* painful eye person 1965 female 0213* painful eye
person 1965 female 0213* wheezing person 1965 female 0213* wheezing
black 1964 female 02138 obesity black 1964 female 02138 obesity
black 1964 female 02138 chest pain black 1964 female 02138 chest pain
white 1964 male 0213* short of breath white 1960-69 male 02138 short of breath
person 1965 female 0213* hypertension person 1965 female 0213* hypertension
white 1964 male 0213* obesity white 1964 male 02139 obesity
white 1964 male 0213* fever white 1964 male 02139 fever
white 1967 male 02138 vomiting white 1960-69 male 02138 vomiting
white 1967 male 02138 back pain white 1960-69 male 02138 back pain

GT1 GT2

Race BirthDate Gender ZIP Problem
black 1965 male 02141 short of breath
black 1965 male 02141 chest pain
black 1965 female 02138 painful eye
black 1965 female 02138 wheezing
black 1964 female 02138 obesity
black 1964 female 02138 chest pain
white 1960-69 male 02138 short of breath
white 1960-69 human 02139 hypertension
white 1960-69 human 02139 obesity
white 1960-69 human 02139 fever
white 1960-69 male 02138 vomiting
white 1960-69 male 02138 back pain

GT3

Figure 35 k-minimal distortions for PT in Figure 34 where k=2

Computational Disclosure Control 01/08/01 8:22 AM

103

Race BirthDate Gender ZIP Problem
black 1965 male 02141 short of breath
black 1965 male 02141 chest pain
black 1965 female 02138 painful eye
black 1965 female 02138 wheezing
black 1964 female 02138 obesity
black 1964 female 02138 chest pain
white 1964 male 02138 short of breath
white 1965 female 02139 hypertension
white 1964 male 02139 obesity
white 1964 male 02139 fever
white 1967 male 02138 vomiting
white 1967 male 02138 back pain

LT

Figure 36 Table resulting from linking GT1 and GT3 in Figure 35

5.5.3 Temporal attack against k-anonymity

Data collections are dynamic. Tuples are added, changed, and removed constantly. As a result,

releases of generalized data over time can be subject to a temporal inference attack. Let table T0 be the

original privately held table at time t=0. Assume a k-minimal solution of T0, which I will call table RT0,

is released. At time t, assume additional tuples were added to the privately held table T0, so it comes Tt.

Let RTt be a k-minimal solution of Tt that is released at time t. Because there is no requirement that RTt

respect the distortions of RT0, linking the tables RT0 and RTt may reveal sensitive information and

thereby compromise k-anonymity protection. As was the case in the previous example, to combat this

problem, RT0 should be considered as joining other external information. Therefore, either all of the

attributes of RT0 would be considered a quasi-identifier for subsequent releases, or subsequent releases

themselves would be generalizations of RT0.

Example.

At time t0, assume the privately held information is PT in Figure 34. As stated earlier, GT1,

GT2 and GT3 in Figure 35 are k-minimal distortions of PT over the quasi-identifier QI={Race,

BirthDate, Gender, ZIP} where k=2. Assume GT1 is released. At a later time t1, PT becomes

PTt1, which is PT ∪ {[black, 9/7/65, male, 02139, headache], [black, 11/4/65,

male, 02139, rash]}. MinGen executes on PTt1 as it has on PT and returns a k-minimal

distortion, which I will call GTt1. Assume this table contains GT3 in Figure 35; specifically,

GTt1 = GT3 ∪ {[black, 1965, male, 02139, headache], [black, 1965, male, 02139,

rash]}. As was shown in an earlier example, GT1 and GT3 can be linked on {Problem} to

Computational Disclosure Control 01/08/01 8:22 AM

104

reveal unique tuples over QI. Likewise, GT1 and GTt1 can be linked to reveal the same unique

tuples. One way to combat this problem is run MinGen on GT1 ∪ (PTt1 – PT), making the result

a generalization of GT1. In that case, a result could be GT1 ∪ { [black, 1965, male, 02139,

headache], [black, 1965, male, 02139, rash]}, which does not compromise the distorted

values in GT1.

5.5.4 MinGen as an anonymous data system

MinGen uses the generalization and suppression as disclosure limitation techniques. Below is a

description of the framework in which MinGen operates.

S = { subjects whose information is included in PT}

P = set of all people whose information could possibly be in PT

PT = privately held information about S

QI = set of attributes with replications in E

U = P

RT = MinGen(PT)

E = set of publicly available information in today's society

G = set of standard communication methods.

f = MinGen

The system A(S, P, PT, QI, U, {RT}, E, G, MinGen) is an ADS0.

Informal proof.

If QI contains all attributes replicated in E, A adheres to k-map protection,

where k is enforced on RT. That is, for each value of QI released in RT,

there are at least k tuples having that value.

So, A is an ADS0.

The practical significance of releasing individualized data, such that linking of the data to other

sources to re-identify individuals cannot be done, offers many benefits to our electronic society. This

work provides an effective and optimal solution to this problem.

Computational Disclosure Control 01/08/01 8:22 AM

105

In the next chapters, I present four computational systems that attempt to maintain privacy while

releasing electronic information. These systems are: (1) my Datafly II System, which generalizes and

suppresses values in field-structured data sets [83]; (2) Statistics Netherlands’ µ-Argus System, which is

becoming a European standard for producing public-use data [84]; (3) my k-Similar algorithm, which

produces optimal results in comparison to Datafly and µ-Argus [85]; and, (4) my Scrub System, which

locates personally-identifying information in letters between doctors and notes written by clinicians [86].

The Datafly, µ-Argus and k-Similar systems primarily use generalization and suppression for disclosure

limitation and provide protection by seeking to adhere to k-anonymity. As was shown in Equation 1 (on

page 87) and Equation 2 (on page 87), the number of possible generalizations prohibits an exhaustive

search, as was done by MinGen. As a result, these systems make approximations, which may not always

yield optimal results. In the next chapters, I assess the anonymity protection provided by each of these

systems in terms of whether each system is an ADS0 and compare the performance of each to MinGen.

The presentation returns to an informal style.

5.6 Future work

1. The size of and conditions for k necessary to ensure k-anonymity must be further

investigated. The Social Security Administration (SSA) releases public-use files based on

national samples with small sampling fractions (usually less than 1 in 1,000); the tuples

contain no geographic codes, or at most regional or size of place designators [87]. The SSA

recognizes that data containing individuals with unique combinations of characteristics can

be linked or matched with other data sources. So, the SSA’s general rule is that any subset

of the data that can be defined in terms of combinations of characteristics must contain at

least 5 individuals. This condition for k includes a sampling fraction and no geographical

specification. Current demand requires releasing all data with geographical specification.

How does this change the size of k? Studies could be based on a cost of communication

model, where the size of k is related to the cost of communicating with candidates to

determine the correct identity of persons who are the subject of the data.

2. The quality of generalized data is best when the attributes most important to the recipient do

not belong to any quasi-identifier. For public-use files this is acceptable, but determining the

quality and usefulness in other settings must be further researched. Survey published results

and determine which studies, if any, could have been achieved with sufficiently anonymous

Computational Disclosure Control 01/08/01 8:22 AM

106

data rather than identified data and which, if any, could not have used sufficiently

anonymous data without skewing results or prohibiting them altogether. Candidate studies

include epidemiological studies and surveys. Classify the results.

3. This chapter extended some of the foundational methods provided in the previous chapter. In

particular, this chapter focused on one version of k-map protection, namely k-anonymity, and

employed two disclosure limitation techniques, namely generalization and suppression.

There are other protection models [88] and other techniques [89]. Select another protection

model and/or other disclosure limitation techniques and extend the methods.

4. Disclosure limitation has been performed in different communities on different kinds of data

–such as summary tables, geographical information systems, textual documents and even,

DNA sequences. While the list of disclosure limitation techniques provided earlier (on page

60), crosses these boundaries, some techniques may work better with some kinds of data and

uses than others. Perform an analysis to see which kinds of disclosure limitation techniques

work best with which kinds of data and uses and why.

5. Weighted metrics were defined among the methods introduced in this chapter. Consider data

in a given application area, such as hospital discharge data, and introduce strategies for how

weights could be strategically applied to convey notions that some fields of information

contain information more sensitive than others. Try out the proposed schemes and compare

the semantics of the results to the non-weighted version.

Computational Disclosure Control 01/08/01 8:22 AM

107

Chapter 6 Results: Datafly II

In this chapter, I present my Datafly and Datafly II Systems whose goal is to provide the most

general information useful to the recipient. From now on, the term Datafly will refer to the Datafly II

System unless otherwise noted. Datafly maintains anonymity in released data by automatically

substituting, generalizing and suppressing information as appropriate. Decisions are made at the

attribute and tuple level at the time of database access, so the approach can be incorporated into role-

based security within an institution as well as in exporting schemes for data leaving an institution. The

end result is a subset of the original database that provides minimal linking and matching of data because

each tuple matches as many people as the data holder specifies.

6.1 Overview of the Datafly System

 Data Holder -attributes & tuples
 -recipient profile
 -anonymity 0.7
 Original Medical Database Resulting Database, anonymity 0.7, k=2
SSN Race Birth Sex ZIP SSN Race Birth Sex ZIP
819491049 Caucasian 10/23/64 M 02138 986345935 Caucasian 1964 m 02100
749201844 Caucasian 03/15/64 M 02139 Datafly 207502632 Caucasian 1964 m 02100
819181496 Black 09/20/64 M 02141 729247573 Black 1964 m 02100
859205893 Asian 10/23/64 m 02157 982574833 Black 1964 m 02100

985820581 Black 08/24/64 m 02138

Figure 37. Data holder overview of the Datafly System

Figure 37 provides an overview of the Datafly System from the data holder’s perspective for

generating a table for release. The original table is shown on the left. Input to the Datafly System is the

original privately held table and some specifications provided by the data holder. Output is a table whose

attributes and tuples correspond to the anonymity level specified by the data holder; in Figure 37 the

anonymity level is noted as being 0.7. These terms and the process used by Datafly to generate a table for

release are discussed in the following paragraphs.

Before any releases are generated, each attribute in the original table is tagged as using either an

equivalence class substitution algorithm or a generalization routine when its associated values are to be

Computational Disclosure Control 01/08/01 8:22 AM

108

released. If values of an attribute tagged as using equivalence class substitution are to be released, made-

up alternatives replace values of the attribute in the released data. The Social Security number attribute

labeled SSN provides an example in Figure 37 and a strong one-way hashing (encryption) algorithm is

used.

Alternatively, if an attribute is tagged as using generalization, then an accompanying

generalization hierarchy is assigned to the attribute; example hierarchies are shown in Figure 33 on page

101. The Datafly System iteratively computes increasingly less specific versions of the values for the

attribute until eventually the desired anonymity level is attained. For example, the birth date attribute

would first have the full month, day and year for each value. If further generalization were necessary,

only the month and year would be used, and then only the year and so on, as the values get less and less

specific, moving up the generalization hierarchy. The iterative process ends when there exists k tuples

having the same values assigned across a group of attributes (or quasi-identifier); this is termed a k

requirement and provides the basis for k-anonymity protection discussed earlier [90]. [Note in the earliest

version of Datafly, k was enforced on each attribute individually and a complicated requirement was

enforced across attributes; but in later versions which are named Datafly II, k is enforced across the

quasi-identifier as described here.] In Figure 37 the quasi-identifier under consideration, because of the

size of the database shown, is only {Race, Birth, Sex, ZIP} and k=2; therefore, in the released data, there

are at least two tuples for each combination of {Race, Birth, Sex, ZIP} released.

To use the system, the data holder (1) declares specific attributes and tuples in the original

private table as being eligible for release. The data holder also (2) groups a subset of the released

attributes into one or more quasi-identifiers and provides (3) a number from 0 to 1 is assigned to each

attribute eligible for release that identifies the likelihood each attribute within a quasi-identifier will be

used for linking; a 0 value means not likely and a value of 1 means highly probable. I term such a list a

profile. Finally, the data holder (4) specifies a minimum overall anonymity level that computes to a value

of k and (5) a threshold (called loss) that determines the maximum number of tuples that can be

suppressed, where loss must correspond to at least k tuples.

Datafly then produces the released table from the eligible attributes and tuples of the private

table such that each value of a quasi-identifier in the released table appears in at least k tuples. The k

requirement is accomplished by generalizing attributes within a quasi-identifier as needed and

suppressing no more than loss tuples.

Computational Disclosure Control 01/08/01 8:22 AM

109

In Figure 37, notice how the record containing the Asian entry was removed; Social Security

numbers were automatically replaced with made-up alternatives; birth dates were generalized to the year

and ZIP codes to the first three digits. In the next two paragraphs I examine the overall anonymity level

and its relationship to k and loss.

The overall anonymity level is a number between 0 and 1 that relates to the minimum k for each

quasi-identifier. An anonymity level of 0 provides the original data and a level of 1 forces Datafly to

produce the most general data possible given the profile of the recipient. All other values of the overall

anonymity level between 0 and 1 determine the operational value for k. (The institution is responsible

for mapping the anonymity level to particular values of k.) Information within each attribute is

generalized as needed to attain the minimum k and outliers, which are extreme values not typical of the

rest of the data, may be removed. Upon examination of the resulting data, every value assigned to each

quasi-identifier will occur at least k times with the exception of one-to-one replacement values, as is the

case with Social Security numbers.

 Anonymity (A) k Birth Date maxDrop%
 1
 --- .9 --- 493 24 4%
 --- .8 --- 438 24 2%
 --- .7 --- 383 12 8%
 --- .6 --- 328 12 5%
 --- .5 --- 274 12 4%
 --- .4 --- 219 12 3%
 --- .3 --- 164 6 5%
 --- .2 --- 109 4 5%
 --- .1 --- 54 2 5%
 0

Figure 38. Anonymity generalizations for Cambridge voters’ data with corresponding values of k.

Figure 38 shows the relationship between k and selected anonymity levels (A) using the

Cambridge voters’ database [91]. As A increased, the minimum requirement for k increased, and in order

to achieve the k-based requirement, values within an attribute in a quasi-identifier, for example, Birth

Date, were re-coded in ranges of 2, 4, 6, 12 or 24 months, as shown. Outliers were excluded from the

released data, and their corresponding percentages of N (where N is the number of tuples in the privately

held table eligible for release) are noted. An anonymity level of 0.7, for example, required at least 383

occurrences of every value of the quasi-identifier. To accomplish this in only Birth Date, for example,

required re-coding dates to reflect only the birth year. Even after generalizing over a 12 month window,

Computational Disclosure Control 01/08/01 8:22 AM

110

the values of 8% of the voters still did not meet the requirement so these voters were dropped from the

released data.

In addition to an overall anonymity level, the data holder also provides a profile of the needs of

the person who is to receive the data by specifying for each attribute that is to be in the release whether

the recipient could have or would use information external to the database that includes data within that

attribute. That is, the data holder estimates on which attributes the recipient might link outside

knowledge. Thus, each attribute has associated with it a profile value between 0 and 1, where 0

represents full trust of the recipient or no concern over the sensitivity of the information within the

attribute, and 1 represents full distrust of the recipient or maximum concern over the sensitivity of the

attribute’s contents. Semantically related attributes that are sensitive to linking, with the exception of

one-to-one replacement attributes, are treated as a single concatenated attribute (a quasi-identifier) that

must meet the minimum k requirement, thereby thwarting linking attempts that use combinations of

attributes. The role of these profiles is to help select which attribute within the quasi-identifier will be

selected for generalization. If all attributes in the quasi-identifier have the same value, then the attribute

having the greatest number of distinct values will be generalized.

Consider the profiles of a doctor caring for a patient, a clinical researcher studying risk factors

for heart disease, and a health economist assessing the admitting patterns of physicians. Clearly, these

profiles are all different. Their selection and specificity of attributes are different; their sources of

outside information on which they could link are different; and their uses for the data are different. From

publicly available birth certificates, driver license, and local census databases, the birth dates, ZIP codes

and gender of individuals are commonly available along with their corresponding names and addresses;

so these attributes could easily be used for re-identification. Depending on the recipient, other attributes

may be even more useful. If the recipient is the patient’s caretaker within the institution, the patient has

agreed to release this information to the care-taker, so the profile for these attributes should be set to 0 to

give the patient’s caretaker full access to the original information.

When researchers and administrators make requests that require less specific information than

that originally provided within sensitive attributes, the corresponding profile values should warrant a

number as close to 1 as possible, but not so much so that the resulting generalizations provide useless

data to the recipient. But researchers or administrators bound by contractual and legal constraints that

Computational Disclosure Control 01/08/01 8:22 AM

111

prohibit their linking of the data are trusted, so if they make a request that includes sensitive attributes,

the profile values would ensure that each sensitive attribute adheres only to the minimum k requirement.

The goal is to provide the most general data that are acceptably specific to the recipient. Since

the profile values are set independently for each attribute, particular attributes that are important to the

recipient can result in less generalization than other requested attributes in an attempt to maintain the

usefulness of the data. A profile for data being released for public use, however, should be 1 for all

sensitive attributes to ensure maximum protection. The purpose of the profiles are to quantify the

specificity required in each attribute and to identify attributes that are candidates for linking; and in so

doing, the profiles identify the associated risk to patient confidentiality for each release of data.

Using a pediatric medical record system [92] consisting of 300 patient records with 7617 visits

and 285 attributes stored in over 12 relational database tables, I conducted test in which the Datafly

System processed all queries to the database over a spectrum of recipient profiles and anonymity levels

to show that all attributes in medical records can be meaningfully generalized as needed because any

attribute can be a candidate for linking. Of course, which attributes are most important to protect

depends on the recipient. Attention was paid primarily to attributes commonly exported to government

agencies, researchers and consultants. Diagnosis codes have generalizations using the International

Classification of Disease (ICD-9) hierarchy (or other useful semantic groupings). Geographic

replacements for states or ZIP codes generalize to use regions and population size. Continuous variables,

such as dollar amounts and clinical measurements, can be converted to discrete values. Replacement

values must be based on meaningful subdivisions of values; and, replacement need only be done in cases

where the attributes are candidates for linking.

In the real-world example mentioned earlier on page 50, the Group Insurance Commission in

Massachusetts (GIC) collected patient-specific data with almost 100 attributes of information per

physician visit for a population of more than 135,000 state employees, their families and retirees. In a

public hearing, GIC reported giving a copy of the data to a researcher, who in turn stated that she did not

need the full date of birth, just the birth year [93]. The average value of k based only on {birth date,

gender} for that population is 3, but had the researcher received only {year of birth, gender}, the average

value of k would have increased to 1125. Furnishing the most general information the recipient can use

minimizes unnecessary risk to patient confidentiality.

Computational Disclosure Control 01/08/01 8:22 AM

112

6.2 Abstract of the Datafly algorithm

Here is a summary of the setting in which the core Datafly algorithm operates. The data holder

provides an overall anonymity level (A), which is a value between 0 and 1. The data holder also provides

a profile of the recipient by providing a linking likelihood (Pf) for each attribute that is also a value

between 0 and 1. Based on these values an overall value for k is computed and quasi-identifier(s) are

determined. For example, subsets of attributes where Pf=1 are treated as one concatenated attribute, or

quasi-identifier, which must satisfy a k-anonymity requirement. Each attribute has a replacement

algorithm that either uses equivalence class substitution, such as SSNs, or generalization based on a

domain generalization hierarchy specific to that attribute. Datafly also has a special facility for cases

involving multiple tuples attributable to the same person because the number of occurrences and other

information contained in the tuples, such as relative dates, can combine to reveal sensitive information.

For simplicity however, I will remove many of these finer features of the Datafly System from my

analysis of the underlying algorithm, with no loss of overall characterization. I describe the core Datafly

algorithm as working with a quasi-identifier and a k-anonymity requirement that is to be enforced on the

quasi-identifier. For convenience, I consider all attributes of the quasi-identifier as having equal weights

(specifically, Pf=1 for each attribute of the quasi-identifier), so they can be considered as not having

weights at all; and, I address only generalizable attributes of the quasi-identifier in isolation.

Computational Disclosure Control 01/08/01 8:22 AM

113

Core Datafly Algorithm
Input: Private Table PT; quasi-identifier QI = (A1, …, An), k-anonymity constraint k; domain

generalization hierarchies DGHAi, where i=1,…,n with accompanying functions fAi, and
loss, which is a limit on the percentage of tuples that can be suppressed. PT[id] is the set
of unique identifiers (key) for each tuple.

Output: MGT a generalization of PT[QI] that enforces k-anonymity
Assumes: |PT |≥ k, and loss * |PT| = k
algorithm Datafly:
// Construct a frequency list containing unique sequences of values across the quasi-identifier in PT,
// along with the number of occurrences of each sequence.
1. let freq be an expandable and collapsible Vector with no elements initially.Each element is of the

form (QI, frequency, SID), where SID = {idi : ∃t[id]∈PT[id]⇒t[id]=idi}; and, frequency = |SID|.
Therefore, freq is also accessible as a table over (QI, frequency, SID).

2. let pos ← 0, total ← 0
3. while total ≠ |PT| do

5.1 freq[pos] ← (t[QI], occurs, SID)
 where t[QI]∈PT[QI], (t[QI],__, ___)∉ freq; occurs = |PT| - |PT[QI] – { t[QI]}|;

 and, SID = {idi : ∃t[id]∈PT[id]⇒t[id]=idi}
5.2 pos ← pos + 1, total ← total + occurs

// Make a solution by generalizing the attribute with the most number of distinct values
// and suppressing no more than the allowed number of tuples.
6. let belowk ← 0
7. for pos ← 1 to |freq| do

7.1 (__, count) ← freq[pos]
7.2 if count < k then do

7.2.1 belowk ← belowk + count
8. if belowk > k then do: // Note. loss * |PT| = k

8.1 freq ← generalize(freq)
8.2 go to step 4

9. else do
// assert: the number of tuples to suppress in freq is ≤ loss * |PT|

9.1 freq ← suppress(freq, belowk)
9.2 MGT ← reconstruct(freq)

10. return MGT.

Figure 39 Core Datafly algorithm

Computational Disclosure Control 01/08/01 8:22 AM

114

Datafly generalize Algorithm
// This algorithm identifies the attribute within the quasi-identifier having the most number of distinct
// values in the tuples stored in freq and then generalizes those values in freq. Generalization is
// enforced at the attribute level, so all the values associated with an attribute are in the same domain.
1. let max ← 0
2. for each a∈QI do:

2.1 let values ← ∅
2.2 for pos ← 1 to |freq| do:

2.2.1 (t, __, __) ← freq[pos]
2.2.2 values ← values ∪ { t[a] }

// assert: values contains set of values assigned to attribute a in the tuples of freq
2.3 if max < |values | then do:

2.3.1 max ← |values|
2.3.2 attr ← a

// assert: attr is the attribute of QI having the most number of distinct values (max) in the tuples of freq
3. let V be a frequency list of the same type as freq. V initially has no elements.
4. if max = 1 then do:

4.1 halt on error // |PT| < k
// generalize values assigned to attr
5. for pos ← 1 to |freq| do:

5.1 ([va1, …, van], count, sid) ← freq[pos]
5.2 if attr = a1 then do

5.2.1 V ← VectorAdd(V, [fattr(va1),…,van], count, sid)
5.3 else if attr = an then do:

5.3.1 V ← VectorAdd(V, [va1,…,fattr(van)], count, sid)
5.4 else V ← VectorAdd(V, [va1,…,fattr(vattr),…,van], count, sid)

6. freq ← V
7. return freq

Figure 40 generalize(), supporting method for core Datafly algorithm

Datafly VectorAdd Algorithm
Input: V, t, occurs, sid
Output: Updates and returns V, a frequency list
// This method adds the tuples associated with (t,occurs,sid) to V avoiding duplication
algorithm VectorAdd:
1. for pos ← 1 to |V| do:

1.1. let (t1, occurs1, sid1) ← V[pos]
1.2. if t1 = t then do:

1.2.1. V[pos] ← (t, occurs + occurs1, sid1 ∪ sid)
1.2.2. return V

2. V[pos+1] ← (t, occurs, sid) // add to end
3. return V

Figure 41 Datafly VectorAdd algorithm

Computational Disclosure Control 01/08/01 8:22 AM

115

algorithm suppress(freq, belowk):
// This algorithm suppresses the tuples within freq that do not satisfy the k requirement; these
// should total belowk number of tuples.
// Assume freq has no more than loss * |PT| tuples to suppress, and loss * |PT| = k.
1. let smallest ← |PT|
2. for pos ← 1 to |freq| do:

2.1 (t, count,__) ← freq[pos]
2.2 if count < k then do:

2.2.1 freq[pos] ← (null, count,__)
 where null is the suppressed values for the tuple
2.2.2. belowk ← belowk – count

2.3 else do:
2.3.1 if count < smallest then do:

2.3.1.1 smallest ← count
3 if (belowk > 0) and (belowk < k) then do: // Note. loss * |PT| = k, belowk ≤ k

3.1 (t, count,__) ← freq[smallest]
3.2 if (count – belowk) ≥ k then do:

3.2.1 freq[pos+1] ← (t, count-belowk,__)
3.2.2 freq[smallest] ← (null, belowk,__)

3.3 else do:
3.3.1 freq[smallest] ← (null, count,__)

4 return freq

algorithm reconstruct(freq):
// This algorithm produces a table based on the tuples within freq and their reported frequencies.
1. let T ← ∅ // T is a table and so it is a multiset, which maintains duplicates
3. for pos ← 1 to |freq| do:

4.1 (t, count,sid) ← freq[pos]
4.2 for each id∈ sid do:

4.2.1 T ← T ∪ { t[QI, id]}
5 return T

Figure 42 suppress() and reconstruct(), supporting methods for core Datafly algorithm

Figure 39 lists the core Datafly algorithm. It contains only a few major steps. Step 1 through step

3 construct a frequency list containing unique sequences of values across the quasi-identifier in PT,

along with the number of occurrences of each sequence. The frequency list, freq, stores the result.

Therefore, each tuple in freq is unique and |freq| ≤ |PT|. The generalize() method of sub-step 6.1 is listed

in Figure 40. It uses a heuristic to guide its generalization strategy. Specifically, the attribute having the

Computational Disclosure Control 01/08/01 8:22 AM

116

most number of distinct values in the tuples stored in freq is selected. All the values associated with that

attribute are generalized, enforcing generalization at the attribute level.

Step 7 assumes that the number of tuples to suppress is less than or equal to loss * |PT|. That is,

the frequencies associated with tuples in freq that are less than k, together total no more than loss * |PT|.

The suppress() method in sub-step 7.1 can be found in Figure 42. It traverses through the tuples of freq

replacing the tuples whose frequencies are less than k with suppressed values for all the attributes of

those tuples, thereby suppressing those tuples. Suppression is enforced at the tuple-level. Complimentary

suppression is performed so that the number of suppressed tuples adheres to the k requirement. The

reconstruct() method in sub-step 7.2 can also be found in Figure 42. It produces a table, which becomes

MGT, based on freq. Specifically, the values stored for each tuple in freq appear in MGT as they do in

freq and are replicated in MGT based on the stored frequency. Therefore, |PT| = |MGT|.

While the core Datafly algorithm is a simplification of the Datafly system that works only across

the attributes of the quasi-identifier QI, it can be extended easily to have the generalized table include

attributes not in the quasi-identifier. This can be done by assigning a unique identifier to each tuple in PT

and then storing along with each tuple in freq, the unique identifiers of the corresponding tuples in PT.

The unique identifiers are stored in freq but are not modified or included in step 1 through step 7.1 of the

core Datafly algorithm. The reconstruct() method in sub-step 7.2 however, is modified to link each tuple

from freq to corresponding tuples in PT using the unique identifiers and thereby expand the tuples stored

in T to include the additional unchanged attributes of PT that do not belong to QI.

Race BirthDate Gender ZIP Problem
black 1965 male 02141 short of breath
black 1965 male 02141 chest pain
black 1965 female 02138 painful eye
black 1965 female 02138 wheezing
black 1964 female 02138 obesity
black 1964 female 02138 chest pain
white 1964 male 02139 obesity
white 1964 male 02139 fever
white 1967 male 02138 vomiting
white 1967 male 02138 back pain

Figure 43 Table MGT resulting from Datafly, k=2, QI={Race, Birthdate, Gender, ZIP}

Computational Disclosure Control 01/08/01 8:22 AM

117

Example.

The private table PT shown in Figure 34 includes unique labels, t1 through t12, associated with

each tuple. These labels are useful for linking the Datafly generalization to the original table.

Given PT and the domain generalization hierarchies based on the depictions in Figure 33 (on

page 101), the core Datafly algorithm provides the table MGT, as shown in Figure 43, as a

generalization of PT over the quasi-identifier QI = {Race, BirthDate, Gender, ZIP} with no

more than loss= k/|PT|, which is 2/12 (or 17%) of the tuples of PT suppressed. MGT adheres to a

k-anonymity requirement of k=2. Here is a walk through the Datafly algorithm as it constructs

MGT.

Figure 44 shows the contents of freq after step 3 of the core Datafly algorithm, before any

generalization is performed. The sequences of values, considered as a unit across QI in freq, are

each unique. The numbers appearing below each column in the tabular view of the attributes of

QI in freq report the number of distinct values found in each attribute of QI in freq. For

example, there are 2 distinct values, namely "black" and "white" associated with the attribute

Race; there are 12 distinct values associated with BirthDate; 2 with Gender; and, 3 with ZIP.

In Figure 44, the BirthDate attribute has the largest number of distinct values (12) of any

attribute of QI in freq; so, at sub-step 6.1, the generalize() method re-codes those values to

month and year of birth in accordance with the domain generalization hierarchy associated with

BirthDate. On the second iteration of steps 4 through 6, the BirthDate attribute again has the

largest number of distinct values (12) of any attribute of QI in freq; so again, these values are

recoded. This time values associated with BirthDate report only the year of birth, as shown in

Figure 45. The two tuples identified as t7 and t8 in Figure 45 do not occur k times (only once

each). In order for this generalization to be a solution, these two tuples in freq would have to be

suppressed. That would be 2/12 (or 17%) of the tuples in PT, which is in accordance with the

allowable loss of tuples due to suppression (based on loss). Therefore, a solution is found. Figure

43 shows the final result.

Computational Disclosure Control 01/08/01 8:22 AM

118

Race BirthDate Gender ZIP #occurs
black 9/20/65 male 02141 1 t1
black 2/14/65 male 02141 1 t2
black 10/23/65 female 02138 1 t3
black 8/24/65 female 02138 1 t4
black 11/7/64 female 02138 1 t5
black 12/1/64 female 02138 1 t6
white 10/23/64 male 02138 1 t7
white 3/15/65 female 02139 1 t8
white 8/13/64 male 02139 1 t9
white 5/5/64 male 02139 1 t10
white 2/13/67 male 02138 1 t11
white 3/21/67 male 02138 1 t12

2 12 2 3

Figure 44 freq at an intermediate stage of the core Datafly algorithm

Race BirthDate Gender ZIP #occurs
black 1965 male 02141 2 t1,t2
black 1965 female 02138 2 t3, t4
black 1964 female 02138 2 t5, t6
white 1964 male 02138 1 t7
white 1965 female 02139 1 t8
white 1964 male 02139 2 t9, t10
white 1967 male 02138 2 t11, t12

2 3 2 3

Figure 45 freq at another intermediate stage of the core Datafly algorithm

6.3 Comparison to MinGen

A comparison to MinGen [94] requires examining: (1) the computational complexity of the

algorithm to ensure it operates in reasonable time; (2) the correctness of the algorithm in terms of k-

anonymity protection; and, (3) whether the algorithm distorts minimally. These are discussed in the

following subsections.

6.3.1 Complexity of the core Datafly algorithm

The core Datafly algorithm listed in Figure 39 with supporting methods in Figure 40 and Figure

42 was not written as efficiently as possible. Nevertheless, here is a walk through the algorithm noting

the computational complexity of each part. Its computational complexity is governed by step 4 through

step 6 of the core Datafly algorithm. In the worst case, where |freq| = |PT| on the first iteration, step 5

executes |PT| times on the first iteration and fractions of |PT| on subsequent iterations. The construction

of a frequency list requires visiting each element of a frequency list and if changes are made due to

generalization, the element is removed and then the modified element added. In order to avoid

duplication of elements in a frequency list, all elements in the frequency list are compared to the element

Computational Disclosure Control 01/08/01 8:22 AM

119

that is to be inserted. If the elements of freq were stored in a binary tree, then such a comparison could

be done in log(|freq|) time. In the worst case, |freq| = |PT|; in all cases, |freq| ≤ |PT|. Similarly, in this

case, step 6 executes the generalize() method in O(|QI| • |PT| log |PT|), if freq was stored as a binary

tree, or O(|QI| • |PT|2) as the methods are written. The outer loop from step 4 through step 6 executes

∑
=

||

1

QT

AiDGH
i

 times in its worst case, which requires each attribute to generalize one step at a time to its

maximal element. So, the overall complexity for the core Datafly algorithm in general is

•

∑
=

PT DGH
QT

Ai

||

1i

O . In most databases, |QI| << |PT| and ∑
=

||

1

QT

AiDGH
i

 << |PT|. So, the overall

complexity for the core Datafly algorithm in general is O(|QI| • |PT| log |PT|), if freq was stored as a

binary tree, or O(|QI| • |PT|2) as the methods are written. In comparison to the computational complexity

of MinGen [95] and Equation 1 (on page 87), the computational complexity of the core Datafly

algorithm is practical but not extremely fast.

6.3.2 Correctness of the core Datafly algorithm

The correctness of the core Datafly algorithm relies on its ability to produce solutions that adhere

to a given k-anonymity requirement, assuming of course a proper quasi-identifier and a proper value for k

have been provided. In this subsection, I will show that the core Datafly algorithm provides solutions that

correctly adhere to a given k-anonymity requirement.

The enforcement of a k-anonymity requirement is based on step 5, step 6 and step 7 of the core

Datafly algorithm. At the conclusion of step 5, the following assertion is true: belowk stores the total

number of tuples not adhering to the k-anonymity requirement. Assume loss has not been inflated. Its

minimal required value, based on the stated assumptions by the algorithm, is loss * |PT| = k. Then, step 6

executes in all cases where belowk > k, and iteratively generates attributes until belowk ≤ k. The

convergence is assured by the singleton maximal element constraint on each domain generalization

hierarchy [96]. Therefore, step 7 executes only if belowk ≤ k. Sub-step 7.1 executes the suppress()

method. There are two cases to consider – namely, when belowk = k and when belowk < k.

Computational Disclosure Control 01/08/01 8:22 AM

120

Case 1. If belowk = k, step 2 of the suppress() method will provide suppressed values in freq for

what corresponds to k tuples in the final table, and these tuples are exactly those tuples for which belowk

corresponds – i.e., the tuples that do not adhere to k-anonymity.

Case 2. If belowk < k, step 2 of the suppress() method behaves as described in case 1 above,

except the tuples with suppressed values in freq will themselves not total k occurrences. Therefore, the

suppressed tuples do not themselves adhere to k-anonymity. In this case, additional tuples are suppressed

so that the total number of suppressed tuples adhere to the k-anonymity requirement. The tuples selected

for such complementary suppression come from tuples in freq that already adhere to the k-anonymity

requirement. In the suppress() method listed in Figure 42, a tuple in freq which adheres to the k-

anonymity requirement and has the fewest number of occurrences in the resulting table is selected. It's

position in freq is denoted by smallest. [In the full-blown version of the Datafly System, the data holder

selects whether a tuple with the fewest, or with the most number of occurrences is used.] In an effort to

minimize the suppression, if freq[smallest] has at least k + (k-belowk) occurrences, then only (k-belowk)

occurrences are suppressed. All tuples in the resulting table therefore, have at least k indistinguishable

tuples occurring over QI.

6.3.3 Summary data attack thwarted by the core Datafly algorithm

The enforcement of the k-anonymity requirement even on suppressed tuples protects Datafly

from an inference attack based on summary data. If the frequencies of values contained within the

privately held information are released separately for each attribute, which is often the case in statistical

reports and summary data, then this information can be used to infer suppressed values if the suppressed

values themselves do not adhere to the k-anonymity requirement imposed on the other released values.

Example.

Summary data for the privately held information PT in Figure 34 is shown in Figure 46. Suppose

table T in Figure 47 was released as a generalization of PT that satisfied a k-anonymity

requirement where k=2 over the quasi-identifier QI={Race, BirthDate, Gender, ZIP}. Except for

the single suppressed tuple, k-anonymity is satisfied for all the other tuples. However, using the

summary data, the missing tuple can be inferred exactly. To combat this problem, the k-

anonymity requirement must be satisfied on all values, including suppressed ones. The Datafly

solution shown in Figure 43 does not have this problem.

Computational Disclosure Control 01/08/01 8:22 AM

121

Race Frequency
black 6
white 6

BirthYear
1964 5
1965 5
1967 2

Gender
male 6

female 6
Problems

back pain 1
chest pain 2

fever 1
hypertension 1

obesity 2
painful eye 1

short of breath 2
vomiting 1

wheezing 1

Figure 46 Summary data for PT in Figure 34

Race BirthDate Gender ZIP Problem
black 1965 male 0214* short of breath
black 1965 male 0214* chest pain
black 1965 female 0213* painful eye
black 1965 female 0213* wheezing
black 1964 female 0213* obesity
black 1964 female 0213* chest pain
white 1964 male 0213* short of breath
white 1964 male 0213* obesity
white 1964 male 0213* fever
white 1967 male 0213* vomiting
white 1967 male 0213* back pain

Figure 47 Generalization of PT in Figure 34

6.3.4 Distortion and the core Datafly algorithm

In terms of assessing the quality of generalized data that adhere to a k-anonymity requirement, it

is important to note whether: (1) the resulting data are minimally generalized – i.e., not a generalization

of another generalization that satisfies the same k-anonymity requirement; and, (2) the data are minimally

distorted – i.e., of all minimal generalizations that satisfy the k-anonymity requirement, none have more

precision retained in the data. In this subsection I will show that the core Datafly algorithm does not

necessarily provide minimally generalized solutions or minimally distorted ones, even though its

solutions do adhere to a k-anonymity requirement.

Computational Disclosure Control 01/08/01 8:22 AM

122

One of the problems is that Datafly makes crude decisions – generalizing all values associated

with an attribute or suppressing all values within a tuple. Algorithms that make decisions at the cell-level

can potentially provide better results.

Example.

Given the privately held information PT in Figure 34, the Figure 43 provides table MGT, where

Datafly(PT)=MGT for k=2, quasi-identifier QI={Race, BirthDate, Gender, ZIP}, and

∀i=1,…,|QI|, DGHAi are domain generalization hierarchies based on the depictions in Figure 33.

The precision, Prec(MGT) with respect to DGHAi is 0.750. In comparison, Figure 35 provides

GT1, where MinGen(PT)=GT1. It is a k-minimal distortion of PT over QI with respect to

DGHAi where Prec(GT1)=0.83. The MinGen result therefore has less distortion based on cell-

level generalization and suppression.

Another problem is the heuristic that guides the core Datafly algorithm's selection of which

attribute to generalize. The approach of selecting the attribute with the greater number of distinct values,

as is done in the generalize() method, may be computationally efficient, but can easily lead to

unnecessary generalization. Any attribute that is not in the domain of its maximal element could be

selected for generalization, though some choices are better than others. The heuristic used in the core

Datafly algorithm makes the assumption that having more distinct values associated with an attribute in a

table is a perfect predictor of the distance between tuples and of the optimal generalization strategy [97].

Neither of these assumptions is valid. As a result, the core Datafly algorithm can provide more

generalization than is needed.

Example.

Given the privately held information PT and the generalizations of PT named GT[1,0], GT[1,1],

GT[0,2] and GT[0,1] in Figure 27, GT[1,0], GT[1,1] and GT[0,2] all satisfy a k-anonymity requirement

where k=3, the quasi-identifier is QI={Ethnicity, ZIP}, and where ∀i=1,…,|QI|, DGHAi are

domain generalization hierarchies based on the depictions in Figure 26 but where a domain

containing the single suppressed value has been affixed atop each. The first iteration of the core

Datafly algorithm would provide GT[0,1] because there are 3 distinct values for Ethnicity and 4

distinct values for ZIP in PT. However, GT[0,1] does not satisfy the k-anonymity requirement, so

another iteration occurs. There are 3 distinct values for Ethnicity and 2 distinct values for ZIP in

GT[0,1], so GT[1,1] emerges as the Datafly solution. This table does satisfy the k-anonymity

Computational Disclosure Control 01/08/01 8:22 AM

123

requirement. However, GT[1,0] also satisfies the k-anonymity requirement and it has less

generalization. In fact, GT[1,0] ≤ Datafly(PT)=GT[1,1].

6.4 Datafly as an anonymous data system

Datafly uses the following disclosure limitation techniques: de-identification, equivalence class

substitution, generalization, and suppression. Below is a description of the framework in which Datafly

operates.

S = {subjects whose information is included in PT}

P = set of all people whose information could possibly be in PT

PT = privately held information about S

QI = set of attributes with replications in E

U = {existence of people implied by equivalence class assignments} ∪ P

RT = Datafly(PT)

E = set of publicly available information in today’s society

G = set of standard communication methods.

f = Datafly System

The system A(S, P, PT, QI, U, {RT}, E, G, Datafly) is an ADS0.

Informal proof.

If QI contains all attributes replicated in E, A adheres to k-map protection, where k is enforced

on RT. That is, for each value of QI released in RT, there are at least k tuples having that value,

including suppressed tuples; for completeness, see earlier discussion [98].

So, A is an ADS0.

Datafly is an ADS0 in cases where the quasi-identifier is correctly chosen because in those cases

each tuple released by Datafly will indistinctly map to at least k entities.

6.5 Future work

1. The core Datafly algorithm does not typically provide k-minimal generalizations [99]. Revise

the core Datafly algorithm, or construct a similar algorithm, that makes decisions based on

Computational Disclosure Control 01/08/01 8:22 AM

124

enforcing generalization at the attribute level and suppression at the tuple level and that

operates in real-time, yet provides k-minimal generalizations.

2. Similar to the item above, revise the core Datafly algorithm, or construct a similar algorithm,

that makes decisions based on enforcing generalization at the attribute level and suppression

at the tuple level and that operates in real-time, yet provides k-minimal distortions [100]

based on a precision metric [101] specific to attribute level generalization and tuple level

suppression.

3. The core Datafly algorithm relies on a heuristic to guide its generalization strategy. This

heuristic selects the attribute of the quasi identifier having the greater number of distinct

values in the modified table as the attribute to generalize. As was discussed earlier [102], this

heuristic is computationally efficient but provides no protection against unnecessary

generalization. There are many other heuristics that are just as computationally efficient.

Perform an analysis that compares a set of such heuristics (including the random selection of

an attribute) to optimal results. A nearest neighbor strategy based on distance vectors is used

in the k-similar algorithm, which appears in a subsequent chapter [103]; perhaps it could be

adapted to attribute-level generalization and tuple-level suppression.

4. The core Datafly algorithm presented in Figure 39 was not written to be as computationally

efficient as possible. For example, given a private table PT, the original Datafly system

could operate in O(|PT| log |PT|) time. Examine the core Datafly algorithm and its

supporting algorithms and improve their computational complexity or prove the minimum

complexity required for this approach. Examine and describe best case, worst case and

general case scenarios.

Computational Disclosure Control 01/08/01 8:22 AM

125

Chapter 7 Results: µ-Argus

In 1996, The European Union began funding an effort that involves statistical offices and

universities from the Netherlands, Italy and the United Kingdom. The main objective of this project is to

develop specialized software for disclosing public-use data such that the identity of any individual

contained in the released data cannot be recognized. Statistics Netherlands has already produced a first

version of a program named µ-Argus that seeks to accomplish this goal [104]. The µ-Argus program is

considered by many as the official confidentiality software of the European community. A presentation

of the concepts on which µ-Argus is based can be found in Willenborg and De Waal [105]. µ-Argus is

surprisingly similar to my Datafly system even though the systems were developed at roughly the same

time with no prior knowledge of each other and the systems are from different academic traditions. In

comparison, as you will see, Datafly tends to over-distort data while µ-Argus tends to under-protect data.

7.1 Overview of the µ-Argus System

The program µ-Argus, like the Datafly System, provides protection by enforcing a k requirement

on the values found in a quasi-identifier. It generalizes values within attributes as needed, and removes

extreme outlier information from the released data. The data holder provides a value of k and specifies

which attributes are sensitive by assigning a value to each attribute between 0 and 3 denoting "not

identifying," "most identifying," "more identifying," and "identifying," respectively. The program then

identifies rare and therefore unsafe combinations by testing some 2- or 3-combinations of attributes

declared to be sensitive. Unsafe combinations are eliminated by generalizing attributes within the

combination and by local cell suppression. Rather than removing entire tuples when one or more

attributes contain outlier information as is done in the Datafly System, the µ-Argus System simply

suppresses or blanks out the outlier values at the cell-level. The resulting data typically contain all the

tuples and attributes of the original data, though values may be missing in some cell locations.

Each unique combination of values found within sensitive attributes constitutes a bin. When the

number of occurrences of such a combination is less than the minimum required bin size (also known as

a k requirement), the combination is considered unique and termed an outlier. Clearly for all

combinations that include unique identifiers like Social Security numbers, all such combinations are

Computational Disclosure Control 01/08/01 8:22 AM

126

unique. Values associated with outliers must be generalized or one value from each outlier combination

must be suppressed. For optimal results when suppression is performed, the program should suppress

values that occur in multiple outliers giving precedence to the value occurring most often.

The responsibility of when to generalize and when to suppress lies with the data holder. For this

reason, the µ-Argus program operates in an interactive mode so the data holder can see the effect of

generalizing and can then select to undo the step. Once a data holder decides to suppress, the selection

of which cells require suppression is performed automatically by the program. This is in sharp contrast to

Datafly, which automatically produces a complete solution based on data holder specifications. In µ-

Argus, a data holder is not even notified whether a current solution satisfies a k requirement across the

quasi-identifier, so the data holder can easily continue and overly distort data or stop prematurely and

under protect data. In addition, there are many possible ways a data holder could rank identifying

attributes, and unfortunately different identification ratings typically yield drastically different results.

So, ratings and results reported on µ-Argus in this book are based on the most secure possible using the

µ-Argus program and therefore, reported use of µ-Argus assumes an extremely knowledgeable data

holder.

µ-Argus only uses attribute-level generalization and cell-level suppression. Equivalence class

substitution is not provided, as was with Datafly, so the ability to link data across tables to the same

person is lost without consistent replacement of identifiers, which provide such links. In fairness to µ-

Argus, the current version does not work across multiple tables and as a result it does not take into

account many related issues including facilities for longitudinal studies, analysis of the number of

records per person, etc, but future versions may do so.

7.2 Abstract of the µ-Argus System

I have not found an algorithmic description of µ-Argus in conversation with or in publication by

Statistics Netherlands or any other party. Textbook descriptions of how generalization, which they term

re-coding, and cell suppression work, as well as instructions and examples of the use of µ-Argus, and a

copy of the software were graciously provided by Statistics Netherlands. From these, I have reverse

engineered µ-Argus and produced the µ-Argus algorithm shown in Figure 50 with supporting methods

found in Figure 51 through Figure 62. By "reverse engineering", I mean that the names of methods and

Computational Disclosure Control 01/08/01 8:22 AM

127

implementation specifics reported in Figure 50 through Figure 62 are created by me in such a way that

the overall behavior of each phase of the program agrees, except where noted, with the actual µ-Argus

program when provided the same information. The primary phases of the µ-Argus algorithm are provided

in Figure 48. During this process of reverse engineering and construction of the algorithm, several

shortcomings of the actual µ-Argus implementation were found and are discussed. So in reality, the µ-

Argus algorithm I provide in Figure 50 and supporting methods generates solutions that are better

protected than those released by the actual program.

 Primary phases in the µ-Argus algorithm are as follows:

 A. Automatically generalize each attribute independently until it
adheres to k.

 B. Automatically test 2- and 3- combinations of attributes and
note outliers.

 C. Data holder decides whether to generalize an attribute and if
so, identifies the attribute to generalize.

 D. Repeat steps B and C until data holder has no more attributes
to generalize.

 E. Automatically suppress values that occur in multiple outliers,
where precedence is given to the value occurring most often.

Figure 48 Primary phases of µ-Argus algorithm

The basic phases of the µ-Argus algorithm are listed in Figure 48. The program begins in phase

A by automatically generalizing each attribute independently until each value associated with an attribute

appears at least k times. In phase B, the program then automatically tests combinations of attributes to

identify those combinations of attributes whose assigned values in combination do not appear at least k

times; such combinations of values are termed outliers. Afterwards, the data holder, in phase C, decides

whether to generalize an attribute and if so, identifies the attribute to generalize. Phases B and C repeat

until the data holder no longer selects an attribute to generalize. Finally, the program in phase E,

automatically suppresses values that occur in multiple outliers, where precedence is given to the value

occurring most often.

Computational Disclosure Control 01/08/01 8:22 AM

128

One shortcoming of the actual µ-Argus implementation appears in phase B in Figure 48.

Attributes considered sensitive or likely candidates for linking are rated as being either "most

identifying" (Most), "more identifying" (More), or "identifying (Identifying) by the data holder. In

general, the µ-Argus approach concerns examining 2- and 3- combinations across these classes of

attributes. However, µ-Argus does not actually test all 2- and 3- combinations. Figure 49 reports which

combinations µ-Argus does and does not test. It is easy to envision situations in which unique

combinations appear in combinations not examined by µ-Argus.

 Combination µ-Argus Tests
 Identifying × Identifying × Identifying No
 Identifying × Identifying × More No
 Identifying × Identifying × Most No
 Identifying × More × More No
 Identifying × More × Most Yes
 Identifying × Most × Most Yes
 More × More × More No
 More × More × Most only if |Identifying| > 1
 Most × Most × More only if |Identifying| > 1
 Most × Most × Most Yes
 Identifying × Identifying No
 Identifying × More Yes
 Identifying × Most Yes
 More × More only if |Identifying| > 1
 More × Most Yes
 Most × Most Yes

Figure 49 Combinations of More, Most, Identifying tested by µ-Argus

Figure 49 shows there are 9 combinations involving each of the classes Most, More and

Identifying. However, µ-Argus examines only 8 combinations involving Most, 6 involving More and 4

involving Identifying. So, the sensitivity ranking assigned to an attribute by a data holder relates to the

number of combinations that are examined and that include the attribute. Even then however, not all

possible combinations are examined. If a class has no attributes, then any combination involving it is not

computed. In three cases, the size of Identifying determines whether combinations of attributes that do

not even include Identifying are checked. For example, if only Most and More have attributes and

Identifying is empty, then only the combinations identified as More × Most and Most × Most × Most are

examined.

Computational Disclosure Control 01/08/01 8:22 AM

129

Example.

Let Most = {SSN}, Identifying = {Birthdate, Gender, ZIP} and More be empty. In this case, only

Identifying × Most 2-combinations are examined. Yet, 87% of the population of the United

States is considered uniquely identified by {Birthdate, Gender, ZIP}. [106]

Figure 50 contains my description of the µ-Argus algorithm. Figure 51 through Figure 62

provide supporting methods. A description of the general operation of the algorithm and an example

using these algorithms are provided following the listings.

Computational Disclosure Control 01/08/01 8:22 AM

130

µ-Argus Algorithm
Input: Private Table PT; quasi-identifier QI = (A1, …, An), k-anonymity constraint k; domain

generalization hierarchies DGHAi, where i=1,…,n with accompanying functions fAi, and
Most, More and Identifying, which are disjoint sets of attributes over the quasi-identifier
QI.

Output: MT a generalization of PT[QI]
Assumes: Most, More and Identifying are disjoint divisions of the attributes over the quasi-

identifier QI. That is, QI= Most ∪ More ∪ Identifying and Most ∩ More = ∅ and Most
∩ Identifying = ∅ and More ∩ Identifying = ∅. PT includes an attribute id that serves as
a unique identifier (or key) for each tuple in PT.

algorithm µ-Argus:
// Construct a frequency list containing unique sequences of values across the quasi-identifier in PT,
// along with the number of occurrences of each sequence and the id’s of the tuples having that sequence.

1. let freq be an expandable and collapsible Vector with no elements initially. Each element is of
the form (QI, frequency, SID, outliers), where SID = {idi : ∃t[id]∈PT[id]⇒t[id]=idi}; frequency
= |SID|; and, outliers = ∅. Therefore, freq is also accessible as a table over (QI, frequency, SID,
outliers).

2. freq ← freqSetup(freq, PT, QI)
// generalize each attribute of QI to adhere to k

3. for each aj∈QI do:
3.1. let V be a frequency list of the same type as freq
3.2. V ← freqConstruct(aj)
3.3. if freqMin(V) < k then do:

3.3.1. freq ← generalize(aj)
3.3.2. go to step 3.2

// check 2- and 3- combinations across Most, More, Identifying
4. CombinationTest(Most, More, Identifying)
5. ReportOutliers(freq) // show data holder outliers
6. while (data holder wants to generalize an attribute aj) do:

6.1. freq ← generalize(aj)
7. if (data holder is not done) then do:

7.1. freq ← ResetOutliers(freq)
7.2. go to step 4

// suppress outliers and end
8. freq ← SuppressOutliers(freq)
9. MT ← reconstruct(freq)
10. return MT

Figure 50 µ-Argus algorithm

Computational Disclosure Control 01/08/01 8:22 AM

131

µ-Argus freqSetup Algorithm
Input: freq, PT, QI
Output: Updates and returns freq, a frequency list
// This method constructs a frequency list from PT based on QI.
algorithm freqSetup:
1. let pos ← 1, total ← 0
2. while total ≠ |PT| do

2.1. freq[pos] ← (t[QI], occurs, sid, ∅)
 where t[QI]∈PT[QI], (t[QI],__)∉ freq,
 occurs = |PT| - |PT[QI] – {t[QI]}|
 sid = {t[id] : t[QI,id]∈PT[QI,id]

2.2. pos ← pos + 1, total ← total + occurs
3. return freq

Figure 51 µ-Argus freqSetup algorithm

µ-Argus freqConstruct Algorithm
Input: Ax, …, Ay, which is a list of one or more attributes and each such attribute is an element

of QI.
Output: V, a frequency list based on freq[Ax,…,Ay].
Assumes: Ax,…,Ay contains no duplicates and each is a member of QI and freq is available for use.
// This algorithm constructs a frequency list from the tuples of freq over a subset of attributes of QI.
algorithm freqConstruct:

1. let V be a frequency list of the same type as freq. V initially has no elements.
2. for pos ← 1 to |freq| do:

1.1. (t, occurs, sid, outliers) ← freq[pos]
1.2. V ←VectorAdd(V, t[Ax,…,Ay], occurs, sid)

3. return V

Figure 52 µ-Argus freqConstruct algorithm

Computational Disclosure Control 01/08/01 8:22 AM

132

µ-Argus VectorAdd Algorithm
Input: V, t, occurs, sid
Output: Updates and returns V, a frequency list
// This method adds the tuples associated with (t,occurs,sid) to V avoiding duplication
algorithm VectorAdd:
2. for pos ← 1 to |V| do:

3.4. let (t1, occurs1, sid1, outliers1) ← V[pos]
3.5. if t1 = t then do:

3.5.1. V[pos] ← (t, occurs + occurs1, sid1 ∪ sid, ∅)
3.5.2. return V

4. V[pos+1] ← (t, occurs, sid, ∅) // add to end
5. return V

Figure 53 µ-Argus VectorAdd algorithm

µ-Argus freqMin Algorithm
Input: V, a frequency list based on freq[Ax,…,Ay].
Output: an integer reporting the smallest number of occurs in V
// This method returns the minimum number of occurrences in V
algorithm freqMin:

1. let min ← |PT|
2. for pos ← 1 to |V| do:

1.1. (t, occurs, sid, outliers) ← V[pos]
1.2. if occurs < min then do:

1.2.1. min ← occurs
3. return min

Figure 54 µ-Argus freqMin algorithm

Computational Disclosure Control 01/08/01 8:22 AM

133

µ-Argus generalize Algorithm
Input: attr, which is an attribute of QI
Output: updates and returns freq
Assumes: freq and domain generalization hierarchy DGHattr with accompanying function fattr are

available for use; and attr∈QI
// This method generalizes all values associated with attr in freq.
algorithm generalize:

1. let V be a frequency list of the same type as freq. V initially has no elements.
2. for pos ← 1 to |freq| do:

2.1. ([va1,…,van], occurs, sid, outliers) ← freq[pos]
2.2. if vattr is not maximal element of DGHattr then do:

2.2.1. if attr = a1 then do:
2.2.1.1. V ← VectorAdd(V, [fattr(va1),…,van], occurs, sid, ∅)

2.2.2. else if attr = an then do:
2.2.2.1. V ← VectorAdd(V, [va1,…,fattr(van)], occurs, sid, ∅)

2.2.3. else do:
2.2.3.1. V ← VectorAdd(V, [va1,…,fattr(vattr), …,van], occurs, sid, ∅)

3. freq ← V
4. return freq

Figure 55 µ-Argus generalize algorithm

Computational Disclosure Control 01/08/01 8:22 AM

134

µ-Argus CombinationTest Algorithm
Input: Most, More and Identifying, which are disjoint sets of attributes over the quasi-identifier

QI.
Output: Updates and returns outliers in freq.
Assumes: Most, More and Identifying are disjoint sets of attributes over the quasi-identifier QI.

Each cell of outliers is initialized to ∅ and outliers is available for use.
// This method computes 2- and 3- way combinations across Most, More, and Identifying.
// This method selects those combinations the actual µ-Argus program would compute.
// Notice it is not all 2- and 3- combinations.
algorithm CombinationTest:
1. if |Most| = 0 then return ∅
2. if |More| = 0 and |Identifying| = 0 then return ∅
// guarantee: |Most| ≥ 1
3. if |Most| ≥ 3 then do:

3.1 MarkOutliers3(Most) // Most × Most × Most
4. if |Most| ≥ 2 then do:

4.1 MarkOutliers2 (Most, ∅) // Most × Most
4.2 if |Identifying| ≥ 1 and |More| ≥ 1 then do:

4.2.1 MarkOutliers2 (Most, More) // Most × Most × More
4.3 if |Identifying| ≥ 1 then do:

4.3.1 MarkOutliers2 (Most, Identifying) // Most × Most × Identifying
5. if |More| ≥ 2 then do:

5.1 MarkOutliers (Most, More, ∅) // Most × More
5.2 if |Identifying| ≥ 1 then do:

5.2.1 MarkOutliers2 (More, ∅) // More × More
5.2.2 MarkOutliers2 (More, Most) // More × More× Most

6. if |More| ≥ 1 and |Identifying| ≥ 1 then do:
6.1 MarkOutliers (Most, More, Identifying) // Most × More× Identifying
6.2 MarkOutliers (More, Identifying, ∅) // More× Identifying

7. if |Identifying| ≥ 1 then do:
7.1 MarkOutliers (Most, Identifying, ∅) // Most× Identifying

8. return

Figure 56 µ-Argus CombinationTest algorithm

Computational Disclosure Control 01/08/01 8:22 AM

135

µ-Argus MarkOutliers Algorithm
Input: S1, S2, S3, which are subsets of QI
Output: Updates outliers in freq and returns updated freq
Assumes: S1, S2 and S3 are disjoint sets of attributes over the quasi-identifier QI and freq is

available for use.
// This method computes the sub-tables S1 x S2 x S3 and marks outliers
algorithm MarkOutliers:

1. for i ←1 to |QI| do:
1.1. for j ← 1 to |QI| do:

1.1.1. if ai∈S1 and aj∈S2 then do:
1.1.1.1. if |S3| = 0 then do:

1.1.1.1.1. V ← freqConstruct(ai, aj)
1.1.1.1.2. freq ← MarginalUpdate(V)

1.1.2. else do:
1.1.2.1. for k ← 1 to |QI| do:

1.1.2.1.1.1. if ak∈S3 then do:
1.1.2.1.1.1.1. V ← freqConstruct(ai, aj, ak)
1.1.2.1.1.1.2. freq ← MarginalUpdate(V)

2. return freq

Figure 57 µ-Argus MarkOutliers algorithm

µ-Argus MarkOutliers2 Algorithm
Input: S1, S3, which are subsets of QI
Output: Updates outliers in freq and returns updated freq
Assumes: S1, S3 are disjoint sets of attributes over the quasi-identifier QI and freq is available for

use.
// This method computes the sub-tables S1 x S1 x S3 and marks outliers
algorithm MarkOutliers2:

1. for i←1 to |QI| do:
1.1. for j ← i+1 to |QI| do:

1.2.2. if ai∈S1 and aj∈S1 then do:
1.2.2.1. if |S3| = 0 then do:

1.2.2.1.1. V ← freqConstruct(ai, aj)
1.2.2.1.2. freq ← MarginalUpdate(V)

1.2.2.2. else do:
1.2.2.2.1. for k ← 1 to |QI| do:

1.2.2.2.1.1. if ak∈S3 then do:
1.2.2.2.1.1.1. V ← freqConstruct(ai, aj, ak)
1.2.2.2.1.1.2. freq ← MarginalUpdate(V)

2. return freq

Figure 58 µ-Argus MarkOutliers2 algorithm

Computational Disclosure Control 01/08/01 8:22 AM

136

µ-Argus MarkOutliers3 Algorithm
Input: S1, which is a subset of QI.
Output: Updates outliers in freq and returns updated freq
Assumes: S1 is a non-empty subset of QI and freq is available for use.
// This method computes the sub-tables S1 x S1 x S1 and marks outliers
algorithm MarkOutliers3:

1. for i ←1 to |QI| do:
a. for j ← i+1 to |QI| do:

i. for k ← j+1 to |QI| do:
1. if ai∈S1 and aj∈S1 and ak∈S1 then do:

a. V ← freqConstruct(ai, aj, ak)
b. freq ← MarginalUpdate(V)

4. return freq

Figure 59 µ-Argus MarkOutliers3 algorithm

µ-Argus MarginalUpdate Algorithm
Input: V, which is a frequency list based on freq[Ax,…,Ay], and A, which is a set of attributes

where each attribute is a member of QI.
Output: Updates outliers in freq and returns the updated freq.
Assumes A is a non-empty subset of QI and freq is available for use.
// This method records outliers by storing the combination of attributes (A) known not to adhere to k
// in freq.
algorithm MarginalUpdate:
1. for pos ← 1 to |V| do:

1.1. (t, occurs, sid, outliers) ← V[pos]
1.2. if occurs < k then do:

1.2.1. for pos1 ← 1 to |freq| do:
1.2.1.1. let (t1, occurs1, sid1, outliers1) ← freq[pos1]
1.2.1.2. if |sid1∩ sid| ≥ 1 then do:

1.2.1.2.1. outliers1 ← outliers1 ∪ {A}
1.2.1.2.2. freq[pos1] ← (t1, occurs1, sid1, outliers1)

2. return freq

Figure 60 µ-Argus MarginalUpdate algorithm

Computational Disclosure Control 01/08/01 8:22 AM

137

µ-Argus resetOutliers Algorithm
Input: freq
Output: updates and returns freq
// This method sets all outliers in freq to the empty set.
algorithm resetOutliers:

1. for pos ← 1 to |V| do:
1.1. (t, occurs, sid, outliers) ← V[pos]
1.2. V[pos] ←(t, occurs, sid, ∅)

2. return freq

Figure 61 µ-Argus resetOutliers algorithm

µ-Argus SuppressOutliers Algorithm
Input: freq
Output: Updates and returns freq.
// This method suppresses one value of each combination known to be an outlier in a tuple.
algorithm SuppressOutliers:
1. for pos ← 1 to |freq| do:

1.1. ([va1,…,van], occurs, sid, outliers) ← freq[pos]
1.2. if occurs < k then do:

1.2.1. while |outliers| > 0 do: // actual µ-Argus program does not exhaust outliers!
1.2.1.1. let max ← 0
1.2.1.2. for i ← 1 to |QI| do:

1.2.1.2.1. let total ← 0
1.2.1.2.2. for each s∈outliers do:

1.2.1.2.2.1. if ai∈s then do:
1.2.1.2.2.1.1. total ← total + 1

1.2.1.2.3. if total > max then do:
1.2.1.2.3.1. max ← total
1.2.1.2.3.2. attr ← ai

// attr is most frequent attribute in outliers
1.2.1.3. outliers ← { sk : sk∈outliers, attr∉ sk}
1.2.1.4. if attr = a1 then do:

1.2.1.4.1. freq[pos] ← ([null,…,van], occurs, sid, outliers)
1.2.1.5. else if attr = an then do:

1.2.1.5.1. freq[pos] ← ([va1,…,null], occurs, sid, outliers)
1.2.1.6. else do:

1.2.1.6.1. let aj be attr, where QI=a1,…,aj-1 ,aj, aj+1…,an
1.2.1.6.2. freq[pos] ← ([va1,…,aj-1,null,aj+1…,van], occurs, sid, outliers)

2. freq ← freqCleanup(freq) // consolidates elements to avoid supplicate values over QI
3. return freq

Figure 62 µ-Argus SuppressOutliers algorithm

Computational Disclosure Control 01/08/01 8:22 AM

138

As introduced earlier, the basic steps, A through E, of the µ-Argus algorithm are enumerated in

Figure 48. The algorithm listed in Figure 50 along with its supporting methods is more detailed but

follows these same basic steps. Below is a walk through the detailed version of the µ-Argus algorithm.

Given a private table PT, a quasi-identifier QI=(A1,…,An), a k-anonymity requirement k, domain

generalization hierarchies DGHAi, where i=1,…,n with accompanying functions fAi, and Most, More and

Identifying, which are disjoint sets of attributes over the quasi-identifier QI, the µ-Argus algorithm, listed

in Figure 50, generates a generalization of PT[QI]. The algorithm assumes Most, More and Identifying

are disjoint divisions of the attributes over the quasi-identifier QI. That is, (QI= Most ∪ More ∪

Identifying) and (Most ∩ More = ∅) and (Most ∩ Identifying = ∅) and (More ∩ Identifying = ∅). PT is

also required to have a unique identifier associated with each of its tuples; in this case, PT includes an

attribute id that serves as a unique identifier (or key) for each tuple in PT.

The µ-Argus algorithm begins in steps 1 and 2 by constructing a frequency list named freq.

Conceptually I define a frequency list as simply a vector. But as the primary data structure in this

algorithm, my notion of a frequency list is that it describes a table T. Each element in the frequency list

freq corresponds to one or more tuples in table T. The frequency list freq begins by describing the table

PT and each table T subsequently described in freq is a generalization of PT. Frequency lists are also

used to store variations and subsets of freq during the operation of the algorithm.

Each element in a frequency list F based on a table T consists of (1) values assigned to the quasi-

identifier [vAi,…,vAn]; (2) the number of tuples in T, referred to as occurs, having that assignment of

values; (3) the set of tuple identifiers, referred to as SID, in T to which the values vAi,…,vAn refer, and, (4)

a set of attributes, referred to as outliers, that are initially set to the empty set but at one point in the

algorithm contain the attributes for which the assigned values occur less than the k requirement warrants.

The invariant |SID| = occurs holds in F. Each sequence of values [vAi,…,vAn] is unique in F.

Step 1 and step 2 of the µ-Argus algorithm listed in Figure 50 produces a frequency list freq

based on the tuples of the privately held table PT. The method freqSetup() defined in Figure 51 performs

the construction.

Computational Disclosure Control 01/08/01 8:22 AM

139

Step 3 of the µ-Argus algorithm listed in Figure 50 generalizes each attribute in freq so there are

at least k occurrences of each value reported for an attribute. Recall an earlier lemma in which a table T

that satisfies a quasi-identifier QI=A1,…,An must have at least k occurrences of each t[Ai]∈T where

i=1,…,n [107]. Step 3 of the µ-Argus algorithm automatically generalizes attributes until this condition is

satisfied. Success is guaranteed by the single maximal element requirement of each domain

generalization hierarchy DGHAi where i=1,…,n [108].

The heart of the µ-Argus algorithm resides in steps 4 through 8 of the listing in Figure 50. These

steps concern examining values associated with 2- and 3- combinations of attributes across the quasi-

identifier QI. The data holder provides the attributes of QI by providing the 3 sets named Most, More and

Identifying. The set named Most consists of attributes of QI the data holder considers "most identifying".

The set named More consists of attributes of QI the data holder considers "more identifying". And, the

set named Identifying consists of attributes of QI the data holder considers merely "identifying".

In step 4, values associated with 2- and 3- combinations of attributes across More, Most and

Identifying are examined to determine which combinations of values do not adhere to the k requirement.

These values are considered outliers, are the attributes associated with these values are recorded as

outliers for these tuples in freq. As step 5, these outliers are displayed for the data holder to inspect. In

the next paragraphs, I described the generation and inspection of these combinations in detail.

The method CombinationTest(), listed in Figure 56, generates the 2- and 3- combinations that are

examined in µ-Argus. As discussed earlier and listed in Figure 48, the actual µ-Argus program does not

examine all 2- and 3- combinations of values across the attributes of Most, More and Identifying. Instead,

it examines a subset of these combinations based on the rank order of More, More and then Identifying.

The method CombinationTest() explores only those combinations examined by the actual µ-Argus

program as listed in Figure 49.

The actual work of generating the sub-tables that represent the 2- and 3-combinations and

marking the outliers found is done by three methods. These are MarkOutliers(), MarkOutliers2() and

MarkOutliers3(). Each of these methods receives a combination based on Most, More, Identifying and ∅

as arguments.

Computational Disclosure Control 01/08/01 8:22 AM

140

The method MarkOutliers(), listed in Figure 57, takes 3 arguments S1, S2, and S3, and computes

sub-tables based on S1 × S2 × S3. Each element in S1, S2 and S3 is assumed to be an element of QI. The

method then explores S1 × S2 if S3 = ∅ or S1 × S2 × S3 if S3 ≠ ∅. The arguments S1 and S2 are required

and cannot be ∅, but S3 can be ∅. It is assumed that (S1 ∩ S2 = ∅). If S3 ≠ ∅, then it is also assumed

that (S1 ∩ S3 = ∅) and (S2 ∩ S3 = ∅).

To make sure duplicate combinations are not explored when examining combinations across the

same set, MarkOutliers2() and MarkOutliers3() are used. The method MarkOutliers3(), listed in Figure

59, is used when a 3-combination is explored across a single set of attributes. For example, Most × Most

× Most is examined by executing MarkOutliers(Most).

Similarly, MarkOutliers2(), listed in Figure 58, is used when a 2- or 3-combination involves

repeating the first set. For example, Most × Most is examined by executing MarkOutliers2(Most, ∅) and

Most × Most × More is examined by executing MarkOutliers2(Most, More).

The methods MarkOutliers(), MarkOutliers2() and MarkOutliers3() work as follows. First, they

generate a frequency list V that contains a sub-table from freq based on values associated with 2 or 3

combinations of the attributes provided as parameters. This is done using the method freqConstruct(),

which is listed in Figure 52. The method freqConstruct() is given a sequence of attributes Ax,…,Ay and

generates V from freq[Ax,…,Ay]. The methods MarkOutliers(), MarkOutliers2() and MarkOutliers3()

then record in freq those combinations of values in V that do not adhere to k. This is done using the

method MarginalUpdate(), which is listed in Figure 60. The method MarginalUpdate() records

combinations of values associated with Ax,…,Ay in V that do not adhere to the k requirement by

appending {Ax,…,Ay} to the outliers of freq for each associated tuple.

In step 5 of the µ-Argus algorithm, which is listed in Figure 50, the tuples and combinations of

attributes containing outliers is displayed for the data holder’s inspection. The ReportOutliers() method,

a listing of which is not provided, merely visits each element of freq. If the element has a non-empty

value for outliers, then the corresponding combinations of attributes contained in outliers are displayed.

The purpose is for the data holder to decide whether to generalize any attributes or whether to stop

execution. The generalize() method, which is listed in Figure 55, replaces the values associated with an

Computational Disclosure Control 01/08/01 8:22 AM

141

attribute in freq with their generalized replacement. Step 6 of the µ-Argus algorithm allows the data

holder to generalize as many attributes of QI as desired.

At step 7 of the µ-Argus algorithm, which is listed in Figure 50, the data holder can decide to

have the 2- and 3- combinations re-analyzed, presumably after some attributes have been generalized. If

the combinations are to be re-analyzed, the values associated with outliers recorded in freq are initialized

to ∅ and execution continues at step 4, thereby repeating steps 4 through 7. The resetOutliers() method,

which is listed in Figure 61, sets the values associated with outliers in freq to the empty set.

Alternatively, the data holder can decide to conclude the program; in which case, step 8 and step

9 of the µ-Argus algorithm, which are listed in Figure 50, execute. Step 8 involves suppressing a value of

each combination of values known to be an outlier in a tuple. This is done by executing

SuppressOutliers(), which is listed in Figure 62. The operation of this method is described below.

The SuppressOutliers() method visits each element in freq that does not adhere to the k

requirement. Clearly, from the operation of the µ-Argus algorithm, it can be shown that each such

element will not necessarily have a non-empty outliers value because there may exist 4-combinations

across QI and there may exist larger combinations of values across QI in the data that are unique. In

addition there may exist 2- or 3-combinations across QI that are unique and not identified because those

combinations were not examined by CombinationTest() at all. These possibilities pose serious problems

for the way in which µ-Argus has been implemented.

Each element in freq is visited in SuppressOutliers(). If the value for outliers associated with that

element is not empty, then the value associated with an attribute occurring most frequently in that

element’s outliers is suppressed (i.e., a suppressed value is one that is assigned a null value in the

method). The while() loop in the SuppressOutliers() method continues in step 1.2.1 until all combinations

identified in outliers has a value in the combination of values suppressed. This is in sharp contrast to the

actual µ-Argus program. In the actual µ-Argus program, each such combination is not exhausted. As a

result, some combinations of values whose attributes are identified in outliers may not have values

suppressed even though all combinations reported in outliers is known to not adhere to the k requirement.

This is obviously a problem with the µ-Argus implementation and not a limitation of its approach.

Computational Disclosure Control 01/08/01 8:22 AM

142

The final step of the µ-Argus algorithm is to construct a table based on the descriptions of tuples

in freq. The reconstruct() method, which is listed in Figure 42, works the same in µ-Argus as in Datafly.

It can be shown that the final table resulting from the µ-Argus algorithm is a generalization of the

original table provided because the only operations on the data were generalization and suppression.

Example

The private table PT shown in Figure 34 includes unique labels, t1 through t12, associated with

the id attribute. These labels are useful for linking the resulting generalization to the original

table. Given PT and the domain generalization hierarchies based on the depictions in Figure 33

(on page 101), the µ-Argus algorithm, which is listed in Figure 50, provides the table MT, as

shown in Figure 75, as a generalization of PT over the quasi-identifier QI = {Race, BirthDate,

Gender, ZIP}, where Most = {BirthDate}, More = {Gender, ZIP} and Identifying = {Race}. The

actual µ-Argus program provides the table MTactual shown in Figure 76 as a generalization of

PT over QI. Both MT and MTactual are supposed to adhere to a k-anonymity requirement of

k=2. Here is a walk through the µ-Argus algorithm to demonstrate how MT and MTactual are

constructed.

Figure 63 shows the contents of the frequency list freq after step 2 of the µ-Argus algorithm

completes. Each sequence of values across QI is unique in PT and so each tuple has a distinct

corresponding element in freq.

Race Birth Sex ZIP occurs sid outliers
black 9/1965 male 02141 1 {t1} {}
black 2/1965 male 02141 1 {t2} {}
black 10/1965 female 02138 1 {t3} {}
black 8/1965 female 02138 1 {t4} {}
black 11/1964 female 02138 1 {t5} {}
black 12/1964 female 02138 1 {t6} {}
white 10/1964 male 02138 1 {t7} {}
white 3/1965 female 02139 1 {t8} {}
white 8/1964 male 02139 1 {t9} {}
white 5/1964 male 02139 1 {t10} {}
white 2/1967 male 02138 1 {t11} {}
white 3/1967 male 02138 1 {t12} {}

Figure 63 freq after freqSetup() in µ-Argus algorithm step 2

Figure 64 shows the contents of freq after step 3 of the µ-Argus algorithm completes. Each value

associated with each attribute in QI adheres to the k–requirement. That is, each value has at least

Computational Disclosure Control 01/08/01 8:22 AM

143

k occurrences; in this example, k=2. In order to achieve this in freq, values associated with

BirthDate were generalized to the year of birth.

Race Birth Sex ZIP occurs sid outliers
black 1965 male 02141 2 {t1,t2} {}
black 1965 female 02138 2 {t3,t4} {}
black 1964 female 02138 2 {t5,t6} {}
white 1964 male 02138 1 {t7} {}
white 1965 female 02139 1 {t8} {}
white 1964 male 02139 2 {t9,t10} {}
white 1967 male 02138 2 {t11,t12} {}

Figure 64 freq after generalize loops in µ-Argus algorithm, step 3

Step 4 of the µ-Argus algorithm executes CombinationTest(), which is listed in Figure 56. This

method computes 2- and 3-combinations across Most, More and Identifying to determine which

combinations of values, if any, do not occur at least k times; recall, in this example k=2. It begins

by examining Most × More combinations. Figure 65 shows the frequency list V generated by

MarkOutliers() at step 5.1 in CombinationTest() when it examines BirthDate × Sex. As Figure 65

shows, all combinations of values for these attributes found in freq occur at least k times.

Birth Sex occurs sid outliers
1965 male 2 {t1,t2} {}
1965 female 3 {t3,t4,t8} {}
1964 female 2 {t5,t6} {}
1964 male 3 {t7,t9,t10} {}
1967 male 2 {t11,t12} {}

Figure 65 V at Most × More in CombinationTest(), step 5.1

Continuing the examination of Most × More combinations, Figure 66 shows the frequency list V

generated by MarkOutliers() at step 5.1 in CombinationTest() when it examines BirthDate × ZIP.

The combination where BirthDate="1965" and ZIP="02139" occurs only once and appears in the

tuple identified as t8 in PT. As a result, outliers in freq is updated to include {Birthdate, ZIP}

for that element. Depictions of the resulting V and freq tables are shown in Figure 66.

Computational Disclosure Control 01/08/01 8:22 AM

144

Birth ZIP occurs sid outliers
1965 02141 2 {t1,t2} {}
1965 02138 2 {t3,t4} {}
1964 02138 3 {t5,t6,t7} {}
1965 02139 1 {t8} {}
1964 02139 2 {t9,t10} {}
1967 02138 2 {t11,t12} {}

V

Race Birth Sex ZIP occurs sid outliers
black 1965 male 02141 2 {t1,t2} {}
black 1965 female 02138 2 {t3,t4} {}
black 1964 female 02138 2 {t5,t6} {}
white 1964 male 02138 1 {t7} {}
white 1965 female 02139 1 {t8} {{birth,zip}}
white 1964 male 02139 2 {t9,t10} {}
white 1967 male 02138 2 {t11,t12} {}

freq

Figure 66 freq and V at Most × More in CombinationTest(), step 5.1

The next combinations examined result from More × More, but there is only one such

combination, namely Sex × ZIP. Figure 67 shows the frequency list V generated by

MarkOutliers2() at step 5.2.1 in CombinationTest() when it examines Sex × ZIP. The

combination where Sex="female" and ZIP="02139" occurs only once and appears in the tuple

identified as t8 in PT. As a result, outliers in freq is updated to include {Sex, ZIP} for that

element. Depictions of the resulting V and freq tables are shown in Figure 67.

Sex ZIP occurs sid outliers
male 02141 2 {t1,t2} {}

female 02138 4 {t3,t4,t5,t6} {}
male 02138 3 {t7,t11,t12} {}

female 02139 1 {t8} {}
male 02139 2 {t9,t10} {}

V

Race Birth Sex ZIP occurs sid outliers
black 1965 male 02141 2 {t1,t2} {}
black 1965 female 02138 2 {t3,t4} {}
black 1964 female 02138 2 {t5,t6} {}
white 1964 male 02138 1 {t7} {}
white 1965 female 02139 1 {t8} {{birth,zip}, {sex,zip}}
white 1964 male 02139 2 {t9,t10} {}
white 1967 male 02138 2 {t11,t12} {}

freq

Figure 67 freq and V at More x More in CombinationTest(), step 5.2.1

Computational Disclosure Control 01/08/01 8:22 AM

145

The next combinations examined result from More × More × Most, but there is only one such

combination, namely BirthDate × Sex × ZIP. Figure 68 shows the frequency list V generated by

MarkOutliers2() at step 5.2.2 in CombinationTest() when it examines BirthDate × Sex × ZIP.

The combination where BirthDate="1964", Sex="male" and ZIP="02138" occurs only once and

appears in the tuple identified as t7 in PT. Likewise, the combination where BirthDate="1965",

Sex="female" and ZIP="02139" occurs only once and appears in the tuple identified as t8 in PT.

As a result, outliers in freq is updated to include {BirthDate, Sex, ZIP} for those elements.

Depictions of the resulting V and freq tables are shown in Figure 68.

Birth Sex ZIP occurs sid outliers
1965 male 02141 2 {t1,t2} {}
1965 female 02138 2 {t3,t4} {}
1964 female 02138 2 {t5,t6} {}
1964 male 02138 1 {t7} {}
1965 female 02139 1 {t8} {}
1964 male 02139 2 {t9,t10} {}
1967 male 02138 2 {t11,t12} {}

V

Race Birth Sex ZIP occurs sid outliers
black 1965 male 02141 2 {t1,t2} {}
black 1965 female 02138 2 {t3,t4} {}
black 1964 female 02138 2 {t5,t6} {}
white 1964 male 02138 1 {t7} {{birth,sex,zip}}
white 1965 female 02139 1 {t8} {{birth,zip}, {sex,zip}, {birth,sex,zip}}
white 1964 male 02139 2 {t9,t10} {}
white 1967 male 02138 2 {t11,t12} {}

freq

Figure 68 freq and V at More x More x Most in CombinationTest(), step 5.2.2

The next combinations examined result from Most × More × Identifying. These are the specific

combinations Race × BirthDate × Sex and Race × BirthDate × ZIP. Figure 69 shows the

frequency list V generated by MarkOutliers() at step 6.1 in CombinationTest() when it examines

Race × BirthDate × Sex. The combination where Race="white", BirthDate="1965" and

Sex="female" occurs only once and appears in the tuple identified as t8 in PT. As a result,

outliers in freq is updated to include {Race, BirthDate, Sex} for this element. Depictions of the

resulting V and freq tables are shown in Figure 69.

Computational Disclosure Control 01/08/01 8:22 AM

146

Race Birth Sex occurs sid outliers
black 1965 m 2 {t1,t2} {}
black 1965 f 2 {t3,t4} {}
black 1964 f 2 {t5,t6} {}
white 1964 m 3 {t7,t9,t10} {}
white 1965 f 1 {t8} {}
white 1967 m 2 {t11,t12} {}

V

Race Birth Sex ZIP occurs sid outliers
black 1965 male 02141 2 {t1,t2} {}
black 1965 female 02138 2 {t3,t4} {}
black 1964 female 02138 2 {t5,t6} {}
white 1964 male 02138 1 {t7} {{birth,sex,zip}}
white 1965 female 02139 1 {t8} {{birth,zip}, {sex,zip}, {birth,sex,zip}, {race,birth,sex}}
white 1964 male 02139 2 {t9,t10} {}
white 1967 male 02138 2 {t11,t12} {}

freq

Figure 69 freq and V at Most x More x Identifying in CombinationTest(), step 6.1

Figure 70 shows the frequency list V generated by MarkOutliers() at step 6.1 in

CombinationTest() when it examines Race × BirthDate × ZIP. The combination where

Race="white", BirthDate="1964" and ZIP="02138" occurs only once and appears in the tuple

identified as t7 in PT. Likewise, the combination where Race="white", BirthDate="1965" and

ZIP="02139" occurs only once and appears in the tuple identified as t8 in PT. As a result,

outliers in freq is updated to include {Race, BirthDate, ZIP} for these elements. Depictions of

the resulting V and freq tables are shown in Figure 70.

Computational Disclosure Control 01/08/01 8:22 AM

147

Race Birth ZIP occurs sid outliers
black 1965 02141 2 {t1,t2} {}
black 1965 02138 2 {t3,t4} {}
black 1964 02138 2 {t5,t6} {}
white 1964 02138 1 {t7} {}
white 1965 02139 1 {t8} {}
white 1964 02139 2 {t9,t10} {}
white 1967 02138 2 {t11,t12} {}

V

Race Birth Sex ZIP occurs sid outliers
black 1965 male 02141 2 {t1,t2} {}
black 1965 female 02138 2 {t3,t4} {}
black 1964 female 02138 2 {t5,t6} {}
white 1964 male 02138 1 {t7} {{birth,sex,zip}, {race,birth,zip}}

white 1965 female 02139 1 {t8}
{{birth,zip}, {sex,zip}, {birth,sex,zip}, {race,birth,sex},

{race,birth,zip}}
white 1964 male 02139 2 {t9,t10} {}
white 1967 male 02138 2 {t11,t12} {}

freq

Figure 70 freq and V at Most x More x Identifying in CombinationTest(), step 6.1

The next combinations examined result from More × Identifying. These are the specific

combinations Race × Sex and Race × ZIP. Figure 71 shows the frequency list V generated by

MarkOutliers() at step 6.2 in CombinationTest() when it examines Race × Sex. The combination

where Race="white" and Sex="female" occurs only once and appears in the tuple identified as t8

in PT. As a result, outliers in freq is updated to include {Race, Sex} for this element. Depictions

of the resulting V and freq tables are shown in Figure 71.

Race Sex occurs sid outliers
black male 2 {t1,t2} {}
black female 4 {t3,t4,t5,t6} {}
white male 5 {t7,t9,t10,t11,t12} {}
white female 1 {t8} {}

V

Race Birth Sex ZIP occurs sid outliers
black 1965 male 02141 2 {t1,t2} {}
black 1965 female 02138 2 {t3,t4} {}
black 1964 female 02138 2 {t5,t6} {}
white 1964 male 02138 1 {t7} {{birth,sex,zip}, {race,birth,zip}}

white 1965 female 02139 1 {t8}
{{birth,zip}, {sex,zip}, {birth,sex,zip},

{race,birth,sex}, {race,birth,zip}, {race,sex}}
white 1964 male 02139 2 {t9,t10} {}
white 1967 male 02138 2 {t11,t12} {}

freq

Figure 71 freq and V at More x Identifying in CombinationTest(), step 6.2

Computational Disclosure Control 01/08/01 8:22 AM

148

Figure 72 shows the frequency list V generated by MarkOutliers() at step 6.2 in

CombinationTest() when it examines Race × ZIP. None of the combinations appear less than k

times. As a result, freq is not modified.

Race ZIP occurs sid outliers
black 02141 2 {t1,t2} {}
black 02138 4 {t3,t4,t5,t6} {}
white 02138 3 {t7,t11,t12} {}
white 02139 3 {t8,t9,t10} {}

Figure 72 V at More x Identifying in CombinationTest(), step 6.2

The next combinations examined result from Most × Identifying. This is the specific combination

Race × BirthDate. Figure 73 shows the frequency list V generated by MarkOutliers() at step 7.1

in CombinationTest() when it examines Race × BirthDate. The combination where Race="white"

and BirthDate="1965" occurs only once and appears in the tuple identified as t8 in PT. As a

result, outliers in freq is updated to include {Race, BirthDate} for this element. Depictions of

the resulting V and freq tables are shown in Figure 73.

Race Birth occurs sid outliers
black 1965 4 {t1,t2,t3,t4} {}
black 1964 2 {t5,t6} {}
white 1964 3 {t7,t9,t10} {}
white 1965 1 {t8} {}
white 1967 2 {t11,t12} {}

V

Race Birth Sex ZIP occurs sid outliers
black 1965 male 02141 2 {t1,t2} {}
black 1965 female 02138 2 {t3,t4} {}
black 1964 female 02138 2 {t5,t6} {}
white 1964 male 02138 1 {t7} {{birth,sex,zip}, {race,birth,zip}}

white 1965 female 02139 1 {t8}

{{birth,zip}, {sex,zip}, {birth,sex,zip},
{race,birth,sex}, {race,birth,zip},

{race,sex}, {race,birth}}
white 1964 male 02139 2 {t9,t10} {}
white 1967 male 02138 2 {t11,t12} {}

freq

Figure 73 freq and V at Most x Identifying in CombinationTest(), step 7.1

That concludes the examination of combinations of values that occurs at step 4 of the µ-Argus

algorithm. The contents of outliers in freq are displayed and the data holder is solicited for an

attribute to generalize or not. This example continues as option 1, in which no further

generalization is selected and as option 2, in which ZIP is generalized.

Computational Disclosure Control 01/08/01 8:22 AM

149

Example, continued with option 1

In this option, the example continues with no further generalization is selected. So, execution of

the µ-Argus algorithm proceeds to step 8.

Figure 74 shows freq at the start of SuppressOutliers(). The attributes within the outliers for an

element in freq are examined. The value associated with the attribute occurring in the most

number of members of outliers is suppressed. This process continues until all members of a

value associated with outliers contain at least one suppressed value. In Figure 74 there are two

elements of freq that have non-empty values for outliers. These are the elements associated with

t7 and t8.

Race Birth Sex ZIP occurs sid outliers
black 1965 male 02141 2 {t1,t2} {}
black 1965 female 02138 2 {t3,t4} {}
black 1964 female 02138 2 {t5,t6} {}

white 1964 male 02138 1 {t7}
{{birth,sex,zip},
{race,birth,zip}}

white 1965 female 02139 1 {t8}

{{birth,zip}, {sex,zip},
{birth,sex,zip},
{race,birth,sex},
{race,birth,zip}, {race,sex},
{race,birth}}

white 1964 male 02139 2 {t9,t10} {}
white 1967 male 02138 2 {t11,t12} {}

Figure 74 freq at SuppressOutliers() in µ-Argus algorithm, step 8

The value of outliers for the element associated with t7 is {{BirthDate, Sex, ZIP}, {Race,

BirthDate, ZIP}}. The attributes BirthDate and ZIP occur most frequently, so either can be

suppressed. BirthDate is selected. That means, the value associated with BirthDate for this

element will be suppressed. At that time, the outlier combination BirthDate × Sex × ZIP and

Race × BirthDate × ZIP will each contain a suppressed value, so no further suppression is

needed for the element associated with t7.

The value of outliers for the element associated with t8 is {{BirthDate, ZIP}, {Sex, ZIP},

{BirthDate, Sex, ZIP}, {Race, BirthDate, Sex}, {Race, BirthDate, ZIP}, {Race, Sex}, {Race,

BirthDate}}. The attribute BirthDate occurs most frequently, so it will be suppressed. That

means, the value associated with BirthDate for this element will be suppressed. At that time, the

remaining outlier combinations associated with t8 are {{Sex, ZIP}, {Race, Sex}}. The attribute

Computational Disclosure Control 01/08/01 8:22 AM

150

Sex now occurs most frequently, so it will also be suppressed. That means, the values associated

with BirthDate and with Sex for this element will be suppressed. No further suppression is

needed for the element associated with t8.

Figure 75 shows the final result from the µ-Argus algorithm, which is listed in Figure 50.

id Race BirthDate Gender ZIP
t1 black 1965 male 02141
t2 black 1965 male 02141
t3 black 1965 female 02138
t4 black 1965 female 02138
t5 black 1964 female 02138
t6 black 1964 female 02138
t7 white male 02138
t8 white 02139
t9 white 1964 male 02139

t10 white 1964 male 02139
t11 white 1967 male 02138
t12 white 1967 male 02138

MT

Figure 75 Result from µ-Argus algorithm listed in Figure 50

Unfortunately, as was pointed out earlier, the actual µ-Argus algorithm does not exhaust all

known outlying combinations of values when deciding on which values to suppress. Figure 76

shows the results when the private table PT along with the parameters specified in this example

was provided to the actual µ-Argus program. Fewer cells are suppressed even though the

combinations of values identified as outliers were the same.

id Race BirthDate Gender ZIP
t1 black 1965 male 02141
t2 black 1965 male 02141
t3 black 1965 female 02138
t4 black 1965 female 02138

t5 black 1964 female 02138

t6 black 1964 female 02138

t7 white 1964 male 02138

t8 white female 02139
t9 white 1964 male 02139

t10 white 1964 male 02139
t11 white 1967 male 02138
t12 white 1967 male 02138

MT actual

Figure 76 Actual result from the real µ-Argus program

Computational Disclosure Control 01/08/01 8:22 AM

151

Example, continued with option 2

In this option, the example has proceeded to step 6 of the µ-Argus algorithm as before. In this

option however, execution continues by assuming the data holder selects ZIP as the attribute to

generalize, where as the previous option assumed no attributes were selected to generalize. The

contents of freq before this decision is made are shown in Figure 73. The generalize() method is

listed in Figure 55. It replaces the values associated with ZIP in freq with the values that appear

one level up ZIP’s value generalization hierarchy, which is shown in Figure 33. The result is to

replace the 5-digit ZIP values with their first 4-digits. Step 7 of the µ-Argus algorithm resets the

values associated with outliers in freq to the empty set. The resulting contents of freq from

theses steps are shown in Figure 77. The tuple identified as t8 remains an outlier.

Race Birth Sex ZIP occurs sid outliers
black 1965 male 0214* 2 {t1,t2} {}
black 1965 female 0213* 2 {t3,t4} {}
black 1964 female 0213* 2 {t5,t6} {}
white 1965 female 0213* 1 {t8} {}
white 1964 male 0213* 3 {t9,t10, t7} {}
white 1967 male 0213* 2 {t11,t12} {}

Figure 77 freq after generalize ZIP

Execution of the µ-Argus continues by looping back to step 4. The method CombinationTest(),

which is listed in Figure 56, computes 2- and 3-combinations across Most, More and Identifying

to determine which combinations of values, if any, do not occur at least k times. In this case, only

some combinations of values involving the tuple identified as t8 do not adhere to the k

requirement. The specific combinations are listed in the contents of freq shown in Figure 78.

Race Birth Sex ZIP occurs sid outliers
black 1965 male 0214* 2 {t1,t2} {}
black 1965 female 0213* 2 {t3,t4} {}
black 1964 female 0213* 2 {t5,t6} {}

white 1965 female 0213* 1 {t8}

{{race,birth,sex},
{race,birth,zip}, {race,sex},

{race,birth}}
white 1964 male 0213* 3 {t9,t10, t7} {}
white 1967 male 0213* 2 {t11,t12} {}

Figure 78 freq with outliers updated

That concludes the examination of combinations of values that occurs at step 4 of the µ-Argus

algorithm. The contents of outliers in freq are displayed and the data holder is solicited for an

attribute to generalize or not. At this time, the data holder is assumed not to opt for further

Computational Disclosure Control 01/08/01 8:22 AM

152

generalization. As a result, step 8 of the µ-Argus algorithm executes. The SuppressOutliers()

method executes; it is listed in Figure 62.

The value of outliers for the element associated with t8 is {{Race, BirthDate, Sex}, {Race,

BirthDate, ZIP}, {Race, Sex}, {Race, BirthDate}}. The attribute Race occurs most frequently, so

it will be suppressed. No further suppression is needed for the element associated with t8

because all members of outliers now contain a suppressed value. The final table resulting from

the µ-Argus algorithm based on the option of generalizing ZIP is shown in Figure 79.

id Race BirthDate Gender ZIP
t1 black 1965 male 0214*
t2 black 1965 male 0214*
t3 black 1965 female 0213*
t4 black 1965 female 0213*
t5 black 1964 female 0213*
t6 black 1964 female 0213*
t7 white 1964 male 0213*
t8 1965 female 0213*
t9 white 1964 male 0213*

t10 white 1964 male 0213*
t11 white 1967 male 0213*
t12 white 1967 male 0213*

MT

Figure 79 Resulting table from µ-Argus algorithm with manual generalize ZIP

7.3 Comparison to Mingen

A comparison to MinGen [109] requires examining: (1) the computational complexity of the

algorithm to ensure it operates in reasonable time; (2) the correctness of the algorithm in terms of k-

anonymity protection; and, (3) whether the algorithm distorts minimally. These are discussed in the

following subsections.

7.3.1 Complexity of the µ-Argus algorithm

The µ-Argus algorithm listed in Figure 50 with supporting methods in Figure 51 through Figure

62 was not written as efficiently as possible. Nevertheless, here is a walk through the algorithm noting

the computational complexity of each part.

The freqSetup() method, which is listed in Figure 51, is executed in step 2. If the contents of PT

is sorted over the attributes QI beforehand, then the determination of how many tuples in PT[QI]

Computational Disclosure Control 01/08/01 8:22 AM

153

correspond to the same element in freq can be determined in O(|PT| log |PT|) time. Otherwise, the

construction of freq and the determination of the number of tuples in PT[QI] that correspond to an

element in freq is performed in O(|PT|2) time.

The sub-steps of step 3 of the µ-Argus algorithm operate |QI| times. On each iteration of these

sub-steps, a frequency list is generated and generalization may be performed. The construction of a

frequency list requires visiting each element of a frequency list and if changes are made due to

generalization, the element is removed and then the modified element added. In order to avoid

duplication of elements in a frequency list, all elements in the frequency list are compared to the element

that is to be inserted. If the elements of freq were stored in a binary tree, then such a comparison could

be done in log(|freq|) time. In the worst case, |freq| = |PT|; in all cases, |freq| ≤ |PT|. Step 3.3 can loop as

much as ∑
=

||

1

QT

AiDGH
i

 times in its worst case, which requires each attribute to generalize one step at a

time to its maximal element. Because |DGHAi| << |PT| in almost all cases, this term is dropped. In the

listing of the freqConstruct() and generalize() methods provided, the contents of freq are not stored in a

binary tree and so the computation, in the worst case is, O(|PT|2) time. Because this process is done on

each iteration, the computational time for step 3 of the µ-Argus algorithm is O(|QI| • |PT| log |PT|), if

freq was stored as a binary tree, or O(|QI| • |PT|2) as the methods are written.

Steps 4 through 7 of the µ-Argus algorithm perform a loop of reviewing 2- and 3- combinations,

displaying them, and possibly generalizing an attribute. This loop is executed one or more times,

depending on the data holder. The number of iterations is not likely to be large, so in this computation I

will consider it a negligible constant.

Step 4 of the µ-Argus algorithm executes the CombinationTest() method. The goal of this

method is to generate some 2- and 3-combinations and then determine which, if any, adhere to the k

requirement. The number of 2- combinations, assuming all such combinations within QI are to be

examined, would be ()!2||2

|!|

−QI
QI

 and 3-combinations would be ()!3||6

|!|

−QI
QI

. These are roughly

characterized as O(|QI|2). With the constructions of frequency lists included, the computational time for

this step is O(|QI|2 • |PT| log |PT|), if freq was stored as a binary tree, or O(|QI|2 • |PT|2) as the methods

are written.

Computational Disclosure Control 01/08/01 8:22 AM

154

Step 5 is a walk through each element of freq reporting the value of outliers for that element.

That executes in |freq| time. In the worst case |freq| = |PT|, so this step executes in O(|PT|) time. Each

iteration of the loop in step 6 of the µ-Argus algorithm, if executed at all, executes in is O(|PT| log |PT|),

if freq was stored as a binary tree, or O(|PT|2) as the methods are written. Step 7, like step 5 is a walk

through each element of freq and so, it executes in |freq| time. In the worst case |freq| = |PT|, so step 7

executes in O(|PT|) time.

The SuppressOutliers() method in step 8 of the µ-Argus algorithm has an outer loop that visits

each element of freq, and within the outer loop are inner loops based on the contents of outliers for that

element. In the worst case, |freq| = |PT| and |outliers| is nearly |QI|2. The method freqCleanup() executes

in O(|PT| log |PT|), if freq was stored as a binary tree, or O(|PT|2) otherwise. So, the computation of the

method is O(|QI|3 • |PT| + |PT| log |PT|) if freq is stored as a binary tree or O(|QI|3 • |PT| +|PT|2)

otherwise.

Step 9 of the µ-Argus algorithm executes the reconstruct() method, which visits each element of

freq and generates tuple(s) for MT based on the element. This method executes in |freq| time, which is

O(|PT|).

Finally, the overall computational complexity of the µ-Argus algorithm listed in Figure 50 is

characterized by O(|QI|3 • |PT| + |PT| log |PT|) if freq is stored as a binary tree or O(|QI|3 • |PT| +|PT|2)

otherwise. In most databases, |QI| << |PT|. So, the overall complexity for the µ-Argus algorithm is O(|PT|

log |PT|) if freq is stored as a binary tree or O(|PT|2) otherwise. In comparison to the computational

complexity of MinGen [110] and Equation 1 (on page 87), the computational complexity of the µ-Argus

algorithm is practical and extremely fast.

7.3.2 Correctness of the µ-Argus algorithm

The correctness of the µ-Argus algorithm relies on its ability to produce solutions that adhere to

a given k-anonymity requirement, assuming of course a proper quasi-identifier and a proper value for k

have been provided. In this subsection, I will show that the µ-Argus algorithm provides solutions that do

Computational Disclosure Control 01/08/01 8:22 AM

155

not necessarily adhere to a given k-anonymity requirement. As a result, tables generated by µ-Argus may

not provide adequate protection. Here is a walk through the program, noting correctness problems.

After step 3 of the µ-Argus algorithm listed in Figure 50 concludes, each value associated with

each attribute is guaranteed to appear at least k times. While this is a necessary condition to satisfy the k

requirement, it is not itself sufficient to ensure that combinations of values also adhere to the k

requirement. This note is not a claim of an error in correctness as much as a clarification that step 3 does

not itself guarantee adherence to the k requirement.

Example.

Consider the private table PT shown in Figure 34 with a quasi-identifier QI = {Race, Gender}

and a k-anonymity requirement of k=2. Each value associated with Race and each value

associated with Gender appears more k times, but in combination ["white", "female"] occurs

only once.

In order to make sure combinations of values adhere to the k requirement, values must be

examined in combination. Step 4 of the µ-Argus algorithm executes the CombinationTest() method to

examine combinations of values. Unfortunately, not all possible combinations across the quasi-identifier

are examined. Only some 2- and 3- combinations are examined. There may be 4-combinations or beyond

that are unique and not examined and there may be 2- or 3-combinations not examined at all. As a result,

the µ-Argus algorithm at this step cannot guarantee that all combinations of values adhere to the k

requirement.

Example.

Consider the private table PT shown in Figure 34 with a quasi-identifier QI = {Race, BirthDate,

Gender, ZIP}, where Most = {BirthDate}, More = {Gender, ZIP} and Identifying = {Race} and

a k-anonymity requirement of k=2. The actual µ-Argus program provides the table MTactual

shown in Figure 76 as a generalization of PT over QI. Notice however that the tuple identified as

t7 is unique over QI. It contains the unique occurring 4-combination ["white", "1964", "male",

"02138"]. Therefore, MTactual does not satisfy the k requirement.

Computational Disclosure Control 01/08/01 8:22 AM

156

Only election by the data holder to generalize an attribute in step 6 of the µ-Argus algorithm and

the automatic suppression of values done by the SuppressOutliers() method in step 8 of the µ-Argus

algorithm are ways to further distort data after step 3. Unfortunately, neither of these steps ensures that

combinations of values adhere to the k requirement. Actions taken by theses steps do not necessarily

enforce the k requirement.

A data holder’s decision to generalize or not is made before the results of suppression are

determined. Yet, the responsibility of adhering to the k requirement is passed to the data holder, who

must specify whether further generalization is needed, and if so, which attribute(s) to generalize. These

decisions are made with limited and indirect information from the µ-Argus algorithm.

Example.

Consider the private table PT shown in Figure 34 with a quasi-identifier QI = {Race, BirthDate,

Gender, ZIP}, where Most = {BirthDate}, More = {Gender, ZIP} and Identifying = {Race} and

a k-anonymity requirement of k=2. Figure 75 shows the result from the µ-Argus algorithm with

no additional generalization elected. There is no recommendation as to whether an attribute

should be generalized and if so, which one(s). Figure 79 shows the results from the µ-Argus

algorithm after values associated with ZIP were generalized. There is no preference posed by the

algorithm for one solution over another even though one is more distorted than the other and

because of the uniqueness of suppressed values, neither solution adheres to the k-anonymity

requirement.

The data holder may incorrectly believe that the suppression process in step 8 will ensure

adequate protection, because the µ-Argus algorithm performs suppression automatically after

generalization decisions by the data holder conclude. But the SuppressOutliers() method is problematic.

Some combinations of values whose attributes are identified in outliers may not have values suppressed

values in the resulting table even though all combinations reported in outliers is known to not adhere to

the k requirement. This is obviously a problem with the real µ-Argus implementation.

Example.

Consider the private table PT shown in Figure 34 with a quasi-identifier QI = {Race, BirthDate,

Gender, ZIP}, where Most = {BirthDate}, More = {Gender, ZIP} and Identifying = {Race} and

Computational Disclosure Control 01/08/01 8:22 AM

157

a k-anonymity requirement of k=2. Figure 76 shows the actual result from the real µ-Argus

program. In comparison, Figure 75 shows the result from the µ-Argus algorithm. Notice that in

the actual result, values related to the tuple identified as t7 are not suppressed even though

CombinationTest() identified {BirthDate, Sex, ZIP} and {Race, BirthDate, ZIP} as combinations

that had values within t7 that did not adhere to the k requirement; see Figure 74.

7.3.3 Summary data attack on µ-Argus results

µ-Argus does not enforce the k-anonymity requirement on suppressed values. As a result, tables

released from µ-Argus can be vulnerable to inference attacks based on summary data. If the frequencies

of values contained within the privately held information are released separately for each attribute, which

is often the case in statistical reports and summary data, then this information can be used to infer

suppressed values if the suppressed values themselves do not adhere to the k-anonymity requirement

imposed on the other released values.

Example.

Summary data for the privately held information PT in Figure 34 is shown in Figure 46. Given a

quasi-identifier QI = {Race, BirthDate, Gender, ZIP}, where Most = {BirthDate}, More =

{Gender, ZIP} and Identifying = {Race} and a k-anonymity requirement of k=2, table MT in

Figure 79 results from executing the µ-Argus algorithm on PT with QI and k. In this case, values

associated with ZIP were generalized. Except for suppressed values, k-anonymity is satisfied for

all other tuples. However, using the summary data, the missing or suppressed values can be

inferred exactly. To combat this problem, the k-anonymity requirement must be satisfied on all

values, including suppressed ones. Figure 80 shows a generalization of MT in which k-anonymity

is also enforced on suppressed values. As you can see, the summary information does not allow

one to confidently infer the suppressed values.

Computational Disclosure Control 01/08/01 8:22 AM

158

id Race BirthDate Gender ZIP
t1 black 1965 male 0214*
t2 black 1965 male 0214*
t3 1965 female 0213*
t4 1965 female 0213*
t5 black 1964 female 0213*
t6 black 1964 female 0213*
t7 white 1964 male 0213*
t8 1965 female 0213*
t9 white 1964 male 0213*

t10 white 1964 male 0213*
t11 white 1967 male 0213*
t12 white 1967 male 0213*

Figure 80 Table from µ-Argus algorithm (Figure 79) with complementary suppression added

It is important to realize that avoidance of a summary data attack is not wholly resolved by

merely providing k indistinguishable tuples containing suppressed values. Inferences about the

suppressions must not be further distinguished by the non-suppressed values. Within the k-anonymity

framework, probabilistic attacks on distorted values are not necessarily resolved.

Example.

Summary data for the privately held information PT in Figure 34 is shown in Figure 46. Given a

quasi-identifier QI = {Race, BirthDate, Gender, ZIP}, where Most = {BirthDate}, More =

{Gender, ZIP} and Identifying = {Race} and a k-anonymity requirement of k=2, table MT in

Figure 75 results from executing the µ-Argus algorithm on PT with QI and k. Except for

suppressed values, k-anonymity is satisfied for all other tuples. However, using the summary

data, the missing or suppressed values can be inferred exactly. To combat this problem, the k-

anonymity requirement must be satisfied on all values, including suppressed ones. Figure 81

shows a generalization of MT in which k-anonymity is also enforced on suppressed values.

However, the summary data informs that one of the suppressed tuples pertains to a "male" and

the other a "female". If the non-suppressed values that are associated with these tuples in PT

were gender specific, then values for gender could be confidently inferred and the k requirement

would no longer be valid.

Computational Disclosure Control 01/08/01 8:22 AM

159

id Race BirthDate Gender ZIP
t1 black 1965 male 02141
t2 black 1965 male 02141
t3 black 1965 female 02138
t4 black 1965 female 02138
t5 black 1964 female 02138
t6 black 1964 female 02138
t7 white
t8 white
t9 white 1964 male 02139

t10 white 1964 male 02139
t11 white 1967 male 02138
t12 white 1967 male 02138

Figure 81 Table from µ-Argus algorithm (Figure 75) with complementary suppression added

7.3.4 Distortion and the µ-Argus algorithm

In terms of assessing the quality of generalized data that adhere to a k-anonymity requirement, it

is important to note whether: (1) the resulting data are minimally generalized – i.e., not a generalization

of another generalization that satisfies the same k-anonymity requirement; and, (2) the data are minimally

distorted – i.e., of all minimal generalizations that satisfy the k-anonymity requirement, none have more

precision retained in the data. In this subsection I will show that the µ-Argus algorithm does not

necessarily provide minimally generalized solutions or minimally distorted ones, even in cases where its

solutions do adhere to a k-anonymity requirement.

On the one hand, µ-Argus makes crude decisions – generalizing all values associated with an

attribute. On the other hand, µ-Argus suppresses values at the cell level. Algorithms that make all

decisions at the cell-level can potentially provide optimal results.

Example.

Given the privately held information PT in Figure 34, the Figure 79 provides the table MT,

where µ-Argus(PT) = MT for k=2, quasi-identifier QI={Race, BirthDate, Gender, ZIP}, where

Most = {BirthDate}, More = {Gender, ZIP} and Identifying = {Race}, and ∀i=1,…,|QI|, DGHAi

are domain generalization hierarchies based on the depictions in Figure 33. The Figure 80

provides table MGT, where MGT is MT with complementary suppression added. MT does not

adhere to the k-anonymity requirement; MGT does. The precision, Prec(MGT) with respect to

DGHAi is 0.754. In comparison, Figure 35 provides GT1, where MinGen(PT)=GT1. It is a k-

minimal distortion of PT over QI with respect to DGHAi where Prec(GT1)=0.83. The MinGen

Computational Disclosure Control 01/08/01 8:22 AM

160

result therefore has less distortion based on cell-level generalization and suppression. Notice that

although Prec(MT)=0.85, MT does not adhere to the k-anonymity requirement.

Another problem is the data holder’s unrestricted and mostly unguided selection of which

attribute, if any, to generalize. There is no recommendation made or sufficient metrics provided for the

data holder to make an informed decision. The µ-Argus algorithm makes the assumption that the data

holder knows best, which is reasonable only if sufficient information about the ramifications to

protection and distortion are provided to the data holder about such decisions at the time the data holder

must decide. This is especially important because the subject data at that time reside in such an

intermediate state that the resulting consequences are not necessarily clear. The absence of this

information allows the data holder to guide the µ-Argus program into providing results that are more or

less generalized than needed.

Example.

Given the privately held information PT in Figure 34, the Figure 75 and the Figure 79 provide

versions the tables MT1 and MT2, respectively, where µ-Argus(PT) = MT1 and µ-Argus(PT) =

MT2 for k=2, quasi-identifier QI={Race, BirthDate, Gender, ZIP}, where Most = {BirthDate},

More = {Gender, ZIP} and Identifying = {Race}, and ∀i=1,…,|QI|, DGHAi are domain

generalization hierarchies based on the depictions in Figure 33. Table MT1 has values associated

with ZIP generalized, as directed by the data holder. The Figure 80 provides table MGT1, where

MGT1 is MT1 with complementary suppression added. Likewise, The Figure 81 provides table

MGT2, where MGT2 is MT2 with complementary suppression added. Neither MT1 nor MT2

adhere to the k-anonymity requirement; but MGT1 and MGT2 do. The precision, Prec(MGT1)

with respect to DGHAi is 0.754. The precision, Prec(MGT2) with respect to DGHAi is 0.792. So,

MGT1 does more distortion than is necessary. The data holder made the decision to generalize

the values of ZIP with only the information provided in Figure 74. At that time, it is not clear

that MGT1 would be more distorting and further, it is not clear that selecting another attribute

other than ZIP to generalize would not reveal better results.

A third problem is the selection of values to suppress. After some values may have been

generalized, combinations of 2 and 3 values that do not occur at least k times in the data are identified in

the µ-Argus algorithm. As stated earlier, these are termed outliers. At least one value in each outlier

combination is to be suppressed. Even though the actual µ-Argus algorithm identifies all such

Computational Disclosure Control 01/08/01 8:22 AM

161

combinations, it does not suppress a value from each combination, and so, it can leave data vulnerable.

See Figure 74 and Figure 76 versus Figure 74 and Figure 75 for an example.

7.4 Comparison to Datafly

I will briefly compare the results of these two systems. In the Datafly System, generalizing

across a quasi-identifier ensures that the corresponding tuples will adhere to the k requirement. The µ-

Argus program however, only checks some 2- or 3- combinations; there may exist unique combinations

across 4 or more attributes that would not be detected. Treating a quasi-identifier as a single attribute that

must adhere to the k requirement, as done in the Datafly System provides more secure releases of data.

Further, since the number of attributes, especially demographic attributes, in a health database is large,

this strategy of examining only some 2- and 3-combinations may prove to be a serious handicap when

using the µ-Argus system with health data.

While both µ-Argus and Datafly employ attribute-level generalization, µ-Argus employs cell-

level suppression where Datafly suppresses at the tuple level. Therefore, the granularity of distortion is

better with µ-Argus. Results produced by µ-Argus can be less distorting than with Datafly, even when

both adhere to k-anonymity.

7.5 µ-Argus as an anonymous data system

µ-Argus uses the following disclosure limitation techniques: de-identification, generalization,

and suppression. Below is a description of the framework in which µ-Argus operates.

S = {subjects whose information is included in PT}

P = set of all people whose information could possibly be in PT

PT = privately held information about S

QI = set of attributes with replications in E

U = P

MT = µ-Argus (PT)

E = set of publicly available information in today’s society

G = set of standard communication methods.

f = µ-Argus algorithm

Computational Disclosure Control 01/08/01 8:22 AM

162

The system A(S, P, PT, QI, U, {MT}, E, G, µ-Argus) is not an ADS0.

Informal proof.

Let PT be data in Figure 34.

There can exist fewer than k tuples in MT having the same values across QI,

as shown in Figure 75 and Figure 76.

So, k-map protection is not provided and A is not an ADS0.

7.6 Future work

1. One could view the contents for the frequency list used in both the Datafly algorithm

and the µ-Argus algorithm as a matrix. Doing so, allows one to explore linear algebra

techniques as ways to identify outliers by likening the frequencies to coefficients in a

system of simultaneous equations. Some progress along these lines has resulted from

linear programming approaches that utilize cell suppression [111]. Explore the use and

deployment of linear algebra techniques as solutions to these kinds of problems.

2. The µ-Argus algorithm, which is listed in Figure 50, can be completely automated to

work without data holder intervention and also made to adhere to k-anonymity while

distorting the data as minimally as possible given the application of generalization

enforced at the attribute level and suppression enforced at the cell level. Modify the

algorithm along these lines to construct an Optimal µ-Argus algorithm and report on

its computational complexity and correctness.

3. Prove that a solution based on the µ-Argus approach must examine all combinations

of values within the quasi-identifier. Or, show where tradeoffs are possible to examine

fewer combinations of values.

4. The µ-Argus algorithm presented in Figure 50 was not written to be as

computationally efficient as possible. Examine this algorithm and its supporting

algorithms and improve the computational complexity or prove the minimum

complexity required for this approach. Examine and describe best case, worst case and

general case scenarios.

Computational Disclosure Control 01/08/01 8:22 AM

163

5. The SuppressOutliers() algorithm, which is listed in Figure 62, selects values to be

suppressed from each combination of values known to be an outlier in a tuple. The

algorithm selects the value within the tuple that occurs the most often in all

combinations identified as outliers. The strategy of selecting the most frequent value

is done repeatedly on the values of a tuple until each combination of values identified

as being an outlier contains at least one value that is suppressed. This approach may

not necessarily provide the least distorting results. That is, there may exists situations

in which the heuristic of suppressing the most frequently occurring value in this

situation leads to unnecessary suppression. Prove whether this heuristic always

provides a minimal number of suppressed values; and if not explore other strategies or

algorithms that provide a minimal number of suppressed values. Set covering

techniques may be useful.

Example

Given the privately held information PT in Figure 34, the Figure 76 provides the table

MT, where µ-Argus(PT) = MT for k=2, quasi-identifier QI={Race, BirthDate, Gender,

ZIP}, where Most = {BirthDate}, More = {Gender, ZIP} and Identifying = {Race},

and ∀i=1,…,|QI|, DGHAi are domain generalization hierarchies based on the depictions

in Figure 33. Figure 75 shows the intermediate sate of the data including outliers

before SuppressOutliers() executes. The outliers for the tuples identified as t8 are

shown in Figure 82. Each outlier combination appears as a row. Each attribute aligns

vertically. The attribute for Birth (for BirthDate) appears most often (5 times). It is

suppressed, leaving the combinations {zip, sex} and {sex, race} as outlier

combinations with no suppressed value. Of these attributes, sex (for Gender) appears

most often. So it is suppressed. Therefore, for tuple t8 the values associated with

BirthDate and Gender are suppressed, as shown in Figure 75.

Computational Disclosure Control 01/08/01 8:22 AM

164

birth zip
zip sex

birth zip sex
birth sex race
birth zip race

sex race
birth race

Figure 82 Combinations of attributes containing outliers

However, Figure 83 shows the same outlier combinations as those in Figure 82 but

with zip and race selected for suppression. Both the solution posed in Figure 82, which

suppresses the values associated with birth and sex, and Figure 83, which suppresses

the values associated with zip and race, provide the same amount of distortion when

applied to t8 because both solutions suppress two values. Both solutions also provide

the same protection in that each outlier combination for t8 has at least one value

suppressed.

birth zip
zip sex

birth zip sex
birth sex race
birth zip race

sex race
birth race

Figure 83 Combinations of attributes containing outliers

6. Implement a version of the µ-Argus approach using suppression as the only disclosure

limitation technique employed. The CombinationTest() algorithm, which is listed in

Figure 56, and the SuppressOutliers() algorithm, which is listed in Figure 62, form the

basis for this revised approach. Once the revision is working, assess it computational

complexity, correctness and data distortion. Then, revise the approach further to get

results that are correct with minimal distortion. (This is related to #5 above.)

7. Improve the µ-Argus algorithm by providing complementary suppression so that

resulting tables are not vulnerable to summary attacks. This involves enforcing the k

requirement on suppressed values.

Computational Disclosure Control 01/08/01 8:22 AM

165

Chapter 8 Results: k-Similar

In Chapter 6, the Datafly System was shown to sometimes over distort data. In Chapter 7, the µ-

Argus System was shown to sometimes fail to provide adequate protection. In this chapter, I present my

k-Similar algorithm, which uses generalization and suppression to find optimal solutions such that data

are minimally distorted while still being adequately protected. Decisions are automatically made at the

cell level that adhere to a given k-anonymity requirement [112] and that maximize the precision metric

[113]. The k-similar algorithm achieves these goals by looking at the computational disclosure control

problem as one of data clustering. In the well-known k-nearest neighbor or k-cluster algorithm [114], for

example, data are partitioned into k groups based on minimizing a distance between tuples. In contrast,

my k-similar algorithm divides data into groups such that the size of each group consists of k or more of

the “closest” tuples; in this case, closeness is based on a minimal distance measure derived from distance

vectors [115].

8.1 Overview of the k-Similar algorithm

More generally, the k-similar algorithm provides a solution to finding similarity matches in high

dimensional space with data consisting of primarily categorical values. In this setting, traditional mining

approaches have faced tremendous difficulty primarily because of troubles measuring "distance" between

categorical values. The k-similar approach is based on combining generalization and suppression and on

using the resulting hierarchies as a semantically useful grouping that reflects a partial ordering on values.

By cell generalization, I mean that a value can be replaced by a less precise but semantically consistent

alternative. Cell suppression in this context is considered the most general value possible because

semantically no information is released. The distance between two values can then be measured in terms

of the minimal level up the generalization hierarchy at which the two values have a common ancestor.

This precision metric provides the basis for a semantically meaningful measure of distance [116]. Given

a table and a value for k, the k-similar algorithm groups the tuples of the table in as many clusters as

necessary such that each cluster contains at least k of its closest tuples. In terms of anonymity, having k

tuples that are indistinguishable is the basis for k-anonymity protection.

Computational Disclosure Control 01/08/01 8:22 AM

166

8.2 Abstract of the k-Similar algorithm

The k-Similar algorithm is not a complete system like Datafly or µ-Argus. It is intended to fit

within a system, such as Datafly’s, replacing the core operational algorithm found there with the k-

Similar algorithm. (A description of the overall Datafly System is provided on page 107.) Here is a

summary of the setting in which the k-Similar algorithm operates.

Using the Datafly System as a shell for the k-Similar algorithm, the data holder provides an

overall anonymity level (A), which is a value between 0 and 1. The data holder also provides a profile of

the recipient by providing a linking likelihood (Pf) for each attribute that is also a value between 0 and 1.

Based on these values an overall value for k is computed and quasi-identifier(s) are determined. For

example, subsets of attributes where Pf=1 are treated as one concatenated attribute, or quasi-identifier,

which must satisfy a k-anonymity requirement. Each attribute has a replacement algorithm that either

uses equivalence class substitution, such as SSNs, or generalization based on a domain generalization

hierarchy specific to that attribute. In summary, the k-Similar algorithm merely replaces the core Datafly

algorithm within the system. The k-Similar algorithm therefore works with a quasi-identifier and a k-

anonymity requirement that is to be enforced on the quasi-identifier. For convenience, I consider all

attributes of the quasi-identifier as having equal weights (specifically, Pf=1 for each attribute of the

quasi-identifier though a weighted precision metric has been provided [117]); and, I address only

generalizable attributes of the quasi-identifier in isolation, ignoring those that would utilize equivalence

class substitution.

Before I introduce the k-Similar algorithm itself, let me first expand the earlier discussion on

distance vectors [118].

8.2.1 Distance vectors expanded

The k-similar algorithm uses generalization with suppression to group the closest k or more

tuples together into clusters. Closeness between tuples can be determined in terms of the value

generalization hierarchies [119] for the attributes. Basically, the distance between values is the level of

the generalization hierarchy at which the values have the same ancestor.

Computational Disclosure Control 01/08/01 8:22 AM

167

Definition. distance between values

Let A be an attribute, v1 and v2 be values associated with A, and fi∈DGHA, for i=1,…,h. The

distance between the values v1 and v2 is the smallest h for which f1(…fh(v1)…) = f1(…fh(v2)…).

Given the definition above, the distance between values is the length of the shortest path from

the ground domain to the domain in DGHA in which both values share the same generalized value. By

extension, the distance between two tuples can be expressed as a vector denoting the distance between

values for each attribute. This is presented in the following definition of a distance vector.

Definition. distance vector with respect to tuples

Let ti[A1,…,An] and tj[A1,…,An] be two tuples. The distance vector of ti to tj is the vector DVi,j =

[d1,…,dn] where each dz, where z=1,…,n, is the distance between ti[Az] and tj[Az].

The relationship between the minimal generalization of a table and the distance vectors between

tuples forms the basis for understanding the k-similar algorithm.

Example

Given the privately held information PT in Figure 84, the Figure 85 shows the distance vectors

between every two tuples in PT. The quasi-identifier is QI={HomeZIP, HospitalZIP, WorkZIP}

and ∀i=1,…,|QI|, DGHAi and VGHAi are the domain and value generalization hierarchies DGHZIP

and VGHZIP based on the depiction in Figure 33. As shown in Figure 84, the distance vector of t1

to t2 is DVt1,t2 = [0,1,0] because t1[HomeZIP] is the same value as t2[HomeZIP], and

t1[WorkZIP] is the same value as t2[WorkZIP], but t1[HospitalZIP] is NOT the same value as

t2[HospitalZIP]. They can become the same value if they were generalized 1 level up VGHZIP.

Likewise, the distance vector of t1 to t3 is DVt1,t3 = [0,0,2] because t1[HomeZIP] is the same

value as t3[HomeZIP], and t1[HospitalZIP] is the same value as t3[HospitalZIP], but

t1[WorkZIP] can become the same value as t3[WorkZIP] if they were generalized 2 levels up

VGHZIP. Similarly, the distance vector of t1 to t4 is DVt1,t4 = [0,1,1]; the distance vector of t2 to

t3 is DVt2,t3 = [0,1,2]; the distance vector of t2 to t4 is DVt2,t4 = [0,0,1]; and, the distance vector

of t3 to t4 is DVt3,t4 = [0,1,2].

Computational Disclosure Control 01/08/01 8:22 AM

168

A1 A2 A3
Home ZIP Hospital ZIP Work ZIP

t1 02138 02138 02138
t2 02138 02139 02138
t3 02138 02138 02141
t4 02138 02139 02139

Figure 84 Private Table PT

Figure 85 Clique showing distance vectors between tuples of Figure 84

To interpret distance vectors, the k-similar algorithm uses a distance function dist based on the

precision metric Prec() and therefore, is typically defined as the sum of the normalized value of each

element in the vector [120]. That is, given a vector Vx,y= [d1, ..., dn] associated with attributes, {A1,…,An}:

() ∑
=

=
n

i Ai

i
yx

d
Vdist

1
, DGH

Other distance functions correspond to different precision metrics. For example, using a

weighted precision metric [121] would warrant the use of a corresponding weighted distance function.

However, the distance function used must not only relate to the precision metric used but must also

satisfy the properties of Euclidean geometry listed in Figure 86 for all possible tuples x, y, and z.

(1) dist(Vx,y)≥ 0;
(2) dist(Vx,y) = 0 iff x = y;
(3) dist(Vx,y) = dist(Vy,x); and
(4) dist(Vx,y)≤�dist(Vx,z) + dist(Vz,y)).

Figure 86 Euclidean Properties of distance function

Lastly, Figure 87 contains operations and relations on distance vectors that determine a partial

ordering on distance vectors and that determine containment. These are used by the k-similar algorithm,

Computational Disclosure Control 01/08/01 8:22 AM

169

which is presented later in this subsection. In each of these cases, let Vx,y= [dy1, ..., dyn] and Vx,z= [dz1, ...,

dzn] be distance vectors between tuples.

(1) Vxy < Vxz iff dyi < dzi for all i=1,…,n.
(2) Vxy = Vxz iff dyi = dzi for all i=1,…,n
(3) Vxy Θ Vxz = [min(dy1, dz1), …, min(dyn, dzn)]
(4) Vxy ⊕ Vxz = [max(dy1, dz1), …, max(dyn, dzn)]

Figure 87 Relations on distance vectors

Definition. maximal distance vector

Given a table T[QI] and a set of tuples {t1[QI], …, tm[QI]} where for i=1,…,m, ti∈T and m ≥ 2,

the maximal distance vector across the set of tuples is Vtjt1 ⊕ Vtjt2 ⊕ … ⊕ Vtjtm,where j is 1, 2, …,

or m.

The maximal distance vector across a set of tuples in a table is the distance vector that reports for

each attribute, the level up the value generalization hierarchy for that attribute, at which all values

associated with that attribute in the set of tuples is the same. It is computed by iteratively applying the ⊕

operator, defined in Figure 87, to all distances of one tuple in the set tj to all the other tuples. The result is

the maximum level up the value generalization hierarchy that the tuple tj must combine with the other

tuples.

Example

Given the privately held information PT in Figure 84, the Figure 85 shows the distance vectors

between every two tuples in PT. The quasi-identifier is QI={HomeZIP, HospitalZIP, WorkZIP}

and ∀i=1,…,|QI|, DGHAi and VGHAi are the domain and value generalization hierarchies DGHZIP

and VGHZIP based on the depiction in Figure 33. The maximal distance vector of {t1, t2} is DVt1,t2

= [0,1,0]. This is the same as the distance vector between the two tuples.

The maximal distance vector of {t1, t2, t3} is [0,1,2]. The maximal distance vector of {t1, t2, t4} is

[0,1,1]. The maximal distance vector of {t2, t3, t4} is [0,1,2]. And, the maximal distance vector of

{ t1, t2, t3, t4} is [0,1,2].

Computational Disclosure Control 01/08/01 8:22 AM

170

Theorem 7

Given a table T[QI] and a set of tuples S = {t1[QI], …, tm[QI]} where ∀i=1,…,m, ti∈T, the

maximal distance vector DVS across S is the minimal distortion required to make the tuples of S

indistinguishable over QI.

Proof.

Let DVS be the maximal distance vector across S.

Assume DVS does not represent a minimal distortion of S.

Then there must exist a distance vector DV’ that provides a minimal distortion of S such that

dist(DV’) < dist(DVS).

∃Ai ∈QI, di’ < dsi where DV’=[…,di’,…] and DVS = […,dsi,…].

This is a contradiction because di’ = dsi.

So, DVS must be a minimal distortion of S.

8.2.2 The k-Similar algorithm

This subsection begins with a general description of the overall operation of the algorithm.

Following this high-level description is the algorithmic listing of the k-Similar algorithm along with

supporting algorithms. After the listings is a walk through the algorithm, without and then with

examples.

The basic phases of the k-Similar algorithm are provided in Figure 88. The program begins in

phase A by testing for some base conditions, which are: (1) if the number of tuples in the table is 0, the

empty table is returned; (2) if the number of tuples in the table is less than k, an error results; and, (3) if

the number of tuples in the table is greater than or equal to k, but less than 2k, all the tuples are

generalized into one cluster that is returned as the solution.

In all other cases, the program continues by automatically computing distance vectors between

every two tuples and organizing the result into a clique. Each distance vector recorded on an edge of the

clique reports the generalization needed in order for the two incident tuples to have the same generalized

result.

Computational Disclosure Control 01/08/01 8:22 AM

171

In phase B, the program walks the edges of the clique to identify groups of k tuples that are

"closest" in terms of distance vectors. A set of k tuples that are minimally distant denote a possible

cluster of tuples in the generalized solution. Each of tuple in the cluster appears in the generalized

solution with the same generalized values. The set of all k-sized clusters determined to minimally include

a tuple is called mins. Each cluster is called a "minimal". The remainder of the algorithm works with

mins and subsets and partitions of mins to identify which group of clusters in mins best accounts for all

the tuples that when generalized in accordance to their designated clusters would yield minimal

distortion in the overall generalized solution.

Some of the clusters in mins may consist of tuples that if their attributes were generalized to the

same values would not limit the ability of other tuples to combine with their closest tuples. I term such a

cluster a "complementary minimum". In phase C, the program traverses through mins identifying any

complementary minimums. Phase D handles the situation if complementary minimums are found in mins

and phase E handles the situation if no complementary minimums are found.

In phase D, if complementary minimums exist in mins, then each such cluster is removed from

further consideration. That is, the tuples that comprise a complementary minimum are generalized

together and added to the generalized solution. Recall, a cluster in mins, from phase B, identified its

constituent tuples as being minimally distant and the cluster as containing k tuples. Therefore, if the

cluster is a complementary minimum, it provides a solution for its constituent tuples.

Clusters remaining in mins, after complementary minimums are removed, have groups of clusters

that share tuples. The program is recursively run on each connected partition of the remaining clusters in

mins.

Phase E concerns partitions of mins that have no complementary minimums. This is a special

situation in which groups of clusters share one or more common tuples. These common tuples are held

aside and the program recursively run on the result. When execution returns from the recursion, the

tuples, which were previously held aside, are added to the results so that the overall distortion is minimal.

Computational Disclosure Control 01/08/01 8:22 AM

172

 Basic operation of the k-Similar algorithm is as follows:

 A. Compute distance vectors between every two tuples in the table T[QI]. The
result is a clique and is called clique.

 B. Walk the edges of clique and identify the (k-1) tuples that are minimally
distant from each tuple. A set of tuples that are closest, based on dist() applied
to their maximal distance vector, is termed a "minimal". The resulting set of
"minimals" for all tuples is called mins.

 C. Identify elements of mins that are isolated from other minimals in mins. Such
elements represent tuples that if they are excluded from the clique would not
limit other tuples from combining with their closest tuples. Such a set of tuples
is termed a "complementary minimum". The set of all complementary
minimums found in mins is called complements.

 D. If complementary minimums exist in mins, then for each element of
complements: (1) put the corresponding tuples in the solution table, all
minimally generalized to be indistinguishable; and, (2) remove those tuples
from further consideration. Recursively run the program on connected
partitions of the tuples remaining.

 E. If no complementary minimums exist, then there exist a set of 1 to (k-1) tuples
that are common to all minimals in mins. In this case, remove the common
tuple(s) from consideration. Recursively run the program on the result and
then add the withheld tuple(s) so that the overall distortion after the withheld
tuple(s) are included is minimal.

Figure 88 Basic operation of k-Similar algorithm

Figure 89 contains a listing of the k-Similar algorithm. Figure 90 through Figure 102 provide

supporting methods. A description of the general operation of the algorithm and examples using these

algorithms are provided following the algorithm listings.

Computational Disclosure Control 01/08/01 8:22 AM

173

k-Similar Algorithm
Input: Table T; quasi-identifier QI = (A1, …, An), k-anonymity constraint k; and domain and

value generalization hierarchies DGHAi and VGHAi, where i=1,…,n with accompanying
functions fAi.

Output: A k-minimal distortion of T[QI]
Assume: |T| ≥ k
algorithm k-Similar:
1. Append an attribute ID to T. The associated values of ID in T are key identifiers that are unique for

each tuple of T; these values are numbered from 1 to |T|.
2. clique = CliqueConstruct(T[QI,ID])
3. clusts ← kSimilarRun(T, k, clique)
4. return TableConstruct(clusts)

Figure 89 k-Similar algorithm

CliqueConstruct
Input: Table T[QI,ID]; where quasi-identifier QI = (A1, …, An), ID associates unique values

numbered from 1 to |T| to the tuples of T, and value generalization hierarchies VGHAi
and VGHAi, where i=1,…,n with accompanying functions fAi.

Output: clique, which is a clique of the tuples of T stored in a 2-dimensional array. Each node in
the clique is a tuple. Each edge records the distance vector that corresponds to the
distance between the tuples whose nodes are incident.

algorithm CliqueConstruct:
1. let clique be an initially empty 2-dimensional square array of size |T| by |T|.

2.1 for tuplefrom ← 1 to |T| do:
2.1.1 for tupleto ← 1 to |T| do:

2.1.1.1 if (tuplefrom ≠ tupleto) then:
2.1.1.1.1 clique[tuplefrom, tupleto]

 ← Distance(T[QI,ID=tuplefrom], T[QI,ID=tupleto])
2. return clique

Figure 90 CliqueConstruct algorithm

Computational Disclosure Control 01/08/01 8:22 AM

174

Distance
Input: t1,t2∈T[QI]; where quasi-identifier QI = (A1, …, An), and value generalization hierarchies

VGHAi, where i=1,…,n with accompanying functions fAi.
Output: [d1, …, dn], which is a distance vector that corresponds to the distance between the tuples

t1 and t2.
algorithm Distance:
1. DV ← [d1,…,dn] where each di is the length of the unique path between t1[Ai] and t2[Ai] in VGHAi for i=1…n
2. return DV

Figure 91 Distance vector algorithm

kSimilarRun Algorithm
Input: Table T[QI,ID], where quasi-identifier QI = (A1, …, An), ID associates unique values

numbered from 1 to |T| to the tuples of T; k-anonymity constraint k; value generalization
hierarchies VGHAi, where i=1,…,n with accompanying functions fAi; and, clique, which
is a clique of the tuples of T where each node in the clique is a tuple and each edge
records the distance vector that corresponds to the distance between the tuples whose
nodes are incident.

Output: clusts, which is a vector of sets of ID values of tuples. Each member set identifies a
cluster of tuples that when generalized to respect to the distance vectors incident to the
tuples provide a set of "closest" tuples in a k-minimal distortion of T[QI]

algorithm kSimilarRun:
1. if |T| = 0 then return ∅
2. if |T| < k then error "Table must have at least k elements"
3. if |T| < 2*k then return { T[ID] } // make a cluster containing all tuples in T
4. mins ← GenerateMinimums(T[QI,ID], clique, k)
5. complements ← FindComplements(mins)
6. if |complements| > 0 then do:

6.1 let T2 be a table with no elements initially
6.2 for pos ← 1 to |complements| do:

6.2.1 T2 ← { t[QI,ID] | t[QI,ID]∈T[QI,ID∈ complements[pos]] }
6.2.2 T ← T – T2
6.2.3 if (|T| > 0) then do: mins ← GenerateMinimums(T[QI,ID], clique, k)

7. return complements ∪ kSimilarRunParts(T, mins)

Figure 92 kSimilarRun algorithm

Computational Disclosure Control 01/08/01 8:22 AM

175

kSimilarRunParts Algorithm
Input: Table T[QI,ID]; where quasi-identifier QI = (A1, …, An), ID associates unique values

numbered from 1 to |T| to the tuples of T, and mins, which is a vector of sets of ID values
of tuples. Each member set identifies a cluster of k closest tuples.

Output: clusts, which is a vector of sets of ID values of tuples. Each member set identifies a
cluster of tuples that when generalized to respect to the distance vectors incident to the
tuples provide a set of "closest" tuples in a k-minimal distortion of T[QI]. Executes
kSimilarRun() mutually recursively, on connected groups within mins.

algorithm kSimilarRunParts:
1. if (T ≡ ∅) then return ∅
2. (T1, mins1, T2, mins2) ← Partition(T, mins)
3. if (|T1| < 2*k) then do:

3.1 return kSimilarRun(T1) ∪ kSimilarRunParts(T2, mins2)
4. else do:
 // assert: there exist tuple(s) common to all elements within partition T1, based on mins1

4.1 withheld ← CommonTuples(mins1, clique)
4.2 if ((|T1| - |withheld|) < 2*k) then do:

4.2.1 return addTuple(withheld, k,(mins1-withheld), clique)
 ∪ kSimilarRunParts(T2, mins2)

4.3 mins3 ← kSimilarRun(T1[QI,ID∉withheld], k, clique)
4.4 return addTuple(withheld, k, mins3, clique) ∪ kSimilarRunParts(T2, mins2)

Figure 93 kSimilarRunParts algorithm

Computational Disclosure Control 01/08/01 8:22 AM

176

TableConstruct
Input: clusts, which is a vector of sets of ID values of tuples. Each member set identifies a

cluster of tuples that when generalized to respect to the distance vectors incident to the
tuples provide a set of "closest" tuples in a k-minimal distortion of T[QI], where quasi-
identifier QI = (A1, …, An), ID associates unique values numbered from 1 to |T| to the
tuples of T, and clique, which is a clique of the tuples of T where each node in the clique
is a tuple and each edge records the distance vector that corresponds to the distance
between the tuples whose nodes are incident.

Output: GT, which is a minimal generalization of T[QI]. Tuples identified within an element of
clusts are generalized to have the same values.

algorithm TableConstruct:
1. let GT ←∅
2. for clustnum ← 1 to |clusts| do:

2.1 let V be a distance vector of the form [d1, …,dn] where each di=0
 and n is the number of attributes in the quasi-identifier QI = (A1, …, An)

2.2 let aclust be an expandable and collapsible Vector whose elements
 are initialized to clusts[clustnum]

2.3 for tupleto ← 2 to |aclust| do:
2.4.1 V ← V ⊕ clique[aclust[1], aclust[tupleto]] // compute maximal distance vector

2.4 for t ← 1 to |aclust| do:
2.5.1 GT ← GT ∪ GeneralizeTuple(T[QI,ID=t], V) // generalize each tuple in cluster

3. return GT

Figure 94 TableConstruct algorithm

Computational Disclosure Control 01/08/01 8:22 AM

177

AddTuple
Input: withheld, which is a set of unique values associated with tuples in T; k-anonymity

constraint k; clusts, also known as mins, is a vector of sets of ID values of tuples. Each
member set identifies a cluster of tuples that when generalized to respect to the distance
vectors incident to the tuples provide a set of "closest" tuples in a k-minimal distortion of
T[QI], where quasi-identifier QI = (A1, …, An), ID associates unique values numbered
from 1 to |T| to the tuples of T; and, clique, which is a clique of the tuples of T where
each node in the clique is a tuple and each edge records the distance vector that
corresponds to the distance between the tuples whose nodes are incident.

Output: clusts, which is a vector of sets of ID values of tuples that is the same as the original
value of clusts (also known as mins) provided to the algorithm except the returned value
has an element that includes the elements of withheld. The tuple(s) identified in withheld
replace tuple(s) in an original element of clusts such the overall loss of precision due to
generalization is minimized and all tuples remain included.

algorithm AddTuple:
1. let d ← ∞, n ← 0, c ← ∅
2. for clustnum ← 1 to |clusts| do:

1.1 if clusts[clustnum] ≡ 2 * k - |withheld| then do:
1.1.1 testclust ← be an expandable and collapsible Vector whose elements

 are initialized to clusts[clustnum]
1.1.2 (d1, c1) ←addTupleMin(withheld, testclust, k, d, c, clique)
1.1.3 if (d1 < d) then do:

1.1.1.1. d ← d1
1.1.1.2. n ← clustnum
1.1.1.3. c ← c1

3. temp ← clusts[n] ∪ withheld
4. clusts[n] ← temp – c
5. clusts[|clusts|+1] ← c
6. return clusts

Figure 95 AddTuple algorithm

Computational Disclosure Control 01/08/01 8:22 AM

178

AddTupleMin
Input: ca, cb, which are each a set of unique values associated with tuples in T;
 k, which is a k-anonymity constraint;
 d, which is distance;
 c, which is a set of unique values associated with tuples in T.
 clique, which is a clique of the tuples of T where each node in the clique is a tuple and

each edge records the distance vector that corresponds to the distance between the tuples
whose nodes are incident.

Output: (d, c), which is a vector of sets of ID values of tuples that is the same as the original
value of clusts (also known as mins) provided to the algorithm except the returned value
has an element that includes the elements of withheld. The tuple(s) identified in withheld
replace tuple(s) in an original element of clusts such the overall loss of precision due to
generalization is minimized and all tuples remain included.

Assumes dist() function exists and computes non-negative distance from a distance vector based
on Prec(), can be weighted or not.

algorithm AddTupleMin:
1. if |ca| ≡ k then do:

1.1. let Va, Vb be distance vectors of the form [d1, …,dn] where each di=0
 and n is the number of attributes in the quasi-identifier QI = (A1, …, An)

1.2. for tnum ← 2 to |ca| do:
1.2.1 Va ← Va ⊕ clique[ca[1], ca[tnum]]

1.3. da ← dist(Va) * |ca|
1.4. for tnum ← 2 to |cb| do:

1.4.1 Vb ← Vb ⊕ clique[cb[1], cb[tnum]]
1.5. db ← dist(Vb) * |cb|
1.6. if (da + db) < d) then do: return (da + db, ca)
1.7. else return (d, c)

2. else if |ca| < (k–1) then do:
2.1. let ca2 ← ca, cb2 ← cb
2.2. ca2[|ca2|+1] = cb2[1]
2.3. purge cb2[1]
2.4. (d1, c1) ← addTupleMin(ca2, cb2, k, d, c)
2.5. if (d1 < d) then do: d ← d1, c ← c1
2.6. (d1, c1) ← addTupleMin(ca2, cb2, k, d, c)
2.7. if (d1 < d) then do: d ← d1, c ← c1
2.8. return (d, c)

3. else while |cb| > 0 do:
3.1. ca[|ca|+1]← cb[1]
3.2. purge cb[1] // cb has one less element
3.3. (d1, c1) ← addTupleMin(ca, cb, k, d, c)
3.4. purge ca[|ca|] // ca has one less element
3.5. if (d1 < d) then do: d ← d1, c ← c1

4. return (d, c)

Figure 96 addTupleMin algorithm

Computational Disclosure Control 01/08/01 8:22 AM

179

GeneralizeTuple Algorithm
Input: Tuple t[QI,ID]; where quasi-identifier QI = (A1, …, An), ID associates unique values

numbered from 1 to |T| to the tuples of T, a distance vector V[d1,…,dn], and value
generalization hierarchies VGHAi, where i=1,…,n with accompanying functions fAi.

Output: G, which is a set containing the result of generalizing tuple t by V.
algorithm GeneralizeTuple:
1. let G ← { t2[QI] | t2[Ai] = f1(…fdi(v)…) where v = t[Ai] and V[…di…] for all i=1,…,|QI| }
2. return G

Figure 97 GeneralizeTuple algorithm

GenerateMinimums Algorithm
Input: Table T[QI,ID]; where quasi-identifier QI = (A1, …, An), ID associates unique values

numbered from 1 to |T| to the tuples of T, k-anonymity constraint k, and clique, which is
a clique of the tuples of T where each node in the clique is a tuple and each edge records
the distance vector that corresponds to the distance between the tuples whose nodes are
incident.

Output: mins, which is a Vector of sets of ID values of tuples. Each member set identifies a
cluster of k-1 of t's closest tuples. Each member set includes t so the total cluster size is
k.

algorithm GenerateMinimums:
1. let mins be an expandable and collapsible Vector with no elements initially.
2. let stack be an empty Stack.
3. let zero be a distance vector [d1, …,dn] where each di=0 and n is the number of attributes in the

quasi-identifier QI = (A1, …, An)
4. for tupleto ← 1 to |clique| do:

4.1 mins = traverse(tupleto, tupleto+1, k, { tupleto}, zero, ∞, mins)
 // stack and clique are globally available across iterations of traverse()

5. return mins

Figure 98 GenerateMinimums algorithm

Computational Disclosure Control 01/08/01 8:22 AM

180

FindComplements Algorithm
Input: mins, which is a set of sets of ID values of tuples. Each member set identifies a cluster of

k-1 of t’s closest tuples. Each member set includes t so the total cluster size is k.
Output: distincts, which is a vector of sets of ID values of tuples. Each member set identifies a

cluster that can be partitioned as an independent sub-solution.
algorithm FindComplements:
1. let distincts be an expandable and collapsible Vector with no elements initially.
2. let allnodes ← ∅
3. for pos ← 1 to |mins| do:

3.1 allnodes ← allnodes ∪ mins[pos]
4. for candidate ← 1 to |mins| do:

4.1 let s ← allnodes - mins[candidate]
4.2 for pos ← 1 to |mins| do:

4.1.1 temp ← mins[pos] ∩ mins[candidate]
4.1.2 if (temp ≠ ∅) then do:

4.2.1.1. s ← s – temp
4.3. if (s ≡ allnodes – mins[candidate]) then do:

4.3.1 distincts[|distincts| + 1] ← mins[candidate]
5. return distincts

Figure 99 FindComplements algorithm

Computational Disclosure Control 01/08/01 8:22 AM

181

Traverse Algorithm
Input: (node, next, k, path, mV, mdist, mins)

node which is the unique value associated with a tuple in clique that represents the
tuple "from" which distance will be measured to next on this iteration.

next which is the unique value associated with a tuple in clique that represent the
tuple "to" which distance will be measured from node on this iteration.

k which is the k-anonymity constraint
path which is the set of tuples comprising the shortest path from node to the tuple that

serves as the root of the traversal
mV which is a maximal distance vector from the tuple that serves as the root of the

traversal to node.
mdist which is the measure of distortion from the root of the traversal to node. It does

not include the distance from node to next.
mins which is a Vector of sets of ID values of tuples computed so far. Each member

set identifies a cluster of k-1 of t’s closest tuples. Each member set includes t so
the total cluster size is k. At the end of the traversal this value provides the
answer. It is shared across iterations to track global information.

Output: mins, which is a Vector of sets of ID values of tuples. Each member set identifies a
cluster of k-1 of t’s closest tuples. Each member set includes t so the total cluster size is
k.

Assumes dist() function exists and computes non-negative distance from a distance vector based
on Prec(), can be weighted or not.

 Assumes following exist and are globally available:
stack which is a Stack that contains information on each node from the root of the

traversal up to, but not including node. Each element of the stack contains values
of the form: (node, path, mV, mdist). It is shared across iterations to track global
information.

clique which is a clique of the tuples of T where each node in the clique is a tuple and
each edge records the distance vector that corresponds to the distance between
the tuples whose nodes are incident, t, which is an ID value unique to a tuple in
T.

Computational Disclosure Control 01/08/01 8:22 AM

182

algorithm Traverse:
1. if (next > |clique|) and stackEmpty() then do:

1.1. return mins
2. else if (next > |clique|) then do:

2.1. (root0, path0, mV0, mdist0) ← stackPop()
2.2. return traverse(root0, node+1, k+1, path0, mins)

3. else if (next ∉ T[ID]) then do:
3.1. return traverse(node, next+1, 1, path, mV, mdist, mins)

4. V1 ← mV ⊕ clique[node, next]
5. d1 ← dist(V1) * (|path| + 1)
6. p1 ← path ∪ {next}
7. if (d1 > mdist) then do:

7.1. return traverse(node, next+1, k, path, mV, mdist, mins)
8. else if (k ≡ 1) and (d1 ≡ mdist) then do:

8.1. mins[|mins| + 1] ← p1
8.2. return traverse(node, next+1, 1, path, mV, mdist, mins)

9. else if (k ≡ 1) then do: // and (d1 < mdist) is implied
9.1. purge all elements from mins
9.2. mins[1] ← p1
9.3. mdist ← d1
9.4. mV ← V1
9.5. return traverse(node, next+1, 1, path, mV, mdist, mins)

10. else do: // k ≠ 1 is implied
10.1. stackPush(next, p1, V1, d1)
10.2. return traverse(next, next+1, k-1, p1, V1, d1, mins)

Figure 100 Traverse algorithm

Computational Disclosure Control 01/08/01 8:22 AM

183

Partition Algorithm
Input: Table T[QI,ID]; where quasi-identifier QI = (A1, …, An), ID associates unique values

numbered from 1 to |T| to the tuples of T; and, mins, which is a set of sets of ID values of
tuples. Each member set identifies a cluster of k-1 of t's closest tuples. Each member set
includes t so the total cluster size is k.

Output: (T1, T2, ms), where T1 ∪ T2 = T and T1 ∩ T2 = ∅. The tuples of T1 identifies a
connected group of tuples that can be partitioned as an independent sub-solution. This
decision is based on the connectedness of elements within mins. The identifier ms
contains the subset of mins not accounted for by the tuples of T1.

algorithm Partition:
1. let allnodes ← ∅, ms ← ∅
2. for pos ← 1 to |mins| do:

2.1 allnodes ← allnodes ∪ mins[pos]
3. let r ← mins[1] // test connectedness of mins[1]
4. for pos ← 2 to |mins| do:

4.1 if (mins[pos] ∩ r ≠ ∅) then do:
4.1.1 r ← r ∪ mins[pos]

4.2 else do:
4.2.1 ms ← ms ∪ mins[pos]

5. if (mins ≠ r) then do:
5.1 return (T1, r, T2, ms) where T1 = {t1 | t1 ∈T[QI,ID=t2] and t2∈r} and T2 = T-T1

6 else do:
6.1 return (T, r, ∅, ∅)

Figure 101 Partition algorithm

Computational Disclosure Control 01/08/01 8:22 AM

184

CommonTuples Algorithm
Input: mins, which is a set of sets of ID values of tuples. Each member set identifies a cluster of

k-1 of t’s closest tuples. Each member set includes t so the total cluster size is k; and,
clique, which is a clique of the tuples of T where each node in the clique is a tuple and
each edge records the distance vector that corresponds to the distance between the tuples
whose nodes are incident, t, which is an ID value unique to a tuple in T

Output: withheld, which is a set of unique value associated with a tuple in T and that occurs in
each element of mins thereby making them "the" closest tuple to all tuples.

algorithm CommonTuples:
1. let withheld ← ∅
2. for tnum ← 1 to |clique| do:

2.1 let inall ← true
2.2 for pos ← 1 to |mins| do:

2.2.1 if (tnum ∉ mins[pos])
2.2.1.1 inall ← false

2.3 if (inall ≡ true) then do:
2.3.1 withheld ← withheld ∪ {tnum}

3. return withheld

Figure 102 CommonTuples algorithm

As introduced earlier, the basic steps, A through E, of the k-Similar algorithm are enumerated in

Figure 88. The algorithm listed in Figure 89 along with its supporting methods is more detailed but

follows these same basic steps. Below is a walk through the detailed version of the k-Similar algorithm.

Afterwards are some examples.

Given a private table T, a quasi-identifier QI=(A1,…,An), a k-anonymity requirement k, domain

and value generalization hierarchies DGHAi and VGHAi, where i=1,…,n with accompanying functions fAi,

the k-Similar algorithm, listed in Figure 89, generates a k-minimal distortion of T[QI].

The k-Similar algorithm listed in Figure 89 begins in step 1 by expanding T to include an

attribute labeled ID whose values serve as a unique identifier (or key) for each tuple in T. From this point

forward, the algorithm has the ability to uniquely refer to a tuple in T by using its associated value of ID.

Step 2 of the k-Similar algorithm listed in Figure 89 produces a clique of the tuples of T stored in

a 2-dimensional array named clique. The method CliqueConstruct() listed in Figure 90 performs the

construction. Each node in the clique is a tuple. Each edge records the distance vector that corresponds to

the distance between the tuples whose nodes are incident. The method Distance() listed in Figure 91

Computational Disclosure Control 01/08/01 8:22 AM

185

computes the distance vector between two tuples using the value generalization hierarchies VGHAi,

where i=1,…,n with accompanying functions fAi. The distance vector records the minimal generalization

strategy [122] needed for the two tuples to have the same generalized values.

The heart of the algorithm occurs in step 3 of the k-Similar algorithm listed in Figure 89. It

executes the method kSimilarRun(), which is listed in Figure 92, and which will be further described in

the next paragraphs. The kSimilarRun() method returns a set of clusters of tuples such that minimally

generalizing the tuples of each cluster together so they become indistinguishable results in a table that is

a k-minimal distortion of T[QI]. The method TableConstruct() listed in Figure 94 takes the set of clusters

from kSimilarRun(), generalizes the tuples of each cluster, and then returns the generalized table. Each

cluster therefore, identifies a group of tuples that in the solution set are indistinguishable across QI. So,

the k-Similar approach can be described as translating the problem into one of partitioning tuples. This is

done by kSimilarRun().

The kSimilarRun() method listed in Figure 92 begins by testing for the base conditions in steps 1

through 3. These conditions are based on the size of the table provided to kSimilarRun(). Step 1: if the

number of tuples in the table is 0, an empty set of clusters is returned denoting the empty table. Step 2: if

the number of tuples in the table is less than k, an error results because the k requirement cannot be

satisfied on a table having less than k tuples. Step 3: if the number of tuples in the table is greater than or

equal to k, but less than 2k, all the tuples are generalized into one cluster designating that all the tuples of

the table are to be generalized together.

In step 4 of the kSimilarRun() method, which is listed in Figure 92, the program walks the edges

of clique using the method GenerateMinimums(), which is listed in Figure 98, to identify groups of k

tuples that are "closest" in terms of distance vectors. The method traverse(), which is listed in Figure

100, performs the actual traversal on clique given a particular starting tuple t. The method traverse()

returns the cluster(s) of size k containing t and t's closest tuples that when combined have less distortion

than any other combination of k tuples that include t. The method GenerateMinimums() executes

traverse() on each tuple. The end result is a set of all k-sized clusters determined to minimally include a

tuple. It is called mins. Each cluster in mins is called a "minimal". As described in the next paragraphs,

the remainder of the algorithm works with mins and partitions of mins to identify which group of clusters

in mins best accounts for all the tuples that when generalized in accordance to their designated clusters

would yield minimal distortion in the overall generalized solution.

Computational Disclosure Control 01/08/01 8:22 AM

186

Some of the clusters in mins may consist of tuples that if their attributes were generalized to the

same values would not limit the ability of other tuples to combine with their closest tuples. I term such a

cluster a "complementary minimum". Step 5 of the kSimilarRun() method, which is listed in Figure 92,

executes the FindComplements() method, which is listed in Figure 99, to identify complementary

minimums within mins. Such clusters can be partitioned as an independent sub-solution. The resulting set

of complementary minimums found is called complements.

The sub-steps of step 6 of the kSimilarRun() method, which is listed in Figure 92, execute only if

complementary minimums are found in mins. In that case, complements returns as part of the solution

and kSimilarRunParts(), which is listed in Figure 93, executes on the remaining tuples and minimals to

recursively apply the algorithm on partitions of connected clusters. If no complementary minimums are

found, then complements has no elements, and so in step 7, kSimilarRunParts(), which is listed in Figure

93, executes on all the tuples and minimals under consideration.

The method kSimilarRunParts(), which is listed in Figure 93, employs mutual recursion by

executing kSimilarRun() on each connected partition of the remaining clusters in mins. The method

Partition(), which is listed in Figure 101, is used in step 2 of kSimilarRunParts() to identify connected

clusters within the given mins. If the returned partition has less than 2k elements, then in step 3.1,

kSimilarRun() is used to combine the tuples of that partition into a single cluster as part of the overall

solution.

If the returned partition, identified as T1, has 2k or more elements, then the partition has a special

configuration in which all minimals within the partition share one or more common tuples. This situation

is handled in step 4 of kSimilarRunParts(). In step 4.1, the method kSimilarRunParts() deploys the

method CommonTuples(), which is listed in Figure 102, to identify the set of 1 to (k-1) tuples that appear

within each cluster of the partition. These tuples are stored in a set called withheld. If the number of

tuples in the partition, not including the tuples withheld, is less than 2k, then the method addTuple(),

which is listed in Figure 95, executes to determine which clusters in the partition should include the

withheld tuples. The decision is made so that the overall result has minimal distortion. On the other hand,

if the number of tuples in the partition, not including the tuples withheld, is greater than or equal to 2k,

then kSimilarRun() is executed using mutual recursion on the partition not including the withheld tuples.

Computational Disclosure Control 01/08/01 8:22 AM

187

The method addTuple() then executes afterwards to determine which cluster(s) in the result will include

the withheld tuples.

As stated earlier, the final step of the k-Similar algorithm uses TableConstruct(), which is listed

in Figure 94, to construct a generalized table from the resulting set of clusters from kSimilarRun(). It can

be shown that the final table resulting from the k-Similar algorithm is a k-minimal distortion of the

original table using cell-level generalization and suppression.

Example

Given the private table PT shown in Figure 84, the domain and value generalization hierarchies

based on the depictions in Figure 33 (on page 101), and a k-anonymity requirement of k=2, the k-

Similar algorithm, which is listed in Figure 89, provides the table GT, as shown in Figure 104, as

a k-minimal distortion of PT over the quasi-identifier QI = {HomeZIP, HospitalZIP, WorkZIP}.

Here is a walk through the k-Similar algorithm to demonstrate how MT is constructed.

Figure 84 shows the uniquely identifying values t1, t2, t3 and t4 appended to the table after step

1 of the k-Similar algorithm executes. These values are associated with the ID attribute. Figure

85 shows clique, which is constructed after step 2 of the k-Similar algorithm concludes. The

nodes are the tuples of PT. The edges are labeled with the distance vectors between every two

tuples in PT.

None of the base conditions in the first 3 steps of kSimilarRun() are applicable. T in this case is

PT. It has 4 tuples and k=2, so |T|=2k. Figure 103 shows the value of mins after step 4 concludes.

The method GenerateMinimums() identifies the set of minimals for each tuple by traversing

clique to identify each tuple’s nearest (k-1) tuples. Traversing clique from t1 provides the

minimal {t1, t2}, from t2 provides the minimals {t1, t2} and {t2, t4}, from t3 provides the

minimal {t1, t3}, and from t4 provides the minimal {t2, t4}.

 {t1, t2}
 {t2, t4}
 {t1, t3}

Figure 103 Resulting mins from GenerateMinimums()

Computational Disclosure Control 01/08/01 8:22 AM

188

The minimals {t1, t3} and {t2, t4} are returned as complementary minimums by

FindComplemets(). So, complements = {{t1, t3}, {t2, t4}} after step 5 of kSimilarRun(). When

step 6 of kSimilarRun() concludes, T is empty. So, complements is returned at step 7 of

kSimilarRun() as the set of clusters that are minimally distorting. The call to kSimilarRunParts()

in step 7 of kSimilarRun() returns ∅ because T is empty. The final step of kSimilar() executes

TableConstruct() on clusts ={{t1, t3}, {t2, t4}}. The result is shown in Figure 104 with the ID

values still appended for ease of reference.

The possible cluster combinations and their distortion are: {{t1, t2}, {t3, t4}} at 8 levels of

generalization is 2.67; {{t1, t3}, {t2, t4}} at 6 levels of generalization is 2.00; and, {{t1, t4}, {t2,

t3}} at 10 levels of generalization is 3.33. The combination of clusters with the least distortion is

{{t1, t3}, {t2, t4}}, which is the same found by kSimilar().

A1 A2 A3
Home ZIP Hospital ZIP Work ZIP

t1 02138 02138 021**
t2 02138 02139 0213*
t3 02138 02138 021**
t4 02138 02139 0213*

Figure 104 Result from k-Similar applied to PT in Figure 84

Example

Given the private table PT shown in Figure 34 (on page 102), the domain and value

generalization hierarchies based on the depictions in Figure 33 (on page 101), a k-anonymity

requirement of k=2, the k-Similar algorithm, which is listed in Figure 89, provides the table GT,

as shown in Figure 104, as a k-minimal distortion of PT over the quasi-identifier QI = {Race,

BirthDate, Gender, ZIP}. Here is a walk through the k-Similar algorithm to demonstrate how MT

is constructed.

Figure 34 shows the uniquely identifying values t1, t2, t3, …, t12 appended to the table after step

1 of the k-Similar algorithm executes. These values are associated with the ID attribute. Figure

105 shows clique, which is constructed after step 2 of the k-Similar algorithm concludes. The

nodes are the tuples of PT. The edges are labeled with the distance vectors between every two

tuples in PT. The clique is stored in Figure 105 as a 2-dimensional array. Each row and each

column represent a tuple. The cell located at row ti and column tj stores the distance vector Vt1,t2.

Computational Disclosure Control 01/08/01 8:22 AM

189

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
t1 0 0 0 0 0 2 0 0 0 2 1 2 0 2 1 2 0 4 1 2 0 4 1 2 1 4 0 2 1 2 1 2 1 4 0 2 1 4 0 2 1 3 0 2 1 3 0 2
t2 0 2 0 0 0 0 0 0 0 2 1 2 0 2 1 2 0 4 1 2 0 4 1 2 1 4 0 2 1 2 1 2 1 4 0 2 1 4 0 2 1 3 0 2 1 3 0 2
t3 0 2 1 2 0 2 1 2 0 0 0 0 0 2 0 0 0 4 0 0 0 4 0 0 1 4 1 0 1 2 0 1 1 4 1 1 1 4 1 1 1 3 1 0 1 3 1 0
t4 0 2 1 2 0 2 1 2 0 2 0 0 0 0 0 0 0 4 0 0 0 4 0 0 1 4 1 0 1 2 0 1 1 4 1 1 1 4 1 1 1 3 1 0 1 3 1 0
t5 0 4 1 2 0 4 1 2 0 4 0 0 0 4 0 0 0 0 0 0 0 2 0 0 1 2 1 0 1 4 0 1 1 2 1 1 1 2 1 1 1 4 1 0 1 4 1 0
t6 0 4 1 2 0 4 1 2 0 4 0 0 0 4 0 0 0 2 0 0 0 0 0 0 1 2 1 0 1 4 0 1 1 2 1 1 1 2 1 1 1 4 1 0 1 4 1 0
t7 1 4 0 2 1 4 0 2 1 4 1 0 1 4 1 0 1 2 1 0 1 2 1 0 0 0 0 0 0 4 1 1 0 2 0 1 0 2 0 1 0 4 0 0 0 4 0 0
t8 1 2 1 2 1 2 1 2 1 2 0 1 1 2 0 1 1 4 0 1 1 4 0 1 0 4 1 1 0 0 0 0 0 4 1 0 0 4 1 0 0 3 1 1 0 3 1 1
t9 1 4 0 2 1 4 0 2 1 4 1 1 1 4 1 1 1 2 1 1 1 2 1 1 0 2 0 1 0 4 1 0 0 0 0 0 0 2 0 0 0 4 0 1 0 4 0 1

t10 1 4 0 2 1 4 0 2 1 4 1 1 1 4 1 1 1 2 1 1 1 2 1 1 0 2 0 1 0 4 1 0 0 2 0 0 0 0 0 0 0 4 0 1 0 4 0 1
t11 1 3 0 2 1 3 0 2 1 3 1 0 1 3 1 0 1 4 1 0 1 4 1 0 0 4 0 0 0 3 1 1 0 4 0 1 0 4 0 1 0 0 0 0 0 2 0 0
t12 1 3 0 2 1 3 0 2 1 3 1 0 1 3 1 0 1 4 1 0 1 4 1 0 0 4 0 0 0 3 1 1 0 4 0 1 0 4 0 1 0 2 0 0 0 0 0 0

Figure 105 Clique showing distance vectors between tuples of Figure 34

None of the base conditions in the first 3 steps of kSimilarRun() are applicable. T in this case is

PT. It has 12 tuples and k=2, so |T|>2k. Figure 106 shows the value of mins after step 4

concludes. The method GenerateMinimums() identifies the set of minimals for each tuple by

traversing clique to identify each tuple’s nearest (k-1) tuples. Traversing clique from t1 provides

the minimal {t1, t2}, from t2 provides {t1, t2}, from t3 provides {t3, t4}, from t4 provides {t3,

t4, from t5 provides {t5, t6}, from t6 provides {t5, t6}, from t7 provides {t7, t9} and {t7, t10},

from t8 provides {t3, t8} and {t4, t8}, from t9 provides {t9, t10}, from t10 provides {t9, t10},

from t11 provides {t11, t12}, and from t12 provides {t11, t12}.

 {t1, t2}
 {t3, t4}
 {t5, t6}
 {t7, t9}
 {t7, t10}
 {t3, t8}
 {t4, t8}
 {t9, t10}
 {t11, t12}

Figure 106 Resulting mins from GenerateMinimums()

The minimals {t1, t2}, {t5, t6} and {t11, t12} are returned as complementary minimums by

FindComplemets(). So, complements = {{t1, t2}, {t5, t6}, {t11, t12}} after step 5 of

kSimilarRun(). When step 6 of kSimilarRun() concludes,T[ID] is {t3, t4, t7, t8, t9, t10} with mins

= {{t3, t4}, {t3, t8}, {t4, t8}{t7, t9}, {t7, t10}, {t9, t10}}. So, complements is returned at step 7

of kSimilarRun() as a set of clusters that are minimally distorting that comprise part of the

overall solution

Computational Disclosure Control 01/08/01 8:22 AM

190

The call to kSimilarRunParts() executes in step 7 of kSimilarRun() on the remaining tuples and

minimals. The Partition() method returns the partition {{t3, t4}, {t3, t8}, {t4, t8}} and the

subsequently{{t7, t9}, {t7, t10}, {t9, t10}}. Each of these are clustered together in kSimilarRun()

to be: {t3, t4, t8} and {t7, t9, t10} because each of these partitions have less than 2k (or 4) tuples.

The final step of kSimilar() executes TableConstruct() on clusts ={{t1, t2}, {t5, t6}, {t11, t12},

{t3, t4, t8}, {t7, t9, t10}}. The result is shown as GT1 in Figure 35 (see page 102). The

appended ID values have been discarded.

In the example on page 122, MinGen(PT)=GT1. The same solution derived by k-Similar() was

determined to be a k-minimal distortion of PT over QI with respect to DGHAi where

Prec(GT1)=0.83.

8.3 Comparison to Mingen

A comparison to MinGen [123] requires examining: (1) the computational complexity of the

algorithm to ensure it operates in reasonable time; and, (2) the correctness of the algorithm. These are

discussed in the following subsections.

8.3.1 Complexity of the k-Similar algorithm

The k-Similar algorithm listed in Figure 89 with supporting methods in Figure 90 through Figure

102 was not written as efficiently as possible. Nevertheless, here is a walk through the algorithm noting

the methods that characterize the computational complexity.

The CliqueSetup() method, which is listed in Figure 90, is executed in step 2. Comparing every

two tuples and determining their distance vector is done in O(|T|2) time. The GenerateMinimums()

method, which is listed in Figure 98, working along with its accompanying traverse() method, which is

listed in Figure 100, pose a serious problem for the computational speed of k-Similar(). As implemented,

they operate in combinatoric time because every combination of |T| tuples drawn k at a time are

examined. While some efficiencies may be possible in future versions, the version provided here is

combinatoric. Clearly, this overwhelms computational complexity of the remainder of the algorithm. The

efficiencies gained by partitioning the clusters into sub-clusters make the algorithm useful in some real-

Computational Disclosure Control 01/08/01 8:22 AM

191

world applications and dramatically improves the performance over MinGen. However, combiantoric

operation is not practical for most uses.

More importantly however, the techniques presented in this algorithm concerning the use and

operations on distance vectors and partitions of clusters holds promise as ways to reduce the

computational complexity.

8.3.2 Correctness of the k-similar algorithm

The correctness of the k-Similar algorithm relies on its ability to produce solutions that adhere to

a given k-anonymity requirement, assuming of course a proper quasi-identifier and a proper value for k

have been provided. In this subsection, I will show that the k-Similar algorithm provides solutions that do

adhere to a given k-anonymity requirement. Here is a walk through the program, noting its correctness

with respect to the k requirement.

A result from k-Similar properly adheres to the k requirement if each and every cluster provided

by kSimilarRun() is of size k or more because TableConstruct() merely generalizes the tuples identified

in each cluster provided from kSimilarRun(). A table must have at least k tuples to adhere to k-

anonymity. So, in step 3 of kSimilarRun(), a table that has k or more tuples, but less than 2k tuples,

results in a single cluster. This cluster is therefore of size k or more.

Execution of k-SimilarRun() continues for tables that have more than 2k tuples. The set of

minimals produced by GenerateMinimums() at step 4 of kSimilarRun() have clusters of size k because

GenerateMinimums() traverses paths of k-1 in clique from a given tuple and returns the path with the

maximal distance vector that has the minimal distance. All minimals identified by GenerateMinimums()

therefore has k elements. of the minimals returned from GenerateMinimums(), some are identified as

complementary minimums and appended to the solution set. Each of these minimums is of size k.

Finally, in the case where non-complementary tuples are partitioned and each partition then

processed by the algorithm, each partition is guaranteed to have minimals of size k that have combined

into connected partitions. Therefore each partition is necessarily larger than k.

Computational Disclosure Control 01/08/01 8:22 AM

192

8.4 Comparison to Datafly and µ-Argus

In comparison to Datafly and µ-Argus, the k-Similar algorithm has greater precision because it

effectively uses generalization and suppression enforced at the cell level. datafly and µ-Argus

generalized values at the attribute level. Datafly suppressed at the tuple level, though µ-Argus suppressed

at the cell level. In some cases, Datafly may have less precision than µ-Argus, but Datafly always

provides results that are adequately protected. On the other hand, µ-Argus, in some cases, can provide

results that do not necessarily adhere to the k requirement. In comparison, k-Similar provides results that

are adequately protected and minimally distorted. On the other hand, Datafly and µ-Argus operate in

real-time where k-Similar does not.

8.5 k-Similar as an anonymous data system

k-Similar uses the following disclosure limitation techniques: de-identification, equivalence class

substitution, generalization, and suppression. Below is a description of the framework in which k-Similar

operates.

S = {subjects whose information is included in PT}

P = set of all people whose information could possibly be in PT

PT = privately held information about S

QI = set of attributes with replications in E

U = P

RT = k-Similar (PT)

E = set of publicly available information in today’s society

G = set of standard communication methods.

f = k-Similar

The system A(S, P, PT, QI, U, {RT}, E, G, k-Similar) is an ADS0.

Informal proof.

Let PT = data in Figure 34.

There cannot exist fewer than k tuples in RT having the same values across QI

based on the correctness of the k-Similar clustering algorithm.

So, k-map protection is provided and A is an ADS0.

Computational Disclosure Control 01/08/01 8:22 AM

193

8.6 Future work

1. The k-Similar algorithm, unlike Datafly and µ-Argus made use of the value

generalization hierarchies to seamlessly integrate generalization and suppression

together so as to be treated as one disclosure limitation technique. Incorporate

additional disclosure limitation techniques [124] into this approach.

2. The core Datafly algorithm relies on a heuristic to guide its generalization strategy.

This heuristic selects the attribute of the quasi identifier having the greater number of

distinct values in the modified table as the attribute to generalize. As was discussed

earlier [125], this heuristic is computationally efficient but provides no protection

against unnecessary generalization. There are many other heuristics that are just as

computationally efficient. Develop a nearest neighbor strategy based on distance

vectors, like those used in the k-similar algorithm, to perform attribute-level

generalization and tuple-level suppression that operates in real-time.

3. Construct a more efficient version of k-Similar by taking advantage of constraints

placed on distances rather than computing the distances of all combinations of k

tuples. If you do not compute a distance vector between two tuples but have

computed the distances of other tuples that include those tuples, then the ⊕ and Θ

operations described in Figure 87 can be used to compute the range of possible values

for the distance vector between those two tuples.

4. The k-Similar algorithm has been described as a data-clustering algorithm that has a

symbiotic relationship to the k-nearest neighbor algorithm [126]. Compare and

contrast these two algorithms as general-purpose data clustering algorithms. Explore

ways distance vectors and value generalization hierarchies can be used to improve

results in k-nearest neighbor.

5. Earlier in this work, k-map, wrong-map and null-map forms of data protection were

introduced [127]. These later chapters have been narrowly focused on a version of k-

Computational Disclosure Control 01/08/01 8:22 AM

194

map protection called k-anonymity [128]. Explore disclosure control techniques and

systems that use other formal protection models.

Computational Disclosure Control 01/08/01 8:22 AM

195

Chapter 9 Results: Scrub

Datafly [129], µ-Argus [130], k-Similar [131] and even MinGen [132] all work with field-

structured data sets. My Scrub system, presented in this chapter, locates personally identifying

information in textual documents and within textual fields of a database. This is a change in format from

the earlier chapters. As you will see the problem of locating personally identifying information in text

can be very difficult, but even when it is resolved perfectly, the results are merely de-identified and not

typically rendered anonymous.

9.1 Overview of the Scrub System

The Scrub System, which locates and replaces personally identifying information in text

documents, textual fields of the database textual information found on the World Wide Web. A close

examination of two different computer-based patient record systems, Boston’s Children’s Hospital [133]

and Massachusetts General Hospital [134], quickly revealed that much of the medical content resided in

the letters between physicians and in the shorthand notes of clinicians. This is where providers discussed

findings, explained current treatment and furnished an overall view of the medical condition of the

patient.

At present, most institutions have few releases of data that include these notes and letters, but

new uses for this information is increasing; therefore, the desire to release this text is also increasing.

After all, these letters and notes are a valuable research tool and can corroborate the rest of the record.

The fields containing the diagnosis, procedure and medication codes when examined alone can be

incorrect or misleading. A prominent physician stated at a recent conference that he purposefully places

incorrect codes in the diagnosis and procedure fields when such codes would reveal sensitive information

about the patient [135]. Similarly, the diagnosis and procedure codes may be up-coded for billing

purposes. The General Accounting Office estimates that as much as 10% of annual Federal health care

expenditures, including Medicare, are lost to fraudulent provider claims [136]. If these practices become

widespread, they will render the administrative medical record useless for clinical research and may

already be problematic for retrospective investigation. Clinical notes and letters may prove to be the

only reliable artifacts.

Computational Disclosure Control 01/08/01 8:22 AM

196

The Scrub System provides a methodology for removing personally identifying information in

medical writings so that the integrity of the medical information remains intact even though the identity

of the patient remains confidential. I term this process "scrubbing". Protecting patient confidentiality in

raw text is not as simple as searching for the patient’s name and replacing all occurrences with a pseudo

name. References to the patient are often quite obscure; consider for example:

“…he developed Hodgkins while acting as the U.S. Ambassador to England and was diagnosed

by Dr. Frank at Brigham’s.”

Clinicians write text with little regard to word-choice and in many cases without concern to grammar or

spelling. While the resulting “unrestricted text” is valuable to understanding the medical condition and

treatment of the patient, it poses tremendous difficulty to scrubbing since the text often includes names

of other care-takers, family members, employers and nick names.

I examined electronically stored letters written by clinical specialists to the physician who

referred the patient. The letter in Figure 107 is a fictitious example modeled after those studied. It

contains the name and address of the referring physician, a typing mistake in the salutation line, the

patient's nick name, and references to another care-taker, the patient's athletic team, the patient's mother

and her mother's employer and phone number. Actual letters are often several pages in length.

 Wednesday, February 2, 1994

Marjorie Long, M.D. RE: Virginia Townsend
St. John’s Hospital CH#32-841-09787
Huntington 18 DOB 05/26/86
Boston, MA 02151

Dear Dr. Lang:

I feel much better after seeing Virginia this time. As you
know, Dot is a 7 and 6/12 year old female in follow up
for insulin dependent diabetes mellitus diagnosed in
June of 1993 by Dr. Frank at Brigham’s. She is currently
on Lily Human Insulin and is growing and
gaining weight normally. She will start competing again
with the U. S. Junior Gymnastics team. We will
contact Mrs. Hodgkins in a week at Marina Corp
473-1214 to schedule a follow-up visit for her daughter.

 Patrick Hayes, M.D. 34764

Figure 107. Sample letter reporting back to a referring physician.

Computational Disclosure Control 01/08/01 8:22 AM

197

 February, 1994

Erisa Cosborn, M.D. RE: Kathel Wallams
Brighaul Hospital CH#18-512-32871
Alberdam Way DOB 05/86
Peabon, MA 02100

Dear Dr. Jandel:

I feel much better after seeing Kathel this time. As
You know, Cob is a 7 and 6/12 year old female in follow-
up for insulin dependent diabetes mellitus diagnosed in
June of 1993 by Dr. Wandel at Namingham’s. She is
currently on Lily Human Insulin and is growing and
Gaining weight normally. She will start competing again
with the . We will
Contact Mrs. Learl in a week at Garlaw Corp
912-8205 to schedule a follow-up visit for her daughter.

 Mank Brones, M.D. 21075

Figure 108. Scrub System applied to sample in Figure 107.

Figure 107 shows a sample letter and Figure 108 shows its scrubbed result. Notice in the

scrubbed result that the name of the medication remained but the mother’s last name was correctly

replaced. Dates were changed to report only month and year. The reference “U.S. Junior Gymnastics

team” was suppressed since Scrub was not sure how to replace it. The traditional approach to scrubbing

is straightforward search and replace, which misses these references; this is shown in Figure 109.

 Wednesday, February 2, 1994

Marjorie Long, M.D. RE: Kathel Wallams
St. John’s Hospital CH#18-512-32871
Huntington 18 DOB 05/26/86
Boston, MA 02151

Dear Dr. Lang:

I feel much better after seeing Kathel this time. As you
know, Dot is a 7 and 6/12 year old female in follow
up for insulin dependent diabetes mellitus diagnosed in
June of 1993 by Dr. Frank at Brigham’s. She is currently
on Lily Human Insulin and is growing and
gaining weight normally. She will start competing again
with the U. S. Junior Gymnastics team. We will
contact Mrs. Hodgkins in a week at Marina Corp
473-1214 to schedule a follow-up visit for her daughter.

 Mank Brones, M.D. 21075

Figure 109. Search-and Replace applied to sample in Figure 1-8.

Computational Disclosure Control 01/08/01 8:22 AM

198

9.2 Human approach

The Scrub System was modeled after a human approach to the problem. It uses templates and

localized knowledge to recognize personally identifying information. In fact, the work on Scrub shows

that the recognition of personally identifying information is strongly linked to the common recording

practices of society. For example, Fred and Bill are common first names and Miller and Jones are

common last names; knowing these facts makes it easier to recognize them as likely names. Common

facts, along with their accompanying templates of use, are considered commonsense knowledge; the

itemization and use of commonsense knowledge is the backbone of Scrub.

I conducted an experiment to determine how well humans locate personally-identifying

information in letters between physicians. The subjects were 5 adults. None of the subjects had any

medical experience or experience with the information contained in the database.

Each of the adults were given a marker that writes in a read-through yellow color and seven (7)

printed letters. One of the letters appeared with all its text in uppercase but consisted of complete

sentences. The other letters were in standard letter format with upper-lower case. Each subject was asked

to highlight all information in each letter that personally identified any person and to do so within 30

seconds per letter.

All the subjects found all obvious references to names, addresses, organizations, cities, states, zip

codes and phone numbers (100%). More obscure occurrences such as nick names, abbreviations,

identification numbers and incorrect capitalization were sometimes missed (99%). References embedded

in the text that did not appear in upper-lower case were sometimes missed (95%) and performance on

identifying obvious references in the upper case letter was much worse than in the upper-lower case

counterparts (94% compared to 100%). Subjects reported reviewing most words in the letters but all

subjects stated they did not read the letters.

I sought to model the human approach because it did not require a complete semantic model. The

subjects used templates and localized knowledge to recognize personally identifying information.

Consider the list of names, phone numbers and dates in Figure 110. The writing conventions and

immediate context help identity the kind of information presented.

Computational Disclosure Control 01/08/01 8:22 AM

199

 Names Phone numbers Dates
 Frank Graves 255-1423 March 1, 1991
 F. R. Graves, MD (304) 255-1423 3/1/91
 Dr. Graves 304/ 255-1423 first of March
 Frank Red Graves 255-1000 ext 1423 1-MAR-91
 “Red” Graves phone: 255-1423 03-01-91
 frank red graves extension 1423 March 1st

Figure 110 Samples of personal information.

9.3 Computer approach

The Scrub System utilizes numerous detection algorithms competing in parallel to label

contiguous characters of text as being a proper name, an address block, a phone number, and so forth.

Each detection algorithm recognizes a specific kind of information, where recognizable kinds of

information can be thought of as fields such as first name, last name, street address, and date. There is at

least one detection algorithm for each kind of information.

 Scrub Entities
 1. identification

 block

{6, 7, 8, 9, 10, 15, 11, 12, 13,
14, 25, 16, 17, 18, 20, 21, 25}

 2. mailing label {6, 7, 8, 9, 15, 11, 12, 13, 14,
17, 18}

 3. address block {6, 7, 8, 9, 15}
 4. full name {11, 12, 13, 14, 17}
 5. location {7, 8, 15}
 6. street 15. country
 7. city 16. social security
 8. state 17. title
 9. zip 18. organization
 10. phone 19. measurement
 11. first name 20. age
 12. middle name 21. date
 13. last name 22. medical term
 14. nick name 25. reference number

Figure 111 Some of the entities recognized by Scrub are listed above in relative order of precedence.

Figure 111 lists some of the types of entities detected by Scrub. For each entity there is a

detection algorithm and the precedence of the algorithm is based on the number of entities that constitute

the algorithm’s assigned entity. Examples of constituent entities are listed in braces in Figure 111. For

example, detecting a geographical location may make it possible to identify a city, a state or a country.

The more constituents an entity has, the higher its precedence. Figure 111 shows five levels of

Computational Disclosure Control 01/08/01 8:22 AM

200

precedence with identification block having the highest and entities 6 through 25 all having the same low

precedence.

Detection algorithms can be executed sequentially in order of precedence to avoid parallel

execution. For each character in the input text the detection algorithm with the highest precedence

reporting the greatest likelihood above a threshold value is considered to have identified an instance of

its entity. Figure 112 provides an overview.

Figure 112 Block diagram of Scrub detection system.

Knowing what instances have already been found in the text can be quite useful in reducing

ambiguity. For example, if the system encountered the name “Virginia P. Weston” then later encountered

a sentence that read “After seeing Virginia this time, I feel much better,” the system could more reliably

interpret the second reference to Virginia as a person’s name and not the state. When an instance of an

entity is found in the text, its corresponding detection algorithm can post its results -- making them

available to all detection algorithms while processing the remainder of the document. In these cases, an

entity can only post values for its constituent entities and if there are no constituents, it can post for itself.

A few detection algorithms work differently. Some classify the format of the document as being

a letter, notes, or delimited text. These detectors continuously report findings. There are also special

detectors like those for medical terms and verbs whose instances are typically not replaced but are

Computational Disclosure Control 01/08/01 8:22 AM

201

detected because having their results reduces the number of false positives. At run-time the user sets the

threshold and use of special detectors.

Figure 113 repeats the second column of Figure 110 but includes associated templates and

probabilities. The d is a digit, the asterisk (*) matches any wild character and the set notation denotes

possibilities. During a training session on the database, template probabilities are adjusted and their

effectiveness measured. If there is not enough variation between templates then performance will

deteriorate. If templates use features that are not present in the database, performance may deteriorate.

For example, if name templates expect names to be written in upper-lower case then these templates will

be useless if all text appears in uppercase. The training session pinpoints problem areas and weaknesses

beforehand.

 Phone numbers Templates Likelihood
 255-1423 ddd - dddd 40
 (304) 255-1423 (ddd) ddd - dddd 85
 304/ 255-1423 ddd / ddd - dddd 50
 255-1000 ext 1423 ddd - dddd ext* d* 70
 extension 1423 ext* d* 40
 phone: 255-1423 {tel*, ph*}

ddd - dddd
90

Figure 113 Samples of templates and their probabilities.

As I’ve shown, the detection algorithms employ a host of lists. For example, detecting a first

name may use a stored list of common first names, the first names of all patients, words that sound like

first names or all three depending on the user’s specifications. These lists are compiled beforehand.

Storage requirements and speed are dramatically reduced using multiple hashed Boolean lookup tables

[137] or in the case of words that sound like a group of words, using a table of orthographic rules [138].

With Boolean look-up tables, look-ups are done in constant time, O(10) since there are 10 binary checks

per word. Using orthographic rules, look-ups require O(2n) time where n is the number of syllables in the

word. Storage using Boolean look-up tables require roughly 30 bits per word which is a tiny fraction of a

typical word list or dictionary [139].

9.3.1 Replacement Strategies.

Once personally identifying information is detected, it must be replaced with some pseudo-value.

There are several strategies for accomplishing this feat. Associated with each detection algorithm in

Scrub is a replacement algorithm that is responsible for producing the replacement text; these are the

same as was used in Datafly [140]. In general, the format of the replacement text matches the template

Computational Disclosure Control 01/08/01 8:22 AM

202

that was recognized. If the detected entity was a date, for example, the replacement date may involve

lumping days to the first of the nearest month or some other grouping. On the other hand if the detected

entity was a first name, the typical strategy is to perform a hash-table lookup using the original name as

the key. The result of the look-up is the replacement text. This provides consistent replacements since

every time a particular name is encountered, it maps to the same replacement. In terms of the

replacement content, several other strategies are available including the use of orthographic rules called

Sprees11 that replace personally identifying information with fictitious names that sound like reasonable

names but in fact belong to no known person.

9.4 Results

The Scrub System accurately found 99-100% of all personally identifying references in more

than 3,000 letters between physicians, while the straightforward approach of global search-and-replace

properly located no more than 30-60% of all such references; these values are summarized in Figure 114.

The database I used was a scrubbed subset of a pediatric medical record system [141;;-]. It

consisted of 275 patient records and included 3,198 letters to referring physicians. Many of the letters

were delimited notes but most were proper letters with a heading block, salutation and well-formed

sentences.

The higher figure for search and replace (84%) includes using additional information stored in

the database to help identify the attending physician’s name, identifying number and other information.

Since the letters were properly formatted, the heading block was easily detected and compositional cues

were available using keywords like “Dear.” This dramatically improved the results of the search-and-

replace method to around 84%; however, most references to family members, additional phone numbers,

nick names and references to the physician receiving the letter were still not detected, whereas Scrub was

able to correctly identify and replace these instances.

Method

Letters
 Straight search 37%
 Search with cues 84%
 Scrub(threshold 0.8) 98%
 Scrub(threshold 0.7,

false positive reduction)
100%

Figure 114 Comparisons of Scrub to standard techniques

Computational Disclosure Control 01/08/01 8:22 AM

203

9.5 Discussion

Despite this apparent success, the Scrub System merely de-identifies information and cannot

guarantee anonymity. Even though all explicit identifiers such as name, address and phone number are

removed or replaced, it may be possible to infer the identify of an individual. Consider the text in 115.

“At the age of two she was sexually assaulted. At the age of three she set fire to her
home. At the age of four her parents divorced. At the age of five she was placed in
foster care after stabbing her nursery school teacher with scissors.”

Figure 115 Sample de-identified text

If her life continues to progress in this manner, by the age of eight she may be in the news, but

nothing in this text required scrubbing even though there would probably exist only one such child with

this history. An overall sequence of events can provide a preponderance of details that identify an

individual. This is often the case in mental health data, discharge notes and person-specific textual

information.

Although Scrub reliably locates explicitly identifying information in textual documents, it merely

de-identifies the result because its detectors are aimed primarily at explicitly identifying values.

Similarly, in field-structured databases de-identification typically provides insufficient protection, as was

demonstrated earlier in this document. Other values remaining in the data can combine uniquely to

identify subjects. The Scrub work demonstrates that this is as true in textual documents as it is in field-

structured databases. But perhaps more importantly, the Scrub work implies that solving the problem in

one data format (either textual documents or field-structured databases) will reveal comparable strategies

for solving the problem in the other format.

The Scrub System is both troublesome and insightful in another regard. While Scrub is

inadequate for privacy protection, it is quite useful in automatically detecting and gathering personally

identifying information from email messages, World Wide Web pages, and other textual information

appearing in an electronic format and then using the results to draw damaging inferences from other

publicly available field-structured data sets. In this way, Scrub demonstrates the symbiotic relationship

between data detective tools and data protection tools. Re-identification experiments and the tools used

to accomplish re-identifications improve our understanding of the identifiability of data and our tools for

rendering data sufficiently anonymous.

Computational Disclosure Control 01/08/01 8:22 AM

204

9.6 Scrub as an anonymous data system

Scrub uses the following disclosure limitation techniques: de-identification, equivalence class

substitution, generalization, and suppression. Below is a description of the framework in which Scrub

operates.

S = {subjects whose information is discussed in textual documents PT}

P = set of all people whose information could possibly be PT

PT = set of documents about S

QI = set of attributes for which Scrub detectors are available

U = {d1 × … × dn} ∪ P

RT = Scrub(PT)

E = set of publicly available information in today’s society

G = set of standard communication methods.

f = Scrub System

The system A(S, P, PT, QI, U, {RT}, E, G, Scrub) is not an ADS0.

Informal proof.

Assume A is an ADS0.

Let pi be the person who is the subject of the text in Figure 115.

E includes newspaper reports and phone books that include pi’s family.

By simply linking the information, pi can be re-identified, violating property 9 of an ADS0.

So, A is not an ADS0.

Computational Disclosure Control 01/08/01 8:22 AM

205

Chapter 10 Discussion

The Scrub System demonstrated that medical data, including textual documents, can be de-

identified, but as I have shown, de-identification alone is not sufficient to protect confidentiality. Not

only can de-identified information often be re-identified by linking data to other databases, but also

releasing too many patient-specific facts can identify individuals. Unless society is proactive, the

proliferation of medical data may become so widespread that it will be impossible to release medical data

without breaching confidentiality. For example, the existence of rather extensive registers of business

establishments in the hands of government agencies, trade associations and firms like Dunn and

Bradstreet has virtually ruled out the possibility of releasing database information about businesses

[142].

The Datafly, µ-Argus and k-Similar systems illustrated that medical information can be

generalized so that attributes and combinations of attributes adhere to a minimal k requirement, and by so

doing, confidentiality can be maintained. Such schemes can provide anonymous data for public use.

There are drawbacks to these systems, but the primary shortcomings may be counteracted by policy.

One concern with both µ-Argus, Datafly and k-Similar is the determination of the proper value

for k and its corresponding measure of disclosure risk. There is no standard that can be applied to assure

that the final results are adequate. It is customary to measure risk against a specific compromising

technique, such as linking to known databases that the data holder assumes the recipient is using.

Several researchers have proposed mathematical measures of the risk, which compute the conditional

probability of the linker’s success [143].

A policy could be mandated that would require the producer of data released for public use to

guarantee with a high degree of confidence that no individual within the data can be identified using

demographic or semi-public information. Of course, guaranteeing anonymity in data requires a criterion

against which to check resulting data and to locate sensitive values. If this is based only on the database

itself, the minimum k and sampling fractions may be far from optimal and may not reflect the general

population. Researchers have developed and tested several methods for estimating the percentage of

unique values in the general population based on a smaller database [144]. These methods are based on

subsampling techniques and equivalence class structure. In the absence of these techniques, uniqueness

Computational Disclosure Control 01/08/01 8:22 AM

206

in the population based on demographic attributes can be determined using population registers that

include patients from the database, such as local census data, voter registration lists, city directories, as

well as information from motor vehicle agencies, tax assessors and real estate agencies. To produce an

anonymous database, a producer could use population registers to identify sensitive demographic values

within a database, and thereby obtain a measure of risk for the release of the data.

The second drawback with the µ-Argus, Datafly and k-Similar systems concerns the dichotomy

between researcher needs and disclosure risk. If data are explicitly identifiable, the public expects

patient permission to be required. If data are released for public use, then the producer must guarantee,

with a high degree of confidence, that the identity of any individual cannot be determined using standard

and predictable methods and reasonably available data. But when sensitive de-identified, but not

necessarily anonymous, data are to be released, the likelihood that an effort will be made to re-identify an

individual increases based on the needs of the recipient, so any such recipient has a trust relationship

with society and the producer of the data. The recipient should therefore be held accountable.

The Datafly, k-Similar and µ-Argus systems quantify this trust by having the data holder identify

quasi-identifiers among the attributes requested by the recipient. But recall that the determination of a

quais-identifier requires guesswork in identifying attributes on which the recipient could link. Suppose a

quasi-identifier is incorrect; that is, the producer misjudges which attributes are sensitive for linking. In

this case, the Datafly, k-Similar and µ-Argus systems might release data that are less anonymous than

what was required by the recipient, and as a result, individuals may be more easily identified. This risk

cannot be perfectly resolved by the producer of the data since the producer cannot always know what

resources the recipient holds. The obvious demographic attributes, physician identifiers, and billing

information attributes can be consistently and reliably protected. However, there are too many sources of

semi-public and private information such as pharmacy records, longitudinal studies, financial records,

survey responses, occupational lists, and membership lists, to account a priori for all linking possibilities.

What is needed is a contractual arrangement between the recipient and the producer to make the

trust explicit and share the risk. Figure 116 contains some guidelines that make it clear which attributes

need to be protected against linking. Using this additional knowledge and the techniques presented in the

Datafly, k-Similar and µ-Argus systems, the producer can best protect the anonymity of patients in data

even when sensitive information is released. It is surprising that in most releases of medical data there

are no contractual arrangements to limit further dissemination or use of the data. Even in cases where

there is an IRB review, no contract usually results. Further, since the harm to individuals can be extreme

Computational Disclosure Control 01/08/01 8:22 AM

207

and irreparable and can occur without the individual’s knowledge, the penalties for abuses must be

stringent. Significant sanctions or penalties for improper use or conduct should apply since remedy

against abuse lies outside technology and statistical disclosure techniques and resides instead in

contracts, laws and policies.

1. There must be a legitimate and important research or administrative purpose served by the
release of the data. The recipient must identify and explain which attributes in the database
are needed for this purpose.

2. The recipient must be strictly and legally accountable to the producer for the security of the

data and must demonstrate adequate security protection.

3. The data must be de-identified. The release must contain no explicit individual identifiers nor

should it contain data that would be easily associated with an individual.

4. Of the attributes the recipient requests, the recipient must identify which of these attributes,

during the specified lifetime of the data, the recipient could link to other data the recipient will
have access to, whether the recipient intends to link to such data or not. The recipient must
also identify those attributes for which the recipient will link the data. If such linking
identifies patients, then patient consent may be warranted.

5. The data provider should have the opportunity to review any publication of information from

the data to insure that no potential disclosures are published.

6. At the conclusion of the project, and no later than some specified date, the recipient must

destroy all copies of the data.

7. The recipient must not give, sell, loan, show or disseminate the data to any other parties.

Figure 116. Contractual requirements for restricted use of data based on federal guidelines and the Datafly System.

In closing, a few researchers may not find this presentation of the magnitude and scope of the

problem surprising, but it has disturbed legislators, scientists and federal agencies [145], so much so, I

warn against overreaction especially as it may lead to inappropriate and inoperable policies. I present the

problem and these incremental solutions from a belief that knowledge and not ignorance provides the

best foundation for good policy. What is needed is a rational set of disclosure principles, which are

unlikely to evolve from piecewise reactions to random incidents, but require instead comprehensive

analysis of the fundamental issues. The technology described here is quite helpful, but society must still

make conscious decisions. There is a danger in over-simplifying this work. It does not advocate giving

all the data on all the people without regard to whether individuals can be identified. It does not

advocate releasing data that is so general it cannot be useful; substantial suppression does not appear to

be the norm. From the viewpoint of the person who is to receive the data, these systems seek to provide

the most general data possible that is practically useful. From the viewpoint of privacy, if that level of

Computational Disclosure Control 01/08/01 8:22 AM

208

generality does not provide sufficient protection, then the techniques presented here identify the nature

and extent of trust required for a given release of data. Polices and regulations regarding the agreements

necessary to make that trust explicit and enforce its terms lie outside the technology.

Consider the case of data released to researchers. When anonymous data is useful, then the data

should be released. In some cases completely anonymous data is not practically useful; in those cases,

society (and the data holder) can quantify the trust given to researchers who receive more identifiable

data. Changes should be made such that public-use files adhere to a reasonably high level of anonymity.

In cases where more identifiable data is needed, society should consciously decide how to release such

data and the recipient should be held responsible not to violate the contractual agreements that spell out

the conditions of trust.

Finally I also warn against doing nothing. Consider an alternative to autonomous database

systems, since the burden of determining the risk of disclosure may appear cumbersome. Suppose

instead that society had a centralized federal repository for medical data like those found in Iceland and

other countries. Though institutions and businesses could maintain their own data for internal purposes,

they could not sell or give data away in any form, except of course for disclosure to the federal

repository, remuneration for services and required reporting. The recipients of these data would, in turn,

be equally restricted against further dissemination. The trusted authority that maintains the central

repository would have nearly perfect omniscience and could confidently release data for public use.

Questions posed by researchers, administrators and others could be answered without releasing any data;

instead the trusted authority would run desired queries against the data and then provide non-

compromising results to the investigators.

In releases of de-identified data, the exact risk could be computed and accompanying penalties

for abuse incorporated into the dissemination process. While this type of system may have advantages to

maintaining confidentiality, it requires a single point of trust or failure. Current societal inclinations

suggest that the American public would not trust a sole authority in such a role and would feel safer with

distributed, locally controlled data. Ironically, if current trends continue, a handful of independent

information brokers may assume this role of the trusted authority anyway. If information brokers do

emerge as the primary keepers of medical data (akin to the function that Dunn and Bradstreet serve for

business data) they may eventually rank among the most conservative advocates for maintaining

confidentiality and limiting dissemination. Their economic survival would hinge on protecting what

would be their greatest asset, our medical records.

Computational Disclosure Control 01/08/01 8:22 AM

209

210

Index

µ-Argus, correctness, 141, 154
additive noise, 60
anonymous data, 13, 14, 43, 205, 206, 208
anonymous data system, 62, 73
anonymous personal health information, 35
attribute, 52
attribute generalization, 77
attribute suppression, 77
attributes, 69
basic anonymous data system, 73
cancer registry, 48
cell generalization, 77
cell suppression, 77, 125
collection function, 69
complementary minimum, 171, 186
complementary suppression, 120
complete suppression, 76
computational complexity, 98
computational disclosure control, 14, 37, 43
data linkage, 15
Datafly heuristic, 122
Datafly System, 107, 125, 160, 207
de-identified data, 43
Department of Health and Human Services, 39
disclosure, 52, 62
disclosure control, 15, 52
disclosure control function, 70
disclosure limitation techniques, 60, 76
disk storage per person, 40
dist(), 168
distance between values, 167
distance function, 168
distance vector, 89, 166, 167
distance vector, maximal, 169
distortion, 92
domain generalization hierarchy, 83
encryption, 60
entity, 69
entity-specific data, 30
entity-specific table, 69
entropy, 92
European Union, 125
explicit-identifier, 72
Freedom of Information Act, 48
GDSP, 40
generalization, 60, 77, 83, 86
generalization of a table, 86
generalization strategy, 90
generalization, attribute, 77
generalization, cell, 77
GIC, 50, 111
global disk storage per person, 40
heuristic, 122
Hippocratic oath, 36

identifiable personal health information, 35
identity release, 76
inference, 52
International Classification of Disease (ICD-9), 111
k requirement, 108
k-anonymity, 80, 108, 158
k-anonymity requirement, 86
k-map, 108
k-map protection, 78
k-nearest neighbor, 58
k-Similar, correctness, 191
Massachusetts Group Insurance Commission, 50
maximal distance vector, 169, 170
MinGen, computational complexity, 98
minimal, 171, 185
minimal distortion, 92, 95, 170
minimal generalization, 88
NAHDO, 49
National Association of Health Data Organizations, 48
null map, 77
outlier, 126, 160
outliers, 109
person-specific data, 30
person-specific table, 69
perturbation, 60
population, 69
population register, 51
precision metric, 168
probabilistic attack, 158
profile, 108
profile value, 110, 111
pseudo-entities, 71
quasi-identifier, 62, 71
query restriction, 57
re-coding, 126
record linkage, 16
re-identification relation, 70
relation, 52
relational database, 52
rounding, 60
sampling, 60
scrambling, 60
Scrub System, 194, 195, 205
set covering, 162
Social Security number, 48, 49
statistical databases, 53
substitution, 60
summary data, 54, 120, 157, 158
summary data attack, 120, 157, 158
suppression, 56, 77
suppression, attribute, 77
suppression, cell, 77
swapping, 60
table, 52, 69

Computational Disclosure Control 01/08/01 8:22 AM

211

tuple, 52, 69
uniqueness in US population, 50
value generalization hierarchy, 84

voter list, 49
voters list, 109
wrong map, 78

212

References

1 Kohane et al., “Sharing Electronic Medical Records Across Heterogeneous and Competing Institutions,” in J.
Cimino, ed., Proceedings, American Medical Informatics Association (Washington, D.C.: Hanley & Belfus,
1996):608-12.

2 Office of Technology Assessment, Protecting Privacy in Computerized Medical Information (Washington,
D.C.: U.S. Government Printing Office, 1993).

3 See L.O. Gostin et al., “Privacy and Security of Personal Information in a New Health Care System,” Journal
of the American Medical Association, 270 (1993): at 2487 (citing Louis Harris and Associates, The Equifax
Report on Consumers in the Information Age (Atlanta: Equifax, 1993)).

4 Louis Harris and Associates, The Equifax-Harris Consumer Privacy Survey (Atlanta: Equifax, 1994).
5 G. Cooper et al., “An evaluation of Machine-Learning Methods for Predicting Pneumonia Mortality,” Artificial

Intelligence in Medicine, 9, no. 2 (1997):107-38.
6 See supra note 1 Kohane et al.
7 B. Woodward, “Patient Privacy in a Computerized World,” 1997 Medical and Health Annual (Chicago:

Encyclopedia Britannica, 1996):256-59.
8 National Association of Health Data Organizations, A Guide to State-Level Ambulatory Care Data Collection

Activities (Falls Church: National Association of Health Data Organizations, Oct. 1996).
9 P. Clayton et al., National Research Council, For the Record: Protecting Electronic Health Information

(Washington, D.C.: National Academy Press, 1997).
10 See, for example, Donna E. Shalala, Address at the National Press Club, Washington, D.C. (July 31, 1997).
11 “RMs need to safeguard computerized patient records to protect hospitals,” Hospital Risk Management, v9

(September 1993): 129-140.
12 D. Linowes and R. Spencer, “Privacy: The Workplace Issue of the ‘90s,” John Marshall Law Review, 23

(1990):591-620.
13 D. Grady, “Hospital Files as Open Book,” New York Times, March 12, 1997, at C8.
14 P. Clayton, et al. “For the record: protecting electronic health information,” National Research Council.

(Washington, DC: National Academy Press, 1997).
15 “Who’s Reading Your Medical Records,” Consumer Reports, October (1994): 628-32.
16 Cambridge Voters List Database. City of Cambridge, Massachusetts. Cambridge: February 1997.
17 1990 U.S. Census Data, Database C90STF3B. U.S. Bureau of the Census. Available at http://venus.census.gov

and http://www.census.gov. Washington: 1993.
18 See note 8 National Association of Health Data Organizations.
19 Group Insurance Commission testimony before the Massachusetts Health Care Committee. See Session of the

Joint Committee on Health Care, Massachusetts State Legislature, (March 19, 1997).
20 Cambridge Voters List Database. City of Cambridge, Massachusetts. Cambridge: February 1997.
21 See note 19 Group Insurance Commission.
22 J. Ullman. Principles of Database and Knowledge Base Systems. Computer Science Press, Rockville, MD.

1988.
23 I. Fellegi. On the question of statistical confidentiality. Journal of the American Statistical Association, 1972,

pp. 7-18.
24 J. Kim. A method for limiting disclosure of microdata based on random noise and transformation Proceedings

of the Section on Survey Research Methods of the American Statistical Association, 370-374. 1986.
25 M. Palley and J. Siminoff. Regression methodology based disclosure of a statistical database Proceedings of

the Section on Survey Research Methods of the American Statistical Association 382-387. 1986.
26 G. Duncan and R. Pearson. Enhancing access to data while protecting confidentiality: prospects for the future.

Statistical Science, May, as Invited Paper with Discussion. 1991.
27 L. Willenborg and T. De Waal. Statistical Disclosure Control in Practice. Springer-Verlag, 1996.

Computational Disclosure Control 01/08/01 8:22 AM

213

28 G. Duncan and S. Fienberg. Obtaining information while preserving privacy: A Markov perturbation method
for tabular data. Proceedings of Statistical Data Protection 1998. IOS Press. 1999.

29 A. Hundepool and L. Willenborg. µ- and τ-argus: software for statistical disclosure control. Third International
Seminar on Statistical Confidentiality. Bled: 1996.

30 T. Su and G. Ozsoyoglu. Controlling FD and MVD inference in multilevel relational database systems. IEEE
Transactions on Knowledge and Data Engineering, 3:474--485, 1991.

31 M. Morgenstern. Security and Inference in multilevel database and knowledge based systems. Proc. of the
ACM SIGMOD Conference, pages 357--373, 1987.

32 T. Hinke. Inference aggregation detection in database management systems. In Proc. of the IEEE Symposium
on Research in Security and Privacy, pages 96-107, Oakland, 1988.

33 T. Lunt. Aggregation and inference: Facts and fallacies. In Proc. of the IEEE Symposium on Security and
Privacy, pages 102--109, Oakland, CA, May 1989.

34 X. Qian, M. Stickel, P. Karp, T. Lunt, and T. Garvey. Detection and elimination of inference channels in
multilevel relational database systems. In Proc. of the IEEE Symposium on Research in Security and Privacy,
pages 196--205, 1993.

35 T. Garvey, T. Lunt and M. Stickel. Abductive and approximate reasoning models for characterizing inference
channels. IEEE Computer Security Foundations Workshop, 4, 1991.

36 D. Denning and T. Lunt. A multilevel relational data model. In Proc. of the IEEE Symposium on Research in
Security and Privacy, pages 220-234, Oakland, 1987.

37 See supra note 30 Su and Ozsoyoglu.
38 See supra note 31 Morgenstern.
39 See supra note 32 Hinke.
40 J. Hale and S. Shenoi. Catalytic inference analysis: detecting threats due to knowledge discovery. In Proc. of

the IEEE Symposium on Research in Security and Privacy, pages 188-199, Oakland, 1997.
41 L. Sweeney. Scout: discovering the structure of a database. MIT Artificial Intelligence Laboratory Working

Paper. Cambridge: 1995.
42 L. Buczkowski. Database inference controller. Database Security, III: Status and Prospects, D.L. Spooner and

C.E. Landwehr (eds), Elsevier Science, Amsterdam, pages 311-322, 1990.
43 See supra note 32 Hinke.
44 See supra note 33 Lunt.
45 See supra note 34 Qian, Stickel, Karp, Lunt, and Garvey.
46 D. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
47 D. Denning, P. Denning, and M. Schwartz. The tracker: A threat to statistical database security. ACM Trans. on

Database Systems, 4(1):76--96, March 1979.
48 G. Duncan and S. Mukherjee. Microdata disclosure limitation in statistical databases: query size and random

sample query control. In Proc. of the 1991 IEEE Symposium on Research in Security and Privacy, May 20-22,
Oakland, California. 1991.

49 C. Skinner and D. Holmes. Modeling population uniqueness. In Proc. of the International Seminar on
Statistical Confidentiality, pages 175-199, 1992.

50 D. Jensen and H. Goldberg. Artificial intelligence and link analysis. Proccedings from the 1998 AAAI Fall
Symposium. American Association for Artificial Intelligence. Orlando, Florida. Menlo Park, CA: AAAI Press,
1998.

51 S. Russell and P. Norvig. Artificial intelligence: a modern approach. Englewood Cliffs: Prentice-Hall, 1995.
52 T. Cover and P. Hart. Nearest neighbor pattern classification. In IEEE Transactions on Information Theory,

13, 21-27, 1967.
53 R. Duda and P. Hart. Pattern classification and scene analysis. New York: John Wiley & Sons, 1973.
54 C. Atkeson, S. Schaal and A. Moore. Locally weighted learning. AI Review. 1997.
55 A. Moore and M. Lee. Efficient algorithms for minimizing cross validation error. Proceedings of the 11th

International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 1994.
56 See supra page 43 De-identification
57 See supra page 56 Suppression
58 See supra page 57 Query restriction
59 See supra page 54 Summary data

Computational Disclosure Control 01/08/01 8:22 AM

214

60 T. Dalenius. Finding a needle in a haystack – or identifying anonymous census record. Journal of Official
Statistics, 2(3):329-336, 1986.

61 G. Smith. Modeling security-relevant data semantics. In Proceedings of the 1990 IEEE Symposium on
Research in Security and Privacy, May 1990.

62 See supra page 60 Swapping
63 See supra page 52 Relational database
64 See supra page 62 Quasi-identifier
65 See infra page 92 Precision metric
66 See infra page 107 Datafly
67 See infra page 125 µ-Argus
68 See infra page 165 k-Similar
69 See supra page 78 k-map
70 See supra page 107 Datafly
71 See supra page 125 µ-Argus
72 See infra page 60 Generalization
73 See supra page 56 Suppression
74 Davey, B. and Priestley, H. Introduction to Lattices and Order. Cambridge University Press, 1990.
75 See supra page 60 Disclosure limitation techniques.
76 T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.
77 See supra page 61 Usefulness is application specific.
78 See supra page 88 Example of minimal generalizations.
79 See supra page 86 Generalized table.
80 See supra page 80 k-anonymity.
81 See supra page 92 Precision metric.
82 See supra page 93 Prec requirement on domain generalization hierarchies.
83 See infra page 107 The Datafly II System.
84 See infra page 125 The µ-Argus System.
85 See infra page 165 The k-Similar alogorithm.
86 See infra page 195 The Scrub System.
87 Alexander, L. and Jabine, T. Access to social security microdata files for research and statistical purposes.

Social Security Bulletin. 1978 (41) No. 8.
88 See supra page 68 Formal protection models.
89 See supra page 60 Disclosure limitation techniques.
90 See supra page 80 k-anonymity requirement.
91 See supra note 16 Cambridge Voter List.
92 Kohane, I. Getting the data in: three-year experience with a pediatric electronic medical record system. In:

Ozbolt J., ed. Proceedings, Symposium on Computer Applications in Medical Care. Washington, DC: Hanley
& Belfus, Inc, 1994:457-461.

93 See supra note 19 Group Insurance Commission.
94 See supra page 97 MinGen algorithm
95 See supra page 98 MinGen computational complexity.
96 See supra page 83 Singleton requirement on domain generalization hierarchy.
97 See supra page 89 Distance vectors and generalization strategies.
98 See supra page 119 Correctness of the core Datafly algorithm.
99 See supra page 85 Minimal generalization of a table.
100 See supra page 92 Minimal distortion of a table.
101 See supra page 92 Precision metric.
102 See supra page 121 Datafly heuristic.
103 See infra page 165 k-Similar
104 A. Hundepool and L. Willenborg, “µ- and τ-Argus: Software for Statistical Disclosure Control,” Third

International Seminar on Statistical Confidentiality (1996) (available at http://www.cbs.nl/sdc/argus1.html.

Computational Disclosure Control 01/08/01 8:22 AM

215

105 For a presentation of the concepts on which µ-Argus is based, see L. Willenborg and T. De Waal, Statistical
Disclosure Control in Practice (New York: Springer-Verlag, 1996).

106 L. Sweeney. Inferences from unusual values in statistical data. Carnegie Mellon University, H. John Heinz III
School of Public Policy and Management Working Paper. Pittsburgh: 2000. [Abbreviated version
forthcoming in a separate publication by Springer-Verlag.]

107 See supra page 81 Lemma regarding k occurrences of each value.
108 See supra page 83 Domain generalization hierarchy
109 See supra page 97 MinGen algorithm
110 See supra page 98 MinGen computational complexity.
111 See supra note 27 Willenborg and De Waal.
112 See supra page 80 k-anonymity.
113 See supra page 92 Precision metric
114 See supra page 58 k-nearest neighbor algorithm
115 See supra page 89 Distance vectors.
116 See supra page 92 Precision metric.
117 See supra page 94 Weighted precision metric.
118 See supra page 89 Distance vectors.
119 See supra page 84 Value generalization hierarchies
120 See supra page 92 Precision metric
121 See supra page 94 Weighted precision metric
122 See supra page 89 Generalization strategies.
123 See supra page 97 MinGen algorithm
124 See supra page 60 Survey of disclosure limitation techniques
125 See supra page 121 Datafly heuristic.
126 See supra page 58 k-nearest neighbor algorithm
127 See supra page 68 Formal protection models
128 See supra page 80 k-anonymity
129 See supra page 107 Datafly System
130 See supra page 125 µ-Argus System.
131 See supra page 165 k-Similar algoirthm
132 See supra page 96 Preferred Minimal generalization algorithm (MinGen)
133 See supra note 92 Kohane.
134 G. Barnett, “The Application of Computer-Based Medical-Record Systems in Ambulatory Practice,” N. Engl.

J. Med., 310 (1984): 1643-50.
135 Anon., Privacy & Confidentiality: Is It a Privilege of the Past?, Remarks at the Massachusetts Medical

Society’s Annual Meeting, Boston, Mass. (May 18, 1997).
136 Government Accounting Office, Fraud and Abuse in Medicare and Medicaid: Stronger Enforcement and

Better Management Could Save Billions (Washington, D.C.: Government Accounting Office, HRD-96-320,
June 27, 1996).

137 L. Sweeney, Multiple hashed binary storage of words -- tiny, fast and almost perfect. Massachusetts Institute
of Technology, AI Laboratory: Working paper. 1996

138 L. Sweeney, Automatic acquisition of orthographic rules for recognizing and generating spellings.
Massachusetts Institute of Technology, Artificial Intelligence Laboratory: Also MIT Masters Thesis. Working
paper. 1996.

139 See note 137 Sweeney, Multiple hashed binary storage
140 See supra page 107 Datafly System
141 See note 92 Kohane
142 N. Kirkendall et al., Report on Statistical Disclosure Limitation Methodology, Statistical Policy Working

Paper (Washington, D.C.: Office of Management and Budget, no. 22, 1994).
143 G. Duncan and D. Lambert, “The Risk of Disclosure for Microdata,” Proceedings of the Bureau of the Census

Third Annual Research Conference (Washington, D.C.: Bureau of the Census, 1987): 263-74.

Computational Disclosure Control 01/08/01 8:22 AM

216

144 C. Skinner and D. Holmes, “Modeling Population Uniqueness,” Proceedings of the International Seminar on
Statistical Confidentiality (Dublin: International Statistical Institute, 1992): 175-99.

145 For example Latanya Sweeney’s testimony before the Massachusetts Health Care Committee had a chilling
effect on the proceedings that postulated that the release of deidentified medical records provided anonymity.
See Session of the Joint Committee on Health Care, Massachusetts State Legislature, (Mar. 19, 1997)
(testimony of Latanya Sweeney, computer scientist, Massachusetts Institute of Technology). Though the
Bureau of the Census has always been concerned with the anonymity of public use files, they began new
experiments to measure uniqueness in the population as it relates to public use files. Computer scientists who
specialize in database security are re-examining access models in light of these works.

