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Abstract

Today’'s globally networked society places great demand on the dissemination and sharing of
person-specific data for many new and exciting uses. Even situations where aggregate statistical
information was once the reporting norm now rely heavily on the transfer of microscopically detailed
transaction and encounter information. This happens at a time when more and more historically public
information is also electronically available. When these data are linked together, they provide an
electronic shadow of a person or organization that is as identifying and personal as a fingerprint even
when the information contains no explicit identifiers, such as name and phone number. Other distinctive
data, such as birth date and ZIP code, often combine uniquely and can be linked to publicly available
information to re-identify individuals. Producing anonymous data that remains specific enough to be
useful is often a very difficult task and practice today tends to either incorrectly believe confidentiality is

maintained when it is not or produces data that are practically useless.

The goal of the work presented in this book is to explore computational techniques for releasing
useful information in such a way that the identity of any individual or entity contained in data cannot be
recognized while the data remain practically useful. | begin by demonstrating ways to learn information
about entities from publicly available information. | then provide a formal framework for reasoning
about disclosure control and the ability to infer the identities of entities contained within the data. |
formally define and presemtull-map, k-map and wrong-map as models of protection. Each model

provides protection by ensuring that released information maps kan@correct entities, respectively.

The book ends by examining four computational systems that attempt to maintain privacy while
releasing electronic information. These systems are: (1) my Scrub System, which locates personally-
identifying information in letters between doctors and notes written by clinicians; (2) my Datafly II
System, which generalizes and suppresses values in field-structured data sets; (3) Statistics Netherlands'
u-Argus System, which is becoming a European standard for producing public-use data; andk-(4) my
Similar algorithm, which finds optimal solutions such that data are minimally distorted while still
providing adequate protection. By introducing anonymity and quality metrics, | show that Datafly Il can
overprotect data, Scrub apgArgus can fail to provide adequate protection, baimilar finds optimal

results.
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Chapter O Preface

In this chapter, | describe the organization of this embodiment of work. Thisis done by:

(1) describing the work and my contributions;
(2) identifying the intended audiences; and then,

(3) outlining the overall organization of this book.

0.1 Description of work

In the following paragraphs | describe the work reported in this book by describing it in terms of

its broader implications and promise as aline of research.

0.1.1 Computational disclosure control

The overall objective of the line of research encouraged by this work is to create architectural,
algorithmic and technological foundations for the maintenance of the privacy of individuals, the
confidentiality of organizations, and the protection of sensitive information, despite the requirement that
information be released publicly or semi-publicly. Data holders are finding it increasingly difficult to
produce anonymous and declassified information in today’s globally networked society. Most data
holders do not even realize the jeopardy at which they place financial, medical, or national security
information when they erroneously rely on security practices of the past. Technology has eroded
previous protections, leaving the information vulnerable. In the past, a person seeking to reconstruct
private information was limited to visiting disparate file rooms and engaging in the labor-intensive
review of printed material in geographically distributed locations. Today, one can access voluminous
worldwide public information using a standard handheld computer and ubiquitous network resources.
Thus, from seemingly innocuous anonymous data and available public and semi-public information, one

can draw damaging inferences about sensitive information.

However, one cannot seriously propose that all information with any links to sensitive
information be suppressed. Society has developed an insatiable appetite for all kinds of detailed
information for many worthy purposes, and modern systems tend to distribute information widely. A goal

of this work is to control the disclosure of data such that inferences about identities of people and
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organizations and about sensitive information contained in the released data cannot reliably be made. In
this way, information that is practically useful can be shared freely with guarantees that it is sufficiently

anonymous and declassified. | call this effort the study of computational disclosure control.

M otivation for disclosure control

Computational disclosure control is inspired by the astonishing proliferation of public
information made available on the Internet and recent access to inexpensive, fast computers with large
storage capacities. These may now render many declassification standards ineffective. Shockingly, there
remains a common incorrect belief that if datalook anonymous, it is anonymous. Data holders will often
remove al explicit identifiers, such as name, address, and phone number, from data so that other
information contained in the data can be shared, incorrectly believing the identities of entities contained
in the data cannot be inferred. Quite the contrary, de-identifying information provides no guarantee of
anonymity. For example, released information often contains other data, such as birth data and ZIP code
that in combination can be linked to publicly available information to re-identify individuals. As another
example, when somewhat aged information is declassified differently by the Department of Defense than
by the Department of Energy, the overall declassification effort suffers; by using two partial releases, the
original may be reconstructed in its entirety.

Promise of computational disclosure control

Because computational disclosure control can provide a responsible means for providing detailed
medical data to researchers, financial information to economists, and military intelligence information to
analysts, society can reap tremendous benefits in allocation of resources, financia efficiencies, and
protection of national information interests. Of course, this is only possible because the abstracted data
does not compromise individuals, organizations or national interests. Computational disclosure control
provides the means to coordinate information from vast numbers of distributed data holders so that
intended disclosure and declassification policies can be collectively enforced, even when related
inferences may not have been explicitly stated. Determining optimal results requires new insight into

measuring the usefulness of anonymous data and the effectiveness of the protection provided.

14



Computational Disclosure Control 01/08/01 8:22 AM

0.1.2 Contributions of thiswork

The major contributions to computer science stemming from this work include: (1) a formal
framework for reasoning about disclosure control problems; (2) methods for integrating disclosure
limitation techniques to achieve a given level of anonymity; (3) the introduction of formal protection
models; and, (4) the definition of metrics to assess quality and anonymity. The major contributions to
computer science and to public policy concern: (1) identifying the nature of disclosure control problems
in today’s technological and legal settings; (2) demonstrating how today’s policies, practices and
legislation do not provide adequate privacy protection; and (3) proposing directions for new policies that

incorporate new disclosure control technology.

0.1.3 Learninginformation about entities

In more traditional computer science terms, this work can be characterized as one on learning —
in particular, the learning of information about entities from data. Society is experiencing tremendous
growth in the number and variety of data collected and shared about individuals, companies and other
entities. When these seemingly innocuous facts are combined, strategic or sensitive knowledge can be
learned about entitiePata linkage is the study of algorithms for learning information about entities
from disparate pieces of entity-specific information. An example is linking information gathered on the
World Wide Web with publicly available databases to reveal information about personal behaviors or
relationships between people.

On the other hand, there is often an expectation of privacy (e.g., medical information) or a pledge
of confidentiality (e.g., censuses and surveys) that accompanies sharedisthtsure control is the
study of algorithms for releasing information about entities such that the privacy of the individuals or
other sensitive inferences that can be drawn from the data are controlled while the data remain

practically useful.

There exists a symbiotic relationship between data linkage and disclosure control. Data linkage
algorithms that exploit disclosure vulnerabilities in data identify ways in which disclosure control must
improve. Conversely, if disclosure control is to provide data that are useful, such algorithms must
identify the inferences that remain.
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Over the past twenty-five years, pursuits in record linkage (a subset of data linkage that relies on
the technique of probabilistic linking) and in disclosure control have utilized various statistical
approaches. However, the nature and extent of data available today has led to a re-examination of these
approaches as well as to the development of new computational methods, which are presented in this
book.

0.2 Intended audiences

This book is intended for graduate students who want to learn to be data protectors in order to
limit the knowledge others can gain from information that is publicly released. Conversely, students also
learn to be data detectives in order to understand ways to gain strategic knowledge about individuals and
other entities. It is assumed that the student reading this book has a working knowledge of computer
programming, data structures and algorithms. In a class setting, students may be responsible for
uncovering sensitive information about individuals by conducting experiments similar to those reported
in Chapter 2. Then, students could assume the responsibility of producing public information for a data
holder using privacy protection methods like those described in chapters 4 through 9. Students could then
attempt to compromise each other’s released data and assess the anonymity of each release. Because of
the sensitive nature of this work, it is imperative that students consider the related ethical and societal
pressures inherent in this work. These issues are underscored in Chapter 2 and the broader challenges to

society posed by the work are discussed further in the last chapter.

Other audiences

Maintaining the privacy of individuals and the confidentiality of organizations which are
contained in electronic information released for public or semi-public use affects a wide range of
audiences whose concerns are as diverse as information warfare, financial credit, epidemiological
research and data warehousing, to name a few. In addition there is growing public concern over privacy
and confidentiality as they relate to information made available over the Internet. As a result, the systems
and techniques discussed in this book are quite timely. Demand for information about my work has been
constant and immediate and has stemmed from a wide range of audiences including national security
efforts, the United States Bureau of the Census, the Massachusetts Department of Education, statistical
offices, other government agencies, medical organizations and federal and state legislative committees

working on medical privacy laws. Each of these contexts has brought additional richness to the work that
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extends beyond differences in vocabularies to also offer unique ways of looking at similar problems

given different traditions and practical experiences.

Releasing medical information

In this book, | present technical solutions in the context of real-world problems. For brevity, the
bulk of the book concerns problems and solutions in releasing medical information even though some
emphasis is placed on important distinctions necessary for other audiences such as those concerned with
statistical, financial or marketing data. Producing anonymous medical information is often very difficult,
as | show herein, and attempting to furnish such data provides fertile ground on which to explore the
genera nature of disclosure control problems and the effectiveness of proposed solutions. The tension
between maintaining the privacy of the individual and sharing information for the benefit of society is
more taut and more transparent with medical data than with other kind of person-specific data, which is

why | use medical data as the primary example throughout.

0.3 How thiswork isorganized

This book consists of three major parts. The first part, consisting of chapter 2, briefly reports on
re-identification experiments | designed and conducted using publicly available information as a means
of demonstrating the difficulties encountered when attempting to produce anonymous information in
today’s technical setting. Simultaneously, this chapter shows how in today’s setting, publicly available
information can be exploited to reveal sensitive information about individuals and so, it therefore serves
as a reflection on explorations in data linkage techniques. The second part of this book, consisting of
chapters 3 through 5, includes a formal framework | defined for reasoning about these kinds of problems
and a formal presentation | devised that examines the use of common techniques to thwart unwanted data
linkage efforts. In chapters 6 through 9, | present four computational systems, three of which | created
and produced, that attempt to produce anonymous information for public use. Comparative results are
provided to demonstrate the effectiveness of these systems in light of the re-identification experiments
conducted in the first part. In the final part of this book, consisting of chapters 10, the problems and
proposed computational solutions are briefly examined in terms of their potential impact on privacy

legislation, practices and policies.

17



Computational Disclosure Control 01/08/01 8:22 AM

0.4 Computer technology used

Two different machines were used for the re-identification experiments reported in chapter 1, but
much of the work could have been performed with only one machine and that machine need not have
been as powerfully configured. However, these machines were available for the tasks. Each is described
below.

Dell Inspirion 3200 laptop computer

Pentium 11, 144MB RAM, 6GB hard drive, CDOROM
External 1GB Jaz drive with SCSI PCMCIA adapter
Ethernet (and 56K modem) connection to Internet
Windows 98 operating system

Office 97 with Access

Dell Precision 610

Pentium I, 1GB RAM, 40GB hard drive, CDROM
Internal 1GB SCSI Jaz drive

Ethernet connection to Internet

Windows NT operating system

Office 97 with Access, Oracle, SQL Server
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Chapter 1 Non-Technical Overview

The purpose of this chapter is to provide a concise, non-technical overview of a new emerging
area of study, which | term computational disclosure control. An objective of this document isto provide
fundamental principles on which subsequent work in this area may build. It includes references to my
work beyond what is actually covered in later chapters. This chapter is intended as an overview for the
non-technical reader, who may not read some or al of the subsequent chapters. Other readers can skip

this chapter with no loss of information.

Organizations often release and receive person-specific data with all explicit identifiers, such as
name, address and telephone number, removed on the assumption that privacy is maintained because the
resulting data look anonymous. However, in most of these cases, the remaining data can be used to re-
identify individuals by linking or matching the data to other data bases or by looking at unique
characteristics found in the fields and records of the data base itself. When these less apparent aspects
are taken into account, each released record can be altered to map to many possible people, providing a
level of anonymity that the record-holder determines. The greater the number of candidates per record,

the more anonymous the data.

In this book, | present four general-purpose computer programs for maintaining privacy when

disclosing person-specific information. They are:

e my Scrub System, which locates and suppresses or replaces personaly identifying
information in letters, notes and other textual documents,

« my Datafly Il System, which generalizes values based on a profile of the data recipient at the
time of disclosure;

o Statistics Netherlandgi-Argus System, a somewhat similar system which is becoming a
European standard for disclosing public use data; and,

* my k-Similar algorithm, which finds optimal results such that the data are minimally

distorted yet adequately protected.

These systems have limitations. When they are completely effective, wholly anonymous data

may not contain sufficient details for all uses. Care must be taken when released data can identify
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individuals and such care must be enforced by coherent policies and procedures that incorporate the

constantly changing challenges posed by technology.

1.1 Towardsall thedataon all the people

There has been tremendous growth in the collection of information being collected on
individuals and this growth is related to access to inexpensive computers with large storage capacities.
Therefore, the trend in collecting increasing amounts of information is expected to continue. As aresullt,
many details in the lives of people are being documented in databases somewhere and that there exist
few operational barriers to restrict the sharing of collected information. In a related work, | proposed a
formal mathematical model for characterizing real-world data sharing policies and defined privacy and
risk metrics to compare policies. These metrics were applied to the real-world practices of sharing
hospital discharge data. Findings include: (1) 25 of the 44 states that collect hospital discharge data share
the information on a public or semi-public basis; (2) the number of people eligible to receive a copy of
the data is greater than the number of people whose information is contained in the data; and, (3)
publicly available data tends to be overly distorted and so more copies of the more sensitive, semi-
publicly available data are more commonly distributed. Having so much sensitive information available
makes it even more difficult for other organizations to release information that are effectively

anonymous.

1.2 Uniqueand unusual valuesin statistical data

| conducted experiments using 1990 U.S. Census summary data to determine how many
individuals within geographically situated populations had combinations of demographic values that
occurred infrequently. It was found that combinations of few characteristics often combine in
populations to uniquely or nearly uniquely identify some individuals. Clearly, data released containing
such information about these individuals should not be considered anonymous. Yet, health and other
person-specific data are publicly available in this form. Here are some surprising results using only three
fields of information, even though typical data releases contain many more fields. It was found that 87%
(216 million of 248 million) of the population in the United States had reported characteristics that likely
made them unique based only on {5-digit ZIP, gender, date of birth}. About half of the U.S. population
(132 million of 248 million or 53%) are likely to be uniquely identified by only {place, gender, date of

birth}, where place is basically the city, town, or municipality in which the person resides. And even at
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the county level, {county, gender, date of birth} are likely to uniquely identify 18% of the U.S.

population. In general, few characteristics are needed to uniquely identify a person.

1.3 Linkingtore-identify de-identified data

| conducted experiments that demonstrated how de-identified health data can be linked to a
population register in order to re-identify by name the persons who are the subjects of the health
information. Using the voter list for Cambridge, Massachusetts, | showed how a few demographics
combine to uniquely identify individuals. It was found that 12% of the 54,805 voters had unique birth
dates (month, day and year of birth). Therefore, any information on these individuals that included birth
date and city, would almost certainly be specific to the named individuals. Further, birth date and gender
together were unique for 29%, birth date and a 5-digit ZIP (postal code) were unique for 69% and birth
date and the full 9-digit ZIP were unique for 97% of the voters. These results demonstrate that
combinations of characteristics can combine to construct a unique or near-unique identifier which is
termed a quasi-identifier. These results further show that the typical de-identification technique applied

when releasing information for public-use in the United States, does not render the result anonymous.

1.4 Probabilisticinferenceto re-identify individuals

| conducted an experiment in which five patients in a proposed release of cancer incidence
information consisting of { diagnosis, date of diagnosis (month and year), ZIP (5 digits)} were accurately
identified using only publicly available information. The method of re-identification concerned
probabilistic inferences drawn from the Social Security Death Index based on population demographics
and the specifics of the diseases. Four of the five cases had a diagnosis of Kaposi’s Sarcoma which when
found in young men is an indicator of AIDS. The fifth case concerned Neuroblastoma in a child and the
re-identification was successful even though there is far less information available about children than
about adults. It is difficult to believe that such seemingly minimal information could have been so easily
re-identified.

1.5 Re-constructing unreleased data

| conducted an experiment in which a birth certificate database is reconstructed from publicly
available information even though the state’s vital records department did not release any of the

information used. A total of 313 explicitly identified birth notices appeared in the Peoria Daily Record
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for April 1991. Hospital births found in publicly available health data reported 321 births for the same

area during that time period which demonstrates a compliance of newspaper birth notices of 313/321 (or

98%). The combination of { hospital, gender, date of birth, ZIP/place} was unique for 234/313 (or 75%)

of the births. The other 79 cases are described as follows. Twins (5 cases) and notices that could not be
distinguished from one other notice (44 notices) were partitioned into 27 sets of two and accounted for

54 (or 17%) of the babies. In these cases, released information would be specific to one of the two named
individuals. Similarly, there was one set of triplets and 18 other notices that could not be distinguished

from two others; these were partitioned into 7 sets and accounted for 21 (or 7%) of the babies. Lastly,

there were four notices that could not be distinguished on the basis of these attributes; these accounted

for four (or 1%) of the notices. Additional sensitive inferences can be weakly implied from birth notices,

such as the ethnicity of the child based on family name, family income based on residence, the child’s
general health at birth based on the timing of birth notices and the parent's marital status based on the
absence of a father’'s name. Inferences from related hospital information can concern payment means or
birth complications and anomalies, some of which may provide inferences to the mother’s lifestyle or
health. The resulting data can be used as a population register to re-identify individuals who later become

the subjects of other releases of sensitive information.

1.6 Using patternsto re-identify individuals

I conducted a series of experiments that demonstrate how person-specific neuroblastoma
incidence data, believed to be anonymous and being considered for release, could be re-identified using
publicly available information. The proposed release consisted of 319 lllinois residents reported as being
diagnosed with neuroblastoma from January 1986 through April 1998. Given daté/of diagnosis
(month and year)ZIP (5-digit postal code in which each person resided)}, | employed linking and
pattern matching techniques to re-identify these lllinois residents from seemingly innocent information.
What is further surprising is that these experiments are among the most difficult possible because there is
less publicly available information on children, who are the primary subjects, and because neuroblastoma
is not a single, identified diagnosis code in health data. Instead, | showed that a series of diagnoses imply
neuroblastoma. Information used for these experiments included Web pages, email discussion archives,
health care data, Social Security death index, and birth notices. | correctly identified 20 of the 23
sampled (or 87%), uniquely identified 18 of the 23 sampled (or 78%) and incorrectly identified O of the
23 sampled.
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1.7 Summary of problems producing anonymous data

Consider the re-identification experiments just described over the previous paragraphs. They
reveal an array of problems encountered in attempting to produce anonymous information in today’s

technological setting. These problems center on:

(1) knowledge the recipient may hold or bring to bear on the data;
(2) unique and unusual combinations of values appearing within the data;

(3) aninability to prove a given release is anonymous.

Finding operational solutions to these problems is the topic of this work.

1.8 Redated work

Prior related work comes from work in the statistics community on statistical databases and in
the computer security community on multi-level databases, access control and authentication and
inference control with respect to multiple queries to a database. While many techniques from these fields
seek to effect disclosure control, they do so in different and more limited contexts than are explored in

this work.

The reason for examining disclosure control in a broader context results from the dramatic
increase in the availability of person-specific information from autonomous data holders. In the case of
statistical databases, current demand centers on person-specific details and not aggregated summaries. In
the case of multi-level databases, solutions can result from having absolute control over the entire
collection and dissemination process. Such conditions are not possible with today’s decentralized

collections where release decisions are autonomously determined.

For the most part, computer security as a field has not addressed issues concerning data privacy
that are separate and distinct from those of hardware security. Clearly, having competent hardware
security can limit unwanted access to the information contained within the system, but having good
security cannot guarantee privacy. As examples, consider the re-identification experiments mentioned
earlier. In those cases, breaches of privacy resulted from data that were given out freely; no security

breaches occurred.
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1.9 Formal methods

There are numerous disclosure limitation techniques that can be brought to bear, but previously
no formal protection models existed. | developed a formal framework for reasoning about disclosure
control and the ability to infer the identities of entities contained within data. | also defined an
anonymous database system as one that makes individual and entity-specific data available such that
individuals and other entities contained in the released data cannot be reliably identified. | then
introduced formal protection models, named null-map, k-map and wrong-map. Each model provides

protection by ensuring that released information mapsto no, k or incorrect entities, respectively.

Anonymous databases differ in many significant ways from statistical databases and from multi-
level databases. Here are afew differences:

(2) al if not most of the data are released rather than a small sample;

(2) the integrity of entity-specific details must be maintained rather than an overall aggregate
statistic; and,

(3) suppressing explicit identifiers, such as name and address, is not sufficient since
combinations of other values, such as ZIP and birth date, can combine uniquely to re-identify
entities.

My formal framework and protection models provide a basis for characterizing and comparing
proposed anonymous database systems. Below are four real-world systems that are proposed to be
anonymous database systems.

1.10 Scrub System

My Scrub System concerns maintaining privacy in textual documents. In field-structured
databases, explicit identifiers, which provide a means to directly communicate with the person who is the
subject of the data, appear within the data, grouped by a field name, such as {name, phone number}.
Locating explicit identifiers in unrestricted text, however, becomes a problem unto itself. In the Scrub
System, | define a new computational approach to locating and replacing personaly identifying
information in textual documents that extends beyond straight search-and-replace procedures, which was

the previous norm. The system’s approach is based on a model of how humans de-identify textual
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documents. The basic ideais to construct a system of detectors that work in parallel, where each detector

specializesin recognizing a particular kind of explicit identifier.

While the Scrub System was proven to be quite effective, accurately locating 98-100% of all
explicit identifiers found in letters to referring physicians, the final analysis reveals that de-identifying
textual documents (i.e., removal of explicit identifiers) is not sufficient to ensure anonymity. Therefore,
Scrub is not an anonymous database system. Nonetheless, de-identifying textual documents remains in
great demand primarily due to archives of email messages, persona web pages and other information

found on the World Wide Web and alack of understanding of what renders data sufficiently anonymous.

1.11 Datafly Il System

My Datafly 1l System concerns field-structured databases. Both my Datafly and Datafly Il
System use computational disclosure techniques to maintain anonymity in entity-specific data by
automatically generalizing, substituting and removing information as appropriate without losing many of
the details found within the data. For the discussion in this chapter, the terms Datafly and Datafly |1 can
be consider to refer to the same basic system because the differences between them are not reflected in
the issues presented here. Decisions are made at the attribute (field) and tuple (record) level at the time
of database access, so the approach can be used on the fly in role-based security within an institution, and
in batch mode for exporting data from an institution. As | mentioned in the experiments earlier,
organizations often release person-specific data with all explicit identifiers, such as name, address, phone
number, and social security number, removed in the incorrect belief that the identity of the individualsis
protected because the resulting data look anonymous. However, the experiments showed that in most of
these cases, the remaining data can be used to re-identify individuals by linking or matching the data to
other databases or by looking at unique characteristics found in the attributes and tuples of the database
itself. When these |ess apparent aspects are taken into account, as is done in my Datafly Il System, each
released tuple can be made to ambiguously map to many possible people, providing alevel of anonymity
that the data provider determines.

| term this model of protection k-map protection. In my Datafly and Datafly Il System, thek is
enforced on the data itself, resulting in a special form of k-map protection called k-anonymity. This is
attractive because adherence to k-anonymity can be determined by the data holder’s data alone and does

not require omniscience. Further, in the Datafly System the data holder assigns to each attribute, the
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amount of tolerance for distortion that is desirable. Conversely, the provider of the data assigns to each
attribute, the amount of protection necessary. In thisway, the Datafly 11 System transforms the disclosure
limitation problem into an optimization problem. As a consequence, the final results are adequately
protected while remaining useful to the recipient. It is shown that Datafly is an anonymous database
system.

1.12 p-Argus System

The p-Argus System is a computational disclosure system produced by Statistics Netherlands
that is ssimilar to my Datafly System. Both systems utilize the same disclosure limitation techniques to
enforce k-anonymity and in both systems, the data provider assigns to each attribute, the amount of
protection necessary though the granularity of this specification is far more coarse in py-Argus. These
similarities are especially surprising given that the systems were developed at roughly the same time and
with no prior knowledge of each other; and, each work stems from a different academic tradition. But the
systems differ in significant ways. In Datafly 1l each release is guaranteed to adhere to k-anonymity
where such is not necessarily the case in p-Argus. However, g-Argus tends to provide less distortion than
Datafly 11 so more of the specificity in the values themselves remains, making the data often more useful.

It is shown that p-Argusis not an anonymous database system.

1.13 Thek-Similar algorithm

My k-Similar algorithm finds optimal solutions such that data are minimally distorted while still
providing adequate protection. By introducing anonymity and quality metrics, | show to what extent
Datafly 1l can over distort data, while Scrub and p-Argus can fail to provide adequate protection in a
given release. In contrast, my k-similar algorithm produces optimal releases that are not overly distorted
nor under-protected. It does so by looking at the computational disclosure control problem as one of data
clustering. In the well-known k-cluster algorithm, for example, data are partitioned into k groups based
on minimizing a distance between tuples. In contrast, the k-similar algorithm divides data into groups
such that the size of each group consists of k or more of the “closest” tuples; in this case, closeness is
based on a minimal distance measure derived from the anonymity and quality metrics. In terms of
computational speedk-Similar operates in real-time under certain circumstances, but can become

combinatoric in others. It is not nearly as fast as DataflygAdgus. However, the resulting releases
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from k-Similar are guaranteed to be minimally distorted yet sufficiently protected which is not the case

with the other systems.

1.14 Putting the systemsinto action

Revisiting the linkage experiments described in the earlier sections, given the computational
solutions described in the later sections, shows that these solutions can effectively thwart the described
re-identification efforts. Using the quality and anonymity metrics related to my formal methods, |
conducted an experiment that demonstrated that public-use medical data available today is typically over-
distorted yet still inadequately protected. Thisis not surprising given that these releases do not use any of
the disclosure control systems presented here and do not employ any formal protection models. So, the
impact of thiswork in the future should be significant.

1.15 Medical privacy legislation

While there may be many other possible academic approaches to protecting privacy, most of
them are not practical in today’s social settings. Therefore, it is important for those working in this area
to understand the constraints the social setting places on the disclosure control problem. Consider

medical privacy legislation, policies and best practices.

Policy makers appear to be unaware of the kinds of disclosure control problems examined herein
and the role that technology plays in rendering our past approaches to privacy policies futile. Basically,
no medical privacy legislation proposed by Congress addresses the problems demonstrated in the earlier

sections. That is, if any were to pass, the problems would remain. Major shortcomings center on:

(1) anincorrect belief that de-identifying data renders the result anonymous;

(2) an incorrect belief that data linkage and re-identification can be controlled by encryption
alone;

(3) an incorrect belief that following established computer security practices provides adequate
privacy protection; and,

(4) an inability to construct a policy framework for privacy legislation that does not require

enumerating all sources, recipients and uses of data a priori.
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New technology offers better choices than the al-or-nothing positions voiced in the medical
privacy debates, but technical solutions alone remain inadequate. Technology must work with policy for

the most effective solutions.

1.16 Challengeto society

While medical data has been used to motivate the work described here, the problem is certainly
not limited to medical data. Given the explosion in the collection and sharing of person-specific
information described earlier, along with the growing ability to automatically process video and speech
surveillance data and the ease of collecting information over the World Wide Web, populations are
coming under increasingly intense data surveillance. For the United States, this is especially aarming
because it undermines the philosophical cornerstones of the American way of life. It is not clear what
terms like “freedom” and “liberty” mean in the absence of personal privacy. An inability to release
entity-specific information that is anonymous is becoming one of the biggest and most significant

challenges facing today’s society.

For example, the Freedom of Information Act has historically provided a mechanism to help
ensure government accountability, but when many such releases are not effectively anonymous, they can
easily become weapons to reveal sensitive information about individuals or businesses. Conversely, this
becomes grounds on which the government refuses to release many of the kinds of information currently
reported. Similarly, the American legal system requires law enforcement to acquire search warrants
based on a review of evidence by a judge. However, by using the linkage techniques described earlier,
law enforcement can gain access to sensitive information about members of the population without the
protection of a search warrant or even a reported case. These are just two examples that show how an
inability to provide entity-specific data that are not anonymous tears at the underpinnings of American

society and begs for society to re-examine itself in the wake of these problems.

117 Summary

On the one hand, having so much information available about entities provides many new and
interesting ways to conduct research, but on the other hand, having so much information available about
entities makes it increasingly difficult to provide personal privacy. So, this book focuses on several of my
contributions including a formal framework for reasoning about these kinds of problems, 3

computational solutions to tackle this problem and a set of anonymity and quality metrics to help
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characterize solutions. Despite these contributions, care must be taken to use policy to tie the technology

that brought forth the problem with the technology that can offer solutions.
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Chapter 2Introduction

Society is experiencing exponential growth in the number and variety of data collections as
computer technology, network connectivity and disk storage space become increasingly affordable. Data
holders, operating autonomously and with limited knowledge, are left with the difficulty of releasing
information that does not compromise privacy, confidentiality or national interests. In many cases the
survival of the database itself depends on the data holder’s ability to produce anonymous data because
not releasing such information at all may diminish the need for the data, while on the other hand, failing
to provide proper protection within a release may create circumstances that harm the public or others.
Ironically, the broad availability of public and semi-public information makes it increasingly difficult to

provide data that are effectively anonymous.

Let me begin by introducing my terminology and explaining my use of medical privacy as a
constant example. In general, | will discuss collections of information whose granularity of details are
specific to an individual, a business, an organization or other entities and | term such collections, entity-
specific data. If the entities represented in the data are individuals, then | may refer to the collection as
person-specific data; however, even in these cases, the concepts being presented typicaly apply to
broader collections of entity-specific data as well. By primarily using person-specific data and focusing
on issues surrounding medical privacy, the motivations and risks often become transparent even though
the underlying issues apply to many other kinds of data such as financial, statistical and national security

information.

2.1 Tensionsinreleasing data

In the next two subsections, | look at different ways in which society has made decisions about sharing
data, and | provide away to reason about these findings. In the end, this examination motivates my use of
medical data as an example throughout this work, even though the issues presented are not limited to
medical data.
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Quality ver sus anonymity

There is anatural tension between the quality of data and the techniques that provide anonymity
protection. Consider a continuum that characterizes possible data releases. At one end of the continuum
are person-specific data that are fully identified. At the other end are anonymous data that are derived
from the origina person-specific data, but in which no person can be identified. Between these two
endpointsis afinite partial ordering of data releases, where each release is derived from the original data
but for which privacy protection isless than fully anonymous. See Figure 1.

The first redlization is that any attempt to provide some anonymity protection, no matter how
minimal, involves modifying the data and thereby distorting its contents. So, as shown in Figure 1,
movement along the continuum from the fully identified data towards the anonymous data adds more
privacy protection, but renders the resulting data less useful. That is, there exists some tasks for which
the original data could be used, but those tasks are not possible with the released data because the data
have been distorted.

So, the original fully identified data and the derived anonymous data are diametrically opposed.
The entire continuum describes the domain of possible releases. Framed in this way, a goal of this work
is to produce an optimal release of data so that for a given task, the data remain practically useful yet
rendered minimally invasive to privacy.

identifiable anonymous

more privacy more useful

Figure 1 Optimal releases of data

Tug-of-war between data holdersand recipients

The second realization that emerges from Figure 1 is that the usefulness of datais determined by
the task to which the recipient puts the data. That is, given a particular task, there exists a point on the
continuum in Figure 1 that is as close to anonymous as possible, yet the data remain useful for the task. A
release of data associated with that point on the continuum is considered optimal. In the next paragraphs,
| provide a skeletal depiction of current practices that determine who gets access to what data. | show

that the result can be characterized as a tug-of-war between data holders and data recipients.
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In general, the practices of data holders and related policies do not examine tasks in a vacuum.
Instead, the combination of task and recipient together are weighed against privacy concerns. This can be
modeled as a tug-of-war between the data holder and societal expectations for privacy on one side, and
the recipient and the recipient’'s use for the data on the other. In some cases such as public health
legislation, the recipient’s need for the data may overshadow privacy protections, allowing the recipient
(a public health agent) to get the original, fully identified health data. See Figure 2 in which a tug-of-war
is modeled. The privacy constraints on the data holder versus the recipient’'s demand for the data are
graphically depicted by the sizes of the images shown. In the case illustrated, the recipient receives the

original, fully identified data.

Distortion, anonymity Accuracy, quality

Ann 10/2/61 02139 |cardiac
N Abe 7/14/61 02139 |[cancer
Al 3/8/61 02138 |liver

Holder

Recipient

Figure 2. Recipient’'s needs overpower privacy concerns

Figure 3 demonstrates the opposite extreme outcome to that of Figure 2. In Figure 3, the data holder and
the need to protect the confidentiality or privacy of the information overshadows the recipient and the
recipient’s use for the data and so the datais completely suppressed and not released at all. Data collected
and associated with national security concerns provides an example. The recipient may be a news-
reporting agent. Over time the data may eventually be declassified and a release that is deemed
sufficiently anonymous provided to the press, but the original result is as shown in Figure 3, in which no
dataisreleased at al.
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Distortion, anonymity Accuracy, quality

1

Recipient

Holder

Figure 3 Data holder and privacy concerns over power outside uses of the data

Figure 2 and Figure 3 depict situations in which society has made explicit decisions based on the
needs of society as a whole. But secondary uses of medical data, for example, by marketing firms,
pharmaceutical companies, epidemiological researchers and others do not in general lend themselves to
such an explicit itemization. Figure 4 demonstrates situations in which the needs for privacy are weighed
equally against the demand for the dataitself. In such situations, a balance should be found in which the
data are rendered sufficiently anonymous yet remain practically useful. As an example, this situation
often occurs with requests by researchers for patient-specific medical records in which researchers seek
to undertake clinical outcomes, or administrative research that could possibly provide benefits to society.
At present, decisions are primarily based on the recipient receiving the original patient data or no data at
al. Attempts to provide something in-between typically results in data with poor anonymity protection or
data that is overly distorted. This work seeks to find ways for the recipient to get data that has adequate
privacy protection, therefore striking an optimal balance between privacy protection and the data’s

fitness for a particular task.

Distortion, anonymity Accuracy, quality

A* 1961 0213*|cardiac
A* 1961 0213* cancer
A* 1961 0213*|liver

Holder Recipient

Figure4. An optimal balanceis needed between privacy concernsand uses of the data
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At present, many data holders often make decisions arbitrarily or by ad hoc means. Figure 5
portrays the situation some state and federal agencies find themselves when they seek to produce public-
use files for general use. Over the past few years, there has been a tremendous effort to make more data
that is collected by government agencies available over the World Wide Web. In these situations,
protecting the reputation of the agency, and the guarantees for privacy protection for which some
agencies are legally bound, outweighs the demands of the recipient. In many of these cases, a strongly
distorted version of the data is often released; the released data are typically produced with little or no
consideration to the tasks required. Conversely, many other state and federal agencies release poorly
protected data. In these cases, the individuals contained in the data can be easily re-identified. Examples
of both of these kinds of released data are found in publicly and semi-publicly available hospital
discharge data.

Neither way of releasing data yields optimal results. When strongly distorted data are released,
many researchers cannot use the data, or have to seek special permission to get far more sensitive data
than what are needed. This unnecessarily increases the volume of sensitive data available outside the

agency. On the other hand, data that do not provide adequate anonymity may harm individuals.

Distortion, anonymity Accuracy, quality
Jcd cardiac
Jwq cancer s
Jxy liver
Recipient

Holder

Figureb5. Data holder and privacy concernslimit uses of the data

In examining the different struggles between privacy and the sharing of person-specific data, |

make the following claims:

Informal claim 1. Many current policies and practices support crude decisions. A recipient today

too often receives the sensitive data itself, no data at all, overly distorted data that is of little or

no use, or poorly protected datain which individuals can be re-identified.
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Informal claim 2. Ultimately, the data holder must be held responsible for enforcing privacy
protection because the data holder typically reaps a benefit and controls both data collection and
dissemination.

While the claims above are independent of the content of data, the study of secondary uses of
medical datain particular provides a natural incentive to find optimal solutions between researchers and
data holders. After all, there are no legidlative guidelines to empower one party so that it can overwhelm
the other as was shown in Figure 2 and Figure 3. Also, state and federal agencies tend to be small in
number and highly visible in comparison to the dramatic number of holders of medical data. Because
there are so many holders of health data, it is hard to scrutinize their actions, and the resulting damage to
individuals can be devastating yet hard to prove. And there exists strong financial incentives not to
provide adeguate protection in health data. On the other hand, research from data may lower health costs
or save lives. For these reasons, focusing on the collection and sharing of medical data throughout this
work provides mativation for finding optimal releases of data and for integrating technology with policy
for maximal benefit. Even though | focus on anonymity protection in medical data, the issues presented
are just as pertinent to the confidentiality of businesses, governments and other entities in financial,
marketing and other forms of data.

2.2 Introduction to privacy in medical data

| begin with some informal definitions. Identifiable personal health information refers to any
information concerning a person’s health or treatment in which the identity of the person can be
determined. The expressiope sonal health information andpatient-specific health data refer to health
information that may or may not identify individuals. As | will show, in many releases of personal health
information, individuals can be recognizedAnonymous personal health information, by contrast,
contains details about a person’s medical condition or treatment but the identity of the person cannot be
determined.

In general usage, confidentiality of personal information protects the interests of the organization

while privacy protects the autonomy of the individual; but, in medical usage, both terms often mean
privacy.
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2.2.1 Privacy protection and the Hippocratic oath

The historical origin and ethical basis of medical confidentiality begin with the Hippocratic
Oath, which was written between the sixth century BC and the first century AD:

“Whatsoever | shall see or hear in the course of my dealings with men, if it be what should not be

published abroad, | will never divulge, holding such things to be holy secrets.”

Various professional associations world-wide reiterate this oath, and by pledging this oath,
clinicians — licensed professionals such as doctors, nurses, pharmacists, radiologists, and dentists who
access in the line of duty identifiable personal health information — assume the responsibility of securing
this information. The resulting trust is the cornerstone of the doctor-patient relationship, allowing
patients to communicate with their physicians and to share information regarding their health status.
However, the doctor-patienprivilege offers very limited protection to patients regarding the
confidentiality of their health information. Legal protection is very narrow, only applying in some cases

when a physician is testifying in court or in related proceedings.

2.2.2 Roleof information technology

The role of information technology is critical to confidentiality. On the one hand, information
technology offers comprehensive, portable electronic records that can be easily accessed on behalf of a
given patient no matter where or when a patient may need medical care [1]. That very portability, on the
other hand, makes it much easier to transmit quickly and cheaply records containing identifiable personal
health information widely and in bulk, for a variety of uses within and among health care institutions and
other organizations and agencies. The Office of Technology Assessment (OTA) found that current laws
generally do not provide consistent or comprehensive protection of personal health information [2].
Focusing on the impact of computer technology, OTA concluded that computerization reduces some

concerns about privacy of personal health information while increasing others.
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2.2.3 Past policy effortsand computational disclosure control

Previous policy efforts to protect the privacy of persona health information were limited to
decisions about who gets access to which fields of information. | examine here four new computer
programs that attempt to disclose information in such a way that individuals contained in the released
data cannot be identified. These programs provide a spectrum of policy options. Decisions are no longer
limited to who gets which fields of information, but to how much generality or possible anonymity will
exist in the released information.

2.2.4 Public concern over privacy

The public’'s concern about the confidentiality of personal health information is reflected in a
1993 poll conducted by Harris and Associates for Equifax. The results of the survey found that 96
percent of the respondents believed federal legislation should designate all personal health information as
sensitive, and should impose severe penalties for unauthorized disclosure. Eighty percent of respondents
were worried about medical record privacy, and 25 percent had personal experience of abuse related to
personal health information [3].

A 1994 Harris-Equifax consumer privacy survey focused on how the American public felt about
having their medical records used for medical research and how safeguards would affect their opinions
about such systems and uses. Among a list of thirteen groups and organizations, doctors and nurses
ranked first in terms of the percentage of Americans who were “very” confident (43 percent) that this
group properly handled personal and confidential information. After hearing a description about how
medical records are used by researchers to study the causes of disease, 41 percent of Americans surveyed
said they would find it at least somewhat acceptable if their records were used for such research without
consent. Twenty-eight percent of those who initially opposed having their records used would change
their position if a federal law made it illegal for any medical researcher to disclose the identity or any
identifiable details of a person whose health records had been used. This would increase acceptance of
this practice to over half those surveyed (58 percent) [4]. By extension, this survey implies strong public
support for releases of personal health information in which persons contained in the information could

not be identified.
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2.2.5 Sharing medical data offers benefitsto society

Analysis of the detailed information contained within electronic medical records promises many
social advantages, including improvements in medical care, reduced institutional costs, the development
of predictive and diagnostic support systems [5], and the integration of applicable data from multiple
sources into a unified display for clinicians [6]. These benefits, however, require sharing the contents of
medical records with secondary viewers such as researchers, economists, statisticians, administrators,
consultants, and computer scientists, to name a few. The public would probably agree that these
secondary parties should know some of the information in the record, but such disclosure should not risk
identifying patients.

2.2.6 Lotsof medical data available from many sources

Beverly Woodward makes a compelling argument that, to the public, patient confidentiality
implies that only people directly involved in one’s health care will have access to one’s medical records,
and that these health professionals will be bound by strict ethical and legal standards that prohibit further
disclosure [7]. The public is not likely to accept the notion that records are “confidential” if large

numbers of people have access to their contents.

In 1996, the National Association of Health Data Organizations (NAHDO) reported that 37
states had legislative mandates to electronically gather copies of personal health information from
hospitals [8] for cost-analysis purposes. Community pharmacy chains, such as Revco, maintain
electronic records for over 60 percent of the 2.4 billion outpatient prescriptions dispensed annually.
Insurance claims typically include diagnosis, procedure and medication codes along with the name,
address, birth date, and SSN of each patient. Pharmaceutical companies run longitudinal studies on
identified patients and providers. As more health maintenance organizations and hospitals merge, the
number of people with authorized access to identifiable personal health information will increase
dramatically because, as the National Research Council (NRC) recently warned, many of these systems
allow full access to all records by any authorized person [9]. For example, assume a billing clerk at
hospital X can view all information in all medical records within the institution. When hospital X
merges with hospitals Y and Z, that same clerk may then be able to view all records at all three hospitals,

even though the clerk may not need to know information about the patients at the other institutions.
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2.2.7 Problemshave been found

The NRC report also warns against inconsistent practices concerning releases of persona health
information. If | approach a hospital as a researcher, | must petition the hospital’s institutional review
board (IRB) and state my intentions and methodologies; then the IRB decides whether | get data and in
what form. But, if | approach the same hospital as an administrative consultant, data are given to me

without IRB review. The decision is made and acted on locally.

Recent presentations by the secretary of the Department of Health and Human Services
emphasize the threats to privacy stemming from misuse of personal health information [10]. There have

been abuses; here are just a few:

« A banker reportedly cross-referenced a list of patients with cancer against a list of people
who had outstanding loans at his bank. Where he found matches, he called in the
outstanding loans [11].

* A survey of 87 Fortune 500 companies with a total of 3.2 million employees found that 35
percent of respondents used medical records to make decisions about employees [12].

« Cases have been reported of snooping in large hospital computer networks by hospital
employees [13], even though the use of a simple audit trail — a list of each person who
looked up a patient’s record — could curtail such behavior [14].

e Consumer Reports found that 40 percent of insurers disclose personal health information to

lenders, employers, or marketers without customer permission [15].

Abuses like the preceding underscore the need to develop safeguards.

2.3 All thedata on all the people

Before | look at inference problems inherent in producing anonymous information, | first want to
consider why concern over the problem appears to be escalating. There is currently unprecedented
growth in the number and variety of person-specific data collections and in the sharing of this
information. The impetus for this explosion has been the proliferation of inexpensive fast computers

with large storage capacities operating in ubiquitous network environments.
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In an attempt to characterize the growth in person-specific data, | introduce a new metric termed
global disk storage per person or GDSP, which is measured in megabytes per person. GDSP is the total
rigid disk drive space in megabytes of new units sold in a year divided by the world population in that
year. Figure 6 uses GDSP figures to compute the amount of a person’s time that can be documented on a

page of text using a regularly spaced fixed font.

1983 1996 2000
Stor age space (TB) 90 | 160,623 2,829,288
Population (million) 4,500 5,767 6,000
GDSP (MB/person) 0.02 28 472
Time per page 2 months lhour | 3.5 minutes
GDSP over Time
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Figure 6 Global disk storage per person

In 1983 a half a page could be used to document each month of a person’s life in that year.
These recordings included itemized long distance phone calls, credit card purchases, volume of
electricity used, and so forth. In 1996, a page could be used to document each hour of a person’s life.
Recordings expanded in both size and number. Examples of new collections included items purchased at
the grocery store, web sites visited, and the date and time in some locations a car proceeded through a
tollbooth. By the year 2000, with 20 gigabyte drives leading the industry, it is projected that a page could
be used to document every 3.5 minutes of a person’s life. Most likely collections will expand to include
biometric information such as, heart rate, pulse and temperature. One of the leading proponents of the
information explosion is the health care industry, acting in the belief that having such information will

help reduce cost and improve care.

40



Computational Disclosure Control 01/08/01 8:22 AM

Examples 1983 1996
Each birth 280 1864
Each hospital visit 0 663
Each grocery visit 32 1272

Figure 7 Estimated growth in data collections (per encounter) in lllinois (in bytes)

Figure 7 demonstrates how some data collections expanded from 1983 to 1996 for some person-
specific encounters in the State of Illinois. The values are the number of bytes (letters, digits and other
printable characters) that were stored for each person per encounter in the collection shown.

These examples exemplify recent behavioral tendencies recently found in the collection practices

of person-specific data. These informally observed “trends” are enumerated below.

Behavior 1. Given an existing person-specific data collection, expand the number of fields being

collected. | casually refer to this as tlesltect more” trend.

Behavior 2. Replace an existing aggregate data collection with a person-specific one. | casually

refer to this as thecbllect specifically” trend.

Behavior_3. Given a question or problem to solve or merely provided the opportunity, gather
information by starting a new person-specific data collection related to the question, problem or

opportunity. | causally refer to this as thesllect it if you can” trend.

No matter how you look at it, all three tendencies result in more and more information being
collected on individuals. Not only has there been a dramatic increase in the collection of person-specific
data, but also in the sharing of collected data. | define four classes of access restrictions to person-

specific data based on current practices. These are described in Figure 8.
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Insiders only (Pr) “private”.
Data collections that are available to authorized “insiders only” are considered to be privately held
information because the only people who gain access are almost exclusively those who directly
collected the information.

Limited Access (SPr) “semi-private”
Data collections denoted as having “limited access” are those where access extends beyond those who
originally collected the information, but only an identifiable small number of people are eligible|for
access in comparison to a substantially larger number of people who are not eligible for access. This
access policy typically includes an extensive application and review process.

Deniable Access (SPu) “semi-public”.
Data collections having “deniable access” are those where an application and review process may
exist but only an identifiable small number of people are denied access in comparison to a
substantially larger number of people who are eligible for access.

No restrictions (Pu) “public”.
Data collections having “no restrictions” are those where an application process may or may not exist,
but the data collections are generally made available to all who request them.

Figure 8 Levels of accessrestrictions by data holdersto per son-specific data

There is no doubt that society is moving towards an environment in which society could have
amost al the data on all the people. As a result, data holders are increasingly finding it difficult to
produce anonymous and declassified information in today’s globally networked society. Most data
holders do not even redlize the jeopardy at which they place financial, medical, or national security
information when they erroneously rely on security practices of the past. Technology has eroded
previous protections leaving the information vulnerable. In the past, a person seeking to reconstruct
private information was limited to visiting disparate file rooms and engaging in labor-intensive review of
printed material in geographically distributed locations. Today, one can access voluminous worldwide
public information using a standard handheld computer and ubiquitous network resources. Thus from
seemingly anonymous data, and available public and semi-public information, one can often draw
damaging inferences about sensitive information. However, one cannot seriously propose that all
information with any links to sensitive information be suppressed. Society has developed an insatiable
appetite for all kinds of detailed information for many worthy purposes, and modern systems tend to
distribute information widely.

Primarily society is unaware of the loss of privacy and its resulting ramifications that stem from

having so much person-specific information available. When this information is linked together it can
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provide an image of a person that can be as identifying as afingerprint even if all explicit identifierslike
name, address, and phone number are removed. Clearly a loss of dignity, financial income and credit
worthiness can result when medical information is widely and publicly distributed. A goal of the work
presented in this book is to control the release of data such that inferences about the identities of people
and organizations and other sensitive information contained in the released data cannot be reliably made.
In this way, information that is practically useful can be shared with guarantees that it is sufficiently

anonymous and declassified. | call this effort the study of computational disclosure control.

In the next section, | introduce the basic problems of producing anonymous data.

2.4 Problems producing anonymous data

I now present examples that demonstrate why the problem of producing anonymous data is so
difficult. Consider the informal definition of anonymous data below. While it is easy to understand what
anonymous data mean, | will show by examples that it is increasingly difficult to produce data that are

anonymous.

Definition (informal). anonymous data
The term anonymous data implies that the data cannot be manipulated or linked to identify an

individual.

A common incorrect belief is that removing all explicit identifiers from the data will render it
anonymous, see the informal definition of de-identified data below. Many policies, regulations and
legidlation in the United States equate de-identified data and anonymous data.

Definition (informal). de-identified data

De-identified data result when all explicit identifiers such as name, address, and phone number

are removed, generalized, or replaced with a made up alternative.

Data holders often collect person-specific data and then release derivatives of collected dataon a

public or semi-public basis after removing al explicit identifiers, such as name, address and phone
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number. Evidence is provided in this chapter that this process is not sufficient to render data anonymous

because combinations of attributes often combine uniquely to re-identify individuals.

24.1 A singleattribute

The frequency with which a single characteristic occurs in a population can help identify
individuals based on unusual or outlying information. Figure 9 contains a frequency distribution of birth
years found in the list of registered voters for Cambridge, Massachusetts as of February 1997 [16]. It is
not surprising to see fewer people present with earlier birth years. Clearly, a person born in 1900 in

Cambridgeis unusual and by implication less anonymous in data.
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Figure 9 Freguency of birth yearsin Cambridge Voter List

2.4.2 Morethan oneattribute

What may be more surprising is that combinations of characteristics can combine to occur even

less frequently than the characteristics appear alone.
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ZIP Birth Gender |Race

Figure 10 Data that look anonymous

Consider Figure 10. If the three records shown were part of a large and diverse database of
information about Illinois residents, then it may appear reasonable to assume that these three records
would be anonymous. However, the 1990 federal census [17] reports that the ZIP (postal code) 60602
consisted primarily of a retirement community in the Near West Side of Chicago and therefore, there
were very few people (less than 12) of an age under 65 living there. The ZIP code 60140 is the postal
code for Hampshire, Illinois in Dekalb county and reportedly there were only two black women who
resided in that town. Likewise, 62052 had only four Asian families and the census further revealed that
each of these households were headed by Filipino women and al their children were under 18 years of
age. In each of these cases, the uniqueness of the combinations of characteristics found could help re-
identify these individuals.

As another example, Figure 11 contains de-identified data. Each row contains information on a

distinct person, so information about 12 people is reported. The table contains the following fields of
information { Race/Ethnicity, Date of Birth, Gender, ZIP, Medical Problem}.
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Race |Birth Gender ZIP |Problem
Black |09/20/65 02141 | short of breath
Black |02/14/65 02141 |chest pain
Black |10/23/65 02138 |hypertension
Black |08/24/65 02138 | hypertension
Black 11/07/64 02138 | obesity

Black 12/01/64 02138 | chest pain
White 10/23/64 02138 | chest pain
\White 03/15/65 02139 hypertension |
White 08/13/64 02139 |obesity
White 05/05/64 02139 | short of breath
White 02/13/67 02138 | chest pain
White 03/21/67 02138 | chest pain

3333;3***—“33

Figure 11 De-identified data

In Figure 11, there is information about an equal number of African Americans (listed as Black)
as there are Caucasian Americans (listed as White) and an equal number of men (listed as m) asthere are
women (listed as f), but in combination, there appears only one Caucasian female. No Asian Americans

are listed in Figure 11. These distributions are shown in Figure 12.
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Black White Asian

BlackMale BlackFemale WhiteMale WhiteFemale AsianMale AsianFemale

Figure 12 Distributions of gender and racein Figure 11

2.4.3 Learned from the examples

These examples demonstrate that in general, the frequency distributions of combinations of
characteristics have to be examined in combination with respect to the entire population in order to
determine unusual values and cannot be generally predicted from the distributions of the characteristics
individually. Of course, obvious predictions can be made from extreme distributions --such as values that
do not appear in the data will not appear in combination either. As an example, there were no Asians
listed in Figure 11 and so, there were no Asian females or Asian males listed either.
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244 Real-world examples

Diagnosis Diagnosisdate | ZIP

Figure 13 Cancer registry that looks anonymous

Recently, a state Department of Public Health received a Freedom of Information request from a
newspaper that was researching occurrences of arare cancer in asmall region of the state. Although the
paper only wanted diagnosis, date of diagnosis (month, day and year) and ZIP code (5 digits) for each
patient in question, the state refused claiming that sensitive information might be gleamed from these
data. In an attempt to discover how anonymous such information in question could be, | conducted an
experiment. Within a few hours the name, and in some cases the Social Security number of five out of
five patients submitted were accurately identified using only publicly available information. Further,
four of the five cases had a diagnosis of Kaposi’s Sarcoma which when found in young men is an
indicator of AIDS and revealing such may have been prohibited by state law. Figure 13 shows an
example of this data schema. A more extensive re-identification experiment, using similar data and
achieving similar results was performed on cancer data with respect to children. It is difficult to believe

that such seemingly innocuous information can be so easily re-identified.

. PatientZI P Code

. PatientBirth Date

. PatientGender

. Patient Racial Background
. Patient Number

. Visit Date

. Principal Diagnosis Code (ICD9)
. Procedure Codes (up to 14)
. Physician ID#

. Physician ZIP code

. Total Charges

Figure 14 Attributes often collected statewide
I will now demonstrate how linking can be used to perform such re-identifications. The National

Association of Health Data Organizations (NAHDO) reported that 37 states have |egislative mandates to
collect hospital level data and that 17 states have started collecting ambulatory care data from hospitals,
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physicians offices, clinics, and so forth [18]. Figure 14 contains a subset of the fields of information, or

attributes, that NAHDO recommends these states accumulate. The few attributes listed in Figure 14

include the patient’s ZIP code, birth date, gender, and ethnicity. Clearly, the data are de-identified. The
patient number in earlier versions was often the patient's Social Security number and in subsequent
versions was a scrambled Social Security number [19]. By scrambled | mean that the digits that compose
the Social Security number are moved around into different locations. If a patient’s record is identified
and their Social Security number known, then the scrambling algorithm can be determined and used to
identify the proper Social Security numbers for the entire data set.

Name
Address

Ethnicity

Vigit date

Date
registered

Diagnosis

Party
affiliation
Total charge

Medical Data Voter List

Figure 15 Linking to re-identify data

For twenty dollars | purchased the voter registration list for Cambridge Massachusetts and
received the information on two diskettes [20] in an attempt to complete the re-identification. Figure 15
shows that these data included the name, address, ZIP code, birth date, and gender of each voter. This
information can be linked using ZIP code, birth date and gender to the medical information described in
Figure 14, thereby linking diagnosis, procedures, and medications to particularly named individuals. The

guestion that remains of course is how unique would such linking be.

The 1997 voting list for Cambridge Massachusetts contained demographics on 54,805 voters. Of
these, birth date, which is the month, day, and year of birth, alone could uniquely identify the name and
address of 12% of the voters. One could identify 29% of the list by just birth date and gender; 69% with

only a birth date and a five-digit zip code; and 97% when the full postal code and birth date were used.
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Notice that these are only one and two way combinations and do not include three way combinations or
beyond. These values are summarized in Figure 16.

Attribute Combinations Uniqueness
Birth date alone (mm/dd/yr) 12%
Birth date and gender 29%
Birth date and 5-digit ZIP 69%
Birth date and full postal code 97%

Figure 16 Value uniquenessin voter list

In general | can say that the greater the number and detail of attributes reported about an entity,
the more likely that those attributes combine uniquely to identify the entity. For example, in the voter
list, there were 2 possible values for gender and 5 possible five-digit ZIP codes; birth dates were within a
range of 365 days for 100 years. This gives 365,000 unique values, but there were only 54,805 voters.

| conducted experiments using 1990 U.S. Census summary data to determine how many
individuals within geographically situated populations had combinations of demographic values that
occurred infrequently. It was found that 87% (216 million of 248 million) of the population in the United
States had reported characteristics that likely made them unique based only on {5-digit ZIP, gender, date
of birth}. About half of the U.S. population (132 million of 248 million or 53%) are likely to be uniquely
identified by only { place, gender, date of birth}, where place is basically the city, town, or municipality
in which the person resides. And even at the county level, {county, gender, date of birth} are likely to
uniquely identify 18% of the U.S. population. In general, few characteristics are needed to uniquely
identify a person.

In Massachusetts, the Group Insurance Commission (GIC) is responsible for purchasing health
insurance for state employees. GIC collected de-identified patient-specific data with nearly one hundred
fields of information per encounter along the lines of the fields discussed in the NAHDO list for
approximately 135,000 state employees and their families. Because the data were believed to be
anonymous, GIC gave a copy of the data to researchers and sold a copy to industry [21]. William Weld
was governor of Massachusetts at that time and his medical records were in that data. Governor Weld
lives in Cambridge Massachusetts. According to the Cambridge Voter list, six people had his particular

birth date; only three of them were men; and, he was the only one in his five-digit zip code.
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Clearly the risks of re-identifying data depend both on the content of released data and on other
related information. Most municipalities and states sell population registers such as voter lists, local
census data, birth records and motor vehicle information. There are other sources of population registers
such as trade and professional association lists. Such information can often be uniquely linked to de-

identified data to provide names, addresses, and other personal information.

These real-world examples demonstrate two major difficulties in providing anonymous data: (1)
knowledge a viewer of the data may hold or bring to bear on the data is usually not known beforehand by
the data holder at the time of release; and, (2) unique and unusua values and combinations of values
appearing within the data themselves often makes identification of related entities easier. The examples
also underscore the need to develop solutions that limit the ability to link external information to data

and therefore control the inferences that can be drawn.

The outline for the remainder of this work is as follows. In the next chapter, chapter 3, | discuss
related work. | then survey disclosure control techniques and the nature of disclosure control in chapter
4. A formal presentation with accompanying definitions of protection modelsis also presented in chapter

4. Findlly, four systems are presented and compared in chapter 5.
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Chapter 3 Background

The problem of controlling inferences that can be drawn from released datais not new. There are
existing works in the statistics community on statistical databases and in the computer security
community on multi-level databases to consider. However, none of these works provide solutions to the
broader problems experienced in today’s setting that are the topic of this work. Before examining these

traditions, | establish a common vocabulary by adopting the following definitions.

Unless otherwise stated, the tedata refers to entity-specific information that is conceptually
organized as a table of rows (or records) and columns (or fields). Each row is tetupbsl A tuple
contains a relationship among the records or set of values associated with an entity. Tuples within a table
are not necessarily unique. Each column is calleattaitbute and denotes a field or semantic category of
information that is a set of possible values; therefore, an attribute is also a domain. Attributes within a
table are unique. So by observing a table, each row is an ordarpk of values d;, d,, ..., d,> such
that each valug; is in the domain of theth column, forj=1, 2, ...,n wheren is the number of columns.
In mathematical set theory, a relation corresponds with this tabular presentation, the only difference is

the absence of column names. Ullman provides a detailed discussion of relational database concepts [22].

Throughout the remainder of this work each tuple is assumed to be specific to one entity and no

two tuples pertain to the same entity. This assumption simplifies discussion without loss of applicability.

To draw aninference is to come to believe a new fact on the basis of other information. A
disclosure means that explicit or inferable information about an entity was released that was not
intended. This definition may not be consistent with colloquial use but is used in this work consistent
with its meaning in statistical disclosure control. Sisclosure control attempts to identify and limit
disclosures in released data. Typically the goal of disclosure control with respect to person-specific data

is to ensure that released data are anonymous.

3.1 Statistical databases

Federal and state statistics offices around the world have traditionally been entrusted with the

release of statistical information about all aspects of the populace [23]. The techniques, practices and
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theories from this community however, have historically had three tremendous advantages. First, most
statistics offices held centralized, sole-source exhaustive collections of information and therefore could
often determine the sensitivity of many values using their data alone. Second, statistics offices primarily
produced summary data, which by the nature of aggregation could often hide entity-specific information
though care still had to be taken to protect against inferences. Finally, statistics offices previously
released information in an environment whose computational power and access to other data was
extremely limited. These advantages have been eroded in today’s environment. Today’s producers of
useful publicly available data must contend with autonomous releases of entity-specific information by

other data holders and with recipients who are technologically empowered.

Like other data holders, statistics offices are also facing tremendous demand for entity-specific
data for applications such as data mining, cost analysis, fraud detection and retrospective research. But
many of the established statistical database techniques, which involve various ways of adding noise [24]
to the data while still maintaining some statistical invariant [25, 26], often destroy the integrity of tuples
and so, for many new uses of data, these established techniques are not appropriate. | will further discuss
disclosure limitation techniques commonly employed to protect the confidentiality of statistical
databases in chapter 4; Willenborg and De Waal [27] provide more extensive coverage. However, | will
mention Markov perturbation now as an example of a technique used in statistical disclosure control
[28].

Given local census data that includes income, number of children and age, values can be slightly
perturbed so overal statistics remain the same, but specific values are no longer available, thereby
making it harder to link the information to other sources with confidence. Examples of such actions
include: (1) decrementing the value associated with the child attribute in one tuple and then incrementing
the value associated with a child attribute in another; and, (2) reducing the value associated with a salary
attribute by $10,000 in one tuple and then adding $5000 to the values of two others. Unfortunately, many
new applications that learn from data and detect correlation rely on the integrity of the tuple. Also many
statistical disclosure limitation techniques have severely limited applicability because many new data
collections are characterized as having primarily categorical attributes and not continuous ones. In a

medical database, for example, how does one perturb a diagnosis of lung cancer?

Summary data is the result of aggregating information. Even in releases of summary data

statistical offices are finding their established practices failing given the increase of entity-specific data

53



Computational Disclosure Control 01/08/01 8:22 AM

and the proliferation of computing power because more data and more powerful tools are available for
unwanted linking. The European Union in response to these growing concerns has recently funded a

tremendous effort to develop solutions. Their first computational result was p-Argus from Statistics
Netherlands [29]. | will examine this system in chapter 5 and show the first release of p-Argus does not
provide adequate protection.

3.2 Multi-level databases

Another related area is aggregation and inference in multi-level databases[30, 31, 32, 33, 34, 35]
which concerns restricting the release of lower classified information such that higher classified
information cannot be derived. Denning and Lunt [36] described a multilevel relational database system
(MDB) as having data stored at different security classifications and users having different security

clearances.

Su and Ozsoyoglu [37] formally investigated inference in MDB. They showed that eliminating
precise inference compromise due to functional dependencies and multi-valued dependencies is NP-
complete. By extension to this work, the precise elimination of all inferences with respect to the
identities of the individuals whose information is included in person-specific datais typically impossible
to guarantee. Intuitively this makes sense. Consider two fictitious people named Bob and Alice and Bob
is asked to protect his home against invasion from Alice. First, Bob puts locks on his doors and windows.
Alice then breaks the glass of a window. Bob responds by installing bars on the windows. Alice now
drills through the ceiling. Bob is baffled. The problem is Bob cannot consider a priori every possible
attack. This is the case in trying to produce anonymous data as well, so this works seeks to primarily
protect against known attacks. As was discussed in chapter 2, the biggest problems result from inferences
that can be drawn after linking the released data to other knowledge, so in this work, it is the ability to
link the result to foreseeable data sources that must be controlled.

Morgenstern [38] introduced a framework for MDB concerning imprecise inference analysis. His
approach involved "spheres of influence" to characterize inference. In comparison to this work, the
forward-chained inference process employed in spheres of influence is analogous to linking in this work.
That is, Figure 15 could be extended to link more and more data collections beyond the medical data and
voter list shown until achain of links emerged; in this sense, the links extend the sphere. However in this

work, attributes are assumed to be independent and only their association with other attributes in a data
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collection relates them. Morgenstern provides an example in which protecting a person’s address should
include the person’s telephone number because the address can determine the single area code and a
limited set of exchanges. Clearly, knowledge from such inferences exploits the semantic relationships
between attributes. To combat this problem in this work, | do not require such knowledge be explicitly
recognized, but instead rely on the ability to link related attributes. This work assumes related attributes
appear in the same collections and in data sources that contain related attributes. For example, phone
directories typically contain name, address and phone number as attributes. Therefore, any linking to a
phone directory will automatically relate these attributes and protecting one reveals a need to consider
the others sensitive.

Catalytic inference analysis was introduced by Hinke [39] and formalized by Hale and Shenoi
[40]. Common sense knowledge and discoveries of indirect but related information can provide
additional inference when to brought to bear on sensitive information. The approaches taken by Hinke
and by Hale and Shenoi are computationally intensive, combating NP-complete problems with dynamic
programming used on small data sets. In contrast, this work concerns large and very large databases with
algorithms that typically work in real-time. Complexity is substantially reduced by leveraging the fact
that the choice of attributes in a collection is an artifact of society and their natural grouping implies a
relationship between them [41]. This of course does not capture al the possible ways and kinds of other
information that could be brought to bear on the data, which work on catalytic inference anaysis
attempts to address. In this work, attention is narrowly focused on directly linking data sources using
their stated attributes.

Buczkowski [42] used Bayesian probability to estimate security risks due to imprecise inference.
In this work however, it is the actual inferred information that is needed and not an estimate of the

probability to which avalueisinferred.

Many aggregation inference problems can be solved by database design [43, 44], but this
solution is not practical in the entity-specific data setting described in chapter 2. In today’s environment,
information is often divided and partially replicated among multiple data holders and the data holders
usually operate autonomously in making disclosure control decisions. The result is that disclosure control
decisions are typically made locally with incomplete knowledge of how sensitive other holders of the
information might consider replicated data. For example, when somewhat aged information on joint

projects is declassified differently by the Department of Defense than by the Department of Energy, the
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overall declassification effort suffers; using the two partial releases, the original may be reconstructed in
its entirety. In general, systems that attempt to produce anonymous data must operate without the degree
of omniscience and level of control typically availablein the traditional aggregation problem.

In both aggregation and MDB, the primary technique used to control the flow of sensitive
information is suppression, where sensitive information and all information that alows the inference of
sensitive information are simply not released [45]. Suppression can drastically reduce the quality of the
data, and in the case of statistical use, overall statistics can be altered, rendering the data practically
useless. When protecting national interests, not releasing the information at all may be possible, but the
greatest demand for entity-specific data is in situations where the data holder must provide adequate
protections while keeping the data useful, such as sharing person-specific medical data for research
purposes. In chapters 4 and 5, | will present other techniques and combinations of techniques that

produce more useful data than using suppression alone.

3.3 Computer security isnot privacy protection

An area that might appear to have a common ancestry with disclosure control is access control
and authentication, which are traditional areas associated with computer security. Work in this area
ensures that the recipient of information has the authority to receive that information. While access
control and authentication protections can safeguard against direct disclosures, they do not address
disclosures based on inferences that can be drawn from released data. The more insidious problem in
disclosure control is not so much whether the recipient can get access or not to the information as much
as what values will constitute the information the recipient will receive. A general doctrine of the work
presented herein isto release all the information but to do so in away in which designated properties are
protected. Therefore, disclosure control lies outside of traditional work on access control and

authentication.

3.4 Multiplequeriescan leak inference

Denning [46] and others [47, 48] were among the first to explore inferences realized from
multiple queries to a database. For example, consider a table containing only (physician, patient,
medication). A query listing the patients seen by each physician, i.e., a relation R(physician, patient),
may not be sensitive. Likewise, a query itemizing medications prescribed by each physician may also not

be sensitive. But the query associating patients with their prescribed medications may be sensitive
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because medications typically correlate with diseases. One common solution, called query restriction,
prohibits queries that can reveal sensitive information. This is effectively realized by suppressing all
inferences to sensitive data. In contrast, this work poses a real-time solution to this problem by
advocating that the data be first rendered sufficiently anonymous, and then the resulting data used as the

basis on which queries are processed.

3.5 Research on population uniqueness

Skinner and Holmes [49] developed and tested methods for estimating the percent of unique
values in the general population based on a smaller database. These methods are based on subsampling
techniques and equivalence class structure. Unfortunately, even if these methods provide near-perfect
answers they are of limited use in this setting. For example, Figure 16 reports that 12% of the Cambridge
voters had unique birth dates. Knowing such underscores the sensitivity of the attribute, but when
releasing person-specific information about Cambridge voters, knowing that fact does not help identify

which personsin adata collection need their birth date information protected.

3.6 Inference, learning and artificial intelligence

Privacy protection, profiling and link analysis have not been traditional areas within artificial
intelligence (Al). However, the American Association for Artificia Intelligence held a symposium a
couple of years ago to introduce Al researchers to link analysis recognizing that such work could draw on
technigues from semantic networks, ontological engineering, graph theory, social network analysis and
knowledge discovery in data[50]. These areas, as well as most areas within Al, are concerned with some
kind of inference [51]. The best understood is deduction, which logically draws true conclusions from
true premises. A second kind of inference is abduction, which is the process of generating explanations
from observations and causal relationships. A third kind of inference is induction, which is more
commonly known as learning because it occurs when particular examples are used to reach genera
conclusions. Both abduction and induction can alow false conclusions; nevertheless, they are very
useful. While linking data is primarily a deductive process, disclosure control uses al three kinds of
inference. Understanding the sensitivity of attributes and the interpretation of associated values often

result from abductive and inductive processes.
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3.7 Thek-nearest neighbor algorithm

One of the oldest and most analyzed inductive learning procedures is the well-known k-nearest
neighbor algorithm. Cover and Hart [52] present early theoretical results. Duda and Hart [53] provide a
good overview. In this kind of learning method, examples are simply stored as points in n-dimensional
space. Neighboring points are measured in terms of Euclidian distances between points. The overall
space is divided into k partitions such that each partition is considered a class. Then, when a new
instance is encountered, its relationship to previously stored examples is examined and a classification
made based on the Euclidian distance from the new point to neighboring points and therefore, by the

division or classin which the new point resides.

While these methods are a cornerstone of the machine learning or knowledge discovery in data
field, they have not been used in disclosure control. Y et, such methods could be applied to tabular data.
Let each attribute in a table corresponds to a dimension. Let the values themselves, or alternatively the
domains of the values, have a numeric presentation with Euclidian properties. Then, a table with n
attributes and m tuples corresponds to m points in n-dimensional space. The k-nearest neighbor algorithm
could then be applied, though admittedly, the results would be of limited use, if of any use at dll, to
disclosure control.

One problem is the number of attributes found in a table. As the number of attributes increases
so do the number of dimensions; and, as the number of dimensions increases, finding similarity matches
in high dimensional space becomes extremely difficult because of troubles measuring distance. Weights
can be applied to each dimension in cases where some dimensions are considered more or |ess important
than others [54]. This equates to lengthening or shortening the axes in Euclidean space. Moore and Lee
[55] provide strategies for eliminating the least relevant dimensions from the space. In particular, they
provide efficient ways to repeatedly leave one dimension out and then examine the results in order to

validate the utility of each dimension.

Another problem concerns the benefit of the results to disclosure control. What is needed is a
way to detect the closeness of unusual values in data as the data are being distorted to provide anonymity
protection. So in this work, | will present a related algorithm | developed, which | term k-Similar, that
produces sufficiently anonymous data. This algorithm divides data into groups such that the size of each

group consists of k or more of the “closest” tuples based on a metric with Euclidian properties.
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Summary

In summary, the catalyst for now examining disclosure control in a broader context has been the
dramatic increase in the availability of entity-specific data from autonomous data holders. These changes
have expanded the scope and nature of inference control problems and exasperated established operating
practice. The goal of this work is to provide comprehensive models for understanding, evaluating and

constructing computational systems that control inferencesin this setting.
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Chapter 4 Methods

This chapter ends with a formal presentation and real-world systems are evaluated with respect
to the formalism in the next chapter. But first, | provide a framework for reasoning about disclosure

control and | survey some disclosure limitation techniques using this framework.

4.1 Survey of disclosure limitation techniques

| begin by introducing commonly employed disclosure limitation techniques; Figure 17 contains
a listing. Here is a quick description of each technique though some were introduced earlier. De-
identification [56] and suppression [57] were introduced earlier. Encryption is a process of making
values secret by replacing one value with another in such a way that certain properties with respect to
reversing the process are maintained. Svapping values involves exchanging the values associated with an
attribute in two tuples where the value from the first tuple becomes the value for the second and vice
versa. Generalization replaces a value with a more general, |ess specific aternative. Substitution replaces
a value with another value in its equivalence class. Sampling restricts the number of tuples that will be
released. Scrambling is a reordering of tuples and is used when the order of appearance of tuplesin a
release allows inference’. Changing outliers to medians requires detecting unusual values and replacing
them with values that occur more commonly. Perturbation involves making changes to values, usually to
maintain some overall aggregate statistic. Rounding is often used on continuous variables to group values
into ranges. Adding additional tuples dilutes the number of tuples containing real information but values
within the newly generated tuples can be chosen to maintain certain aggregate properties. Additive noise

involves the random incrementing or decrementing of values.

! Thisis slightly inconsistent with the relational model, but in practical use is often an issue.
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De-identification Substitution
Vaue and Attribute Suppression Outlier to medians

Based Encryption Perturbation

Swap values Rounding

Generalize values Additive noise

Tuple based Sampling

Add tuples

Scramble tuples
Other Query restriction

Summaries

Figure 17 Disclosur e limitation techniques

Query restriction [58] and summary data [59] described earlier are not disclosure limitation
techniques but rather special circumstances in which disclosure control is required. In summary data and
query restriction, values are often suppressed so as not to reveal sensitive information. This work poses a
solution to many problems in query restriction and summarizing by basing queries and summaries on
datareleased from data already determined to be sufficiently anonymous.

Notice that all of these techniques have the advantage that a recipient of the data can be told
what was done to the data in terms of protection. For datato be useful and results drawn from data to be
properly interpreted, it is critical to share what techniques and associated parameters were employed in
protecting the confidentiality of entities within the data. Of course usefulness is determined from the
point of view of arecipient of the data and what is useful to one recipient is not necessarily beneficial to
another. For example, using perturbation can render data virtually useless for learning entity-specific
information from the data or identifying entity-specific correlation. On the other hand, using suppression

can render datavirtually useless for statistical purposes.

During the application of any technique, decisions must be made and these decisions can
dramatically impact the data’s fitness for a particular purpose. For example, consider a situation in which
it is necessary to suppress either values associated with the attribute ethnicity or those associated with the
attribute ZIP. If the recipient of the datais an epidemiologist studying cancer rates near toxic waste sites,
then the suppression of ZIP may render the data useless. Conversely, if the epidemiologist was studying
the prevalence of heart disease among various ethnic groups, then the suppression of Ethnicity may have
the same ill result. Notice that the data holder cannot release both versions, because doing so may allow

the two releases to be linked and reveal all information. Data holders must typically decide a priori for
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which uses released information will be best suited in order to select the disclosure limitation techniques

most appropriate for the task.

4.2 Reasoning about disclosure control

The goal of this section is to provide a framework for constructing and evaluating systems that
release information such that the released information limits what can be revealed about properties of the
entities that are to be protected. For convenience, | focus on person-specific data and the property to be
protected is the identity of the subjects whose information is contained in the data. A disclosure implies
that an identity was revealed. Consider the informal definition below. Basically, an anonymous data
system seeks to effect disclosure control. | use the framework presented in this section to describe the

requirements of an anonymous data system and in the next section | formally define such.

Definition (informal). anonymous data system

An anonymous data system is one that releases entity-specific data such that particular
properties, such as identity, of the entities that are the subject of the data cannot be inferred from
the released data.

I can be more specific about how properties are selected and controlled. Recall the real-world
examples provided in chapter 2. In those cases, the need for protection centered on limiting the ability to
link released information to other external collections. So the properties to be controlled are
operationally realized as attributes in the privately held collection. The data holder is expected to identify
all attributes in the private information that could be used for linking with external information. Such
attributes not only include explicit identifiers such as name, address, and phone number, but also include
attributes that in combination can uniquely identify individuals such as birth date and gender. The set of
such attributes has been termed a quasi-identifier by Dalenius [60] and an identificate by Smith [61]. So
operationally, an anonymous data system rel eases entity-specific data such that the ability to link to other

information using the quasi-identifier is limited.
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External Information Released Information

10/2/61|02139 |uugusss

Ann|10/2/61/02139

A
Jed
Jwq ¢
Xy
&

Popu'ation Ann | 10/2/61{02139 |4
Private Information

Universe

Figure 18 Release using de-identification

Figure 18 provides an overview of the disclosure control process. Population consists of persons
who are identified as { Dan, Don, Dave, Ann, Abe, Al}, A subset of Population called Subjects is the set
of people, in this case {Ann, Abe, Al}, whose information appears in Privatelnformation. Universe
consists of Population and the set of pseudo-entities { Jed, Jwg, Jxy}. Pseudo entities are not considered
real individuals, as are the members of Population. Instead, the existence of a pseudo-entity is implied
by a set of values, which are associated with attributes that identify people, when in fact no such person

is associated with that particular set of values.

There exists a collection function c: Subjects — Privatelnformation that maps information
about members of Subjects into Privatelnformation. The function f is a disclosure limitation function
such that f: Privatelnformation — ReleasedInformation. In the example shown in Figure 18, f smply
de-identifies tuples from Privatelnformation; and so, the explicit identifier Ann is not found in

ReleasedInformation.

Externallnformation results from joining al publicly (and semi-publicly) available information.
The relations g; and g, illustrate how a tuple in ReleasedInformation can be linked to a tuple in
Externallnformation to re-identify Ann, the original subject. The problem of producing anonymous
information can be described as constructing the function f such that some desired invariant exists or
some specific assertion can be made about g; and g,. Such an invariant or assertion forms the basis for

protection.
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In the example shown in Figure 18, the function f is simply the de-identification function and the
functions g; and g, show that f is not sufficient; it allows a disclosure. Therefore, merely suppressing

explicit identifiers is inadequate.

Externd Information Released Information
Ann| 10/2/61/02139 //9/ Jod o
D
f
Popul ation Ann|10/2/61/02139 |sue

Universe Private | nformati on

Figure 19 Release using encryption

Consider Figure 19. The function f seeks to protect the entire quasi-identifier { name, birth date,
ZIP} by simply encrypting the associated values. If strong encryption is used and the encrypted values
are not used with other releases, then as the diagram in Figure 19 illustrates, the relation g will map to a
pseudo-entity, being unable to link to Externallnformation. If on the other hand, f used weak encryption
then the relation g would be able to map directly to Ann by simply inverting f. Using this approach with
strong encryption clearly provides adequate protection, but such protection is at the cost of rendering the
resulting information of limited use. Similar results are realized if f involved suppression rather than
encryption. As shown in Figure 19, the only attribute that remains practically useful isdiagnosis with no

consideration to age or geographical location.
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Externd Information Released Information
Al | 3/8/62/02138 e <

O, Al 3/8/61|02138 fszgnos

NG i

Jed
Jwag
Xy

C\
Popul ation Ann|10/2/61/02139 |sue
Private Information

Universe

Figure 20 Release using swapping

In Figure 20, the function f uses swapping [62]. The values associated with the attributes of the
quasi-identifier are swapped among tuples. This clearly destroys the integrity of the tuples themselves;
however, it maintains overall aggregate statistics. Enforced at the attribute level, this technique can cause
extensive distortion. For example if the data are medical information and swapping is employed at the
attribute level, a resulting tuple could imply that a 10 year old boy gave birth to a 50 year old woman.
Such data would not be very useful for discovering entity-specific patterns pertaining to healthcare cost,

outcome or fraud.

A less severe deployment of swapping is shown in Figure 20. In this depiction, the attributes of
the quasi-identifier are swapped as a unit among the tuples. A tuple in ReleasedInformation contains
the demographic information of Al associated with Ann's diagnosis. The relations g; and g, show that this
tuple can be linked to Externalinformation because after all, Al is a real entity. Suppose Al’s original
diagnosis involved a cancer whose typical long-term prognosis is excellent, but Ann's diagnosis involved
a cancer that is almost always terminal in the short-term. After swapping, Al is reported as having the
more serious illness. Statisticians who use this technique typically post a notice that warns that the
integrity of tuples has been compromised. Even still, the warning usually appears separate and distinct
from the data themselves and so, the warning may not be considered during the use of the data and the
results can be damaging. For example, the consequences to Al in terms of life insurance, employment and

credit worthiness may be quite severe and the source of confusion may not be recognized. Also, if the
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entities whose information is the subject of ReleasedInformation all have cancer, then while arecipient
of ReleasedInformation may not know the seriousness of Al's cancer, arecipient does know that Al has
cancer. This underscores an important point. Implicit attributes often exist iRReleasedInformation and
their associated values are the same for all tuples --namely, the identity of the source of the information
and the date and time of its creation. Sensitive particulars about the source and/or creation time may be

available inExternallnformation and therefore allow unwanted inferences.

External Information Released Information
Al 3/8/61(02138 |iuwe:| efherrracurarnrnnraraesenns,
Ann |10/2/61102139 ... 1:.........................'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.uuu .......... A* 11961  [0213* |yupmoss
i o
Jed
Jwq f
Jxy
Population Ann | 10/2/61/02139 |uee:

Universe Private Information

Figure 21 Release using gener alization

Consider Figure 21. The function f generalizes the attributes of the quasi-identifier. | will take a
moment to discuss what is meant by generalizing an attribute and then | will return to this scenario for

disclosure limitation.

The idea of generalizing an attribute is really a simple concept. A value is simply replaced by a
less specific, more general value that is faithful to the original value. In Figure 21 the origina ZIP codes
{02138 02139 can be generaized to 0213* thereby stripping the rightmost digit and semantically
indicating a larger geographical area. Likewise {02141 02142 are generalized to 0214* and {0213
0214% could be further generalized to 021**.
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Z,={021**} 21**
N )'\

Z:={0213*,0214*} 0213+ 0214*

0
Zo={ 02138, 02139, 02141, 02142} 02138 02139 02141 02142

Postal (ZIP) code

T TN

Eo={ Asian,Black,White} Asian  Black  White

Ethnicity

Figure 22 Generalizing an attribute

Generalization is effective because substituting values with their more generalized values
typically increases the number of tuples having the same values. The single term requirement on the
maximal element insures that all values associated with an attribute can eventually be generalized to a
single value. All values of all attributes can be semantically organized into generalization hierarchies.
Notice in Figure 22 that the values {Asian, Black, White} generalize to Person. This means that a
generaization of an Ethnicity attribute given this hierarchy is similar to suppressing the entire attribute.
This demonstrates that generalizing an attribute to its maximal element provides amost the same
protection and distortion as suppressing the attribute. The relationship between generalization and

suppression will be further discussed in chapter 5.

| now return to Figure 21. The disclosure limitation function f generalizes the attributes of the
quasi-identifier to produce ReleasedIinformation. Tuples in ReleasedInformation can then be linked
to Externalinformation ambiguoudly. In Figure 21, the tuple shown in ReleasedInformation links to
both Al and Ann in Externallnformation and so, it relates back to both of them in Subjects. The
disclosed diagnosis cannot be confidently attributed to either Al or Ann. In fact, ak can be chosen such
that f generalizes tuples from Privatelnformation in such a way that there are at least k possible entities
to which each released tuple may refer. Additional protection can often be realized when tuples in

ReleasedInformation are ambiguously linked to tuples in Externallnformation such that the resulting
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identifications do not only refer to entities in Subjects but also refer to other entities in Universe that

are not in Subjects.

A problem however is choosing the right size for k. It is based on several parameters including
direct and economical communication connections to Subjects. Here is an example. | reviewed some
archives from old email exchanges on a newsgroup list and found a couple of email messages pertaining
to a chance encounter in Cambridge, Massachusetts between a young woman, whom | will call Alice,
and ayoung man, whom | will call Bob. During the brief conversation between Alice and Bob, ho names,
addresses or phone numbers were exchanged. Several days later Alice engaged in an email exchange on a
newsgroup list in which she provided a casual description of Bob. | constructed a composite of Bob from
the email messages. Here is an overview of the details. Bob was about 5’8" in height with dark features.
His parents were from Greece. He was believed to live near the water, to enjoy playing soccer and to be
an MIT graduate student in electrical engineering or computer science. Given this basic description, |
sent a single email message to all members of the electrical engineering and computer science
department at MIT. Approximately 1,000 people could have received the message. Five replies were
received. All of them had one name, which turned out to be the correct individual. The man himself was
quite shocked because he had merely had a private conversation carried in a personal situation and he
had not even given his name, phone number, or address. With respect to this disclosure conttol model,
would be about 100 in this case and still that was not sufficient because of the direct and economical

communication connection to all-possible subjects and sources of additional information.

This concludes my survey of disclosure limitation techniques and introduction of this framework
for reasoning about disclosure control. In the next section | introduce formal models of protection.

Following that, | compare and contrast some real-world systems in the next chapter.

4.3 Formal protection models

In this section, | formally bring the pieces together; namely, the lessons learned in the real-world
examples from chapter 2, the issues presented in the discussion of related work in chapter 3 and the
framework for reasoning about disclosure control that was presented earlier in this chapter. Terms
mentioned casually and defined informally will be presented formally. So, | begin this section by
formally defining the terms | have been using, leading up to the definition of a basic anonymous data

system termedADS,. From there, | introduce basic protection models term¢timap, k-map and
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wrong-map which provide protection by ensuring that released information maps to no, k or incorrect
entities, respectively. The non-technical reader may elect to skip this section altogether and continue with

the next chapter, which examines four real-world systems that attempt to effect disclosure control.

As stated earlier, | assume the classical relational model of databases [63]. The definition below
defines atable and attributes consistent with this model.

Definition. attributes

Let B(Ay,...,A,) be atable with a finite number of tuples. The finite setaifributes of B are
{Aq,....A}.

Given a tableB(A,,...,Ay), {A,....A} O {As,....A}, and a tupletdB, | uset[A,...,A] to denote
the sequence of the values,.. v, of A,....A int. | useB[A,...,A] to denote the projection, maintaining
duplicate tuples, of attributes,...A; in B.

Definition. entity

Let pp = { (A, V) : A is an attribute and; is its associated value}. | sgy is an entity.

U ={p : pi is an entity} is a finite set | termm@opulation of entities.

Definition. collection function

Given a population of entitie®) and a tableT, | say f. is a collection function oru.
That is,f: U - T is acollection function and T is anentity-specific table. | say thatT is a

per son-specific table if the entities are people.
If T is an entity specific table containing information about entities iand T contains no

additional tuples, then each tupleTncorresponds to information on at least one entity.irThis is

memorialized in the following theorem.
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Theorem 1

Given a population of entities U, atable T(Ay,...,A,), a collection functiori;: U - T, and
{A,....A} O{A,...A}:

fcis ontod Ot[A,..., A]OT, Oo0U such thatl(Ac, vi)Upi whereA{ A,,... A} and vy = t[A].

Proof.
By definition, a functiorf, from U to T is onto (or a surjection) if and only if for every element

in tOJT there is an elemept]U with f(p)=t.

Example.

Let T be a table of visits to a hospital emergency room. ULetflect the population of people
within the geographical area serviced by the hospital. Thet - T is the process for

recording hospital visits. Notice thfagtis the collection function anfd is onto.

Definition. disclosure control function

Given a tablel and a finite set of tablds, | sayfis a disclosure control function o} That

is, f. {T} - B is adisclosure control function .

Definition. re-identification relation

Given a population of entitidd, an entity-specific tabl& andf: U - T,
| sayfy is are-identification relation if and only if:
b0V such thapi fy(f(p)) and {4(fo(p))| =k, where 1< k << U|.
| also say thaty is a re-identification op; and | say thafy uniquely identifiegy; if k=1.

Pseudo entities are not real entities but their existence is implied by a set of values, one or more

of which are false, that are associated with attributes that seem to identify them as entities. This is

described in the definition below.
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Definition. pseudo-entities

Given a population of entities U, an entity-specific table T, f. U - T and a re-identification

relationfy: T — U whereU O U'. | say (U'-U) isthefinite set of pseudo-entities.

The following definition formally introduces a quasi-identifier [64] as set of attributes whose

associated values may be useful for linking to re-identify the entity that is the subject of the data.

Definition. quasi-identifier

Given a population of entities U, an entity-specific table T(A4,...,An), f: U - Tandf: T - U,
whereU O U'. A quasi-identifier ofT, written Qr, is a set of attributes {A.., A} O {A4,...,A}
where:

piJU such thaty(f«(p)[Qr]) = p.

Example.
Let V be the voter-specific table described earlier in Figure 15 as the voter list. A quasi-identifier

for V, writtenQy, is {name, address, ZIP, birth date, gender}.

Linking the voter list to the medical data as shown in Figure 15, clearly demonstratdsrthat {
date, ZIP, gender} O Qy. However, pame, address} [0 Qy because these attributes can also appear in

external information and be used for linking.

The goal of disclosure control is to limit the extent to which released information can be
confidently linked to other available information. In the case of anonymity, it is usually publicly
available data on which linking is to be prohibited and so attributes which appear in private data and also
appear in public data are candidates for linking; therefore, these attributes constitute the quasi-identifier
and the disclosure of these attributes must be controlled. It is believed that these attributes can be easily

identified by the data holder.

71



Computational Disclosure Control 01/08/01 8:22 AM

Assumption.
The data holder can identify attributes in their private information that may also appear in

external information.

Consider an instance where this assumption is incorrect; that is, the data holder misjudges which
attributes are sensitive for linking. In this case, the released data may be less anonymous than what was
required, and as a result, individuals may be more easily identified. Clearly, this risk cannot be perfectly
resolved by the data holder because the data holder cannot always know what each recipient of the data
knows but policies and contracts can help. Also, the data holder may find it necessary to release data that
are only partialy anonymous. Again, policies, laws and contracts can provide complementary
protections. These are discussed in chapter 6. In the remainder of this work, | assume a proper quasi-

identifier has been recognized.

Definition. explicit-identifier

Let T(Ay,..., Ay be a person-specific table a@el(A;,...,A) be a quasi-identifier fof. Further,

let {A,...,A} O Qr andD be the set of direct communication methods, such as email, telephone,
postal mail, etc., where with no additional informatiggi,D is a relation fromT[A,,..., A] to

the population reachable lgy's communication method. Let X(s) be a random variable on the
sample space sfi( t[Aq..., A])| : tO T} | say {A...,A} is an explicit identifier of T if the
expected value of X(s) is 1 andolbf X(S)=c.

Basically, the definition above states that an explicit identifier is a set of attributes than can be
used together with a direct communication method, and no additional information, to distinctly and
reliably contact the entity that is the subject of those values for the attributes. Recognizing that such

communications are not perfect, the definition implies the method should be almost perfect.

Definition. explicit-identifiers

Let T(Ay,..., Ay be an entity-specific table ar@:(A;,...,A) be a quasi-identifier fol. The

explicit identifiers ofT, written,Er = {e : g is an explicit identifier off}.
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The definition above states that the explicit identifiers of atable is a set of attribute sets, where

each member set is an explicit identifier of thetable.

Lemma.

The explicit identifiers of table T is Er if and only if the explicit identifiers of a quasi-identifier
of TisEs.

Example.

The following are examples of explicit identifiers: {email address}, {name, address}, {name,

phone number}. The following are quasi identifiers, but are not explicit identifiers: {name},

{Social Security number}, {phone}, { phone, Social Security number}.

Given entity-specific data, an anonymous data system releases entity-specific data such that the

identities of the entities that are the subject of the original data are protected. Such protection typically

relies on a quasi-identifier for the original entity-specific data. The definition below defines a basic

anonymous data system.

Definition. basic anonymous data system

A basic anonymous data system, ADS,, is a ninetuple (S, P, PT, Ql, U, R, E, G, f), where the

following conditions are satisfied:

1.
2.

N oo g &

S isthefinite set of entities with attributes to be protected.

P isthefinite set of possible entities. S O P.

PT isthe finite multi-set of privately held information about each member of S. There exists
acollection function, f.: S — PT, where PT={k* t: t; = f«(s) and |f.*(f())| =k, OsO S }.
Qlisthe quasi-identifier of PT denoting attributes to be protected.

U isafinite set of possible entities and pseudo-entities. P O U.

R isthe set of possible releases. Each release RTO R is afinite multi-set.

E isthe collection of possible external information.0T =1, where T; is a collection of

external information about a subset of the membersof P, thenE =T; x ... x T,.

G is the set of possible relations fréin— U.
G ={ (9,,9,):0,°0, where ROM® - EOIE _,U}
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GivenaQl for PT, written Qlpr= A, ... A, a releas®TOR whereRT =f(PT[QI]), and a set
of explicit identifiers nameél, whereg,(g:(RT)[Elg]) O U, then

Gi(RT) ={k* t,[As,....Ad] : t[Qlpr] O RT, t[Elg] O E and|t[Qler, Elg| =k,

OtOE, Qler U Ay,...,AnandEl g O Ay,... ,Anl.

g andg, are relations ang, is a direct communication method.

9. fis adisclosure control function such th@PT} — R and given a relead®T0 R where

RT =f(PT[QI]), one of the following conditions must be satisfied:

a. ifOg0 G, Ot ORT, wheref(f.(s)) =t andg(f(f«(s))) = sthenOudU, such thati # sand
a(f(f(s))) = u.

b. if 0(g1, 92) U G whereGT = g,(f(t]Ql])), Ot{QI10 RT andtfQl, Elg]00 GT wheref(s)
= ts andg(0:(f(t{ QI)[Elg]) = s, thenOt,[QI, El]0J GT such thats t, andg,(t,[Ql,
Elg]) =s.

c. GivenPT(Ay,...,.A) andRT (Ay,....A) , letA,,...Aq= ({As,....A} - Q) n {As,... A} If
Og0G, Otg [Ap....A] ORT, wheref(s) =ty andg(f(ta[QIl])) = sandtg[A,,...,AdZ@
and if Oty Ay, ...,Ad O PT such thaty(s) =ty andf(ty) =ty andty[A,,...,Aq =

ta[Ao, ..., A, then condition (a) or condition (b) above must be satisfietg.on

The overall concept is of an anonymous data system is that a derivate of privately collected data

are released such that the subjects of the data cannot be confidently or uniquely identified.

The main property is property 9. It says thdtpfoduces a relea$¥T R based ofPT[QI], then

there can not exist a function or composite of functions which can confidently associate any of the
original subjects uniquely with their informationRT.

If an entity is correctly associated with a released tupkTinthen the three conditions required
in property 9 are: (1) there must be more than one such entity to which the tuple in the release could be
associated; (2) there must be more than one such tuple in the release that could be associated with the

subject; or, (3) the non-controlled information, if present, can not be accurate.
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Properties 3, 7 and 8 describe multiset collections of information where collections of elements

can occur as a member more than once.

The definition above describes what is termed a basic anonymous data system. The word “basic”
is used and the subscript O attached because the definition does not allow for probabilistic linking or the
temporal nature of data quality (i.e., older data can be less reliable). For anonymous data systems to be

defined to include these issues requires a modification and extensidbSg and so, the naming

01/08/01 8:22 AM

convention reservesDS; andADS, and so on, for future enhancements.

Remark.
The level of protection provided by &&DS, depends on the correctness of the selection of
attributes withinQIl, on the specifics dfand on assertions and invariants that can be made about

0. and gz, 0(g;, 92)0G. The validity of this remark stems directly from the definition of an

ADS,.

S = {(name, Ann), (name, Abe), (name, Al)}

P = {(name, Dan), (name, Don), (name, Dave), (name, Ann), (name, Abe),

(name, Al)}

PT(name, birth date, ZIP, diagnosis) :

Name | Birth date | ZIP Diagnosis
Ann 10/2/61 02139 Cardiac
Abe 7/14/61 02139 Cancer

Al 3/8/61 02138 Liver

QI ={name, birth date, ZIP}

U = {(name, Jcd), (name, Jwq), (name, Jxy), (name, Dan), (name, Don), (name,

Dave),

(name, Ann), (name, Abe), (name, Al) }
E(name, birth date, ZIP) :

0. = adirect communication channel that operates on the name attribute.
G asthe set of all possible relations from R to U consistent with property 8 in the definition of an
ADSy

Name Birth date | ZIP

Ann 10/2/61 02139
Abe 7/14/61 02139
Al 3/8/61 02138

Figure23 Valuesfor S, P, PT,Ql,Uand E
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In the following examples, | assume the values for S, P, PT, QI, U, and E shown in Figure 23.

These values are consistent with the presentations in Figure 18, Figure 19, Figure 20 and Figure 21.

Example (identity release).

Given the assignments in Figure 23, and the following definition for f that constructs RT as a
copy of PT, thesystem A(S, P, PT, Q/, U,{RT}, E, G, f) isnot an ADS,.

f is defined asfollows:

stepl. Let RT be
step 2. OtOPT, RT « RT O {t}

Note. RT isamulti-set, so duplicates are maintained.

Proof:
Let g, be the relation gi(name, birth date, ZIP, diagnosis) on RT.

Therefore A isinsecure and adisclosure is made, so A isnot an ADS,.

Example (complete suppression).
Given the definitions in Figure 23, and the following definition for f that constructs RT as a
blank table, the system A(S, P, PT, QI, U, {RT}, E, G, f) isan ADS,.
fisdefined asfollows:
stepl. Let RT bed

step 2. OtOPT, RT « RT O {null, null, null, null}

Note. RT isamulti-set, so duplicates are maintained.

Proof:
Thefirst two conditions of property 9 in the definition of an ADS, are both satisfied OtORT.

Therefore A is considered secure, so A isan ADS,.
The two examples above demonstrate the natural tension that exists in disclosure control. At one

end is specificity and usefulness, which is not secure, and at the other end is distortion and security,

which is not useful. These opposites pose a continuum of disclosure control options along which
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tradeoffs must be made. | defined and used an information theoretic (entropy) metric [65] and measured
the distortion to data caused by common disclosure limitation techniques and then plotted the measures
aong the continuum. The relative ordering of the resultsis shown below in Figure 24.

Identity | | | | Complete
. suppression
EEse cell cell attribute attribute
generalization suppression generalization suppression
S e —
Stronger protection more useful data
more entropy

Figure 24 Relative comparison of techniques

The technigue cell generalization is generalization enforced at the cell level and likewise cell
suppression is suppression enforced at the cell level. Similarly, attribute generalization is generalization
enforced at the attribute level and attribute suppression is suppression enforced at the attribute level. Do
not interpret the tick marks along the continuum as points. Each of these techniques had resultsin arange
along the continuum and the ranges overlapped; further there was significant variation depending on the

character of the data. However, the tick marks do provide a relative ordering of the medians of average
case results.

I now present three protection models for ADS,. These are wrong-map, null-map and k-map as
defined below.

Definition. null-map protection

Let A bean ADS,, f(PT) = RT and RORT. If OtORT, there does not exist glG where g(t) OIS,

then A adheres to null map protection.

In null-map protection each tuple in the released information may or may not map to an actual
entity in the population P, but none of the tuples can be mapped to an entity in the set of subjects S.
Examples of disclosure limitation techniques that can achieve null-map protection include strong

encryption of the QlI, extensive swapping of the values in QI and systematic use of additive noise. Figure

19 provides an example.
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Definition. wrong-map protection

Let A bean ADSg, f(PT) = RT and RORT. If |RT| > 2 and OtORT, (YOG where f(f(s)) =t, and
g(f(f«(s))) =s and there does not exist g’0G where g'#g such that g'(t)0S, then A adheres to

wrong map protection.

Wrong map protection requires each tuple in the released information to be identified to only one
entity in subjects but that entity is not the entity to which the original information was collected. The
ADS, requirement ensures the values with attributes outside QI contained in the release are not the same
as those originally collected. Notice if there exists only one entity in the subjects S, then wrong-map
protection cannot be done and with only two entitiesin S, the release is compromised. An example of a
disclosure limitation technique that can achieve wrong map protection is swapping the attributes of QI as

aunit. Figure 20 provides an example.

Definition. k-map protection

Let A bean ADS,, f(PT) = RT and RORT. IfOt0ORT, Og O G, where f(f«(s)) =t and g(f(f«(s))) =
s and {ug, Uy, U} O U such that for i=1,..., k-1, uzs, andg(f(f«(s))) = u,, thenA adheres td-

map protection.

k-map protection maintains the invariant that each tuple in the released information refers
indistinctly to at leask members ofJ. Notice thatk does not rely or5] >k or on RT| > k. Figure 21

provides an example.

The protection modelk-map, null-map and wrong-map provide a means for characterizing the
kind of protection provided to a release of information. Of course a release may be anonymous, but
proving it in the absence of a protection model is extremely difficult. Optimal releases that offer
adequate protection with minimal distortion are believed to typically require a combination of disclosure

limitation techniques as well as a combination of protection models.
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4.4 Futurework

1 The protection models defined in this chapter, namely, k-map, wrong-map and null-
map, are not necessarily a complete set of al possible protection models. Develop a
new protection model or compare and contrast the relative protection provided by

each of these models.

2. Recall the word “basic” is used and the subscript O attached to a basic anonymous
data systemADS,) because the definition does not allow for probabilistic linking or
the temporal nature of data quality (i.e., older data can be less reliable). For
anonymous data systems to be defined to include these issues requires a modification
and extension t&\DS, and so, the naming convention reserd&S; andADS, and

so on, for future enhancements. Exté&iaiS, along these lines.
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Chapter 5Methods Extended — Preferred Minimal Generalization
Algorithm

The goal of this chapter is to extend the forma methods provided in the previous chapter and
formally present an algorithm that adheres to k-map protection using generalization and suppression. The

real-world systems Datafly [66], u-Argus [67] and k-Similar [68] motivate this extension.

5.1 Thek-anonymity protection model

As you may recall, the k-map protection model [69] states an anonymity constraint that requires
certain characteristics and combinations of characteristics found in the data to combine to match at |east
k individuals. To determine how many individuals each released tuple actually matches requires
combining the released data with externally available data and analyzing other possible attacks. Making
such a determination directly can be an impossible task for the data holder who releases information.
Although | can assume the data holder knows which data in PT also appear externaly, and therefore
what constitutes a quasi-identifier, the specific values of external data and knowledge of other possible
inference attacks cannot be assumed. | therefore seek to protect the information by satisfying a slightly
different constraint on released data, which | term the k-anonymity requirement. Thisis a special case of
k-map protection where k is enforced on the released data.

Definition. k-anonymity

Let RT(A;,...,A,) be a table and Qlrr be the quasi-identifier associated with it. RT is said to
satisfy k-anonymity if and only if each sequence of values in RT[QIgr] appears with at least k
occurrences in RT[Qlgq].
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Ethnicity |Birth |Gender| ZIP |Problem |
t1|Black 1965 m 0214* |short breath |
t2[Black 1965 m 0214* |chest pain l
t3|Black 1965 f 0213* |hypertension |
t4|Black 1965 f 0213* |hypertension l
t5(Black 1964 f 0213* |obesity |
t6|Black 1964 f 0213* |chest pain |
t7|White 1964 m 0213* [chest pain |
t8|White 1964 m 0213* |obesity |
t9|White 1964 m 0213* |short breath |

t10|White 1967 m 0213* |chest pain |
t11{White 1967 m 0213* |chest pain I

Figure 25 Example of k-anonymity, where k=2 and QI={Ethnicity, Birth, Gender, ZI P}

Example.

Figure 25 provides an example of atable T that adheres to k-anonymity. The quasi-identifier for
the table is Ql+= {Ethnicity, Birth, Gender, ZIP} and k=2. Therefore, for each of the tuples
contained in the table T, the values of the tuple that comprise the quasi-identifier appear at least
twicein T. That is, for each sequence of valuesin T[QIl+] there are at least 2 occurrences of those
valuesin T[QIl+]. In particular, t1[Ql;] = t2[Ql+], t3[Ql1] = t4[Ql+], t5[QI+] = t6[Ql+], t7[Ql] =
t8[Ql¢] = t9[Ql+], and t10[Ql¢] = t11[Ql+].

Lemma.
Let RT(A,,...,Ay) be atable, Qlgr =(A,..., A) be the quasi-identifier associated WR, A;,....A
O A,...,A, andRT satisfyk-anonymity. Then, each sequence of valueRTipA,] appears with

at leask occurrences iRT[QIgq] for x=i,... .

Example.

Figure 25 provides an example of a tabléhat adheres tk-anonymity. The quasi-identifier for
the table iQIly= {Ethnicity, Birth, Gender, ZIP} and k=2. Therefore, each value that appears in a
value associated with an attribute@ifin T appears at leakttimes. T[Ethnicity ="black"]| = 6.
[T[Ethnicity ="white"]| = 5. T[Birth ="1964"]| = 5. T[Birth ="1965"]| = 4. T[Birth ="1967"]| =

2. [T[Gender ="m"]| = 6. T[Gender ="f"]| = 5. [T[ZIP ="0213*"]| = 9. And, T[ZIP ="0214*"]| =

2.

It can be trivially proven that if the released dRih satisfiesk-anonymity with respect to the
quasi-identifierQlpt, then the combination of the released dafaand the external sources on which

Qlpr was based, cannot link @it or a subset of its attributes to match fewer thardividuals. This
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property holds provided that all attributes in the released table RT which are externally available in
combination (i.e., appearing together in an external table or in a possible join of externa tables) are
defined in the quasi-identifier Qlpr associated with the private table PT. This property does not
guarantee individuals cannot be identified in RT; there may exist other inference attacks that could
revea the identities of the individuals contained in the data. However, the property does protect RT
against inference from linking to known external sources; and in this context, the solution can provide an

effective guard against re-identifying individuals.

As an aside, there are many ways in which | could expand the notion of a quasi-identifier to
provide more flexibility and granularity. Both Datafly [70] and p-Argus [71] weight the attributes of the
quasi-identifier. For my purposes in this chapter, however, | begin by considering a single quasi-
identifier based on attributes, without weights, appearing together in an external table or in a possible
join of externa tables; and then later in this chapter, | add weights to specify preferences among the

attributes of the quasi-identifier.

5.2 Generalization and suppression asdisclosure limitation techniques

In this section, | formally present the disclosure limitation techniques known as generalization
[72] and suppression [73]. This chapter ends by my proposing an algorithm that produces aversion of PT
such that a given k-anonymity requirement is satisfied by re-coding values to make them more general

(i.e., using generalization and suppression).

In a classical relational database system, domains are used to describe the set of values that
attributes assume. For example, there might be a ZIP code domain, a number domain and a string
domain. | extend this notion of a domain to make it easier to describe how to generalize the values of an
attribute. In the original database, where every value is as specific as possible, every attribute is
considered to be in a ground domain. For example, 02139 is in the ground ZIP code domain, Z,. In
order to achieve k-anonymity | can make ZIP codes less informative. | do this by saying that there is a
more general, less specific domain that can be used to describe ZIP codes, say Z,, in which the last digit
has been replaced by O (or removed altogether). There is aso a mapping from Z, to Z;, such as 02139
- 02130.
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Given an attribute A, | say a generalization for an attribute is a function on A. That is, each f: A

- Bisageneraization. | also say that:
AP AOH-...OR- A

isageneralization sequence or afunctional generalization sequence.

Given an attribute A of a private table PT, | define a domain generalization hierarchy DGHa

for A asaset of functionsf, : h=0,...n-1 such that:

A0 AOH-...OR- A

A=Ay and 7| = 1.DGH, is over: UA,

n
h=0

Clearly, thef,’s impose a linear ordering on tiAg's where the minimal element is the ground
domain Ay and the maximal element i&,. The singleton requirement o%, ensures that all values
associated with an attribute can eventually be generalized to a single value. Since generalized values are
used in place of more specific ones, it is important that all domains in the hierarchy be compatible.
Using the same storage representation form for all domains in the generalization hierarchy can ensure
compatibility. In my ZIP code example above, replacing the last digit with 0, rather than removing it or
changing it to *, maintains the 5 digit storage representation. In this presentation | Agsur@e... n,
are disjoint; if an implementation is to the contrary and there are elements in commoRGiHgnRs

over the disjoint sum o&,’'s and subsequent definitions change accordingly.

Z,={ 02100} 02100

0 v '\Zl E,={ person} person
Z,={02130,02140} 02130 02140

? el -’ & AN
Z={02138, 02139, 02140, 02141} 021 02139 021471 02142 Eg={Asian,Black,Whit} ASan Bl hite
DGHzo VGHzo DGHgo VGHego

Figure 26 Examples of domain and value generalization hierarchies
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Eth:Eo | ZIP:Zg Eth:E, Zip:Zo Eth:E, | ZIP:zZ, Eth:Eo, | ZIP:Z, Eth:Eo, | ZIP:Zy
Asian 02138 Person 02138 Person 02130 Asian 02100 Asian 02130
Asian 02139 Person 02139 Person 02130 Asian 02100 Asian 02130
Asian 02141 Person 02141 Person 02140 Asian 02100 Asian 02140
Asian 02142 Person 02142 Person 02140 Asian 02100 Asian 02140
Black 02138 Person 02138 Person 02130 Black 02100 Black 02130
Black 02139 Person 02139 Person 02130 Black 02100 Black 02130
Black 02141 Person 02141 Person 02140 Black 02100 Black 02140
Black 02142 Person 02142 Person 02140 Black 02100 Black 02140
White 02138 Person 02138 Person 02130 White 02100 White 02130
White 02139 Person 02139 Person 02130 White 02100 White 02130
White 02141 Person 02141 Person 02140 White 02100 White 02140
White 02142 Person 02142 Person 02140 White 02100 White 02140
PT GTi GTuy GTpz GToy

Figure 27 Examples of generalized tables for PT

Given adomain generalization hierarchy DGH, for an attribute A, if viDA; and v,OA; then | say v

<vjifandonly if i <j and:

fj_l(...fi(vi)...):vj

This defines apartial ordering < on: O'Ah

Such a relationship implies the existence of a value generalization hierarchy VGH, for
attribute A. Figure 26 illustrates an example of domain and value generalization hierarchies for domain

Z,, representing ZIP codes for Cambridge, MA, and E, representing ethnicity.

5.2.1 Generalization including suppression

In the value generalization hierarchy VGHg, shown in Figure 26, the values {Asian, Black,
White} generalize to Person. This means that a generalization of Ethnicity is similar to suppressing that
value for the attribute. Generalizing an attribute to its maximal element provides aimost the same

protection and distortion as suppressing the attribute.

Therefore, | can expand my presentations of generalization to include suppression by imposing
on each value generalization hierarchy a new maximal element, atop the old maximal element. The new
maximal element is the attribute’s suppressed value. The height of each value generalization hierarchy is
therefore incremented by one. No other changes are necessary to incorporate suppression into the earlier
presentation of generalization. Figure 28 and Figure 29 provide examples of the domain and value

generaization hierarchies shown earlier in Figure 26, but expanded here to include the suppressed
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maximal element. From now on, all references to generalization include the new maximal element atop
each domain and value generalization hierarchy.

23:{*****} I,

M

Z,={021%*} 021**

»

Z1={0213* 0214} 0213+ 0214*
r

Zy={ 02138, 02139, 02141, 02142} 02138 02139 02141 02142
DGHyg VGHzo

Figure 28 ZIP domain and value generalization hierarchiesincluding suppression

ZZZ{******} *kkk*k %

r

Z,={ Person} Person

r

Zo={ Asian,Black,White} Aslan Black White
DGHEO VGHEO

Figure 29 Ethnicity domain and value generalization hierarchiesincluding suppression

5.3 Minimal generalization of atable

Given a private table PT, generalization can be effective in producing atable RT that is based on
PT but that adheres to k-map protection because values in RT are substituted with their generalized
replacements. The number of distinct values associated with each attribute is non-increasing, and so the

substitution tends to map values to the same generalized result, thereby possibly decreasing the number
of distinct tuplesin RT.

A generdization function on tuple t with respect to A,,..., A, is a function f; on A;x...xA, such
that:

f(A-A)=(fu(A) . f(A)

where for eachi: 1,...n, f; is a generalization of the valt{éy]. The functionf, is a set function. | sdy
is generated by thg's.

Givenf, Ay,...,A,, atableT(A,...,A,) and a tupleT, i.e.,t(ay,...,an)
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o(r)={kCF () :t 0T and| £ *(f ()| = kf

The function g is a multi-set function. | say that g is the multi-set function generated by f and by
the fi's. Further, | say thag)(T) is a generalization of table T. This does not mean, however, thia
generalization respects the value generalization hierarchy for each attrifut&ondetermine whether
one table is a generalization with respect to the value generalization hierarchy of each attribute requires

analyzing the values themselves.

Let DGH; be the domain generalization hierarchies for attribilgswhere i=1,... A, Let
Ti[AL--- Aa] and Ty[Am, - Anan] be two tables such that for each,..n, A;,ALODGH, Then, | say
table T, is a generalization of table T, written T, < Tp,, if and only if there exists a generalization
functiong such thag[T|] = T,, and is generated ys where:[0t0T,, a; < fi(a)) = an and f; 1 A; -

A and eacH is in theDGH,; of attributeA;;. From this point forward, | will use the temgeneralization
to denote a generalization of a table. Otherwise, | will explicitly refer to the set or multi-set function

when it is not otherwise clear from context.

In this work, | examine cell, or value-level generalization, as well as, generalization enforced at
the attribute level. When decisions about the values an attribute can assume are specific to a single
domain — that is, each value associated with an attribute in a table must be a member of the same domain
in the domain generalization hierarchy specific to that attribute -- then | say the decision is at the attribute
level. On the other hand, if different values associated with the same attribute in a table can have
different domains in the domain generalization hierarchy specific to that attribute, then | say the decision

is at the cell or value level.

Definition. k-anonymity requirement

Let T(Ay,...,A,) be a generalized tabl®I={A,...,A} be the quasi-identifier associated with it
where {A,...,A} O {Ay,....A}, tOT[Ql7] andk; be the integer denoted @nfor f(t). T is said to
satisfy ak-anonymity requirement &f with respect t®Ql+ if OtOT[QI+], k= k.

The k-anonymity requirement of a generalized table forms the basksrf@ap protection. Given

a tablePT(A,...,A), aQler={A,...,.A}, where {A,... A} O {A,...,Al}, and a generalization &?T with
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respect to Qlpr named RT(A,...,A), satisfaction of thé&-anonymity requirement guarantees etiéRT

is indistinguishable from at ledstl other members of tabRT[QIp1].

Example

Consider the tablePT illustrated in Figure 27 and the domain and value generalization
hierarchies folE, andZ, illustrated in Figure 28 and Figure 29. The remaining four tables in the
figure are examples of generalized tablesHforwhere generalization is enforced at the attribute
level. For the clarity of the example, every table reports, together with each attribute, the domain
for the attribute in the table. With respecktanonymity:GT) ; satisfiesk-anonymity fork =

1,2; GTpq satisfiesk-anonymity fork = 1, 2, 3;,GTo satisfiesk-anonymity fork = 1,...,4; and,

GTp,y satisfiesk-anonymity fork = 1,...,6.

It is easy to see that the number of different domain generalizations of aTtaltaen
generalization is enforced at the attribute level, is equal to the number of different combinations of
domains that the attributes in the table can assume. Suppose | have domain generalization hierarchies

DGH; for A, i:1,...n; then, the number of generalizations, enforced at the attribute level, for table
T(Ag,....Ay) Is:

|11| (bGH | +1)

Equation 1

Similarly, when generalization is enforced at the cell level, the number of different
generalizations of a tableis equal to the number of different combinations of values the cells Within
can assume. Given domain generalization hierarcBi@ésl; for A, i:1,...n; then, the number of
generalizations, enforced at the cell level, for taigk,,... A,) is:

Ilj (bGH,|+1)"

Equation 2

Clearly, not all such generalizations are equally satisfactory. A trivial possible generalization,
for instance, is the one that generalizes each attribute to the highest possible level of generalization, thus
collapsing all tuples in the table to the same list of values. This prdugiesnymity at the price of a

strong generalization of the data. Such extreme generalization is not needed if a less generalized table

87



Computational Disclosure Control 01/08/01 8:22 AM

(i.e., containing more specific values) exists which satisfies k-anonymity. This concept is captured by

the following definition of k-minimal generalization.

Definition. k-minimal generalization

Let T\(An...,Ay) and Ty(Ag...,A)) be two tables such thal|[Qly] < Tn,[Qly] where
QI={A,...,A} is the quasi-identifier associated with the tables afvd { A} U {As,....A}. T
is said to be a minimal generalization of a tablevith respect to & anonymity requirement
overQly if and only if:
1. T, satisfies th&-anonymity requirement with respectQdr
2. OT, T, T, T, < T, T, satisfies thek-anonymity requirement with respect @+ O
TAq, ..., Al = Tu[As .. Al

Example.

Figure 27 shows examples of generalizations of the table lald&ledith respect to the quasi-
identifier {Ethnicity, ZIP}. Each of these generalizations, enforced at the attribute level, satisfy
k-anonymity fork=2. That is, each tuple in the released tables, lal@W&dy, GT1,15, GTo.2,
GT,1, appears at least 2 timeSTp 4 shows that generalizinglP one level up its domain
generalization hierarchy is sufficient to achid#. Similarly, GT; g shows that generalizing
Ethnicity one level up its domain generalization hierarchy is sufficient to ack#eTherefore,
GTp,y, andGT perform more generalization than is necessary, becauseGaglg, which
satisfies the anonymity requirement, is a generalizati@ilgf,;. Analogously GT; 3 cannot be
minimal, being a generalization of bo@iT; g andGTy 4. Further, because bo®T . and
GTp,o satisfy the requirement and are minimal, there may exist a preference among these

minimal generalizations.

Intuitively, a tableT,,, generalization of, is k-minimal if it satisfiesk-anonymity and there does

not exist any generalization ©f, which satisfiek-anonymity and of whicfi, is a generalization.
It is trivial to see that a table that satisfleanonymity has a unigueminimal generalization,

which is itself. It is also easy to see that the necessary and sufficient condition forTattabhisfyk-

anonymity is that the cardinality of the table must be léasts stated the following theorem. The
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requirement of the maximal elements of each DGH; to be a singleton ensures the sufficiency of the

condition.

Theorem 2
Let T be a table and k be a natural number. If [T| = k, then there exists at least a k-minimal

generdization for T. If [T| < k thereisno k-minimal generalization for T.

5.3.1 Distance vectorsand generalization strategies

| introduce a distance vector metric with Euclidean properties that measures distances between
tuples and between tables based on the number of generalizations or on the length of the functional

generalization sequence required to have the tuples or tables share the same generalized values.

Definition. Distance vector

Given DGHp;, with f, : h=0,... p, wherei=1,... n, and tabled (A1,...,An) andTm(Amn, - - Am)
such thall <T,,, the distance vector @f to Ty, is the vectoDV, , = [dy,...,d;] where eacld; is
the length of the unique path betwegnwhich isA; in DGHyaj, andAny,, which isAq, in DGHyy
or simplymy-Ip.

(E1,Z,) (E1,Z,) (E1,22) (E1,Z2)

()] ()] A

(El / '\(u\zz (E1,2) (E12) (Eo.22)
:§ t O A A

€z (Eo.22) (E1,20) (Eo,Z1) (EoZ4)
A A A

(Eo,Z0) (Eo,Z0) (Eo,Z0)

GS: GS: GSs

Figure 30 Generaization hierarchy GH+t and strategies for T = <Eg,Zo>

Intuitively the distance vector captures how many generalizations Tabke from TableT; for
each attribute. To illustrate, consider privBE and its generalized tables illustrated-iigure 27. The
distance vectors betwe@T and its different generalizations are the vectors appearing as subscripts to
GT for each table.
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The relationship between distance vectors and minimal generalizations, which is the basis of the

correctness of my approach, is stated by the following theorem.

Theorem 3

Given tables T, and T, such that T, < T, and T, satisfies k-anonymity. T, isk-minimal < there
doesnotexistaT,suchthat T,z T, T,Z Thand T, < T, and T,<T,, T, satisfies k-anonymity,
and DV, < DV .

Intuitively, the minimal generalizations of table T, are exactly those tables T; satisfying k-
anonymity with minimal distance vectors DV, . For instance, with reference to the generalized tables
illustrated in Figure 27, | have aready noticed how, for k=3, GT[; 1) cannot be minimal because GTyg 1
and GTq aso satisfy k-anonymity. Recall that the subscript indicates the distance vector of the
generalized table GT from PT.

Given DGHay;, with fa - h=0,... pa, Wherei=1,...n, and tableT (A4, ...,A,), the set of all possible
generalizations o comprise a generalization hierarci@t = DGHp; X ... X DGHp,, assuming the
Cartesian product is ordered by imposing coordinate-wise order (GH{. defines a lattice whose
minimal element iF. For instancefigure 30 illustrates the generalization hierardBif o z0) Where the

domain generalization hierarchieskyfandzZ, are as illustrated iRigur e 26.

The generalization hierarchy of taffledefines different ways in which can be generalized. In
particular each path fromto the uniqgue maximal element®H+ in the graph describinGH; defines a
possible alternative path they can be followed in the generalization process. | refer to the set of nodes in
each such path together with the generalization relationships between them as generalization strategy for
GHr+. The different generalization strategies @ifgo 20 are illustrated irFigure 30. The number of

different possible strategies for a generalization hierarchy is stated by the following theorem.

Theorem 4
Given DGH,;, with fan @ h=0,...,p, Where i=1,...n, and tableT(A,...,A,), the number of
different generalization strategies fbiis:
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n
P!
1

where each py; is the length of the path from A to the maximal element in DGHy,;.

For each strategy a minimal local generalization can be defined as the table satisfying k-
anonymity, with sequence of domains DT’ belonging to the strategy such that there are no other tables
satisfying k-anonymity with sequence of domains DT” in the strategy and such that DT” < DT'. This says
the strategy is a total order and the minimal local generalization is always unique. The following
theorem states the correspondence between k-minimal generalization and the local minimal

generalization with respect to a strategy.

Theorem 5
Let T(Ay,...,A,) be atableto be generaized and let GHt be a generalization hierarchy for T.

Every k-minimal generalization of T isaloca minimal generalization for some strategy of GHr.

The converse is not true; a local minimal generalization with respect to a strategy may not
correspond to a k-minimal generalization. For instance, consider the table PT and its generalized tables
illustrated in Figure 27, whose minimal results have been discussed in a previous example. For k = 3 the
minimal local generalizations are: GTyy g for strategy 1, GTyy ) for strategy 2 and GTyo y for strategy 3.
However, as | have shown in a previous example, GTyy 4 is not k-minimal for k = 3. For k = 2 the
minimal local generalizations are: GTyy ) for strategy 1 and GTyo q; for strategies 2 and 3. Directly from
Theorem 5, a table has at most as many generalizations as the number of generalization strategies of its
generalization hierarchy. The number of k-minimal generalizations can be smaller if the generalized
table, locally minimal with respect to a strategy, is a generalization of atable locally minimal to another
strategy (GTpy for k = 3 in the example above), or if different strategies have the same local minimal

generalization (GTq for k = 2 in the example above).

54 Minimal distortion of atable

When different minimal generalizations exist, preference criteria can be applied to choose a

preferred solution among them. For example, tables which generalize (or not) specific attributes, or
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which return the highest number of distinct tuples can be preferred. For instance, for a k-anonymity
requirement with k = 2, GTyy g and GTp yj are both minimal, as shown in Figure 27, but GTg 1 may be

preferred because it contains alarger number of distinct tuples.

A natural measure for preferring one minimal generalization over another is based on selecting
the minimal generalization whose information is least distorted. The application of any disclosure
limitation technique [75] to a table T results in a table T’ that has less information than T, and is
therefore less pure than T; | say T’ is a distorted version of T. In order to define the information loss
precisely and specifically to the disclosure limitation techniques employed, | define an information
theoretic metric that reports the amount of distortion of atable caused by generalization and suppression.
While entropy is the classical measure commonly used in information theory to characterize the purity of
data [76], and while information loss can therefore be simply expressed as the expected increase in
entropy resulting from the application of a disclosure limitation technique, a metric based on the
semantics of particular disclosure limitation techniques can be shown to be more discriminating than the

direct comparison of the encoding lengths of the values stored in the table.

| can measure the distortion in a cell of the generalized table RT by computing the ratio of the
domain of the value found within the cell to the height of the attribute’s domain generalization hierarchy.
The sum of the distortions found in each cell of the table RT provides an overall measure of the
distortion of the table. The definition below defines the precision of a generalized table RT to be one

minus the sum of the distortions found in the cells of the table (normalized by the total number of cells).

Definition. precision metric

Let PT(A,...,.Ana) be a table, tsOPT, RT(Ay,...,Ava) be a generaization of PT, tsJPT, each
DGH, be the domain generalization hierarchy for attribute A, and f's be generalizations on A.

The precision of RT, written Prec(RT), based on generalization and suppression is:

No N h
Prec(RT)= 1—% wheref, (.. f, (5 [A])..)=t4[A]
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Example.

Consider the trivial case where PT = RT. | that case, each value found within RT is in the
ground domain of its attribute’'s domain generalization hierarchy and so each h;= 0; therefore,
Prec(RT) = 1. Conversely, consider the trivial case where each value in each cell of RT is
suppressed —i.e., the maximal element found in its attribute's domain generalization hierarchy. In
that case, eadt=|DGH,j|; and soPrec(RT) = 0.

Example.

Using the domain generalization hierarchies found in Figure 28 and Figure 29, | can compute the
precision of the generalizations of the table labdPddwith respect to the quasi-identifier

{ Ethnicity, ZIP} that are found irFigure 27. ThePrec(PT) = 1 because all values in this table

are in their ground domainBrec(GTy,q)) = 0.75, thePrec(GTy 1) = 0.58,Prec(GTo ) = 0.67,
andPrec(GTp ) = 0.83. Each of these generalizations saksynonymity fork=2, butGTg 1

does so with minimal distortion.

As was shown in the previous example, there is inherent bias Witbirbased on the height of
the domain generalization hierarchies associated with the attributes of the table. Primarily,
generalizations based on attributes with taller domain generalization hierarchies maintain precision better
than generalizations based on attributes with shorter domain generalization hierarchies. For example,
from Figure 27, GTp 0 and GTp, each generalize values up one level of an attribute's domain
generalization hierarchy. But, from Figure 28 and Figure@SHgniciy] = 2 andPGHzp| = 3 and so,
Prec(GTp,) > Prec(GTg).

Requirement on domain generalization hierarchies

For the semantics of the precision metric to be most accurate, domain generalization hierarchies
used within the computation must be streamlined to contain no unnecessary or unattainable domains.
Otherwise, the height of the domain generalization hierarchy will be arbitrarily increased and the
precision metric cannot reach 0 with respect to the attribute. For example, if suppression is fixed atop the
domain generalization hierarchy, then it should be removed from the precision analysis in cases where

suppression cannot be achieved.

Of course the usefulness of a generalized table is specific to the application to which the data

will be put [77]. Therefore, determining which minimal generalization is most useful relies on user-
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specific preferences. These preferences can be provided as: (1) weights incorporated in the weighted
precison metric defined below; and, (2) a selection process for selecting among a set of minimal

generalizations all of which have the same weighted precision.

Definition. weighted precision metric

Let PT(A,....Ana) be a table, tsOPT, RT(Ay,...,Avs) be a generalization of PT, tsJPT, each
DGH, be the domain generalization hierarchy for attribute A, f;'s be generalizations on A, and W
be the set of weights to specify preference where w;JW is a weight assigned to tg[A] such that O
< Prec(RT) < 1. The precision of RT, written Precy(RT), based on generaization and

suppression is therefore:
No N h

DGH,|
Preg, (RT)= 1-—= &
rec, (RT) RT[*[N,|

wheref, (.. f, (- [A]).-)=ts[A]and 0<Preg, RT)<1

Example.

Recall in a previous example involving generalization enforced at the attribute level, both GTg 13
and GTy g in Figure 27 were found to be minimal generalizations of PT [78]. A preference
among minimal generalizations can be based on merely summing the level of generalization of
each attribute with respect to the heights of the domain generalization hierarchies for those
attributes. One level of generalization corresponds to the values within the table being associated
with the next domain up the domain generalization hierarchy. In these cases preference is based
on the minimal generalizations having the smallest sum of values found in the corresponding

distance vectors. The weight w; in the weighted precision metric in this caseis:

ij N,
;|DGHAK|

Equation 3
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This simplifies Precy to:

N

;h

Prec, RT)=1-—"L—

;|DGHAk|

The weighted precision for the generalizations in Figure 27 using the weight in Equation 3 is:
Precw(GT1,0)=0.8, Precy(GT1,1))=0.6, Precy(GTp2)=0.6, and Precy(GTp1)=0.8. In this
scheme, the minimal generalizations GTy1 and GTy o are of equal preference and minimal

distortion.

Notice that the regular precision metric Prec is a special case of the weighted precision metric
Precw, where Ow;0W, w;; = 1. In that case, Prec(T) = Precy(T). As was shown in the earlier example,
not all minima generalizations are equally distorted and preference can be based on the minimal
generaization having the most precision. This concept is captured by the following definition of k-

minimal distortion.

Definition. k-minimal distortion

Let T(As,...,A) and Tn,(As,...,A,) be two tables such thal[Qlf] < T.[Qlf] where
Ql+={A,...,A} is the quasi-identifier associated with the tables afd {,A} O {A,..., A} and
Ox=i,...,J, DGHay are domain generalization hierarchies @lr. T, is said to be a minimal
distortion of a tabld, with respect to & anonymity requirement ov€l if and only if:
1. T, satisfies thé&-anonymity requirement with respectQ@b,
2. OT, Prec(T) = Prec(T,), Prec(T,) = Prec(T,,), T, satisfies th&-anonymity requirement
with respect t@Ql+ O T,[Aq,....A] = Tml[AL .. A

Example.
Figure 27 shows examples of generalizations of the table lal&ledith respect to the quasi-

identifier {Ethnicity, ZIP}. Of these, onlyGTq 1 is ak-minimal distortion.
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A k-minimal distortion is based on the precision metric Prec. Domain generalization with
different heights can provide different Prec measures for the same table. So a k-minimal distortion is
specific to a table, a quasi-identifier and a set of domain generalization hierarchies for the attributes of

the quasi-identifier.

Also, the definition of k-minimal distortion can be modified to use the weighted precision metric

Precy rather than Prec. | term this result aweighted k-minimal distortion.

Itistrivial to see that atable that satisfies k-anonymity has a unique k-minimal distortion, which
isitself. It is also easy to see that a generalized table RT that is ak-minimal distortion of table PT isaso

ak-minimal generalization of PT, as stated in the following theorem.

Theorem 6
Given tables T, and T, such that T, < T, and T, satisfies k-anonymity. T, is ak-minimal

distortion of T, 0 Ty, isk-minimal generalization of T,.

5.5 Analgorithm for determining a minimal generalization with minimal distortion

Figure 31 presents an algorithm, called MinGen, which, given a table PT(A,,...,A), a quasi-
identifier QI={A,....Al}, where {A,...A} O {A....,A}, a k-anonymity constraint, domain
generalization hierarchid8GH,;, produces a tabl®IGT which is ak-minimal distortion ofPT[QI]. It
assumes thak < PT|, which is necessary and sufficient condition for the existence of a minimal
generalized table (see Theorem 2). The MinGen algorithm ties together the formal methods presented in
this chapter and provides a model against which real-world systems will be compared in subsequent

chapters.
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Preferred Minimal Generalization (MinGen) Algorithm

Input: Private Table PT; quasi-identifier QI = (A, ..., Ay), k-anonymity constrairk;
domain generalization hierarchiB&Ha;, wherei=1,...n,
and preference specificationgraferred() function.

Output: MGT containing a minimal distortion &T[QI] with respect tk-anonymity chosen
according to the preference specifications

Assumes: IPT 2k

M ethod:

3. if PT[QI] satisfiesk-anonymity requirement with respectikthen do
3.1MGT « { PT} //PTis the solution
4. elsedo
4.1 allgen — {T,:T;is a generalization &*T overQl}
4.2 protected — {T;: T; O allgen OT; satisfiesk-anonymity requirement ¢
4.3 MGT ~ {T;: T, O protected [Ithere does not exist T, O protected such thaPrec(T,) > Prec(T;) }
4.4 MGT « preferred(MGT) // select the preferred solution
5. return MGT.

Figure 31 Preferred MinGen Algorithm

There are few steps in the MinGen algorithm. Step 1 determines if the original table,RiBmed
itself satisfies thé&-anonymity requirement; and if so, it is tkeninimal distortion. Step 2 is the core of
the algorithm executed in all other cases. Sub-step 2.1 stores the set of all possible generali2ations of
over the quasi-identifie@l in allgens. Recognizing that some of the generalizatioratligens satisfy the
k-anonymity requirement and others do no, sub-step 2.2 stores those generalizaligessithat do
satisfy thek-anonymity requirement iprotected. Sub-step 2.3 filters out those generalizations from
protected that are not minimally distorted with respecPiec and stores the resulting generalizations in
MGT. Notice thatdGT,, GT,O MGT, Prec(GT,) = Prec(GT,). That is, after sub-step 2.BIGT is the
set of allk-minimal distortions ofPT. It is guaranteed tha¥i[GT| = 1. The functiorpreferred() in sub-

step 2.4 selects a single generalization fM@&IT based on user-defined specifications.

The algorithm is straightforward, so its correctness relies on the definitions of generalization
[79], thek-anonymity requirement [80], arfetec [81]. It can be proved that a generalization of a table
over a quasi-identifieQl, that satisfies a givek-anonymity requirement, and has the least amount of
distortion of all possible generalizationsTobverQl, is ak-minimal distortion ofT overQI with respect

to Prec. From Theorem 6, the solution is alsk-ainimal generalization of overQl.
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The MinGen agorithm assumes there are at least k tuples in PT. The maximal element
requirement atop each domain generalization hierarchy assures |protected| = 1 in all cases. For example,
protected always includes the table consisting of tuples which are al the same and indistinguishable,

where each value within each tuple is the maximal generalized element for its attribute.

With respect to complexity, MinGen makes no claim to be efficient. The |allgens| was expressed
in Equation 1, if generalization is enforced at the attribute level, and in Equation 2, if generalization is
enforced at the cell level. In both cases, the computational cost is tremendous, making an exhaustive

search of all possible generalizationsimpractical on even the most modest of tables.

Care must be taken that the domain generalization hierarchies used by MinGen contain domains
that are attainable by MinGen; otherwise, the height of the domain generalization hierarchy is inflated
and so, Prec can never be 0. For example, the domain generalization hierarchies based on the depictions
in Figure 32 include only those domains that can be attained by the MinGen algorithm. The depictionsin
Figure 33 include an additional domain atop each hierarchy, where the additional domain contains the
suppressed value for the attribute. However, the MinGen algorithm would never provide a solution that
contained any suppressed values given those hierarchies. Therefore, the hierarchies in Figure 33 when
used by MinGen fail the requirement that Prec can achieve 0 [82]; so, the hierarchiesin Figure 32 should
be used with MinGen.

In sub-step 2.4 of the MinGen agorithm, in cases where [MGT| > 1, each table in MGT is a
solution, but the preferred() function can return only one table as a solution. This single solution
reguirement is a necessary condition because the chosen solution is then considered to become part of the
join of external information against which subsequent linking and matching must be protected. This
places additional constraints on the subsequent release of any other tables in MGT and of other

generaizations of the privately held information. Here are three related attacks and their solutions.

5.5.1 Unsorted matching attack against k-anonymity

This attack is based on the order in which tuples appear in the released table. While | have
maintained the use of arelational model in this discussion, and so the order of tuples cannot be assumed,
in real-world use this is often a problem. It can be corrected of course, by randomly sorting the tuples of

the solution. Otherwise, the release of arelated table can leak sensitive information.
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Example.

Using aweighted precision metric with the weight described in Equation 3, GT 1 and GTy g in
Figure 27 are both k-minimal distortions of PT, where k=2. If GTyy; is released and a
subsequent release of GTy g IS then performed, but where the position of the tuples in each table
correspond to the same tuple in PT, then direct matching of tuples across the tables based on
tuple position within the tables reveals sensitive information. On the other hand, if the positions
of the tuples within each table are randomly determined, both tables can be released.

55.2 Complementary release attack against k-anonymity

In the previous example, all the attributes in the generalized tables were in the quasi-identifier.
That is typically not the case. It is more common that the attributes that constitute the quasi-identifier are
themselves a subset of the attributes released. As a result, when a k-minimal solution, which | will call
table T is released, it should be considered as joining other external information. Therefore, subsequent
releases of generalizations of the same privately held information must consider all of the released
attributes of T a quasi-identifier to prohibit linking on T, unless of course, subsequent releases are
themselves generalizations of T.

Example.

Consider the private table PT in Figure 34. The tables GT1, GT2 and GT3 in Figure 35 were
identified by MinGen (after step 2.3) as k-minima distortions of PT, where k=2, the quasi-identifier
QI={Race, BirthDate, Gender, ZIP} and the domain generalization hierarchies are based on the
depictions in Figure 32. Suppose table GT1 is released as the preferred k-minimal solution. If
subsequently GT3 is also released, then the k-anonymity protection will no longer hold, even if the tuple
positions are randomly determined in both tables. Linking GT1 and GT3 on {Problem} revedlsthetable
LT shown in Figure 36. Notice how [whi t e, 1964, mal e, 02138] and [whi t e, 1965, f enal e,
02139] areuniquein LT and so, LT does not satisfy the k-anonymity requirement enforced by GT1 and
GT3. This problem would not exist if GT3 used the quasi=identifier QI O {Problem} or if a
generalization of GT1 had been released instead of GT3.
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021**
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Race
10 year range: 960 69
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Figure 32 Value generalization hierarchiesfor {ZI P, Gender, Race, BirthDate}
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Figure 33 Value generalization hierarchiesfor {ZIP, Gender, Race, BirthDate} with suppression
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id|Race |BirthDate |Gender |ZIP  |Problem
t1]black |9/1965 male 02141 |short of breath
t2|black |2/1965 male 02141 [chest pain
t3|black 110/1965 [female [02138 |painful eye
t4|black |8/1965 female 02138 |wheezing
t5|black 111/1964 [female [02138 |obesity
t6|black 112/1964 [female 02138 |chest pain
t7]white |10/1964 |male 02138 |short of breath
t8]white |3/1965 female 02139 |hypertension
t9jwhite |8/1964 male 02139 |obesity
t10]white [5/1964 male 02139 |fever
t11jwhite [2/1967 male 02138 |vomiting
t12]white [3/1967 male 02138 |back pain
Figure 34 Private Table PT
Race |BirthDate |Gender |ZIP  |Problem Race |BirthDate |Gender |ZIP  |Problem
black [1965 male 02141 |short of breath black [1965 male 02141 [short of breath
black [1965 male 02141 |chest pain black 1965 male 02141 |chest pain
person [1965 female |0213* [painful eye person |1965 female 0213* |painful eye
person [1965 female 0213* |wheezing person |1965 female [0213* [wheezing
black [1964 female [02138 [obesity black [1964 female [02138 [obesity
black [1964 female 02138 [chest pain black [1964 female [02138 [chest pain
white 11964 male 0213* |short of breath white  [1960-69 |male 02138 |short of breath
person [1965 female |0213* |hypertension person |1965 female [0213* |hypertension
white 11964 male 0213* |obesity white (1964 male 02139 |obesity
white 11964 male 0213* |fever white {1964 male 02139 |fever
white 1967 male 02138 |vomiting white  [1960-69 |male 02138 |vomiting
white |1967 male 02138 [back pain white |1960-69 [male 02138 |back pain
GT1 GT2
Race [BirthDate |Gender |ZIP  |Problem
black [1965 male 02141 |short of breath
black [1965 male 02141 [chest pain
black [1965 female [02138 [painful eye
black [1965 female 02138 [wheezing
black (1964 female [02138 [obesity
black (1964 female |02138 [chest pain
white  [1960-69 |male 02138 |short of breath
white  [1960-69 |human 02139 |hypertension
white  [1960-69 |human 02139 |obesity
white  [1960-69 |human [02139 |fever
white  ]1960-69 [male 02138 [vomiting
white |1960-69 |male 02138 |back pain
GT3

Figure 35 k-minimal distortionsfor PT in Figure 34 where k=2
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Race [BirthDate |Gender |ZIP Problem
black 11965 male 02141 [short of breath
black 11965 male 02141 [chest pain
black [1965 female |02138 [painful eye
black 11965 female 02138 |wheezing
black [1964 female |02138 |obesity
black 11964 female [02138 [chest pain
white [1964 male 02138 [short of breath
white [1965 female |02139 [hypertension
white (1964 male 02139 |obesity
white (1964 male 02139 |fever
white [1967 male 02138 |vomiting
white (1967 male 02138 [back pain

LT

01/08/01 8:22 AM

Figure 36 Tableresulting from linking GT1 and GT3 in Figure 35

5.5.3 Temporal attack against k-anonymity

Data collections are dynamic. Tuples are added, changed, and removed constantly. As a result,
releases of generalized data over time can be subject to a temporal inference attack. Let table T, be the
original privately held table at time t=0. Assume a k-minimal solution of To, which | will call table RT,,
isreleased. At timet, assume additional tuples were added to the privately held table TO, so it comes T..
Let RT, be a k-minimal solution of T, that is released at time t. Because there is no requirement that RT,
respect the distortions of RTy, linking the tables RT, and RT; may revea sensitive information and
thereby compromise k-anonymity protection. As was the case in the previous example, to combat this
problem, RT, should be considered as joining other external information. Therefore, either al of the

attributes of RT, would be considered a quasi-identifier for subsequent releases, or subsequent releases

themselves would be generalizations of RT,.

Example.

At time to, assume the privately held information is PT in Figure 34. As stated earlier, GT1,
GT2 and GT3 in Figure 35 are k-minimal distortions of PT over the quasi-identifier QI={ Race,
BirthDate, Gender, ZIP} where k=2. Assume GT1 is released. At a later time t;, PT becomes
PTyu, which is PT O {[bl ack, 9/ 7/ 65, nal e, 02139, headache], [bl ack, 11/ 4/ 65,
mal e, 02139, r ash]}. MinGen executes on PTy as it has on PT and returns a k-minimal
distortion, which | will call GT,;. Assume this table contains GT3 in Figure 35; specifically,
GTy = GT3 O {[bl ack, 1965, nal e, 02139, headache], [bl ack, 1965, nal e, 02139,

rash]}. As was shown in an earlier example, GT1 and GT3 can be linked on {Problem} to
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reveal unique tuples over QI. Likewise, GT1 and GTy, can be linked to reveal the same unique

tuples. One way to combat this problemisrun MinGenon GT1 O (PTy — PT), making the result
a generalization o6T1. In that case, a result could 881 O {[bl ack, 1965, mal e, 02139,

headache], [bl ack, 1965, mal e, 02139, r ash]}, which does not compromise the distorted
values inGT1.

5.5.4 MinGen asan anonymous data system

MinGen uses the generalization and suppression as disclosure limitation techniques. Below is a

description of the framework in which MinGen operates.

S = {subjects whose information isincluded in PT}

P = set of all people whose information could possibly bein PT

PT = privately held information about S

QI = set of attributes with replicationsin E

Uu="p

RT = MinGen(PT)

E = set of publicly available information in today's society

G = set of standard communication methods.

f = MinGen

The systenA(S, P, PT, QI, U, {RT}, E, G, MinGen) is anADS,,

Informal proof.

If QI contains all attributes replicatedBn A adheres t&-map protection,
wherek is enforced ofRT. That is, for each value ¢fl released ifRT,
there are at leakttuples having that value.

So,A is anADS,,

The practical significance of releasing individualized data, such that linking of the data to other
sources to re-identify individuals cannot be done, offers many benefits to our electronic society. This

work provides an effective and optimal solution to this problem.
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In the next chapters, | present four computational systems that attempt to maintain privacy while
releasing electronic information. These systems are: (1) my Datafly I System, which generalizes and
suppresses values in field-structured data sets [83]; (2) Statistics Netherlands' p-Argus System, which is
becoming a European standard for producing public-use data [84]; (3) my k-Similar algorithm, which
produces optimal results in comparison to Datafly and p-Argus [85]; and, (4) my Scrub System, which
locates personally-identifying information in letters between doctors and notes written by clinicians [86].
The Datafly, u-Argus and k-Similar systems primarily use generalization and suppression for disclosure
limitation and provide protection by seeking to adhere to k-anonymity. As was shown in Equation 1 (on
page 87) and Equation 2 (on page 87), the number of possible generalizations prohibits an exhaustive
search, as was done by MinGen. As aresult, these systems make approximations, which may not always
yield optimal results. In the next chapters, | assess the anonymity protection provided by each of these
systems in terms of whether each system is an ADS, and compare the performance of each to MinGen.

The presentation returns to an informal style.

5.6 Futurework

1. The size of and conditions for k necessary to ensure k-anonymity must be further
investigated. The Social Security Administration (SSA) releases public-use files based on
national samples with small sampling fractions (usually less than 1 in 1,000); the tuples
contain no geographic codes, or at most regional or size of place designators [87]. The SSA
recognizes that data containing individuals with unique combinations of characteristics can
be linked or matched with other data sources. So, the SSA’s general rule is that any subset
of the data that can be defined in terms of combinations of characteristics must contain at
least 5 individuals. This condition fdrincludes a sampling fraction and no geographical
specification. Current demand requires releasing all data with geographical specification.
How does this change the size kif Studies could be based on a cost of communication
model, where the size df is related to the cost of communicating with candidates to

determine the correct identity of persons who are the subject of the data.

2. The quality of generalized data is best when the attributes most important to the recipient do
not belong to any quasi-identifier. For public-use files this is acceptable, but determining the
quality and usefulness in other settings must be further researched. Survey published results

and determine which studies, if any, could have been achieved with sufficiently anonymous
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data rather than identified data and which, if any, could not have used sufficiently
anonymous data without skewing results or prohibiting them altogether. Candidate studies

include epidemiological studies and surveys. Classify the results.

3. This chapter extended some of the foundational methods provided in the previous chapter. In
particular, this chapter focused on one version of k-map protection, namely k-anonymity, and
employed two disclosure limitation techniques, namely generalization and suppression.
There are other protection models [88] and other techniques [89]. Select another protection

model and/or other disclosure limitation techniques and extend the methods.

4. Disclosure limitation has been performed in different communities on different kinds of data
—such as summary tables, geographical information systems, textual documents and even,
DNA sequences. While the list of disclosure limitation techniques provided earlier (on page
60), crosses these boundaries, some techniques may work better with some kinds of data and
uses than others. Perform an analysis to see which kinds of disclosure limitation techniques

work best with which kinds of data and uses and why.

5. Weighted metrics were defined among the methods introduced in this chapter. Consider data
in a given application area, such as hospital discharge data, and introduce strategies for how
weights could be strategically applied to convey notions that some fields of information
contain information more sensitive than others. Try out the proposed schemes and compare

the semantics of the results to the non-weighted version.
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Chapter 6 Results: Datafly |1

In this chapter, | present my Datafly and Datafly 1l Systems whose goal is to provide the most
genera information useful to the recipient. From now on, the term Datafly will refer to the Datafly |l
System unless otherwise noted. Datafly maintains anonymity in released data by automatically
substituting, generalizing and suppressing information as appropriate. Decisions are made at the
attribute and tuple level at the time of database access, so the approach can be incorporated into role-
based security within an institution as well as in exporting schemes for data leaving an institution. The
end result is a subset of the original database that provides minimal linking and matching of data because

each tuple matches as many people as the data holder specifies.

6.1 Overview of the Datafly System

DataHolder | -attributes & tuples
-recipient profile

-anonymity 0.7
Origina Medical Database Resulting Database, anonymity 0.7, k=2

SSN Race Birth Sex | ZIP SSN Race Birth | Sex | ZIP
819491049 | Caucasian | 10/23/64 | M 02138 986345935 | Caucasian | 1964 | m 02100
749201844 | Caucasian | 03/15/64 | M 02139 Datafly 207502632 | Caucasian | 1964 | m 02100
819181496 | Black 09/20/64 | M 02141 ‘ 729247573 | Black 1964 | m 02100
859205893 | Asian 10/23/64 | m 02157 982574833 | Black 1964 | m 02100
985820581 | Black 08/24/64 | m 02138

Figure 37. Dataholder overview of the Datafly System

Figure 37 provides an overview of the Datafly System from the data holder’s perspective for
generating a table for release. The original table is shown on the left. Input to the Datafly System is the
original privately held table and some specifications provided by the data holder. Output is a table whose
attributes and tuples correspond to the anonymity level specified by the data holder; in Figure 37 the
anonymity level is noted as being 0.7. These terms and the process used by Datafly to generate atable for
release are discussed in the following paragraphs.

Before any releases are generated, each attribute in the original table is tagged as using either an

equivalence class substitution algorithm or a generalization routine when its associated values are to be
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released. If values of an attribute tagged as using equivalence class substitution are to be released, made-
up aternatives replace values of the attribute in the released data. The Social Security number attribute
labeled SSN provides an example in Figure 37 and a strong one-way hashing (encryption) algorithm is
used.

Alternatively, if an attribute is tagged as using generalization, then an accompanying
generaization hierarchy is assigned to the attribute; example hierarchies are shown in Figure 33 on page
101. The Datafly System iteratively computes increasingly less specific versions of the values for the
attribute until eventually the desired anonymity level is attained. For example, the birth date attribute
would first have the full month, day and year for each value. If further generalization were necessary,
only the month and year would be used, and then only the year and so on, as the values get less and less
specific, moving up the generalization hierarchy. The iterative process ends when there exists k tuples
having the same values assigned across a group of attributes (or quasi-identifier); this is termed a k
requirement and provides the basis for k-anonymity protection discussed earlier [90]. [Note in the earliest
version of Datafly, k was enforced on each attribute individually and a complicated requirement was
enforced across attributes; but in later versions which are named Datafly Il, k is enforced across the
quasi-identifier as described here.] In Figure 37 the quasi-identifier under consideration, because of the
size of the database shown, is only { Race, Birth, Sex, ZIP} and k=2; therefore, in the released data, there
are at least two tuples for each combination of { Race, Birth, Sex, ZIP} released.

To use the system, the data holder (1) declares specific attributes and tuples in the original
private table as being eligible for release. The data holder also (2) groups a subset of the released
attributes into one or more quasi-identifiers and provides (3) a number from O to 1 is assigned to each
attribute eligible for release that identifies the likelihood each attribute within a quasi-identifier will be
used for linking; a 0 value means not likely and a value of 1 means highly probable. | term such alist a
profile. Finally, the data holder (4) specifies a minimum overall anonymity level that computes to avalue
of k and (5) a threshold (called loss) that determines the maximum number of tuples that can be
suppressed, where loss must correspond to at least k tuples.

Datafly then produces the released table from the eligible attributes and tuples of the private
table such that each value of a quasi-identifier in the released table appears in at least k tuples. The k
requirement is accomplished by generalizing attributes within a quasi-identifier as needed and

suppressing no more than loss tuples.
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In Figure 37, notice how the record containing the Asian entry was removed; Social Security
numbers were automatically replaced with made-up alternatives; birth dates were generalized to the year
and ZIP codes to the first three digits. In the next two paragraphs | examine the overall anonymity level
and itsrelationship to k and loss.

The overal anonymity level is a number between 0 and 1 that relates to the minimum k for each
quasi-identifier. An anonymity level of O provides the original data and a level of 1 forces Datafly to
produce the most general data possible given the profile of the recipient. All other values of the overall
anonymity level between 0 and 1 determine the operational value for k. (The institution is responsible
for mapping the anonymity level to particular values of k) Information within each attribute is
generalized as needed to attain the minimum k and outliers, which are extreme values not typical of the
rest of the data, may be removed. Upon examination of the resulting data, every value assigned to each
quasi-identifier will occur at least k times with the exception of one-to-one replacement values, as is the

case with Social Security numbers.

Anonymity (A) k Birth Date  maxDrop%
1
-.9--- 493 24 4%
- .8--- 438 24 2%

b -7 383 12 8% i
- .6--- 328 12 5%
--.5--- 274 12 4%
-4 --- 219 12 3%

-- .3 164 6 5%

-2 109 4 5%

-1 --- 54 2 5%
0

Figure 38. Anonymity generalizations for Cambridge voters’ data with corresponding values ok.

Figure 38 shows the relationship between k and selected anonymity levels (A) using the
Cambridge voters’ database [91]. Asncreased, the minimum requirement kancreased, and in order
to achieve th&-based requirement, values within an attribute in a quasi-identifier, for exabnle,
Date, were re-coded in ranges of 2, 4, 6, 12 or 24 months, as shown. Outliers were excluded from the
released data, and their corresponding percentadégvdiereN is the number of tuples in the privately
held table eligible for release) are noted. An anonymity level of 0.7, for example, required at least 383
occurrences of every value of the quasi-identifier. To accomplish this irBonhyDate, for example,

required re-coding dates to reflect only the birth year. Even after generalizing over a 12 month window,
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the values of 8% of the voters still did not meet the requirement so these voters were dropped from the
released data.

In addition to an overall anonymity level, the data holder also provides a profile of the needs of
the person who is to receive the data by specifying for each attribute that is to be in the release whether
the recipient could have or would use information external to the database that includes data within that
attribute. That is, the data holder estimates on which attributes the recipient might link outside
knowledge. Thus, each attribute has associated with it a profile value between 0 and 1, where O
represents full trust of the recipient or no concern over the sensitivity of the information within the
attribute, and 1 represents full distrust of the recipient or maximum concern over the sensitivity of the
attribute’s contents. Semantically related attributes that are sensitive to linking, with the exception of
one-to-one replacement attributes, are treated as a single concatenated attribute (a quasi-identifier) that
must meet the minimurk requirement, thereby thwarting linking attempts that use combinations of
attributes. The role of these profiles is to help select which attribute within the quasi-identifier will be
selected for generalization. If all attributes in the quasi-identifier have the same value, then the attribute

having the greatest number of distinct values will be generalized.

Consider the profiles of a doctor caring for a patient, a clinical researcher studying risk factors
for heart disease, and a health economist assessing the admitting patterns of physicians. Clearly, these
profiles are all different. Their selection and specificity of attributes are different; their sources of
outside information on which they could link are different; and their uses for the data are different. From
publicly available birth certificates, driver license, and local census databases, the birth dates, ZIP codes
and gender of individuals are commonly available along with their corresponding names and addresses;
so these attributes could easily be used for re-identification. Depending on the recipient, other attributes
may be even more useful. If the recipient is the patient’s caretaker within the institution, the patient has
agreed to release this information to the care-taker, so the profile for these attributes should be set to 0 to

give the patient’s caretaker full access to the original information.

When researchers and administrators make requests that require less specific information than
that originally provided within sensitive attributes, the corresponding profile values should warrant a
number as close to 1 as possible, but not so much so that the resulting generalizations provide useless

data to the recipient. But researchers or administrators bound by contractual and legal constraints that
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prohibit their linking of the data are trusted, so if they make a request that includes sensitive attributes,

the profile values would ensure that each sensitive attribute adheres only to the minimum k requirement.

The goal is to provide the most general data that are acceptably specific to the recipient. Since
the profile values are set independently for each attribute, particular attributes that are important to the
recipient can result in less generalization than other requested attributes in an attempt to maintain the
usefulness of the data. A profile for data being released for public use, however, should be 1 for all
sensitive attributes to ensure maximum protection. The purpose of the profiles are to quantify the
specificity required in each attribute and to identify attributes that are candidates for linking; and in so
doing, the profiles identify the associated risk to patient confidentiality for each release of data.

Using a pediatric medical record system [92] consisting of 300 patient records with 7617 visits
and 285 attributes stored in over 12 relational database tables, | conducted test in which the Datafly
System processed al queries to the database over a spectrum of recipient profiles and anonymity levels
to show that all attributes in medical records can be meaningfully generalized as needed because any
attribute can be a candidate for linking. Of course, which attributes are most important to protect
depends on the recipient. Attention was paid primarily to attributes commonly exported to government
agencies, researchers and consultants. Diagnosis codes have generalizations using the International
Classification of Disease (ICD-9) hierarchy (or other useful semantic groupings). Geographic
replacements for states or ZIP codes generalize to use regions and population size. Continuous variables,
such as dollar amounts and clinical measurements, can be converted to discrete values. Replacement
values must be based on meaningful subdivisions of values; and, replacement need only be done in cases

where the attributes are candidates for linking.

In the real-world example mentioned earlier on page 50, the Group Insurance Commission in
Massachusetts (GIC) collected patient-specific data with amost 100 attributes of information per
physician visit for a population of more than 135,000 state employees, their families and retirees. In a
public hearing, GIC reported giving a copy of the data to a researcher, who in turn stated that she did not
need the full date of birth, just the birth year [93]. The average value of k based only on {birth date,
gender} for that population is 3, but had the researcher received only {year of birth, gender}, the average
value of k would have increased to 1125. Furnishing the most general information the recipient can use

minimizes unnecessary risk to patient confidentiality.
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6.2 Abstract of the Datafly algorithm

Here is a summary of the setting in which the core Datafly algorithm operates. The data holder
provides an overall anonymity level (A), which isavalue between 0 and 1. The data holder also provides
a profile of the recipient by providing a linking likelihood (Ps) for each attribute that is aso a value
between 0 and 1. Based on these values an overall value for k is computed and quasi-identifier(s) are
determined. For example, subsets of attributes where P=1 are treated as one concatenated attribute, or
quasi-identifier, which must satisfy a k-anonymity requirement. Each attribute has a replacement
algorithm that either uses equivalence class substitution, such as SSNs, or generalization based on a
domain generalization hierarchy specific to that attribute. Datafly also has a specia facility for cases
involving multiple tuples attributable to the same person because the number of occurrences and other
information contained in the tuples, such as relative dates, can combine to reveal sensitive information.
For simplicity however, | will remove many of these finer features of the Datafly System from my
analysis of the underlying algorithm, with no loss of overall characterization. | describe the core Datafly
algorithm as working with a quasi-identifier and a k-anonymity requirement that is to be enforced on the
quasi-identifier. For convenience, | consider all attributes of the quasi-identifier as having equal weights
(specifically, P=1 for each attribute of the quasi-identifier), so they can be considered as not having

weights at all; and, | address only generalizable attributes of the quasi-identifier in isolation.
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CoreDatafly Algorithm

Input: Private Table PT; quasi-identifier QI = (A, ..., Ay), k-anonymity constraint; domain
generalization hierarchiddGH,;, wherei=1,... n with accompanying functiorfg, and
loss, which is a limit on the percentage of tuples that can be suppre3gedl.is the set
of unique identifiers (key) for each tuple.

Output: MGT a generalization d®T[QI] that enforce&-anonymity

Assumes: IPT 2k, andloss* |PT| =k

algorithm Datafly:

I/ Construct a frequency list containing unique sequences of values across the quasi-identifier in PT,

/I along with the number of occurrences of each sequence.

1. let freq be an expandable and collapsible Vector with no elements initially.Each element is of
form (QI, frequency, SD), whereSID = {id; : ([id]JPT[id]U t[id]=id}; and, frequency = |[SID|.
Thereforefreq is also accessible as a table o\@¥, frequency, SD).

2. let pos < O,total < O

3. while total# |PT|do
5.1 freq[pos] « (t[QI], occurs, D)

wherg QIJUPTIQI], (t[(QI].__, ___ ) freq; occurs = PT| - PT[QI] - {t[QI]}I;
an8iD = {id, : ([id]OPT[id]O t[id]=id}
5.2 pos — pos+ 1,total — total + occurs

I/l Make a solution by generalizing the attribute with the most number of distinct values

/I and suppressing no more than the allowed number of tuples.

6. let belowk — O

7. for pos < 1to [freq|do
7.1 (__,count) « freq[pos|
7.2 if count <kthen do

7.2.1 belowk — belowk + count

8. if belowk > kthen do: /I Note. loss* |PT| = k
8.1freq ~ generalize(freq)
8.2gotostep4

9. elsedo

I assert: the number of tuplesto suppressin freqis <loss* |PT]|
9.1freq ~ suppress(freq, belowk)

9.2 MGT - reconstruct(freq)

10. return MGT.

Figure 39 Core Datafly algorithm
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Datafly generalize Algorithm
/I This algorithm identifies the attribute within the quasi-identifier having the most number of distinct
I/ valuesin the tuples stored in freq and then generalizes those values in freq. Generalization is
/I enforced at the attribute level, so all the values associated with an attribute are in the same domain.
1 letmax —~ O
2. for eachalQl do:
2.1 let values ~ [0
2.2 for pos — 1to [freq|do:
221 (t,__,_ )  freq[pos|
222 values — valuesU { t[a] }
/I assert: values contains set of values assigned to attribute ain the tuples of freq
2.3 if max < |values|then do:
231 max « |values|
232 attr — a
Il assert: attr is the attribute of QI having the most number of distinct values (max) in the tuples of freq
3. let V beafrequency list of the same type asfreq. V initially has no elements.
4. if max=1then do:
4.1 haltonerror /I |PT|<k
Il generalize values assigned to attr
5. for pos — 1to [freqg|do:
5.1 ([Vat, ..., Var], count, sid) — freq[pos]
5.2 if attr =a; then do
521 V ~ VectorAdd(V, [faur(Vas),.-.,Van], count, sid)
5.3 else if attr = a, then do:
5.3.1 V ~ VectorAdd(V, [Vay,-...far(Van)], count, sid)
5.4 elseV ~ VectorAdd(V, [Va,... fatr(Vatr), - .-, Van], COUNt, sid)
6. freq -« V
7. return freq

Figure 40 generalize(), supporting method for core Datafly algorithm

Datafly Vector Add Algorithm
Input: V, t, occurs, sid
Output: Updates and returng a frequency list
Il This method adds the tuples associated with (t,occurssid) to V avoiding duplication
algorithm Vector Add:
1. for pos ~ 1to |[V|do:
1.1.let (t5, occursy, sid;) « V[pos]
1.2.if t; =tthen do:
1.2.1. V[pos] — (t, occurs+ occurs,, sid; [1 sid)
1.2.2. returnV
2. V[post+l] ~ (t, occurs, sid) // add to end
3. returnV

Figure 41 Datafly Vector Add algorithm
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algorithm suppress(freq, belowk):
/I This algorithm suppresses the tuples within freq that do not satisfy the k requirement; these
// should total belowk number of tuples.
/I Assume freq has no more than loss * |PT| tuplesto suppress, and loss* |PT| = k.
1. let smallest — |PT|
2. for pos ~ 1to [freq|do:
2.1 (t, count,_ ) ~ freg[pos]|
2.2 if count < kthen do:
221 freq[pos] « (null,count,_ )
where nul | isthe suppressed values for the tuple
2.2.2. belowk — belowk — count
2.3 else do:
2.3.1 if count <smallest then do:
2.3.1.1 smallest — count
3 if (belowk > 0)and (belowk <Kk) then do: // Note. loss* |PT| = k, belowk <k
3.1 ¢, count,_ ) ~ freq[smallest]
3.2 if (count —belowk) = kthen do:
3.2.1 freq[post+1] « (t, count-belowk, )
3.2.2 freq[smallest] « (nul | , belowk, )
3.3 else do:
3.3.1 freq[smallest] — (nul |, count, )
4 return freq

algorithm reconstruct(freq):
/I This algorithm produces a table based on the tuples within freq and their reported frequencies.
l.letT « O /I Tisatableand soitisa multiset, which maintains duplicates
3. for pos ~ 1to [freg|do:

4.1 ¢, count,sid) — freq[pos]

4.2 for each idlJ sid do:

421 T « T0O{tQI id]}

5 returnT

Figure 42 suppress() and reconstruct(), supporting methods for core Datafly algorithm

Figure 39 lists the core Datafly algorithm. It contains only a few major steps. Step 1 through step

3 construct a frequency list containing unique sequences of values across the quasi-ideffifier in

along with the number of occurrences of each sequence. The frequenéediststores the result.

Therefore, each tuple fineq is uniqgue andieq| < |PT|. Thegeneralize() method of sub-step 6.1 is listed

in Figure 40. It uses a heuristic to guide its generalization strategy. Specifically, the attribute having the
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most number of distinct values in the tuples stored in freq is selected. All the values associated with that

attribute are generalized, enforcing generalization at the attribute level.

Step 7 assumes that the number of tuples to suppressis less than or equal toloss * |PT|. That is,
the frequencies associated with tuplesin freq that are less than k, together total no more than loss * |PT].
The suppress() method in sub-step 7.1 can be found in Figure 42. It traverses through the tuples of freq
replacing the tuples whose frequencies are less than k with suppressed values for all the attributes of
those tuples, thereby suppressing those tuples. Suppression is enforced at the tuple-level. Complimentary
suppression is performed so that the number of suppressed tuples adheres to the k requirement. The
reconstruct() method in sub-step 7.2 can also be found in Figure 42. It produces a table, which becomes
MGT, based on freq. Specifically, the values stored for each tuple in freq appear in MGT asthey do in
freq and arereplicated in MGT based on the stored frequency. Therefore, |PT| = [MGT].

While the core Datafly algorithm is a simplification of the Datafly system that works only across
the attributes of the quasi-identifier QlI, it can be extended easily to have the generalized table include
attributes not in the quasi-identifier. This can be done by assigning a unique identifier to each tuplein PT
and then storing along with each tuple in freq, the unique identifiers of the corresponding tuplesin PT.
The unique identifiers are stored in freq but are not modified or included in step 1 through step 7.1 of the
core Datafly algorithm. The reconstruct() method in sub-step 7.2 however, is modified to link each tuple
from freq to corresponding tuplesin PT using the unique identifiers and thereby expand the tuples stored
in T to include the additional unchanged attributes of PT that do not belong to QI.

Race |BirthDate |Gender |ZIP  |[Problem
black [1965 male 02141 |short of breath
black [1965 male 02141 |chest pain
black [1965 female |02138 |painful eye
black [1965 female [02138 |wheezing
black [1964 female |02138 |obesity
black [1964 female 02138 |chest pain
white 1964 male 02139 |obesity
white 1964 male 02139 |fever
white  |1967 male 02138 |vomiting
white {1967 male 02138 |back pain

Figure 43 Table MGT resulting from Datafly, k=2, QI={Race, Birthdate, Gender, ZI P}
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Example.

The private table PT shown in Figure 34 includes unique labels, t1 through t12, associated with
each tuple. These labels are useful for linking the Datafly generalization to the original table.
Given PT and the domain generalization hierarchies based on the depictions in Figure 33 (on
page 101), the core Datafly algorithm provides the table MGT, as shown in Figure 43, as a
generdization of PT over the quasi-identifier QI = {Race, BirthDate, Gender, ZIP} with no
more than loss= k/|PT|, which is 2/12 (or 17%) of the tuples of PT suppressed. MGT adheresto a
k-anonymity requirement of k=2. Here is a walk through the Datafly algorithm as it constructs
MGT.

Figure 44 shows the contents of freq after step 3 of the core Datafly agorithm, before any
generaization is performed. The sequences of values, considered as a unit acrossQl in freq, are
each unique. The numbers appearing below each column in the tabular view of the attributes of
QI in freq report the number of distinct values found in each attribute of QI in freq. For
example, there are 2 distinct values, namely "black" and "white" associated with the attribute
Race; there are 12 distinct values associated with BirthDate; 2 with Gender; and, 3 with ZIP.

In Figure 44, the BirthDate attribute has the largest number of distinct values (12) of any
attribute of QI in freq; so, at sub-step 6.1, the generalize() method re-codes those values to
month and year of birth in accordance with the domain generalization hierarchy associated with
BirthDate. On the second iteration of steps 4 through 6, the BirthDate attribute again has the
largest number of distinct values (12) of any attribute of QI in freq; so again, these values are
recoded. This time values associated with BirthDate report only the year of birth, as shown in
Figure 45. The two tuples identified as t7 and t8 in Figure 45 do not occur k times (only once
each). In order for this generalization to be a solution, these two tuples in freq would have to be
suppressed. That would be 2/12 (or 17%) of the tuples in PT, which is in accordance with the
alowable loss of tuples due to suppression (based on loss). Therefore, a solution isfound. Figure
43 shows the final result.

117



Computational Disclosure Control 01/08/01 8:22 AM

Race |BirthDate |Gender |ZIP |#occurs
black 9/20/65|male 02141

[N

1

black 2/14/65|male 02141 1 2
black 10/23/65|female {02138 1 t3
black 8/24/65|female 02138 1 t4
black 11/7/64|female 02138 1 t5
black 12/1/64|female 02138 1 t6
white 10/23/64|male 02138 1 t7
white 3/15/65|female 02139 1 t8
white 8/13/64[male 02139 1 t9
white 5/5/64|male 02139 1 t10
white 2/13/67|male 02138 1 t11
white 3/21/67|male 02138 1 t12
2 12 2 3

Figure 44 freq at an inter mediate stage of the core Datafly algorithm

Race |BirthDate |Gender |ZIP #occurs
black 1965 male 02141 2 1,12
black [1965 female 02138 2 t3, t4
black 1964 female [02138 2 t5, t6
white (1964 male 02138 1 t7
white [1965 female 02139 1 8
white (1964 male 02139 2 19, t10
white [1967 male 02138 2 t11, t12
2 3 2 3

Figure 45 freq at another intermediate stage of the core Datafly algorithm

6.3 Comparison to MinGen

A comparison to MinGen [94] requires examining: (1) the computational complexity of the
algorithm to ensure it operates in reasonable time; (2) the correctness of the algorithm in terms of k-
anonymity protection; and, (3) whether the algorithm distorts minimally. These are discussed in the

following subsections.

6.3.1 Complexity of the core Datafly algorithm

The core Datafly algorithm listed in Figure 39 with supporting methods in Figure 40 and Figure
42 was not written as efficiently as possible. Nevertheless, here is a walk through the algorithm noting
the computational complexity of each part. Its computational complexity is governed by step 4 through
step 6 of the core Datafly algorithm. In the worst case, where |freq| = [PT| on the first iteration, step 5
executes |PT| times on the first iteration and fractions of |PT| on subsequent iterations. The construction
of a frequency list requires visiting each element of a frequency list and if changes are made due to
generadization, the element is removed and then the modified element added. In order to avoid

duplication of elementsin a frequency list, all elementsin the frequency list are compared to the element
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that is to be inserted. If the elements of freq were stored in a binary tree, then such a comparison could
be done in log([freq|) time. In the worst case, [freq| = |PT|; in al cases, [freq| < |PT|. Similarly, in this
case, step 6 executes the generalize() method in O( |QI| ¢ |PT]| log |PT]|), if freq was stored as a binary
tree, or O( |QI| » [PTJ) as the methods are written. The outer loop from step 4 through step 6 executes

Tl
Z |DGH Ai| times in its worst case, which requires each attribute to generalize one step at atime to its
1=

maximal element. So, the overal complexity for the core Datafly agorithm in genera is

%| DGHAI|%|PT|E In most databases, [QI| << |PT| and |§||DGHN| << [PT]|. So, the overall

complexity for the core Datafly algorithm in general is O( |QI|  |PT| log |PT]), if freq was stored as a
binary tree, or O( |QI| + |PT[?) as the methods are written. In comparison to the computational complexity

of MinGen [95] and Equation 1 (on page 87), the computational complexity of the core Datafly
algorithm is practical but not extremely fast.

6.3.2 Correctness of the core Datafly algorithm

The correctness of the core Datafly algorithm relies on its ability to produce solutions that adhere
to a given k-anonymity requirement, assuming of course a proper quasi-identifier and a proper value for k
have been provided. In this subsection, | will show that the core Datafly algorithm provides solutions that

correctly adhere to a given k-anonymity regquirement.

The enforcement of a k-anonymity requirement is based on step 5, step 6 and step 7 of the core
Datafly algorithm. At the conclusion of step 5, the following assertion is true: belowk stores the total
number of tuples not adhering to the k-anonymity requirement. Assume loss has not been inflated. Its
minimal required value, based on the stated assumptions by the algorithm, isloss* |PT| = k. Then, step 6
executes in all cases where belowk > k, and iteratively generates attributes until belowk < k. The
convergence is assured by the singleton maxima element constraint on each domain generalization
hierarchy [96]. Therefore, step 7 executes only if belowk < k. Sub-step 7.1 executes the suppress()

method. There are two cases to consider — namely, wheibelowk = k and wherbelowk < k.
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Case 1. If belowk = k, step 2 of the suppress() method will provide suppressed values in freq for
what corresponds to k tuples in the final table, and these tuples are exactly those tuples for which belowk
corresponds — i.e., the tuples that do not adheré&-&monymity.

Case 2. Ifbelowk < k, step 2 of thesuppress() method behaves as described in case 1 above,
except the tuples with suppressed valuelgdqg will themselves not totat occurrences. Therefore, the
suppressed tuples do not themselves adhdranonymity. In this case, additional tuples are suppressed
so that the total number of suppressed tuples adhere keattemymity requirement. The tuples selected
for such complementary suppression come from tupléseinthat already adhere to ttkeanonymity
requirement. In thesuppress() method listed in Figure 42, a tuple ireq which adheres to thi-
anonymity requirement and has the fewest number of occurrences in the resulting table is selected. It's
position infreq is denoted bygmallest. [In the full-blown version of the Datafly System, the data holder
selects whether a tuple with the fewest, or with the most number of occurrences is used.] In an effort to
minimize the suppression, fieq[smallest] has at least + (k-belowk) occurrences, then onli-belowk)
occurrences are suppressed. All tuples in the resulting table therefore, have latnéasinguishable

tuples occurring ove®l.

6.3.3 Summary data attack thwarted by the core Datafly algorithm

The enforcement of thk-anonymity requirement even on suppressed tuples protects Datafly
from an inference attack based on summary data. If the frequencies of values contained within the
privately held information are released separately for each attribute, which is often the case in statistical
reports and summary data, then this information can be used to infer suppressed values if the suppressed

values themselves do not adhere toka@onymity requirement imposed on the other released values.

Example.

Summary data for the privately held informat@h in Figure 34 is shown in Figure 46. Suppose
table T in Figure 47 was released as a generalizatio®fthat satisfied a-anonymity
requirement wherk=2 over the quasi-identifi€pl={ Race, BirthDate, Gender, ZIP}. Except for

the single suppressed tupkeanonymity is satisfied for all the other tuples. However, using the
summary data, the missing tuple can be inferred exactly. To combat this probleR, the
anonymity requirement must be satisfied on all values, including suppressed ones. The Datafly

solution shown in Figure 43 does not have this problem.
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Race Frequency
black 6
white 6
BirthYear
1964 5
1965 5
1967 2
Gender
male 6
female 6
Problems
back pain 1
chest pain 2
fever 1
hypertension 1
obesity 2
painful eye 1
short of breath 2
vomiting 1
wheezing 1

Figure 46 Summary data for PT in Figure 34

Race |BirthDate |Gender |ZIP  |Problem
black [1965 male 0214* [short of breath
black |1965 male 0214* [chest pain
black |1965 female [0213* |painful eye
black |1965 female [0213* |wheezing
black [1964 female [0213* |obesity

black |1964 female [0213* |chest pain
white (1964 male 0213* [short of breath
white |1964 male 0213* |obesity

white |1964 male 0213* |fever

white (1967 male 0213* |vomiting
white (1967 male 0213* [back pain

Figure 47 Generalization of PT in Figure 34

6.3.4 Distortion and the core Datafly algorithm

In terms of assessing the quality of generalized data that adhere to a k-anonymity requirement, it
is important to note whether: (1) the resulting data are minimally generalized — i.e., not a generalization
of another generalization that satisfies the sk@eonymity requirement; and, (2) the data are minimally
distorted — i.e., of all minimal generalizations that satisfykda@onymity requirement, none have more
precision retained in the data. In this subsection | will show that the core Datafly algorithm does not
necessarily provide minimally generalized solutions or minimally distorted ones, even though its

solutions do adhere tokeanonymity requirement.

121



Computational Disclosure Control 01/08/01 8:22 AM

One of the problems is that Datafly makes crude decisions — generalizing all values associated
with an attribute or suppressing all values within a tuple. Algorithms that make decisions at the cell-level
can potentially provide better results.

Example.

Given the privately held informatioAT in Figure 34, the Figure 43 provides taM&T, where
Datafly(PT)=MGT for k=2, quasi-identifier QI={Race, BirthDate, Gender, ZIP}, and
Oi=1,...,RI|, DGH, are domain generalization hierarchies based on the depictions in Figure 33.
The precisionPrec(MGT) with respect tdGH,; is 0.750. In comparison, Figure 35 provides
GT1, where MinGer®T)=GT1. It is a k-minimal distortion of PT over QI with respect to
DGH,i wherePrec(GT1)=0.83. The MinGen result therefore has less distortion based on cell-

level generalization and suppression.

Another problem is the heuristic that guides the core Datafly algorithm's selection of which
attribute to generalize. The approach of selecting the attribute with the greater number of distinct values,
as is done in thegeneralize() method, may be computationally efficient, but can easily lead to
unnecessary generalization. Any attribute that is not in the domain of its maximal element could be
selected for generalization, though some choices are better than others. The heuristic used in the core
Datafly algorithm makes the assumption that having more distinct values associated with an attribute in a
table is a perfect predictor of the distance between tuples and of the optimal generalization strategy [97].
Neither of these assumptions is valid. As a result, the core Datafly algorithm can provide more
generalization than is needed.

Example.

Given the privately held informatioRT and the generalizations 8T namedGT 1,0, GT1,1,

GToz andGTqy in Figure 27, GTyy g, GTp,y andGT g 5 all satisfy ak-anonymity requirement

where k=3, the quasi-identifier iQI={Ethnicity, ZIP}, and whereli=1,...,Rl|, DGH, are

domain generalization hierarchies based on the depictiokggime 26 but where a domain
containing the single suppressed value has been affixed atop each. The first iteration of the core
Datafly algorithm would provid&To,; because there are 3 distinct valuesEtmicity and 4

distinct values foZIP in PT. However,GTp ;) does not satisfy theanonymity requirement, so
another iteration occurs. There are 3 distinct value&tfaricity and 2 distinct values f&iP in

GTo,, SO0 GTpy) emerges as the Datafly solution. This table does satisfyk-treonymity

122



Computational Disclosure Control 01/08/01 8:22 AM

requirement. However, GTq also sdtisfies the k-anonymity requirement and it has less
generalization. In fact, GTy o < Datafly(PT)=GTy 1.

6.4 Datafly asan anonymous data system

Datafly uses the following disclosure limitation techniques: de-identification, equivalence class
substitution, generalization, and suppression. Below is a description of the framework in which Datafly
operates.

S = {subjects whose information isincluded in PT}

P = set of all people whose information could possibly bein PT

PT = privately held information about S

QI = set of attributes with replicationsin E

U = { existence of people implied by equivalence class assignments} /7P
RT = Datafly(PT)

E = set of publicly available information in today’s society

G = set of standard communication methods.

f = Datafly System

Thesystem A(S, P, PT, Ql, U, {RT}, E, G, Datafly) isan ADS,

Informal proof.

If QI contains all attributes replicated in E, A adheres to k-map protection, where k is enforced
on RT. That is, for each value of QI released in RT, there are at |least k tuples having that value,
including suppressed tuples; for completeness, see earlier discussion [98].

So, A isan ADS,

Datafly is an ADS, in cases where the quasi-identifier is correctly chosen because in those cases
each tuple released by Datafly will indistinctly map to at least k entities.

6.5 Futurework

1. The core Datafly algorithm does not typically provide k-minimal generalizations[99]. Revise

the core Datafly algorithm, or construct a similar algorithm, that makes decisions based on
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enforcing generalization at the attribute level and suppression at the tuple level and that

operates in real-time, yet provides k-minimal generalizations.

2. Similar to the item above, revise the core Datafly algorithm, or construct a similar algorithm,
that makes decisions based on enforcing generalization at the attribute level and suppression
at the tuple level and that operates in rea-time, yet provides k-minimal distortions [100]
based on a precision metric [101] specific to attribute level generalization and tuple level

suppression.

3. The core Datafly algorithm relies on a heuristic to guide its generalization strategy. This
heuristic selects the attribute of the quasi identifier having the greater number of distinct
values in the modified table as the attribute to generalize. Aswas discussed earlier [102], this
heuristic is computationally efficient but provides no protection against unnecessary
generdization. There are many other heuristics that are just as computationally efficient.
Perform an analysis that compares a set of such heuristics (including the random selection of
an attribute) to optimal results. A nearest neighbor strategy based on distance vectors is used
in the k-similar algorithm, which appears in a subsequent chapter [103]; perhaps it could be
adapted to attribute-level generalization and tuple-level suppression.

4. The core Datafly algorithm presented in Figure 39 was not written to be as computationally
efficient as possible. For example, given a private table PT, the original Datafly system
could operate in O( |PT| log [PT| ) time. Examine the core Datafly algorithm and its
supporting algorithms and improve their computational complexity or prove the minimum
complexity required for this approach. Examine and describe best case, worst case and

general case scenarios.
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Chapter 7 Results: p-Argus

In 1996, The European Union began funding an effort that involves statistical offices and
universities from the Netherlands, Italy and the United Kingdom. The main objective of this project isto
develop specialized software for disclosing public-use data such that the identity of any individual
contained in the released data cannot be recognized. Statistics Netherlands has already produced a first
version of a program named p-Argus that seeks to accomplish this goal [104]. The p-Argus program is
considered by many as the official confidentiality software of the European community. A presentation
of the concepts on which p-Argus is based can be found in Willenborg and De Waal [105]. p-Argus is
surprisingly similar to my Datafly system even though the systems were developed at roughly the same
time with no prior knowledge of each other and the systems are from different academic traditions. In

comparison, as you will see, Datafly tends to over-distort data while p-Argus tends to under-protect data.

7.1 Overview of the p-Argus System

The program p-Argus, like the Datafly System, provides protection by enforcing a k requirement
on the values found in a quasi-identifier. It generalizes values within attributes as needed, and removes
extreme outlier information from the released data. The data holder provides a value of k and specifies
which attributes are sensitive by assigning a value to each attribute between 0 and 3 denoting "not
identifying," "most identifying,” "more identifying," and "identifying," respectively. The program then
identifies rare and therefore unsafe combinations by testing some 2- or 3-combinations of attributes
declared to be sensitive. Unsafe combinations are eliminated by generalizing attributes within the
combination and by local cell suppression. Rather than removing entire tuples when one or more
attributes contain outlier information as is done in the Datafly System, the p-Argus System simply
suppresses or blanks out the outlier values at the cell-level. The resulting data typically contain all the

tuples and attributes of the original data, though values may be missing in some cell locations.

Each unique combination of values found within sensitive attributes constitutes a bin. When the
number of occurrences of such a combination is less than the minimum required bin size (also known as
a k requirement), the combination is considered unique and termed an outlier. Clearly for all

combinations that include unique identifiers like Social Security humbers, all such combinations are
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unique. Values associated with outliers must be generalized or one value from each outlier combination
must be suppressed. For optimal results when suppression is performed, the program should suppress

values that occur in multiple outliers giving precedence to the value occurring most often.

The responsibility of when to generalize and when to suppress lies with the data holder. For this
reason, the p-Argus program operates in an interactive mode so the data holder can see the effect of
generalizing and can then select to undo the step. Once a data holder decides to suppress, the selection
of which cells require suppression is performed automatically by the program. Thisisin sharp contrast to
Datafly, which automatically produces a complete solution based on data holder specifications. In p-
Argus, a data holder is not even notified whether a current solution satisfies a k requirement across the
quasi-identifier, so the data holder can easily continue and overly distort data or stop prematurely and
under protect data. In addition, there are many possible ways a data holder could rank identifying
attributes, and unfortunately different identification ratings typically yield drastically different results.
So, ratings and results reported on p-Argus in this book are based on the most secure possible using the
H-Argus program and therefore, reported use of p-Argus assumes an extremely knowledgeable data

holder.

p-Argus only uses attribute-level generalization and cell-level suppression. Equivalence class
substitution is not provided, as was with Datafly, so the ability to link data across tables to the same
person is lost without consistent replacement of identifiers, which provide such links. In fairness to p-

Argus, the current version does not work across multiple tables and as a result it does not take into
account many related issues including facilities for longitudinal studies, analysis of the number of

records per person, etc, but future versions may do so.

7.2 Abstract of the u-Argus System

| have not found an algorithmic description of p-Argus in conversation with or in publication by
Statistics Netherlands or any other party. Textbook descriptions of how generalization, which they term
re-coding, and cell suppression work, as well as instructions and examples of the use of p-Argus, and a
copy of the software were graciously provided by Statistics Netherlands. From these, | have reverse
engineered -Argus and produced the p-Argus algorithm shown in Figure 50 with supporting methods

found in Figure 51 through Figure 62. By "reverse engineering”, | mean that the names of methods and
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implementation specifics reported in Figure 50 through Figure 62 are created by me in such a way that
the overall behavior of each phase of the program agrees, except where noted, with the actual p-Argus
program when provided the same information. The primary phases of the pu-Argus algorithm are provided
in Figure 48. During this process of reverse engineering and construction of the algorithm, several
shortcomings of the actual p-Argus implementation were found and are discussed. So in redlity, the p-
Argus agorithm | provide in Figure 50 and supporting methods generates solutions that are better

protected than those released by the actual program.

Primary phases in the p-Argus algorithm are as follows:

A. Automatically generalize each attribute independently until it
adheresto k.

B. Automatically test 2- and 3- combinations of attributes and
note outliers.

C. Dataholder decides whether to generalize an attribute and if
so, identifies the attribute to generalize.

D. Repeat steps B and C until data holder has no more attributes
to generaize.

E. Automatically suppress values that occur in multiple outliers,
where precedence is given to the value occurring most often.

Figure 48 Primary phases of p-Argusalgorithm

The basic phases of the p-Argus algorithm are listed in Figure 48. The program begins in phase
A by automatically generalizing each attribute independently until each value associated with an attribute
appears at least k times. In phase B, the program then automatically tests combinations of attributes to
identify those combinations of attributes whose assigned values in combination do not appear at least k
times; such combinations of values are termed outliers. Afterwards, the data holder, in phase C, decides
whether to generalize an attribute and if so, identifies the attribute to generalize. Phases B and C repeat
until the data holder no longer selects an attribute to generalize. Finally, the program in phase E,
automatically suppresses values that occur in multiple outliers, where precedence is given to the value

occurring most often.
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One shortcoming of the actua p-Argus implementation appears in phase B in Figure 48.
Attributes considered sensitive or likely candidates for linking are rated as being either "most
identifying” (Most), "more identifying" (More), or "identifying (ldentifying) by the data holder. In
general, the p-Argus approach concerns examining 2- and 3- combinations across these classes of
attributes. However, pu-Argus does not actually test all 2- and 3- combinations. Figure 49 reports which
combinations p-Argus does and does not test. It is easy to envision situations in which unique

combinations appear in combinations not examined by p-Argus.

Combination p-Argus Tests
Identifying x Identifying x Identifying No
Identifying x Identifying x More No
Identifying x Identifying x Most No
Identifying x More x More No
Identifying x More x Most Yes

Identifying x Most x Most Yes

More x More x More No

More x More x Most only if |Identifying| > 1
Most x Most x More only if |Identifying| > 1
Most x Most x Most Yes

Identifying % Identifying No
Identifying x More Yes

I dentifying x Most Yes

More x More only if |Identifying| > 1
More x Most Yes

Most x Most Yes

Figure 49 Combinations of More, Most, I dentifying tested by p-Argus

Figure 49 shows there are 9 combinations involving each of the classes Most, More and
Identifying. However, p-Argus examines only 8 combinations involving Most, 6 involving More and 4
involving ldentifying. So, the sensitivity ranking assigned to an attribute by a data holder relates to the
number of combinations that are examined and that include the attribute. Even then however, not al
possible combinations are examined. If a class has no attributes, then any combination involving it is not
computed. In three cases, the size of Identifying determines whether combinations of attributes that do
not even include ldentifying are checked. For example, if only Most and More have attributes and
Identifying is empty, then only the combinations identified as More x Most and Most x Most x Most are

examined.
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Example.

Let Most = { SSN\}, Identifying = { Birthdate, Gender, ZIP} and More be empty. In this case, only
Identifying x Most 2-combinations are examined. Yet, 87% of the population of the United
Statesis considered uniquely identified by { Birthdate, Gender, ZIP}. [106]

Figure 50 contains my description of the p-Argus algorithm. Figure 51 through Figure 62

provide supporting methods. A description of the general operation of the algorithm and an example

using these algorithms are provided following the listings.
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p-Argus Algorithm
Input: Private Table PT; quasi-identifier QI = (A, ..., Ay), k-anonymity constrairit; domain
generalization hierarchiddGH,;, wherei=1,... n with accompanying functiorfg, and

Most, More andldentifying, which are disjoint sets of attributes over the quasi-identi
Ql.

Output: MT a generalization dPT[QI]

Assumes: Most, More andldentifying are disjoint divisions of the attributes over the quasi-

identifier Ql. That is,QI= Most [0 More [ Identifying andMost n More = [0 andMost
n ldentifying = O andMore n Identifying = 0. PT includes an attributel that serves a
a unique identifier (or key) for each tupleRi.
algorithm p-Argus:
I/l Construct a frequency list containing unique sequences of values across the quasi-identifier in PT,
// along with the number of occurrences of each sequence and the id's of the tuples having that sequence.
1. let freq be an expandable and collapsible Vector with no elements initially. Each element
the form QI, frequency, 9D, outliers), whereSD = {id, : [id]OPT[id] O t[id]=id}; frequency
= |9D|; and,outliers = 0. Thereforefreq is also accessible as a table ow@¥, frequency, SD,
outliers).
2. freq ~ freqSetup(freq, PT, QI)
Il generalize each attribute of QI to adhereto k
3. for each aQIl do:
3.1.letV be a frequency list of the same typdras
3.2.V — freqConstruct(a)
3.3. if fregMin(V) < kthen do:
3.3.1. freq ~ generalize(a)
3.3.2. goto step 3.2
Il check 2- and 3- combinations across Most, More, Identifying
4. CombinationTest(Most, More, Identifying)
5. ReportOutliers(freq) // show data holder outliers
6. while (data holder wants to generalize an attrilajtelo:
6.1.freq — generalize(a)
7. if (data holder is not doh¢hen do:
7.1.freq —~ ResetOutliers(freq)
7.2.go to step 4
/I suppress outliers and end
8. freq — SuppressOutliers(freq)
9. MT < reconstruct(freq)
10. return MT

fier

is of

Figure 50 p-Argus algorithm
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p-ArgusfregSetup Algorithm
Input: freq, PT, QI
Output: Updates and returns freq, afrequency list
/I This method constructs a frequency list from PT based on QI.
algorithm fregSetup:
1. letpos ~ 1,total — O
2. whiletota # |PT|do
2.1. freqg[pos] ~ (t[QI], occurs, sid, )
where t[QIIUPT[QI], (t[Ql],_)U freq,
occurs= |PT|- |PT[QI] — {t[QI}|
sid = {t[id] : t[QLid|OPT[QL,id]
2.2. pos — pos+ 1,total — total + occurs
3. return freq

Figure 51 p-ArgusfreqSetup algorithm

p-ArgusfregConstruct Algorithm

Input: A, ..., Ay, which is a list of one or more attributes and each such attribute is an ele
of Ql.

Output: V, a frequency list based éreq[A,,...,A].

Assumes: A,,...,A contains no duplicates and each is a member of QI and freq is available for use.

Il This algorithm constructs a frequency list from the tupldeeof over a subset of attributes @1.
algorithm freqConstruct:
1. letV beafrequency list of the sametype asfreq. V initialy has no elements.
2. for pos ~ 1to [freq| do:
1.1.(t, occurs sid, outliery ~ freq[pog
1.2.V ~VectorAdd(V, t[A,,...,A)], occurs, sid)
3. returnV

ment

Figure 52 p-ArgusfreqConstruct algorithm
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p-Argus Vector Add Algorithm
Input: V, t, occurs, sid
Output: Updates and returns V, afrequency list
I/ This method adds the tuples associated with (t,occurs,sid) to V avoiding duplication
algorithm Vector Add:
2. for pos ~ 1to |V|do:
3.4. let (ty, occursy, sidy, outliers;) — V[pos|
35.ift;=tthen do:
35.1. V[pos]  (t, occurs+ occursy, sid; O sid, )
35.2. returnV
4. V[post+l] ~ (t, occurs, sid, ) // add to end
5. returnV

Figure 53 p-Argus Vector Add algorithm

p-ArgusfregMin Algorithm
Input: V, afrequency list based on freq[A,,...,A].
Output: an integer reporting the smallest number of occursin V
/l This method returns the minimum number of occurrenc¥s in
algorithm fregMin:
1. letmin — |PT|
2. for pos« 1to |V|do:
1.1. (t, occurs sid, outlierg ~ V[poqg
1.2. if occurs< minthen do:
1.2.1. min ~ occurs
3. return min

Figure 54 p-ArgusfregMin algorithm
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p-Argus generalize Algorithm

Input: attr, which is an attribute of QI
Output: updates and returns freq
Assumes: freq and domain generalization hierarchy DGH,y, with accompanying function f, are

available for use; and attr JQI
/I This method generalizes all values associated with attr in freq.
algorithm generalize:
1. let V beafrequency list of the sametype as freq. V initially has no elements.
2. for pos ~ 1to |freq| do:
2.1.  ([Va,...,\n], OCcurs sid, outliery — freq[pog
2.2.  if Vg isnot maximal element of DGH,, then do:
2.2.1. if attr=g then do:
2.2.1.1. V < VectorAdd(V, [faur(Va1),....Van], OCCuUrs, sid, 00)
2.2.2. else if attr =a,then do:
2.2.21. V <« VectorAdd(V, [Vay,-..far(Van)], OCCUrs, sid, (1)

2.2.3. elsedo:
2.2.3.1. V <« VectorAdd(V, [Vay,--- fatr(Vawr)s ---Van], OCCUrS, sid, )
3. freq « V

4. return freq

Figure 55 pu-Argus generalize algorithm
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p-Argus CombinationTest Algorithm

Input: Most, More and Identifying, which are digjoint sets of attributes over the quasi-identifier
QL.

Output: Updates and returns outliers in freq.

Assumes: Most, More and Identifying are digjoint sets of attributes over the quasi-identifier QI.

Each cell of outliers isinitialized to 0 and outliers is available for use.
I/ This method computes 2- and 3- way combinations across Most, More, and Identifying.
I/ This method sel ects those combinations the actual p-Argus program would compute.

/I Noticeit isnot all 2- and 3- combinations.

algorithm CombinationT est:

1. if [Most|=0then return O

2. if [More| =0 and |ldentifying| = 0 then return O

I/l guarantee: [Most| =1

3. if [Most|= 3then do:
3.1 MarkOQutliers3(Most)  // Most x Most x Most

4. if [Most|= 2then do:
4.1 MarkOutliers2 (Most, 0)  // Most x Most
4.2 if |Identifying| = 1 and |More| = 1 then do:

42.1 MarkOutliers2 (Most, More)  // Most x Most x More

4.3 if |ldentifying| = 1 then do:

4.3.1 MarkOutliers2 (Most, Identifying)  // Most x Most x |dentifying

5. if [Morel= 2then do:
5.1 MarkOutliers (Most, More, 0)  // Most x More
5.2 if |Identifying| = 1 then do:
521 MarkOutliers2 (More, [0) // More x More
5.2.2 MarkOutliers2 (More, Most)  // More x Morex Most
6. if [Morel= 1 and |ldentifying| > 1 then do:

6.1 MarkOutliers (Most, More, Identifying)  // Most x Morex Identifying

6.2 MarkOutliers (More, Identifying, J)  // Morex Identifying
7. if |Identifying| = 1 then do:

7.1 MarkOutliers (Most, Identifying, )  // Mostx Identifying
8. return

Figure 56 p-Argus CombinationTest algorithm
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p-Argus MarkOutliers Algorithm

Input: S1, &, S3, which are subsets of QI
Output: Updates outliersin freq and returns updated freq
Assumes: S1, 2 and B are digjoint sets of attributes over the quasi-identifier QI and freq is

available for use.
I/ This method computes the sub-tables S1 x S2 x S3 and marks outliers
algorithm MarkOutliers:
1. fori ~1to |Ql|do:
1.1.forj — 1to |QI|do:
111 if a0Sland g0S2then do:
1111, if|S3|=0then do:
11111 V - freqConstruct(a;, &)
11112 freq « MarginalUpdate(V)
11.2. elsedo:
1121, fork — 1to |Ql|do:
1.1.2.1.1.1. if ad08then do:
1121111 V -~ freqConstruct(a;, a, a)
1121112 freq —~ MarginalUpdate(V)
2. return freq

Figure 57 p-Argus MarkOutliersalgorithm

p-Argus MarkOutliers2 Algorithm

Input: S1, S3, which are subsets of QI

Output: Updates outliersin freq and returns updated freq

Assumes: S1, 3 are digjoint sets of attributes over the quasi-identifier QI and freq is available for
use.

I/ This method computes the sub-tables S1 x S1 x S3 and marks outliers
algorithm MarkOutliers2:
1. fori-1to |Ql|ldo:
1.1.forj « i+1lto |Ql|do:
1.2.2. if a0Sl and a0Sl then do:
1.2.2.1.if |S3|=0then do:
12211 V - freqConstruct(a;, &)
12212 freq « MarginalUpdate(V)
1.2.2.2. else do:
12221 fork ~ 1to |Ql|do:
122211 if adBthen do:
1222111 V -~ freqConstruct(a;, a, a)
1222112, freq — MarginalUpdate(V)
2.return freq

Figure 58 u-Argus MarkOutliers2 algorithm
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p-Argus MarkOutliers3 Algorithm

Input: Sl1, which is asubset of QI.
Output: Updates outliersin freq and returns updated freq
Assumes: Sl isanon-empty subset of QI and freq is available for use.

I/ This method computes the sub-tables S1 x S1 x S1 and marks outliers
algorithm MarkOutliers3:
1. fori ~1to |Ql|do:
a forj — i+1lto |Qljdo:
i. fork — j+1to|Ql|ldo:
1 if &[Sl and g]S1 and a,[1S1 then do:
a V — freqConstruct(a;, a, a)
b. freq — MarginalUpdate(V)
4. return freq

Figure 59 p-Argus MarkOutliers3 algorithm

p-Argus MarginalUpdate Algorithm

Input: V, which is afrequency list based on freq[A,...,A], and A, which isaset of attributes
where each attribute is a member of QI.

Output: Updates outliers in freq and returns the updated freq.

Assumes Aisanon-empty subset of QI and freq is available for use.

I/l This method recordasutliers by storing the combination of attributes) (known not to adhere to

/l'in freq.

algorithm MarginalUpdate:
1. forpos< 1lto |V|do:
1.1. (t, occurs sid, outlierg ~ V[pog
1.2. if occurs< kthen do:
1.2.1. for posg ~ 1lto |freq| do:
1.2.1.1.  let (1, occurs, sidy, outliers) — freq[pos]
1.2.1.2. if |sidin sid = 1then do:
1.2.1.2.1. outliers; « outliers; O {A}
1.2.1.2.2. freq[pos] ~ (t;, occurs, sid;, outliers)
2. return freq

Figure 60 p-Argus M ar ginalUpdate algorithm
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p-ArgusresetOutliers Algorithm
Input: freq
Output: updates and returns freq
/I Thismethod sets all outliersin freq to the empty set.
algorithm resetOutliers:
1. for pos —~ 1to |V|do:
1.1. (t, occurs, sid, outliers) — V[pog|
1.2. V[pos] - (t, occurs, sid, L))
2. return freq

Figure 61 p-ArgusresetOutliersalgorithm

H-Argus SuppressOutliers Algorithm
Input: freq
Output: Updates and returns freq.
/I This method suppresses one value of each combination known to be an outlier in a tuple.
algorithm SuppressOutliers:
1. for pos ~ 1to |[freq| do:
1.1. ([Va,---,\n], OCcurs sid, outliery ~ freq[pog
1.2. if occurs< kthen do:
1.2.1. while |outlierd >0do: // actual~Argus program does not exhaust outliers
1.21.1. letmax— 0
1.2.1.2. fori « 1to|Qljdo:
1.2.1.21. lettotal - O
1.2.1.2.2. for each sOoutliersdo:
1.2.1.2.2.1. if a0sthen do:
121.221.1. total — total+1
1.2.1.2.3. if total> maxthen do:
1.2.1.231. max - total
1.21.2.32. attr — g
/I attr is most frequent attribute wutliers
1.2.1.3. outliers « { s;: sdoutliers attrO s}
1.2.1.4. if attr=a; then do:
1.2.1.41. freq[pog ~ ([nul | ,...,va], OCcurs, sid, outliers)
1.2.1.5. elseif attr =a,then do:
1.2.1.5.1. freq[pos] « ([Vai....nul | ], occurs, sid, outliery
1.2.1.6. elsedo:
1.2.1.6.1. let g beattr, whereQl=a,...,8.1,8, &+1...,
1.2.1.6.2. freq[pod « ([Va,...,a-1,nul | a.1...,\4,], Occurs, sidputliers)
2. freq ~ freqCleanup(freq) // consolidates elements to avoid supplicate values@Ver
3. return freq

Figure 62 pu-Argus SuppressOutliersalgorithm
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As introduced earlier, the basic steps, A through E, of the p-Argus algorithm are enumerated in
Figure 48. The agorithm listed in Figure 50 along with its supporting methods is more detailed but

follows these same basic steps. Below is awalk through the detailed version of the p-Argus algorithm.

Given a private table PT, a quasi-identifier QI=(A,...,A,), ak-anonymity requiremerk, domain
generalization hierarchid8GH,;, wherei=1,... n with accompanying functiorfy;, andMost, More and
Identifying, which are disjoint sets of attributes over the quasi-iden€fiethep-Argus algorithm, listed
in Figure 50, generates a generalizatioP®{Ql]. The algorithm assumddost, More andldentifying
are disjoint divisions of the attributes over the quasi-identifier That is, QI= Most O More O
Identifying) and Most n More = [0) and Most n Identifying = 0) and More n Identifying = 0). PT is
also required to have a unique identifier associated with each of its tuples; in thiBTcaseudes an

attributeid that serves as a unique identifier (or key) for each tugRT'in

The p-Argus algorithm begins in steps 1 and 2 by constructing a frequency list rfeaged
Conceptually | define a frequency list as simply a vector. But as the primary data structure in this
algorithm, my notion of a frequency list is that it describes a thblEach element in the frequency list
freq corresponds to one or more tuples in tabl&he frequency listreq begins by describing the table
PT and each tabl@ subsequently described freq is a generalization d®T. Frequency lists are also

used to store variations and subsetSeaxf during the operation of the algorithm.

Each element in a frequency listbased on a table consists of (1) values assigned to the quasi-
identifier [Va;,...,Van]; (2) the number of tuples i, referred to a®ccurs, having that assignment of
values; (3) the set of tuple identifiers, referred t&&s in T to which the valuesy;,...,va, refer, and, (4)

a set of attributes, referred to adtliers, that are initially set to the empty set but at one point in the
algorithm contain the attributes for which the assigned values occur less tkaedogrement warrants.

The invariant@D| =occurs holds inF. Each sequence of valueg/...,van] is unique inF.
Step 1 and step 2 of theArgus algorithm listed in Figure 50 produces a frequencyfrist

based on the tuples of the privately held téble The methodreqSetup() defined in Figure 51 performs

the construction.
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Step 3 of the p-Argus algorithm listed in Figure 50 generalizes each attribute in freq so there are
at least k occurrences of each value reported for an attribute. Recall an earlier lemmain which atable T
that satisfies a quasi-identifier QI=Ay,...,A, must have at least occurrences of eadfA]OT where
i=1,...n[107]. Step 3 of thel-Argus algorithm automatically generalizes attributes until this condition is
satisfied. Success is guaranteed by the single maximal element requirement of each domain

generalization hierarchpGH,; wherei=1,...n [108].

The heart of th@-Argus algorithm resides in steps 4 through 8 of the listing in Figure 50. These
steps concern examining values associated with 2- and 3- combinations of attributes across the quasi-
identifier Ql. The data holder provides the attributeQoby providing the 3 sets namétbst, More and
Identifying. The set nameM ost consists of attributes @l the data holder considers "most identifying”.

The set name®ore consists of attributes @I the data holder considers "more identifying". And, the

set nameddentifying consists of attributes @}l the data holder considers merely "identifying".

In step 4, values associated with 2- and 3- combinations of attributes MoessMost and
Identifying are examined to determine which combinations of values do not adher teduéerement.
These values are considered outliers, are the attributes associated with these values are recorded as
outliers for these tuples ifreq. As step 5, theseutliers are displayed for the data holder to inspect. In

the next paragraphs, | described the generation and inspection of these combinations in detail.

The methodCombinationTest(), listed in Figure 56, generates the 2- and 3- combinations that are
examined ing-Argus. As discussed earlier and listed in Figure 48, the aatdadjus program does not
examine all 2- and 3- combinations of values across the attributéssfviore andldentifying. Instead,
it examines a subset of these combinations based on the rank okiiarepMore and ther dentifying.

The methodCombinationTest() explores only those combinations examined by the agtu&igus

program as listed in Figure 49.

The actual work of generating the sub-tables that represent the 2- and 3-combinations and
marking the outliers found is done by three methods. ThesManOutliers(), MarkOutliers2() and
MarkOutliers3(). Each of these methods receives a combination baseidstnMore, |dentifying andd

as arguments.

139



Computational Disclosure Control 01/08/01 8:22 AM

The method MarkOutliers(), listed in Figure 57, takes 3 arguments S1, 2, and S3, and computes
sub-tables based on S1 x 2 x S3. Each element in S1, 2 and S3 is assumed to be an element of QI. The
method then explores SL x R if S3 =0 or S1 x R x B if S3# . The arguments SL and X are required
and cannot be [, but S3 can be 0. It is assumed that (SL n & = 0). If S3# [, then it is also assumed
that (SL n S3=0) and (R n 3=10).

To make sure duplicate combinations are not explored when examining combinations across the
same set, MarkOutliers2() and MarkQuitliers3() are used. The method MarkOutliers3(), listed in Figure

59, is used when a 3-combination is explored across a single set of attributes. For example, Most x Most

x Most is examined by executing MarkOutliers(Most).

Similarly, MarkOuitliers2(), listed in Figure 58, is used when a 2- or 3-combination involves
repeating the first set. For example, Maost x Most is examined by executing MarkOutliers2(Most, [0) and

Most x Most x More is examined by executing MarkOutliers2(Most, More).

The methods MarkOutliers(), MarkOutliers2() and MarkOutliers3() work as follows. First, they
generate a frequency list V that contains a sub-table from freq based on values associated with 2 or 3
combinations of the attributes provided as parameters. This is done using the method freqConstruct(),
which is listed in Figure 52. The method freqConstruct() is given a sequence of attributes A,,...,A, and
generatesvV from freq[A,,...,A)]. The methodsMarkOutliers(), MarkOutliers2() and MarkOutliers3()
then record irfreq those combinations of values Vhthat do not adhere t@ This is done using the
method MarginalUpdate(), which is listed in Figure 60. The methddarginalUpdate() records
combinations of values associated wa...,A, in V that do not adhere to the requirement by

appending A, ...,Aj} to theoutliers of freq for each associated tuple.

In step 5 of thau-Argus algorithm, which is listed in Figure 50, the tuples and combinations of
attributes containing outliers is displayed for the data holder’s inspectiorRepbetOutliers() method,
a listing of which is not provided, merely visits each elemeritegf. If the element has a non-empty
value foroutliers, then the corresponding combinations of attributes containeudtliers are displayed.
The purpose is for the data holder to decide whether to generalize any attributes or whether to stop

execution. Thegeneralize() method, which is listed in Figure 55, replaces the values associated with an
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attribute in freq with their generalized replacement. Step 6 of the p-Argus algorithm alows the data

holder to generalize as many attributes of QI as desired.

At step 7 of the pu-Argus algorithm, which is listed in Figure 50, the data holder can decide to
have the 2- and 3- combinations re-analyzed, presumably after some attributes have been generalized. If
the combinations are to be re-analyzed, the values associated with outliers recorded in freq are initialized
to 00 and execution continues at step 4, thereby repeating steps 4 through 7. TheresetOutliers() method,
which islisted in Figure 61, sets the values associated with outliersin freq to the empty set.

Alternatively, the data holder can decide to conclude the program; in which case, step 8 and step
9 of the p-Argus algorithm, which are listed in Figure 50, execute. Step 8 involves suppressing a value of
each combination of values known to be an outlier in a tuple. This is done by executing
SuppressOutliers(), which islisted in Figure 62. The operation of this method is described below.

The SuppressOutliers() method visits each element in freq that does not adhere to the k
requirement. Clearly, from the operation of the pu-Argus algorithm, it can be shown that each such
element will not necessarily have a non-empty outliers value because there may exist 4-combinations
across QI and there may exist larger combinations of values across QI in the data that are unique. In
addition there may exist 2- or 3-combinations across QI that are unique and not identified because those
combinations were not examined by CombinationTest() at all. These possibilities pose serious problems

for the way in which p-Argus has been implemented.

Each element in freq is visited in SuppressOutliers(). If the value for outliers associated with that
element is not empty, then the value associated with an attribute occurring most frequently in that
element’soutliers is suppressed (i.e., a suppressed value is one that is assignédl aalue in the
method). Thevhile() loop in theSuppressOutliers() method continues in step 1.2.1 until all combinations
identified inoutliers has a value in the combination of values suppressed. This is in sharp contrast to the
actualp-Argus program. In the actuglArgus program, each such combination is not exhausted. As a
result, some combinations of values whose attributes are identifiedtliers may not have values
suppressed even though all combinations reportedtiirers is known to not adhere to theequirement.

This is obviously a problem with theArgus implementation and not a limitation of its approach.
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Thefinal step of the p-Argus algorithm is to construct a table based on the descriptions of tuples
in freq. The reconstruct() method, which is listed in Figure 42, works the same in p-Argus as in Datafly.
It can be shown that the final table resulting from the p-Argus algorithm is a generaization of the

original table provided because the only operations on the data were generalization and suppression.

Example

The private table PT shown in Figure 34 includes unique labels, t1 through t12, associated with
the id attribute. These labels are useful for linking the resulting generalization to the original
table. Given PT and the domain generalization hierarchies based on the depictions in Figure 33
(on page 101), the p-Argus algorithm, which is listed in Figure 50, provides the table MT, as
shown in Figure 75, as a generaization of PT over the quasi-identifier QI = { Race, BirthDate,
Gender, ZIP}, where Most = {BirthDate}, More = { Gender, ZIP} and Identifying = { Race}. The
actual p-Argus program provides the table MTactual shown in Figure 76 as a generalization of
PT over Ql. Both MT and MTactual are supposed to adhere to a k-anonymity requirement of
k=2. Here is a walk through the p-Argus algorithm to demonstrate how MT and MTactual are
constructed.

Figure 63 shows the contents of the frequency list freq after step 2 of the pu-Argus algorithm
completes. Each sequence of values across QI is unique in PT and so each tuple has a distinct

corresponding element in freq.

Race | Birth| Sex | ZIP |occurs sid outliers
black | 9/1965 | male |02141 {t1} {
black | 2/1965 | male [02141 {t2} {3
black |10/1965|female| 02138 {t3} {
black | 8/1965 |female[ 02138 {t4} {
black [11/1964|female| 02138 {t5} {
black [12/1964|female| 02138 {t6} {
white | 10/1964| male | 02138 {t7} {
white | 3/1965 [female| 02139 {t8} {
white | 8/1964 | male | 02139 {t9} {3
white | 5/1964 | male |02139 {t10} {
white | 2/1967 | male |02138 {t11} {
white | 3/1967 | male {02138 ft12y ¢

Figure 63 freq after freqSetup() in p-Argusalgorithm step 2

=
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Figure 64 shows the contents of freq after step 3 of the pu-Argus algorithm completes. Each value

associated with each attribute in QI adheres to the k—requirement. That is, each value has at least
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k occurrences; in this example, k=2. In order to achieve this in freq, values associated with

BirthDate were generalized to the year of birth.

Race

Birth

Sex

ZIP

black

1965

male

02141

black

1965

female

02138

black

1964

female

02138

white

1964

male

02138

white

1965

female

02139

white

1964

male

02139

white

1967

male

02138

occurs
2

2
2
1
1
2
2

sid outliers

{t1,12} 0
{3,143 )
{t5,t6} &
{t7} i
{8} {
{tot10p

My o

Figure 64 freq after generalize loopsin p-Argusalgorithm, step 3

Step 4 of the p-Argus algorithm executes CombinationTest(), which is listed in Figure 56. This

method computes 2- and 3-combinations across Most, More and Identifying to determine which

combinations of values, if any, do not occur at least k times; recall, in this example k=2. It begins

by examining Most x More combinations. Figure 65 shows the frequency list V generated by

MarkOutliers() at step 5.1 in CombinationTest() when it examines BirthDate x Sex. As Figure 65

shows, all combinations of values for these attributes found in freq occur at least k times.

Birth

Sex

1965

male

1965

female

1964

female

1964

male

1967

male

occurs
2

N WN W

sid
{t1,t2}
{t3,t4,18}
{t5,t6}

outliers

¢
¢
i

{719,110y {

{t11,112}

¢

Figure65V at Most x Morein CombinationTest(), step 5.1

Continuing the examination of Most x More combinations, Figure 66 shows the frequency list V

generated by MarkOuitliers() at step 5.1 in CombinationTest() when it examines BirthDate x ZIP.

The combination where BirthDate="1965" and ZIP="02139" occurs only once and appears in the

tuple identified as t8 in PT. As aresult, outliers in freq is updated to include { Birthdate, ZIP}

for that element. Depictions of the resulting V and freq tables are shown in Figure 66.
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Birth | ZIP |occurs  sid  outliers

1965 |02141| 2 1,22} o

1965 |02138] 2 {t3,t4} !

1064 |02138] 3 {5467}

1965 [02139] 1 {t8} 0

1964 |02139] 2 {910}  {}

1967 |02138] 2 {11,112} {}

V

Race | Birth| Sex | ZIP |occurs  sid outliers
black | 1965 [ male | 02141 2 {t1,t12} {

black | 1965 [female| 02138 2 {t3,t14} {
black | 1964 |female|[02138 2 {t5,t6} {
white | 1964 | male (02138 1 {t7} {
1
2
2

white | 1965 |female[ 02139 {t8  {{birth,zip}}
white | 1964 | male |02139 {t9,t10} {
white | 1967 | male [02138 {t11,t12} {

freq

Figure 66 freq and V at Most x More in CombinationTest(), step 5.1

The next combinations examined result from More x More, but there is only one such
combination, namely Sex x ZIP. Figure 67 shows the frequency list V generated by
MarkOutliers2() at step 5.2.1 in CombinationTest() when it examines Sex x ZIP. The
combination where Sex="female" and ZIP="02139" occurs only once and appears in the tuple

identified as t8 in PT. As a result, outliers in freq is updated to include {Sex, ZIP} for that

element. Depictions of the resulting V and freq tables are shown in Figure 67.

Sex ZIP | occurs sid outliers

male [02141] 2 {t1,t2} Iy

female| 02138 4 {t3,t4,t5,t6} {

male | 02138 3 {t7,t111,t12} {3

female| 02139 1 {t8} {

male |02139 2 {t9,t10} {

\Y

Race | Birth| Sex | ZIP Joccurs  sid outliers
black [ 1965 | male | 02141 2 {t1,t12} {

black [ 1965 |female| 02138 2 {t3,t14} {
black | 1964 [female|02138 2 {t5,t6} {
white | 1964 [ male |02138 1 {t7} {
1
2

white | 1965 [female|02139 {t8} {{birth,zip}, {sex,zip}}
white | 1964 | male {02139 {t9,t10} {
white | 1967 | male | 02138 2 {t11,t112} {

freq

Figure 67 freq and V at More x More in CombinationTest(), step 5.2.1
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The next combinations examined result from More x More x Most, but there is only one such
combination, namely BirthDate x Sex x ZIP. Figure 68 shows the frequency list V generated by
MarkOutliers2() at step 5.2.2 in CombinationTest() when it examines BirthDate x Sex x ZIP.
The combination where BirthDate="1964", Sex="male" and ZIP="02138" occurs only once and
appears in the tuple identified as t7 in PT. Likewise, the combination where BirthDate="1965",
Sex="female" and ZIP="02139" occurs only once and appears in the tuple identified ast8 in PT.
As a result, outliers in freq is updated to include {BirthDate, Sex, ZIP} for those elements.
Depictions of the resulting V and freq tables are shown in Figure 68.

Birth| Sex ZIP | occurs sid outliers
1965| male [02141] 2 {t1,t2} 0
1965 | female| 02138 2 {t3,t4} {3
1964 [female] 02138] 2 {t5,t6} 0
1964 | male | 02138 1 {t7} {

1

2

2

1965 | female| 02139 {t8} {
1964 | male [02139 {t9,t10} !
1967 | male [02138 {11,112y

\%
Race | Birth | Sex | ZIP |occurs  sid outliers
black | 1965 [ male |02141 2 {t1,t2} {
black | 1965 [female| 02138 2 {t3,t4} {
black [ 1964 |female| 02138 2 {t5,16} {
white | 1964 [ male | 02138 1 {t7} {{birth,sex,zip}}
white | 1965 [female|02139 1 {t8} {{birth,zip}, {sex,zip}, {birth,sex,zip}}
white | 1964 | male |02139 2 {t9,t10} {
white | 1967 | male [02138] 2  {t11,t12} 0
freq

Figure68 freq and V at Morex Morex Most in CombinationTest(), step 5.2.2

The next combinations examined result from Most x More x Identifying. These are the specific
combinations Race x BirthDate x Sex and Race x BirthDate x ZIP. Figure 69 shows the
frequency list V generated by MarkOutliers() at step 6.1 in CombinationTest() when it examines
Race x BirthDate x Sex. The combination where Race="white", BirthDate="1965" and
Sex="female" occurs only once and appears in the tuple identified as t8 in PT. As a result,

outliersin freq is updated to include { Race, BirthDate, Sex} for this element. Depictions of the

resulting V and freq tables are shown in Figure 69.
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Race| Birth| Sex
black | 1965| m
black| 1965| f
black| 1964| f
white| 1964 m
white | 1965 f
white | 1967 m

Race

Birth

Sex

ZIP

black

1965

male

02141

black

1965

female

02138

black

1964

female

02138

white

1964

male

02138

white

1965

female

02139

white

1964

male

02139

white

1967

male

02138

occurs sid

NNEFEERPNMDNDN

{t1,t2}
{t3,t4}
{t5,t6}
{t7}
{t8}
{t9,t10}
{t11,t12}

occurs sid outliers
2 {t1,t2} {
2 {t3,t4} {
2 {t5,t6} {
3 {79110y  {
1 {t8} {
2 {t11,t12} 0
V
outliers
{
{
{
{{birth,sex,zip}}
{{birth,zip}, {sex,zip}, {birth,sex,zip}, {race,birth,sex}}
{
{
freq

Figure 70 shows the frequency list V generated by MarkOutliers() at step 6.1 in
CombinationTest() when it examines Race x BirthDate x ZIP. The combination where
Race="white",

identified as t7 in PT. Likewise, the combination where Race="white",

outliers in freq is updated to include { Race, BirthDate, ZIP} for these elements. Depictions of

Figure 69 freq and V at Most x More x | dentifying in CombinationTest(), step 6.1

BirthDate="1964" and ZIP="02138" occurs only once and appears in the tuple
BirthDate="1965" and
ZIP="02139" occurs only once and appears in the tuple identified as t8 in PT. As a result,

the resulting V and freq tables are shown in Figure 70.
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Race|Birth| ZIP | occurs sid outliers
black | 1965| 02141 2 {t1,t2} {

black| 1965[02138] 2 {t3,t4} Iy
black [ 1964]02138] 2 {t5,t6} Iy
white | 1964 | 02138 1 {t7} {3
white | 1965 | 02139 1 {t8} {3
white | 196402139 2 {t9,t10} {3
white | 196702138 2 {t11,112} {3
\%
Race | Birth | Sex | ZIP |occurs  sid outliers
black [ 1965 | male |02141 2 {t1,t2} {
black | 1965 |female| 02138 2 {t3,t4} {
black | 1964 |female|02138 2 {t5,t6} {
white | 1964 | male (02138 1 {t7} {{birth,sex,zip}, {race,birth,zip}}
{{birth,zip}, {sex,zip}, {birth,sex,zip}, {race,birth,sex},
white [ 1965 |female|02139 1 {t8} {race,birth,zip}}
white | 1964 [ male [02139] 2 {t9,t10} Iy
white | 1967 | male [02138] 2  {t11,t12} !
freq

Figure 70 freq and V at Most x More x | dentifying in CombinationTest(), step 6.1

The next combinations examined result from More x ldentifying. These are the specific
combinations Race x Sex and Race x ZIP. Figure 71 shows the frequency list V generated by
MarkOuitliers() at step 6.2 in CombinationTest() when it examines Race x Sex. The combination
where Race="white" and Sex="female" occurs only once and appears in the tuple identified ast8
in PT. Asaresult, outliersin freq is updated to include { Race, Sex} for this element. Depictions

of the resulting V and freq tables are shown in Figure 71.

Race| Sex |occurs sid outliers
black| male 2 {t1,t2} {
black [ female 4 {t3,t4,t5,t6} {
white | male 5 {t7,t9,t10,t11,t12} {}
white | female 1 {t8} {}
\%
Race | Birth | Sex | ZIP |occurs  sid outliers
black [ 1965 | male | 02141 2 {t1,t2} {
black | 1965 |female| 02138 2 {t3,t4} {
black | 1964 |female| 02138 2 {t5,t6} {
white | 1964 | male | 02138 1 {t7} {{birth,sex,zip}, {race,birth,zip}}
{{birth,zip}, {sex,zip}, {birth,sex,zip},
white | 1965 |female| 02139 1 {t8} {race,birth,sex}, {race,birth,zip}, {race,sex}}
white | 1964 | male | 02139 2 {t9,t10} {
white | 1967 | male | 02138 2 {t11,t22} {
freq

Figure71freq and V at More x Identifying in CombinationTest(), step 6.2
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Figure 72 shows the frequency list V generated by MarkOutliers() at step 6.2 in
CombinationTest() when it examines Race x ZIP. None of the combinations appear less than k

times. Asaresult, freq is not modified.

Race| ZIP |occurs sid outliers
black [ 02141 2 {t1,t2} {
black | 02138 4 {t3,t4,15,t6} {}
white | 02138 3 {t7,t11,t12} {
white | 02139 3 {t8,t9,t10} {}

Figure 72V at More x I dentifying in CombinationTest(), step 6.2

The next combinations examined result from Most x Identifying. Thisis the specific combination
Race x BirthDate. Figure 73 shows the frequency list V generated by MarkOutliers() at step 7.1
in CombinationTest() when it examines Race x BirthDate. The combination where Race="white"

and BirthDate="1965" occurs only once and appears in the tuple identified as t8 in PT. As a
result, outliers in freq is updated to include { Race, BirthDate} for this element. Depictions of

the resulting V and freq tables are shown in Figure 73.

Race|Birth| occurs sid outliers

black | 1965 4 {t1,t2,t3,t4} {

black [ 1964 2 {t5,t6} {

white | 1964 3 {t7,t9,t10} {

white | 1965 1 {t8} {

white | 1967 2 {t11,t12} {

\

Race | Birth | Sex | ZIP |occurs  sid outliers
black [ 1965 | male | 02141 2 {t1,t12} {
black [ 1965 |female| 02138 2 {t3,t4} {
black [ 1964 |female| 02138 2 {t5,t6} {
white | 1964 [ male | 02138 1 {t7} {{birth,sex,zip}, {race,birth,zip}}

{{birth,zip}, {sex,zip}, {birth,sex,zip},
{race,birth,sex}, {race,birth,zip},

white | 1965 |female| 02139 1 {t8} {race,sex}, {race,birth}}
white | 1964 | male (02139 2 {t9,t10} {
white | 1967 | male [02138 2 {t11,t12} {

freq

Figure 73 freq and V at Most x I dentifying in CombinationTest(), step 7.1

That concludes the examination of combinations of values that occurs at step 4 of the pu-Argus

algorithm. The contents of outliers in freq are displayed and the data holder is solicited for an
attribute to generalize or not. This example continues as option 1, in which no further

generalization is selected and as option 2, in which ZIP is generalized.
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Example, continued with option 1
In this option, the example continues with no further generalization is selected. So, execution of

the u-Argus algorithm proceeds to step 8.

Figure 74 shows freq at the start of SuppressOutliers(). The attributes within the outliers for an
element in freq are examined. The value associated with the attribute occurring in the most
number of members of outliers is suppressed. This process continues until all members of a
value associated with outliers contain at least one suppressed value. In Figure 74 there are two

elements of freq that have non-empty values for outliers. These are the elements associated with

t7 and t8.
Race | Birth| Sex | ZIP Joccurs sid outliers
black 1965 |[male ]02141 2{t1t2y §
black 1965 [female 02138 2{t3t4} {}
black 1964 [female |02138 2 {t5;16} {}
{{birth,sex,zip},
white  |1964 [male 02138 1 {t7} {race,birth,zip}}

{{birth,zip}, {sex,zip},
{birth,sex,zip},

{race birth sex},
{race,birth,zip}, {race,sex},

white  |1965 [female |02139 1 {t8} {race,birth}}
white 1964 |male [02139 2 {t9,t10} {}
white [1967 [male 02138 2 {t11,t22} {}

Figure 74 freq at SuppressOutliers() in p-Argusalgorithm, step 8

The value of outliers for the element associated with t7 is {{BirthDate, Sex, ZIP}, {Race,
BirthDate, ZIP}}. The attributes BirthDate and ZIP occur most frequently, so either can be
suppressed. BirthDate is selected. That means, the value associated with BirthDate for this
element will be suppressed. At that time, the outlier combination BirthDate x Sex x ZIP and
Race x BirthDate x ZIP will each contain a suppressed value, so no further suppression is

needed for the element associated with t7.

The value of outliers for the element associated with t8 is {{BirthDate, ZIP}, {Sex, ZIP},
{BirthDate, Sex, ZIP}, {Race, BirthDate, Sex}, { Race, BirthDate, ZIP}, {Race, Sex}, {Race,
BirthDate}}. The attribute BirthDate occurs most frequently, so it will be suppressed. That
means, the value associated with BirthDate for this element will be suppressed. At that time, the
remaining outlier combinations associated with t8 are {{Sex, ZIP}, { Race, Sex}}. The attribute
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Sex now occurs most frequently, so it will also be suppressed. That means, the values associated

with BirthDate and with Sex for this element will be suppressed. No further suppression is
needed for the element associated with t8.

Figure 75 shows the final result from the p-Argus algorithm, which islisted in Figure 50.

id
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12

Race | BirthDate | Gender| ZIP

black 1965 male |02141
black 1965 male |02141
black 1965 female | 02138
black 1965 female | 02138
black 1964 female | 02138
black 1964 female | 02138
white male |02138
white 02139
white 1964 male 02139
white 1964 male 02139
white 1967 male |02138
white 1967 male |02138

MT

Figure 75 Result from p-Argus algorithm listed in Figure 50

Unfortunately, as was pointed out earlier, the actual p-Argus algorithm does not exhaust all

known outlying combinations of values when deciding on which values to suppress. Figure 76

shows the results when the private table PT along with the parameters specified in this example

was provided to the actual p-Argus program. Fewer cells are suppressed even though the

combinations of values identified as outliers were the same.

id|Race BirthDate|Gender |ZIP
t1] black 1965 male 02141
t2] black 1965 male 02141
t3]  black 1965 female 02138
t4] black 1965 female 02138
t5] black 1964 female 02138
t6] black 1964 female 02138
t7] white 1964 male 02138
t8] white female 02139
t9] white 1964 male 02139
t10] white 1964 male 02139
t11] white 1967 male 02138
t12] white 1967 male 02138
MT actual

Figure 76 Actual result from the real p-Argus program
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Example, continued with option 2

In this option, the example has proceeded to step 6 of the p-Argus algorithm as before. In this
option however, execution continues by assuming the data holder selects ZIP as the attribute to
generalize, where as the previous option assumed no attributes were selected to generalize. The
contents of freq before this decision is made are shown in Figure 73. The generalize() method is
listed in Figure 55. It replaces the values associated with ZIP in freq with the values that appear
one level up ZIP’s value generalization hierarchy, which is shown in Figure 33. The result is to
replace the 5-digit ZIP values with their first 4-digits. Step 7 of the p-Argus algorithm resets the
values associated with outliers in freq to the empty set. The resulting contents of freq from

theses steps are shown in Figure 77. The tuple identified ast8 remains an outlier.

Race | Birth| Sex | ZIP | occurs sid outliers
black | 1965 | male |0214* 2 {t1,t2} {
black | 1965 |female|0213* 2 {t3,t4} {
black | 1964 |female|0213* 2 {t5,t6} {
white | 1965 |female|0213* 1 {t8} {
3
2

white | 1964 | male |0213* {to.t10,t7}
white | 1967 | male |0213* {t11,t12} !

Figure 77 freq after generalize ZIP

Execution of the p-Argus continues by looping back to step 4. The method CombinationTest(),
which is listed in Figure 56, computes 2- and 3-combinations across Most, More and Identifying
to determine which combinations of values, if any, do not occur at least k times. In this case, only
some combinations of values involving the tuple identified as t8 do not adhere to the k

requirement. The specific combinations are listed in the contents of freq shown in Figure 78.

Race | Birth | Sex | ZIP | occurs sid outliers

black | 1965 | male [0214* 2 {t1,t2} {

black | 1965 |female|0213* 2 {t3,t4} {

black | 1964 |female|0213* 2 {t5,t6} {

{{race,birth,sex},
{race,birth,zip}, {race,sex},

white | 1965 |female|0213* 1 {t8} {race,birth}}

white | 1964 | male [0213* 3 {t9,t10, t7} {

white | 1967 | male |[0213* 2 {t11,t12} {

Figure 78 freq with outliers updated

That concludes the examination of combinations of values that occurs at step 4 of the pu-Argus
algorithm. The contents of outliers in freq are displayed and the data holder is solicited for an

attribute to generalize or not. At this time, the data holder is assumed not to opt for further
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generadization. As a result, step 8 of the p-Argus algorithm executes. The SuppressOutliers()

method executes; it islisted in Figure 62.

The value of outliers for the element associated with t8 is {{ Race, BirthDate, Sex}, {Race,
BirthDate, ZIP}, {Race, Sex}, { Race, BirthDate} } . The attribute Race occurs most frequently, so
it will be suppressed. No further suppression is needed for the element associated with t8

because all members of outliers now contain a suppressed value. The final table resulting from

01/08/01 8:22 AM

the u-Argus algorithm based on the option of generalizing ZIP is shown in Figure 79.

id
tl
t2
t3
t4
t5
t6
t7
t8
t9
t10
111
t12

Race| BirthDate | Gender| ZIP
black 1965 male |0214*
black 1965 male |0214*
black 1965 female [ 0213*
black 1965 female | 0213*
black 1964 female |[0213*
black 1964 female |[0213*
white 1964 male |0213*
1965 female | 0213*
white 1964 male [0213*
white 1964 male |0213*
white 1967 male |0213*
white 1967 male |0213*
MT

Figure 79 Resulting table from p-Argus algorithm with manual generalize ZIP

7.3 Comparison to Mingen

A comparison to MinGen [109] requires examining: (1) the computational complexity of the
algorithm to ensure it operates in reasonable time; (2) the correctness of the algorithm in terms of k-

anonymity protection; and, (3) whether the algorithm distorts minimally. These are discussed in the

following subsections.

7.3.1 Complexity of the p-Argusalgorithm

The p-Argus algorithm listed in Figure 50 with supporting methods in Figure 51 through Figure

62 was not written as efficiently as possible. Nevertheless, here is a walk through the algorithm noting

the computational complexity of each part.

The freqSetup() method, which islisted in Figure 51, is executed in step 2. If the contents of PT
is sorted over the attributes QI beforehand, then the determination of how many tuples in PT[QI]
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correspond to the same element in freq can be determined in O(|PT| log |PT|) time. Otherwise, the
construction of freq and the determination of the number of tuples in PT[QI] that correspond to an

element in freq is performed in O(JPTF) time.

The sub-steps of step 3 of the p-Argus algorithm operate |QIl| times. On each iteration of these
sub-steps, a frequency list is generated and generalization may be performed. The construction of a
frequency list requires visiting each element of a frequency list and if changes are made due to
generdization, the element is removed and then the modified element added. In order to avoid
duplication of elementsin afrequency list, all elementsin the frequency list are compared to the element
that is to be inserted. If the elements of freq were stored in a binary tree, then such a comparison could

be done in log([freq]) time. In the worst case, [freq| = |PT]; in al cases, [freq| < |PT|. Step 3.3 can loop as

QT
much as Z |DGH Ai| times in its worst case, which requires each attribute to generalize one step at a
&

time to its maximal element. Because IDGH,j| << |PT| in almost all cases, this term is dropped. In the
listing of the freqConstruct() and generalize() methods provided, the contents of freq are not stored in a
binary tree and so the computation, in the worst case is, O(|PT[) time. Because this process is done on

each iteration, the computational time for step 3 of the p-Argus algorithm is O( [Ql] « |PT| log |PT]), if

freq was stored as abinary tree, or O( |QI|* [PT) as the methods are written.

Steps 4 through 7 of the p-Argus algorithm perform aloop of reviewing 2- and 3- combinations,
displaying them, and possibly generalizing an attribute. This loop is executed one or more times,
depending on the data holder. The number of iterations is not likely to be large, so in this computation |

will consider it a negligible constant.

Step 4 of the p-Argus algorithm executes the CombinationTest() method. The goa of this
method is to generate some 2- and 3-combinations and then determine which, if any, adhere to the k
requirement. The number of 2- combinations, assuming all such combinations within QI are to be

|Q1! |QI !
2(Qil-2) 6(Qll-3)
characterized as O(|QI|?). With the constructions of frequency lists included, the computational time for
this step is O( |QIf « |PT| log |PT]), if freq was stored as a binary tree, or O( |QIf « |PT[) as the methods

examined, would be and 3-combinations would be These are roughly

are written.
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Step 5 is awalk through each element of freq reporting the value of outliers for that element.
That executes in [freq| time. In the worst case [freq| = |PT|, so this step executes in O(|PT|) time. Each
iteration of the loop in step 6 of the p-Argus algorithm, if executed at al, executesinis O( |PT|log [PT]|),
if freq was stored as a binary tree, or O( [PT[) as the methods are written. Step 7, like step 5 is awalk
through each element of freq and so, it executes in [freq| time. In the worst case [freq| = |PT|, so step 7

executesin O(|PT]) time.

The SuppressOutliers() method in step 8 of the p-Argus algorithm has an outer loop that visits
each element of freq, and within the outer loop are inner loops based on the contents of outliers for that
element. In the worst case, [freq| = [PT| and |outliers] is nearly |QI>. The method freqCleanup() executes
in O( |PT|log |PT]), if freq was stored as a binary tree, or O( |PT[) otherwise. So, the computation of the
method is O(IQIf « |PT| + |PT| log |PT|) if freq is stored as a binary tree or O(|QIf « [PT| +|PTP)

otherwise.

Step 9 of the p-Argus algorithm executes the reconstruct() method, which visits each element of
freq and generates tuple(s) for MT based on the element. This method executes in [freq| time, which is
O(IPT).

Finally, the overall computational complexity of the p-Argus algorithm listed in Figure 50 is
characterized by O(IQIF « [PT| + |PT| log |PT|) if freq is stored as a binary tree or O(|QIf* « |PT| +|PTF)
otherwise. In most databases, |Ql]| << |PT|. So, the overall complexity for the p-Argus algorithm is O(|PT]|
log |PT|) if freq is stored as a binary tree or O(JPT[) otherwise. In comparison to the computational
complexity of MinGen [110] and Equation 1 (on page 87), the computational complexity of the u-Argus
algorithm is practical and extremely fast.

7.3.2 Correctness of the p-Argusalgorithm

The correctness of the p-Argus algorithm relies on its ability to produce solutions that adhere to
a given k-anonymity requirement, assuming of course a proper quasi-identifier and a proper value for k

have been provided. In this subsection, | will show that the p-Argus algorithm provides solutions that do
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not necessarily adhere to a given k-anonymity requirement. As aresult, tables generated by p-Argus may

not provide adequate protection. Here is awalk through the program, noting correctness problems.

After step 3 of the pu-Argus algorithm listed in Figure 50 concludes, each value associated with
each attribute is guaranteed to appear at least k times. While this is a necessary condition to satisfy the k
requirement, it is not itself sufficient to ensure that combinations of values aso adhere to the k
requirement. This note is not a claim of an error in correctness as much as a clarification that step 3 does
not itself guarantee adherence to the k requirement.

Example.

Consider the private table PT shown in Figure 34 with a quasi-identifier QI = { Race, Gender}
and a k-anonymity requirement of k=2. Each value associated with Race and each value
associated with Gender appears more k times, but in combination ["white", "female"] occurs

only once.

In order to make sure combinations of values adhere to the k requirement, values must be
examined in combination. Step 4 of the p-Argus algorithm executes the CombinationTest() method to
examine combinations of values. Unfortunately, not all possible combinations across the quasi-identifier
are examined. Only some 2- and 3- combinations are examined. There may be 4-combinations or beyond
that are unique and not examined and there may be 2- or 3-combinations not examined at all. As aresult,
the p-Argus algorithm at this step cannot guarantee that all combinations of values adhere to the k

requirement.

Example.

Consider the private table PT shown in Figure 34 with a quasi-identifier QI = { Race, BirthDate,
Gender, ZIP}, where Most = {BirthDate}, More = { Gender, ZIP} and Identifying = { Race} and
a k-anonymity requirement of k=2. The actual p-Argus program provides the table MTactual
shown in Figure 76 as a generalization of PT over QI. Notice however that the tuple identified as
t7 is unique over QI. It contains the unique occurring 4-combination ["white", "1964", "male",
"02138"]. Therefore, MTactual does not satisfy the k requirement.
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Only election by the data holder to generalize an attribute in step 6 of the p-Argus algorithm and
the automatic suppression of values done by the SuppressOutliers() method in step 8 of the pu-Argus
algorithm are ways to further distort data after step 3. Unfortunately, neither of these steps ensures that

combinations of values adhere to the k requirement. Actions taken by theses steps do not necessarily

enforce the k requirement.

A data holder’s decision to generalize or not is made before the results of suppression are
determined. Yet, the responsibility of adhering to the k requirement is passed to the data holder, who
must specify whether further generalization is needed, and if so, which attribute(s) to generalize. These

decisions are made with limited and indirect information from the p-Argus a gorithm.

Example.

Consider the private table PT shown in Figure 34 with a quasi-identifier QI = { Race, BirthDate,
Gender, ZIP}, where Most = {BirthDate}, More = { Gender, ZIP} and Identifying = { Race} and
a k-anonymity requirement of k=2. Figure 75 shows the result from the p-Argus algorithm with
no additional generalization elected. There is no recommendation as to whether an attribute
should be generalized and if so, which one(s). Figure 79 shows the results from the p-Argus
algorithm after values associated with ZIP were generalized. There is no preference posed by the
agorithm for one solution over another even though one is more distorted than the other and
because of the uniqueness of suppressed values, neither solution adheres to the k-anonymity

requirement.

The data holder may incorrectly believe that the suppression process in step 8 will ensure
adequate protection, because the p-Argus agorithm performs suppression automatically after
generalization decisions by the data holder conclude. But the SuppressOutliers() method is problematic.
Some combinations of values whose attributes are identified in outliers may not have values suppressed
values in the resulting table even though all combinations reported in outliers is known to not adhere to

the k requirement. Thisis obviously a problem with the real p-Argus implementation.

Example.
Consider the private table PT shown in Figure 34 with a quasi-identifier QI = { Race, BirthDate,
Gender, ZIP}, where Most = {BirthDate}, More = { Gender, ZIP} and Identifying = { Race} and
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7.3.3

a k-anonymity requirement of k=2. Figure 76 shows the actual result from the real p-Argus
program. In comparison, Figure 75 shows the result from the p-Argus algorithm. Notice that in

the actual result, values related to the tuple identified as t7 are not suppressed even though
CombinationTest() identified { BirthDate, Sex, ZIP} and { Race, BirthDate, ZIP} as combinations
that had values within t7 that did not adhere to the k requirement; see Figure 74.

Summary data attack on p-Argusresults

H-Argus does not enforce the k-anonymity requirement on suppressed values. As a result, tables

released from p-Argus can be vulnerable to inference attacks based on summary data. If the frequencies

of values contained within the privately held information are released separately for each attribute, which

is often the case in statistical reports and summary data, then this information can be used to infer

suppressed values if the suppressed values themselves do not adhere to the k-anonymity requirement
imposed on the other released values.

Example.

Summary data for the privately held information PT in Figure 34 is shown in Figure 46. Given a
quasi-identifier QI = {Race, BirthDate, Gender, ZIP}, where Most = {BirthDate}, More =
{Gender, ZIP} and ldentifying = {Race} and a k-anonymity requirement of k=2, table MT in
Figure 79 results from executing the p-Argus algorithm on PT with QI and k. In this case, values
associated with ZIP were generalized. Except for suppressed values, k-anonymity is satisfied for
al other tuples. However, using the summary data, the missing or suppressed values can be
inferred exactly. To combat this problem, the k-anonymity requirement must be satisfied on al
values, including suppressed ones. Figure 80 shows a generalization of MT in which k-anonymity
is also enforced on suppressed values. As you can see, the summary information does not allow

one to confidently infer the suppressed values.
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id] Race | BirthDate | Gender| ZIP
t1] black 1965 male |0214*
t2] black 1965 male |0214*
t3 1965 female | 0213*
t4 1965 female | 0213*
t5] black 1964 female |0213*
t6] black 1964 female | 0213*
t7] white 1964 male |0213*
t8 1965 female | 0213*
t9] white 1964 male |0213*
t10] white 1964 male |0213*
t11] white 1967 male |0213*
t12] white 1967 male |0213*

Figure 80 Table from p-Argusalgorithm (Figure 79) with complementary suppression added

It is important to realize that avoidance of a summary data attack is not wholly resolved by
merely providing k indistinguishable tuples containing suppressed values. Inferences about the
suppressions must not be further distinguished by the non-suppressed values. Within the k-anonymity

framework, probabilistic attacks on distorted values are not necessarily resolved.

Example.

Summary data for the privately held information PT in Figure 34 is shown in Figure 46. Given a
quasi-identifier QI = {Race, BirthDate, Gender, ZIP}, where Most = {BirthDate}, More =
{Gender, ZIP} and ldentifying = {Race} and a k-anonymity requirement of k=2, table MT in
Figure 75 results from executing the p-Argus algorithm on PT with QI and k. Except for
suppressed values, k-anonymity is satisfied for all other tuples. However, using the summary
data, the missing or suppressed values can be inferred exactly. To combat this problem, the k-
anonymity requirement must be satisfied on all values, including suppressed ones. Figure 81
shows a generaization of MT in which k-anonymity is also enforced on suppressed values.
However, the summary data informs that one of the suppressed tuples pertains to a "male" and
the other a "female’. If the non-suppressed values that are associated with these tuples in PT
were gender specific, then values for gender could be confidently inferred and the k requirement

would no longer be valid.
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id|[Race |[BirthDate |Gender |ZIP
tl]black 1965 [male 02141
t2]black 1965 male 02141
t3]black 1965 [female 02138
t4]black 1965 [female 02138
t5]black 1964 [female [02138
t6]black 1964 [female 02138
t7|white
t8]white
t9jwhite 1964 male 02139
t10jwhite 1964 male 02139
t11]white 1967 [male 02138
t12]white 1967 [male 02138

Figure 81 Table from p-Argusalgorithm (Figure 75) with complementary suppression added

7.3.4 Distortion and the p-Argus algorithm

In terms of assessing the quality of generalized data that adhere to a k-anonymity requirement, it
is important to note whether: (1) the resulting data are minimally generalized — i.e., not a generalization
of another generalization that satisfies the sk@eonymity requirement; and, (2) the data are minimally
distorted — i.e., of all minimal generalizations that satisfykh@onymity requirement, none have more
precision retained in the data. In this subsection | will show thafutAegus algorithm does not
necessarily provide minimally generalized solutions or minimally distorted ones, even in cases where its

solutions do adhere tokaanonymity requirement.

On the one handj-Argus makes crude decisions — generalizing all values associated with an
attribute. On the other hang;Argus suppresses values at the cell level. Algorithms that make all

decisions at the cell-level can potentially provide optimal results.

Example.

Given the privately held informatioRT in Figure 34, the Figure 79 provides the taBbI€,
wherep-ArgusPT) = MT for k=2, quasi-identifielQl={ Race, BirthDate, Gender, ZIP}, where

Most = {BirthDate}, More = {Gender, ZIP} and Identifying = {Race}, and di=1,...,RI|, DGHa;

are domain generalization hierarchies based on the depictions in Figure 33. The Figure 80
provides tableMGT, whereMGT is MT with complementary suppression added. does not
adhere to th&-anonymity requirementGT does. The precisiofRrec(MGT) with respect to

DGH, is 0.754. In comparison, Figure 35 provide$1, where MinGer®T)=GT1. It is ak-

minimal distortion ofPT over QI with respect tdGH,; wherePrec(GT1)=0.83. The MinGen
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result therefore has less distortion based on cell-level generalization and suppression. Notice that

although Prec(MT)=0.85, MT does not adhere to the k-anonymity requirement.

Another problem is the data holder's unrestricted and mostly unguided selection of which
attribute, if any, to generalize. There is no recommendation made or sufficient metrics provided for the
data holder to make an informed decision. The p-Argus agorithm makes the assumption that the data
holder knows best, which is reasonable only if sufficient information about the ramifications to
protection and distortion are provided to the data holder about such decisions at the time the data holder
must decide. This is especially important because the subject data at that time reside in such an
intermediate state that the resulting consequences are not necessarily clear. The absence of this
information allows the data holder to guide the p-Argus program into providing results that are more or

less generalized than needed.

Example.

Given the privately held information PT in Figure 34, the Figure 75 and the Figure 79 provide
versions the tables MT1 and MT2, respectively, where p-Argus(PT) = MT1 and p-Argus(PT) =
MT?2 for k=2, quasi-identifier QI={ Race, BirthDate, Gender, ZIP}, where Most = { BirthDate},
More = {Gender, ZIP} and ldentifying = {Race}, and 0Oi=1,...,Ql|, DGH, are domain
generalization hierarchies based on the depictions in Figure 33.Makléas values associated

with ZIP generalized, as directed by the data holder. The Figure 80 provideM@ble where

MGT1 is MT1 with complementary suppression added. Likewise, The Figure 81 provides table

MGT2, whereMGT?2 is MT2 with complementary suppression added. Neitfi&d nor MT2
adhere to thé&-anonymity requirement; bMGT1 andMGT2 do. The precisionPrec(MGT1)
with respect tdGH,; is 0.754. The precisiofrec(MGT?2) with respect tddGHy; is 0.792. So,

MGT1 does more distortion than is necessary. The data holder made the decision to generalize
the values ofZIP with only the information provided in Figure 74. At that time, it is not clear
that MGT1 would be more distorting and further, it is not clear that selecting another attribute

other tharZIP to generalize would not reveal better results.

A third problem is the selection of values to suppress. After some values may have been

generalized, combinations of 2 and 3 values that do not occur &k teast in the data are identified in

the p-Argus algorithm. As stated earlier, these are termed outliers. At least one value in each outlier

combination is to be suppressed. Even though the agtfabus algorithm identifies all such
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combinations, it does not suppress a value from each combination, and so, it can leave data vulnerable.
See Figure 74 and Figure 76 versus Figure 74 and Figure 75 for an example.

7.4 Comparison to Datafly

I will briefly compare the results of these two systems. In the Datafly System, generalizing
across a quasi-identifier ensures that the corresponding tuples will adhere to the k requirement. The p-
Argus program however, only checks some 2- or 3- combinations; there may exist unique combinations
across 4 or more attributes that would not be detected. Treating a quasi-identifier as a single attribute that
must adhere to the k requirement, as done in the Datafly System provides more secure releases of data.
Further, since the number of attributes, especially demographic attributes, in a health database is large,
this strategy of examining only some 2- and 3-combinations may prove to be a serious handicap when

using the p-Argus system with health data.

While both p-Argus and Datafly employ attribute-level generalization, p-Argus employs cell-
level suppression where Datafly suppresses at the tuple level. Therefore, the granularity of distortion is
better with p-Argus. Results produced by p-Argus can be less distorting than with Datafly, even when
both adhere to k-anonymity.

7.5 p-Argusasan anonymous data system

p-Argus uses the following disclosure limitation techniques: de-identification, generalization,
and suppression. Below is a description of the framework in which p-Argus operates.
S = {subjects whose information isincluded in PT}
P = set of all people whose information could possibly bein PT
PT = privately held information about S
QI = set of attributes with replicationsin E
u="r
MT = p-Argus (PT)
E = set of publicly available information in today’s society
G = set of standard communication methods.

f= p-Argusalgorithm
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Thesystem A(S, P, PT, Ql, U, {MT}, E, G, p-Argus) isnot an ADS,,

Informal proof.

Let PT bedatain Figure 34.

There can exist fewer than k tuplesin MT having the same values across QI,
as shown in Figure 75 and Figure 76.

So, k-map protection is not provided and A isnhot an ADS,,

7.6 Futurework

1 One could view the contents for the frequency list used in both the Datafly algorithm
and the p-Argus algorithm as a matrix. Doing so, allows one to explore linear algebra
techniques as ways to identify outliers by likening the frequencies to coefficientsin a
system of simultaneous equations. Some progress along these lines has resulted from
linear programming approaches that utilize cell suppression [111]. Explore the use and

deployment of linear algebra techniques as solutions to these kinds of problems.

2. The p-Argus agorithm, which is listed in Figure 50, can be completely automated to
work without data holder intervention and also made to adhere to k-anonymity while
distorting the data as minimally as possible given the application of generalization
enforced at the attribute level and suppression enforced at the cell level. Maodify the
algorithm along these lines to construct an Optimal p-Argus agorithm and report on

its computational complexity and correctness.

3. Prove that a solution based on the p-Argus approach must examine all combinations

of values within the quasi-identifier. Or, show where tradeoffs are possible to examine

fewer combinations of values.

4, The p-Argus algorithm presented in Figure 50 was not written to be as
computationally efficient as possible. Examine this algorithm and its supporting
algorithms and improve the computational complexity or prove the minimum
complexity required for this approach. Examine and describe best case, worst case and

general case scenarios.
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5. The SuppressOutliers() algorithm, which is listed in Figure 62, selects values to be
suppressed from each combination of values known to be an outlier in a tuple. The
algorithm selects the value within the tuple that occurs the most often in all
combinations identified as outliers. The strategy of selecting the most frequent value
is done repeatedly on the values of atuple until each combination of values identified
as being an outlier contains at least one value that is suppressed. This approach may
not necessarily provide the least distorting results. That is, there may exists situations
in which the heuristic of suppressing the most frequently occurring value in this
situation leads to unnecessary suppression. Prove whether this heuristic always
provides a minimal number of suppressed values; and if not explore other strategies or
algorithms that provide a minimal number of suppressed values. Set covering

techniques may be useful.

Example

Given the privately held information PT in Figure 34, the Figure 76 provides the table

MT, where p-Argus(PT) = MT for k=2, quasi-identifier QI={ Race, BirthDate, Gender,

ZIP}, where Most = {BirthDate}, More = {Gender, ZIP} and Identifying = { Race},

and 0i=1,...,RI|, DGH4 are domain generalization hierarchies based on the depictions
in Figure 33. Figure 75 shows the intermediate sate of the data including outliers
before SuppressOutliers() executes. The outliers for the tuples identifiedt&sre
shown in Figure 82. Each outlier combination appears as a row. Each attribute aligns
vertically. The attribute foBirth (for BirthDate) appears most often (5 times). It is
suppressed, leaving the combinationgip{ sex} and {sex, race} as outlier
combinations with no suppressed value. Of these attribsgegfor Gender) appears

most often. So it is suppressed. Therefore, for teplehe values associated with

BirthDate andGender are suppressed, as shown in Figure 75.
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Figure 82 Combinations of attributes containing outliers

However, Figure 83 shows the same outlier combinations as those in Figure 82 but
with zip and race selected for suppression. Both the solution posed in Figure 82, which
suppresses the values associated with birth and sex, and Figure 83, which suppresses
the values associated with zip and race, provide the same amount of distortion when
applied to t8 because both solutions suppress two values. Both solutions also provide
the same protection in that each outlier combination for t8 has at least one value
suppressed.

birth  zip
zip sex
birth zip sex
birth sex

birth  zip
sex

_.;
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Figure 83 Combinations of attributes containing outliers

6. Implement a version of the p-Argus approach using suppression as the only disclosure
limitation technique employed. The CombinationTest() algorithm, which is listed in
Figure 56, and the SuppressOutliers() algorithm, which islisted in Figure 62, form the
basis for this revised approach. Once the revision is working, assess it computational
complexity, correctness and data distortion. Then, revise the approach further to get

results that are correct with minimal distortion. (Thisisrelated to #5 above.)
7. Improve the p-Argus algorithm by providing complementary suppression so that

resulting tables are not vulnerable to summary attacks. This involves enforcing the k

requirement on suppressed values.
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Chapter 8 Results: k-Similar

In Chapter 6, the Datafly System was shown to sometimes over distort data. In Chapter 7, the p-
Argus System was shown to sometimes fail to provide adequate protection. In this chapter, | present my
k-Similar algorithm, which uses generalization and suppression to find optimal solutions such that data
are minimally distorted while still being adequately protected. Decisions are automatically made at the
cell level that adhere to a given k-anonymity requirement [112] and that maximize the precision metric
[113]. The k-similar algorithm achieves these goals by looking at the computational disclosure control
problem as one of data clustering. In the well-known k-nearest neighbor or k-cluster algorithm [114], for
example, data are partitioned into k groups based on minimizing a distance between tuples. In contrast,
my k-similar algorithm divides data into groups such that the size of each group consists of k or more of
the “closest” tuples; in this case, closeness is based on a minimal distance measure derived from distance

vectors [115].

8.1 Overview of thek-Similar algorithm

More generally, th&-similar algorithm provides a solution to finding similarity matches in high
dimensional space with data consisting of primarily categorical values. In this setting, traditional mining
approaches have faced tremendous difficulty primarily because of troubles measuring "distance" between
categorical values. THesimilar approach is based on combining generalization and suppression and on
using the resulting hierarchies as a semantically useful grouping that reflects a partial ordering on values.
By cell generalization, | mean that a value can be replaced by a less precise but semantically consistent
alternative. Cell suppression in this context is considered the most general value possible because
semantically no information is released. The distance between two values can then be measured in terms
of the minimal level up the generalization hierarchy at which the two values have a common ancestor.
This precision metric provides the basis for a semantically meaningful measure of distance [116]. Given
a table and a value fds; thek-similar algorithm groups the tuples of the table in as many clusters as
necessary such that each cluster contains atledsts closest tuples. In terms of anonymity, having

tuples that are indistinguishable is the basikfanonymity protection.
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8.2 Abstract of thek-Similar algorithm

The k-Similar algorithm is not a complete system like Datafly or p-Argus. It is intended to fit
within a system, such as Datafly’s, replacing the core operational algorithm found there with the k-
Similar algorithm. (A description of the overal Datafly System is provided on page 107.) Here is a
summary of the setting in which the k-Similar algorithm operates.

Using the Datafly System as a shell for the k-Similar algorithm, the data holder provides an
overall anonymity level (A), which isavalue between 0 and 1. The data holder also provides a profile of
the recipient by providing alinking likelihood (Py) for each attribute that is aso a value between 0 and 1.
Based on these values an overall value for k is computed and quasi-identifier(s) are determined. For
example, subsets of attributes where Pi=1 are treated as one concatenated attribute, or quasi-identifier,
which must satisfy a k-anonymity requirement. Each attribute has a replacement algorithm that either
uses equivalence class substitution, such as SSNs, or generaization based on a domain generalization
hierarchy specific to that attribute. In summary, the k-Similar algorithm merely replaces the core Datafly
agorithm within the system. The k-Similar algorithm therefore works with a quasi-identifier and a k-
anonymity requirement that is to be enforced on the quasi-identifier. For convenience, | consider al
attributes of the quasi-identifier as having equal weights (specifically, P=1 for each attribute of the
quasi-identifier though a weighted precision metric has been provided [117]); and, | address only
generalizable attributes of the quasi-identifier in isolation, ignoring those that would utilize equivalence
class substitution.

Before | introduce the k-Similar algorithm itself, let me first expand the earlier discussion on

distance vectors [118].

8.2.1 Distance vectors expanded

The k-similar algorithm uses generalization with suppression to group the closest k or more
tuples together into clusters. Closeness between tuples can be determined in terms of the value
generaization hierarchies [119] for the attributes. Basically, the distance between values is the level of

the generalization hierarchy at which the values have the same ancestor.
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Definition. distance between values

Let A be an attribute, v; and v, be values associated with A, and f;JDGH,, for i=1,...h. The

distance between the valugsandv; is the smallegh for whichfi(...fn(vq)...) = fi(...fu(v2)...).

Given the definition above, the distance between values is the length of the shortest path from
the ground domain to the domain&H, in which both values share the same generalized value. By
extension, the distance between two tuples can be expressed as a vector denoting the distance between

values for each attribute. This is presented in the following definition of a distance vector.

Definition. distance vector with respect to tuples

Let ti[Aq,...,A)] andt[Ay,...,A ] be two tuples. The distance vectortafo t; is the vectoDV;; =

[dy,...,d,] where eachl,, wherez=1,...n, is the distance betwe&[A;] andt[A].

The relationship between the minimal generalization of a table and the distance vectors between

tuples forms the basis for understandingkisemilar algorithm.

Example

Given the privately held informatioRT in Figure 84, the Figure 85 shows the distance vectors
between every two tuples RIT. The quasi-identifier iQl={HomeZIP, HospitalZIP, WorkZI P}
anddi=1,...,RI|, DGH, andVGH,; are the domain and value generalization hierardd&d,p
andVGH_zp based on the depiction in Figure 33. As shown in Figure 84, the distance véttor of
to t2 is DVye = [0,1,0] becausdal[HomeZIP] is the same value ag®[HomeZIP], and
t1[WorkZIP] is the same value d8WorkZIP], but t1[HospitalZIP] is NOT the same value as
t2[HospitalZIP]. They can become the same value if they were generalized 1 |ev&iHyp.

Likewise, the distance vector ¢f to t3 is DVy 3 = [0,0,2] becaus#l[HomeZIP] is the same
value ast3[HomeZIP], and tl[HospitalZIP] is the same value a3[HospitalZIP], but
t1[WorkZIP] can become the same valuet3dVorkZIP] if they were generalized 2 levels up
VGHzp. Similarly, the distance vector tf to t4 is DVy 4 = [0,1,1]; the distance vector tf to
t3is DV = [0,1,2]; the distance vector t# to t4 is DV = [0,0,1]; and, the distance vector
of t3tot4 isDVzy = [0,1,2].

167



Computational Disclosure Control 01/08/01 8:22 AM

Al A2 A3
Home ZIP |Hospital ZIP |Work ZIP
t1] 02138 02138 02138
t2| 02138 02139 02138
t3] 02138 02138 02141
t4] 02138 02139 02139

Figure 84 Private Table PT

Figure 85 Clique showing distance vector s between tuples of Figure 84

To interpret distance vectors, the k-similar algorithm uses a distance function dist based on the
precision metric Prec() and therefore, is typically defined as the sum of the normalized value of each
element in the vector [120]. That is, given avector V= [d, ..., d,] associated with attributes, {Ay,..., A}

Other distance functions correspond to different precision metrics. For example, using a
weighted precision metric [121] would warrant the use of a corresponding weighted distance function.
However, the distance function used must not only relate to the precision metric used but must also

satisfy the properties of Euclidean geometry listed in Figure 86 for all possiblextuplesdz.

Q) dist(Vyy)= 0;

()] dist(Vyy) =0 iff x =y,

3 dist(Vyxy) = dist(Vyx); and

4 dist(Vyy )<(dist(Vx_) + dist(V,y)).

Figure 86 Euclidean Properties of distance function

Lastly, Figure 87 contains operations and relations on distance vectors that determine a partial
ordering on distance vectors and that determine containment. These are usekidoyithe algorithm,
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which is presented later in this subsection. In each of these cases, let V= [dy, ..., tyn] and Vy = [d, ...,

d,n] be distance vectors between tuples.

(1) Vi < Vi iff dys < d for all i=1,... 1.
(2) Vi = Vi iff di = d for alli=1,... 1

(3) Viy © Vi, = [Min(dys, dya), .., Min(yn, da)]
(4) ny U sz = [max(dyl, dzl)a te maxdyn, dzn)]

Figure 87 Relations on distance vector s

Definition. maximal distance vector

Given a tableT[QI] and a set of tupled{Ql], ..., t[QI]} where fori=1,...m, tOT andm= 2,
the maximal distance vector across the set of tupMg,i8l Vy O ... O Vymwherejis 1, 2, ...,

orm.

The maximal distance vector across a set of tuples in a table is the distance vector that reports for
each attribute, the level up the value generalization hierarchy for that attribute, at which all values
associated with that attribute in the set of tuples is the same. It is computed by iteratively applying the
operator, defined in Figure 87, to all distances of one tuple in theeall the other tuples. The result is
the maximum level up the value generalization hierarchy that the uplest combine with the other

tuples.

Example

Given the privately held informatioRT in Figure 84, the Figure 85 shows the distance vectors
between every two tuples PT. The quasi-identifier iQl={HomeZIP, HospitalZIP, WorkZI P}
anddi=1,...,RI|, DGH, andVGH,; are the domain and value generalization hierard&d,p
andVGHgzp based on the depiction in Figure 33. The maximal distance vectyy ©f {s DV, 1

=[0,1,0]. This is the same as the distance vector between the two tuples.
The maximal distance vector of; {t,, ts} is [0,1,2]. The maximal distance vector df,{t,, t4} is

[0,1,1]. The maximal distance vector d,{ts, t4} is [0,1,2]. And, the maximal distance vector of

{tlv tZ, t37 t4} IS [011’2]
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Theorem 7
Given a table T[QI] and a set of tuples S = {t;[Ql], ..., t,[QI]} where i=1,...m, t0T, the
maximal distance vectdVs acrossS is the minimal distortion required to make the tuples of

indistinguishable ove®l.

Proof.

Let DVs be the maximal distance vector acr8ss

AssumeDVs does not represent a minimal distortiorgof

Then there must exist a distance ve@bf that provides a minimal distortion 8fsuch that
dist(DV’) <dist(DVs).

0A 0QI, d’ <dg whereDV'=[...,d/,...] andDVs =[...,ds,...].

This is a contradiction becaudé= dy.

So, DVs must be a minimal distortion &

8.2.2 Thek-Similar algorithm

This subsection begins with a general description of the overall operation of the algorithm.
Following this high-level description is the algorithmic listing of &imilar algorithm along with
supporting algorithms. After the listings is a walk through the algorithm, without and then with

examples.

The basic phases of tkeSimilar algorithm are provided in Figure 88. The program begins in
phase A by testing for some base conditions, which are: (1) if the number of tuples in the table is 0, the
empty table is returned; (2) if the number of tuples in the table is les&,tharerror results; and, (3) if
the number of tuples in the table is greater than or equk) bwut less than K all the tuples are

generalized into one cluster that is returned as the solution.

In all other cases, the program continues by automatically computing distance vectors between
every two tuples and organizing the result into a clique. Each distance vector recorded on an edge of the
clique reports the generalization needed in order for the two incident tuples to have the same generalized

result.
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In phase B, the program walks the edges of the clique to identify groups of k tuples that are
"closest" in terms of distance vectors. A set of k tuples that are minimally distant denote a possible
cluster of tuples in the generalized solution. Each of tuple in the cluster appears in the generalized
solution with the same generalized values. The set of all k-sized clusters determined to minimally include
atuple is caled mins. Each cluster is caled a "minimal”. The remainder of the algorithm works with
mins and subsets and partitions of mins to identify which group of clustersin mins best accounts for all
the tuples that when generalized in accordance to their designated clusters would yield minimal

distortion in the overall generalized solution.

Some of the clusters in mins may consist of tuples that if their attributes were generalized to the
same values would not limit the ability of other tuples to combine with their closest tuples. | term such a
cluster a "complementary minimum". In phase C, the program traverses through mins identifying any
complementary minimums. Phase D handles the situation if complementary minimums are found in mins

and phase E handles the situation if no complementary minimums are found.

In phase D, if complementary minimums exist in mins, then each such cluster is removed from
further consideration. That is, the tuples that comprise a complementary minimum are generalized
together and added to the generalized solution. Recall, a cluster in mins, from phase B, identified its
constituent tuples as being minimally distant and the cluster as containing k tuples. Therefore, if the

cluster is a complementary minimum, it provides a solution for its constituent tuples.

Clusters remaining in mins, after complementary minimums are removed, have groups of clusters
that share tuples. The program is recursively run on each connected partition of the remaining clustersin

mins.

Phase E concerns partitions of mins that have no complementary minimums. This is a special
situation in which groups of clusters share one or more common tuples. These common tuples are held
aside and the program recursively run on the result. When execution returns from the recursion, the

tuples, which were previously held aside, are added to the results so that the overall distortion is minimal.
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Basic operation of the k-Similar algorithmis as follows:

A. Compute distance vectors between every two tuplesin the table T[QI]. The
result isaclique and is called clique.

B. Walk the edges of clique and identify the (k-1) tuples that are minimally
distant from each tuple. A set of tuples that are closest, based on dist() applied
to their maximal distance vector, istermed a"minimal". The resulting set of
"minimals’ for al tuplesiscaled mins.

C. Identify elements of minsthat are isolated from other minimalsin mins. Such
elements represent tuplesthat if they are excluded from the clique would not
limit other tuples from combining with their closest tuples. Such a set of tuples
istermed a"complementary minimum". The set of all complementary
minimums found in minsis called complements.

D. If complementary minimums exist in mins, then for each element of
complements: (1) put the corresponding tuplesin the solution table, al
minimally generalized to be indistinguishable; and, (2) remove those tuples
from further consideration. Recursively run the program on connected
partitions of the tuples remaining.

E. If no complementary minimums exist, then there exist a set of 1 to (k-1) tuples
that are common to al minimalsin mins. In this case, remove the common
tuple(s) from consideration. Recursively run the program on the result and
then add the withheld tuple(s) so that the overall distortion after the withheld
tuple(s) are included is minimal.

Figure 88 Basic operation of k-Similar algorithm
Figure 89 contains a listing of the k-Similar algorithm. Figure 90 through Figure 102 provide

supporting methods. A description of the general operation of the algorithm and examples using these

algorithms are provided following the algorithm listings.
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k-Similar Algorithm

Input: Table T; quasi-identifier QI = (A4, ..., A, k-anonymity constraint; and domain and
value generalization hierarchiB&Hp andVGH,;, wherei=1,... n with accompanying
functionsf,;.

Output: A k-minimal distortion ofT[QI]

Assume: [T] = k

algorithm k-Similar:

1. Append an attributD to T. The associated valuesl@f in T are key identifiers that are unique for

each tuple of; these values are numbered from IT{o |

2. clique =CliqueConstruct( T[QI,ID])

3. clusts —~ kSimilarRun(T, k, clique)

4. return TableConstruct(clusts)

Figure 89 k-Similar algorithm

CliqueConstruct

Input: TableT[QI,ID]; where quasi-identifieQl = (A, ..., Ay), ID associates unique values
numbered from 1 td'| to the tuples of, and value generalization hierarchi@SHy;
andVGHy,;, wherei=1,... n with accompanying functiorfg.

Output: clique, which is a clique of the tuples dfstored in a 2-dimensional array. Each node
the clique is a tuple. Each edge records the distance vector that corresponds to the
distance between the tuples whose nodes are incident.

algorithm CliqueConstruct:

1. let clique be an initially empty 2-dimensional square array of Jigéy [r|.

2.1 for tuplefrom ~ 1to [T|do:
2.1.1 for tupleto « 1to [T|do:
2.1.1.1 if (tuplefrom # tupleto) then:
21.11.1 clique[tuplefrom, tupleto]
~ Distance(T[QI,ID=tuplefrom], T[QI,ID=tupleto])

2. return clique

Figure 90 CliqueConstruct algorithm
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Distance

Input: t,, LOT[QI]; where quasi-identifier QI = (A4, ..., A,), and value generalization hierarchies
VGHy,;, wherei=1,... h with accompanying functiorfy.

Output: [dy, ..., dq], which is a distance vector that corresponds to the distance between the tuples

t; andt,.
algorithm Distance:
1. DV < [di...d)] where eacld, is the length of the unique path betwegA] andt,[A] in VGH, for i=1...n
2. return DV

Figure 91 Distance vector algorithm

kSimilarRun Algorithm

Input: Table T[QI,ID], where quasi-identifier QI = (A, ..., Ay), ID associates unique values
numbered from 1 td'| to the tuples of; k-anonymity constrairit; value generalization
hierarchies/GH,;, wherei=1,... n with accompanying functiorfg; and,clique, which
is a clique of the tuples df where each node in the clique is a tuple and each edge
records the distance vector that corresponds to the distance between the tuples w
nodes are incident.

Output: clusts, which is a vector of sets b values of tuples. Each member set identifies a
cluster of tuples that when generalized to respect to the distance vectors incident t
tuples provide a set of "closest" tuples ikrminimal distortion ofT[QI]

algorithm kSimilar Run:

if |T| = Othen return O

if |T| <kthen error "Table must have at least k elements”

if |T| <2*kthen return { T[ID] } I/ make a cluster containing all tuplesin T

mins — GenerateMinimums(T[QI,ID], clique, k)

complements — FindComplements(mins)

if |complements| > Othen do:

6.1 let T, be a table with no elements initially

6.2 for pos — 1to |complements| do:

6.21 T, « {t[QLID] | t[QI,ID]OT[QI,IDO complementgpos]] }
622 TT-T,
6.2.3 if ([T| > 0)then do: mins — GenerateMinimums(T[QI,ID], clique, k)

7. return complements O kSimilarRunParts( T, mins)

oA~ wWDN PR

hose

o the

Figure 92 kSimilar Run algorithm
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kSimilar RunParts Algorithm

Input: Table T[QI,ID]; where quasi-identifier QI = (A4, ..., Ay), ID associates unique values
numbered from 1 td'| to the tuples of, andmins, which is a vector of sets & values
of tuples. Each member set identifies a clustdrdbsest tuples.

Output: clusts, which is a vector of sets b values of tuples. Each member set identifies a
cluster of tuples that when generalized to respect to the distance vectors incident to the
tuples provide a set of "closest" tuples ikrminimal distortion ofT[QI]. Executes
kSmilarRun() mutually recursively, on connected groups witmins.

algorithm kSimilar RunParts:

1. if (T =0) then return O

2. (Tq,minsl, T, mins2) — Partition(T, mins)

3. if ([T4] < 2*%) then do:

3.1 return kSimilarRun(T,) O kSimilarRunParts(T,, mins2)
4. elsedo:
I assert: there exist tuple(s) common to all elements within partition T4, based on mins1
4.1 withheld « CommonTuples(minsl, clique)
4.2 if (([T4] - withheld|) < 2*) then do:
421 return addTuple(withheld, k,(minsl-withheld), clique)
O kSimilarRunParts(T,, mins2)
43 mins3 « kSimilarRun(T[QI,IDOwithheld], k, clique)
4.4 return addTuple(withheld, k, mins3, clique) O kSimilarRunParts(T,, mins2)

Figure 93 kSimilar RunParts algorithm
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TableConstruct
Input: clusts, which is a vector of sets of ID values of tuples. Each member set identifies a

cluster of tuples that when generalized to respect to the distance vectors incident to the
tuples provide a set of "closest” tuplesin a k-minimal distortion of T[QI], where quasi-
identifier QI = (A, ..., Ay), ID associates unique values numbered from T|tm [the
tuples ofT, andclique, which is a clique of the tuples dfwhere each node in the cliq
is a tuple and each edge records the distance vector that corresponds to the dista
between the tuples whose nodes are incident.

Output: GT, which is a minimal generalization ©{QI]. Tuples identified within an element of

clusts are generalized to have the same values.

algorithm TableConstruct:

1
2.

for clustnum — 1to |clusts| do:
21 letV be a distance vector of the fordh,[...,d;] where eaclti=0

andn is the number of attributes in the quasi-identi@@r= (A, ..., Ay
2.2 let aclust be an expandable and collapsible Vector whose elements
are initialized talusts[clustnum]
2.3 for tupleto ~ 2to [aclust|do:
241 V < VO clique[ aclust[1], aclust[tupleto] ] /I compute maximal distance vector
24 fort « 1to |aclust|do:
25.1 GT ~ GT O GeneralizeTuple(T[QI,ID=t], V) // generalize each tuplein cluster
return GT

e
nce

Figure 94 TableConstruct algorithm
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AddTuple
Input: withheld, which is a set of unique values associated with tuplesin T; k-anonymity

Output: clusts, which is a vector of sets b values of tuples that is the same as the original

algorithm AddTuple:
1.
2.

o g kM w

constraint k; clusts, also known as mins, isavector of sets of ID values of tuples. Each
member set identifies a cluster of tuples that when generalized to respect to the distance
vectorsincident to the tuples provide a set of "closest” tuplesin ak-minimal distortion of
T[QIl], where quasi-identifier QI = (A, ..., Ay), ID associates unique values numbered
from 1 to T| to the tuples of ; and,clique, which is a clique of the tuples dfwhere
each node in the clique is a tuple and each edge records the distance vector that
corresponds to the distance between the tuples whose nodes are incident.

value ofclusts (also known agnins) provided to the algorithm except the returned val
has an element that includes the elementgtbheld. The tuple(s) identified imithheld

replace tuple(s) in an original elementhists such the overall loss of precision due tp

generalization is minimized and all tuples remain included.

letd — co,n « 0,c « O
for clustnum — 1to |clusts| do:
11 if clustgclusthnum] = 2 * k - withheld| then do:
1.1.1 testclust — be an expandable and collapsible Vector whose elements
are initialized talustg clusthum]|
11.2 (dy, c1) ~addTupleMin(withheld, testclust, k, d, c, clique)
1.1.3 if (d; <d) then do:
1111 d~d;
1.11.2. n < clusthum
1113, C<C
temp  clustgn] O withheld
clustgn] ~ temp—c
clusty |clustg+1] ~ €
return clusts

Figure 95 AddTuple algorithm
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AddTupleMin

Input: Ca; Cp, Which are each a set of unique values associated with tuplesin T;
k, which is a k-anonymity constraint;
d, which is distance;
¢, which isaset of unique values associated with tuplesin T.
clique, which isaclique of the tuples of T where each node in the clique is atuple and
each edge records the distance vector that corresponds to the distance between the tuples
whose nodes are incident.

Output: (d, ¢), whichisavector of sets of ID values of tuples that is the same as the original
value of clusts (also known as mins) provided to the algorithm except the returned value
has an element that includes the elements of withheld. The tuple(s) identified in withheld
replace tuple(s) in an original element of clusts such the overall loss of precision due to
generalization isminimized and all tuples remain included.

Assumes dist() function exists and computes non-negative distance from a distance vector based
on Prec(), can be weighted or not.

algorithm AddTupleMin:

1. if |cy = kthen do:

11. let Vg Vo be distance vectors of the form [dy, ..., d;] where eaclti=0
andn is the number of attributes in the quasi-identi@@r= (A, ..., Ay
1.2. fortnum ~ 2to |c4| do:
121 V5 « V. Ocligue[ 1], cifthum] ]
1.3. dy < dist(Va) * |cd
14. fortnum ~ 2to [cp| do:
141 V, « V, Ocligue[ 1], co[thum] ]
15 dy « diSt(Vb) * |Cb|
1.6. if (dy +dy) <d)then do: return (d; +dy, Cy)
1.7. elsereturn (d, ¢)
2.¢elseif [cy| < (k—1)then do:
21. letCyp « Cy Cp « Cp
2.2, Cof |caol+1] =Cpof1]
2.3. purge Cy[1]
2.4, (d]_, C]_) — addTupIeMin(Caz, Co2, k, d, C)
25 if (d]_<d) then do: d < d]_, C~C
2.6. (d]_, C]_) — addTupIeMin(Caz, Co2, k, d, C)
2.7. if (d]_<d) then do: d < d]_, C~C
2.8. return (d c)
3. else while |cy| > Odo:
31 calcat1 ] cll]

3.2. purge 1] // ¢, has one less el ement
3.3. (dy, ¢)) < addTupleMin(c,, Cy, k, d, €)
3.4. purge Cyf ¢4l ] // ¢s has one less element

35 if (d]_<d) then do: d < d]_, C~C
4.return (d c)

Figure 96 addTupleMin algorithm

178




Computational Disclosure Control 01/08/01 8:22 AM

GeneralizeTuple Algorithm

Input: Tuplet[QI,ID]; where quasi-identifier QI = (A4, ..., Ay), ID associates unique values
numbered from 1 td'| to the tuples of, a distance vector[d,,...,d)], and value
generalization hierarchies VGH,;, wherei=1,... n with accompanying functiorfg.

Output: G, which is a set containing the result of generalizing ttupleV.

algorithm GeneralizeTuple:

1. let G « {[QI] | toA] = fi(...fs(V)...) wherev =t[A] andV[...d;...] for dl i=1,...|Ql| }

2. return G

Figure 97 GeneralizeTuple algorithm

GenerateMinimums Algorithm
Input: TableT[QI,ID]; where quasi-identifie®l = (A, ..., An), ID associates unique values
numbered from 1 td'| to the tuples of, k-anonymity constraink, andclique, which is
a clique of the tuples af where each node in the clique is a tuple and each edge re
the distance vector that corresponds to the distance between the tuples whose no
incident.
Output: mins, which is a Vector of sets ¢b values of tuples. Each member set identifies a
cluster ofk-1 of t's closest tuples. Each member set includesthe total cluster size is
K.
algorithm GenerateMinimums:
1. let mins be an expandable and collapsible Vector with no elements initially.
2. let stack be an empty Stack.
3. let zero be a distance vectod,| ...,d,] where eachl;=0 andn is the number of attributes in the
quasi-identifierQl = (A, ..., Ay
4. for tupleto — 1to [clique|do:
4.1 mins =traverse(tupleto, tupleto+1, k, {tupleto}, zero, co, mins)
I/ stackand clique are globally available across iterations of traverse()
5. return mins

cords
des are

Figure 98 GenerateM inimums algorithm
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FindComplements Algorithm
Input: mins, which isaset of sets of ID values of tuples. Each member set identifies a cluster of

k-1 of t's closest tuples. Each member set includest so the total cluster sizeisk.

Output: distincts, which is avector of sets of ID values of tuples. Each member set identifiesa

cluster that can be partitioned as an independent sub-solution.

algorithm FindComplements:

1.
2.
3.

let distincts be an expandable and collapsible Vector with no elementsinitially.
let allnodes — [J
for pos « 1to |ming| do:
3.1 allnodes ~ allnodes O ming[pos]
for candidate — 1to |ming| do:
4.1 lets  allnodes- mingcandidate]
4.2 for pos « 1to |ming| do:
4.1.1 temp — mingpos] n mingcandidate]
4.1.2 if (temp# [O) then do:
4211 s ~ s—temp
4.3. if (s=allnodes —ming/candidate] ) then do:
4.3.1 distinctd |distincts| + 1] « ming[candidate]
return distincts

Figure 99 FindComplements algorithm
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Traverse Algorithm
Input: (node, next, k, path, mV, mdist, mins)

Output:

Assumes

node
next

k
path

mvV
mdist

mins

which is the unique value associated with atuple in clique that represents the
tuple "from" which distance will be measured to next on this iteration.

which is the unique value associated with atuple in clique that represent the
tuple "to" which distance will be measured from node on this iteration.

which is the k-anonymity constraint

which is the set of tuples comprising the shortest path from node to the tuple that
serves as the root of the traversal

which isamaximal distance vector from the tuple that serves as the root of the
traversal to node.

which is the measure of distortion from the root of the traversal to node. It does
not include the distance from node to next.

which isaVector of sets of ID values of tuples computed so far. Each member
set identifies a cluster of k-1 of t's closest tuples. Each member set includest so
the total cluster sizeisk. At the end of the traversal this value provides the
answer. It is shared across iterations to track global information.

mins, which isaVector of sets of ID values of tuples. Each member set identifies a
cluster of k-1 of t's closest tuples. Each member set includest so the total cluster sizeis

Kk

dist() function exists and computes non-negative distance from a distance vector based
on Prec(), can be weighted or not.
Assumes following exist and are globally available:

stack

clique

which isa Stack that contains information on each node from the root of the
traversal up to, but not including node. Each element of the stack contains values
of the form: (node, path, mV, mdist). It is shared across iterations to track global
information.

which isaclique of the tuples of T where each node in the cliqueisatuple and
each edge records the distance vector that corresponds to the distance between
the tuples whose nodes are incident, t, which isan ID value unique to atuplein
T.
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algorithm Traver se:
1. if (next > |clique]) and stackEmpty() then do:
1.1. returnmins
2. else if (next > [clique|) then do:
2.1. (rooty, pathy, MV, mdisty) — stackPop()
2.2.  return traverse(rooty, node+1, k+1, pathy, mins)
3. elseif (next O T[ID] ) then do:
3.1. return traverse(node, next+1, 1, path, mV, mdist, mins)
4.V; « mV O clique[node, next]
5.d; < dist(Vy) * (Jpath] + 1)
6. p; « path O { next}
7.if (d; > mdist) then do:
7.1. return traverse(node, next+1, k, path, mV, mdist, mins)
8. else if (k=1) and (d; = mdist) then do:
8.1. ming |ming|+1] « p;
8.2. return traverse(node, next+1, 1, path, mV, mdist, mins)
9. else if (k=1) then do: //and (d; < mdist) isimplied
9.1. purge al elementsfrom mins
9.2. mingl] « p;

9.3. mdist ~ d;

94 mV ~V;

9.5. return traverse(node, next+1, 1, path, mV, mdist, mins)
10. else do: /k Z1lisimplied

10.1. stackPush(next, p;, V1, dy)
10.2. return traverse(next, next+1, k-1, p;, V1, di, mins)

01/08/01 8:22 AM

Figure 100 Traverse algorithm
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Partition Algorithm
Input: Table T[QI,ID]; where quasi-identifier QI = (A4, ..., Ay), ID associates unique values

numbered from 1 td'| to the tuples of; and,mins, which is a set of sets tb values of
tuples. Each member set identifies a clustdebDf t's closest tuples. Each member s
includest so the total cluster size ks

Output: (T1, T2, ms), whereT,; O T, =T andT; n T, =0. The tuples of'; identifies a

connected group of tuples that can be partitioned as an independent sub-solution.
decision is based on the connectedness of elements mitlenThe identifierms
contains the subset ofins not accounted for by the tuplesTof

algorithm Partition:

1
2.

let allnodes - O, ms « O
for pos — 1to |ming|do:
2.1 allnodes ~ allnodes O ming[pos]
letr — ming1] /1 test connectedness of ming1]
for pos « 2to |ming| do:
4.1 if (mingpos] n r #0O) then do:
411 r « r O mingpog|
42 elsedo:
421 ms — msU mingpos|
if (mins#r )then do:
51 return (Ty, r, T, ms) whereTy = {t; | t; OT[QI,ID=t;] andt,(Or} and T, =T-T;
else do:
6.1 return (T,r, O, 0)

This

Figure 101 Partition algorithm
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CommonTuples Algorithm
Input: mins, which isaset of sets of ID values of tuples. Each member set identifies a cluster of
k-1 of t's closest tuples. Each member set includest so the total cluster sizeisk; and,
clique, which isaclique of the tuples of T where each node in the clique is atuple and
each edge records the distance vector that corresponds to the distance between the tuples
whose nodes are incident, t, which isan ID value unique to atuplein T
Output: withheld, which is a set of unique value associated with atuplein T and that occursin
each element of mins thereby making them "the" closest tuple to all tuples.
algorithm CommonTuples:
1. letwithheld - O
2. for thum « 1to |clique|do:
21 letinall — true
2.2 for pos « 1lto |ming|do:
2.2.1 if (thum O ming[pos])
2211 inall ~ false
2.3 if (inall =true) then do:
2.3.1 withheld — withheld O {tnum}
3. return withheld

Figure 102 CommonTuples algorithm

As introduced earlier, the basic steps, A through E, of the k-Similar algorithm are enumerated in
Figure 88. The agorithm listed in Figure 89 along with its supporting methods is more detailed but
follows these same basic steps. Below is a walk through the detailed version of the k-Similar algorithm.

Afterwards are some examples.

Given a private table T, a quasi-identifier QIl=(A,,...,A,), ak-anonymity requiremerk, domain
and value generalization hierarch2&H, andVGH,;, wherei=1,... n with accompanying functiorfs;,

thek-Similar algorithm, listed in Figure 89, generatdsrainimal distortion ofT[QI].

The k-Similar algorithm listed in Figure 89 begins in step 1 by expandirtg include an
attribute labeledD whose values serve as a unique identifier (or key) for each tupléFiom this point

forward, the algorithm has the ability to uniquely refer to a tuplehy using its associated valuel &f.

Step 2 of th&-Similar algorithm listed in Figure 89 produces a clique of the tupl@sstdred in
a 2-dimensional array nametique. The methodCliqueConstruct() listed in Figure 90 performs the
construction. Each node in the clique is a tuple. Each edge records the distance vector that corresponds to
the distance between the tuples whose nodes are incident. The Dedtande() listed in Figure 91
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computes the distance vector between two tuples using the value generalization hierarchies VGHp;,
where i=1,... n with accompanying functionfg,. The distance vector records the minimal generalization

strategy [122] needed for the two tuples to have the same generalized values.

The heart of the algorithm occurs in step 3 of kifeimilar algorithm listed in Figure 89. It
executes the methdd&milarRun(), which is listed in Figure 92, and which will be further described in
the next paragraphs. Tk&milarRun() method returns a set of clusters of tuples such that minimally
generalizing the tuples of each cluster together so they become indistinguishable results in a table that is
ak-minimal distortion ofT[QI]. The methodrableConstruct() listed in Figure 94 takes the set of clusters
from kSmilarRun(), generalizes the tuples of each cluster, and then returns the generalized table. Each
cluster therefore, identifies a group of tuples that in the solution set are indistinguishablehc8iss
thek-Similar approach can be described as translating the problem into one of partitioning tuples. This is
done bykSmilarRun().

ThekSmilarRun() method listed in Figure 92 begins by testing for the base conditions in steps 1
through 3. These conditions are based on the size of the table provif&ohitarRun(). Step 1: if the
number of tuples in the table is 0, an empty set of clusters is returned denoting the empty table. Step 2: if
the number of tuples in the table is less tkha@an error results because theequirement cannot be
satisfied on a table having less thatuples. Step 3: if the number of tuples in the table is greater than or
equal tok, but less thank? all the tuples are generalized into one cluster designating that all the tuples of

the table are to be generalized together.

In step 4 of th&kSmilarRun() method, which is listed in Figure 92, the program walks the edges
of clique using the metho&enerateMinimums(), which is listed in Figure 98, to identify groups lof
tuples that are "closest" in terms of distance vectors. The météasise(), which is listed in Figure
100, performs the actual traversal digue given a particular starting tupte The methodraverse()
returns the cluster(s) of sikecontainingt andt's closest tuples that when combined have less distortion
than any other combination & tuples that includd. The methodGenerateMinimums() executes
traverse() on each tuple. The end result is a set okaiked clusters determined to minimally include a
tuple. It is callednins. Each cluster imins is called a "minimal”. As described in the next paragraphs,
the remainder of the algorithm works wittins and partitions ofins to identify which group of clusters
in mins best accounts for all the tuples that when generalized in accordance to their designated clusters

would yield minimal distortion in the overall generalized solution.
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Some of the clusters in mins may consist of tuples that if their attributes were generalized to the
same values would not limit the ability of other tuples to combine with their closest tuples. | term such a
cluster a "complementary minimum". Step 5 of the kSmilarRun() method, which is listed in Figure 92,
executes the FindComplements() method, which is listed in Figure 99, to identify complementary
minimums within mins. Such clusters can be partitioned as an independent sub-solution. The resulting set

of complementary minimums found is called complements.

The sub-steps of step 6 of the kSmilarRun() method, which islisted in Figure 92, execute only if
complementary minimums are found in mins. In that case, complements returns as part of the solution
and kSmilarRunParts(), which is listed in Figure 93, executes on the remaining tuples and minimals to
recursively apply the algorithm on partitions of connected clusters. If no complementary minimums are
found, then complements has no elements, and so in step 7, kSmilarRunParts(), which is listed in Figure

93, executes on all the tuples and minimals under consideration.

The method kSmilarRunParts(), which is listed in Figure 93, employs mutual recursion by
executing kSmilarRun() on each connected partition of the remaining clusters in mins. The method
Partition(), which is listed in Figure 101, is used in step 2 of kSmilarRunParts() to identify connected
clusters within the given mins. If the returned partition has less than 2k elements, then in step 3.1,
kSmilarRun() is used to combine the tuples of that partition into a single cluster as part of the overall

solution.

If the returned partition, identified as T,, has 2k or more elements, then the partition has a special
configuration in which al minimals within the partition share one or more common tuples. This situation
is handled in step 4 of kSmilarRunParts(). In step 4.1, the method kSmilarRunParts() deploys the
method CommonTuples(), which islisted in Figure 102, to identify the set of 1 to (k-1) tuples that appear
within each cluster of the partition. These tuples are stored in a set called withheld. If the number of
tuples in the partition, not including the tuples withheld, is less than 2k, then the method addTuple(),
which is listed in Figure 95, executes to determine which clusters in the partition should include the
withheld tuples. The decision is made so that the overall result has minimal distortion. On the other hand,
if the number of tuples in the partition, not including the tuples withheld, is greater than or equal to 2k,
then kSmilarRun() is executed using mutual recursion on the partition not including the withheld tuples.
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The method addTuple() then executes afterwards to determine which cluster(s) in the result will include
the withheld tuples.

As stated earlier, the final step of the k-Similar algorithm uses TableConstruct(), which is listed
in Figure 94, to construct a generalized table from the resulting set of clusters from kSmilarRun(). It can
be shown that the final table resulting from the k-Similar algorithm is a k-minimal distortion of the

original table using cell-level generalization and suppression.

Example

Given the private table PT shown in Figure 84, the domain and value generalization hierarchies
based on the depictionsin Figure 33 (on page 101), and a k-anonymity requirement of k=2, the k-
Similar algorithm, which islisted in Figure 89, providesthe table GT, as shown in Figure 104, as
ak-minimal distortion of PT over the quasi-identifier QI = { HomeZI P, HospitalZIP, WorkZI P} .
Hereisawalk through the k-Similar algorithm to demonstrate how MT is constructed.

Figure 84 shows the uniquely identifying values t1, t2, t3 and t4 appended to the table after step
1 of the k-Similar algorithm executes. These values are associated with the ID attribute. Figure
85 shows clique, which is constructed after step 2 of the k-Similar algorithm concludes. The
nodes are the tuples of PT. The edges are labeled with the distance vectors between every two

tuplesin PT.

None of the base conditions in the first 3 steps of kSmilarRun() are applicable. T in this case is
PT. It has 4 tuples and k=2, so [T|=2k. Figure 103 shows the value of mins after step 4 concludes.
The method GenerateMinimums() identifies the set of minimals for each tuple by traversing
clique to identify each tuple’s nearest (k-1) tuples. Traversing clique from t1 provides the
minimal {t1, t2}, from t2 provides the minimals {t1, t2} and {t2, t4}, from t3 provides the
minimal {t1, t3}, and from t4 provides the minimal {t2, t4}.

{11, 12}
{12, t4}
{11, t3}

Figure 103 Resulting mins from GenerateMinimums()
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The minimals {tl, t3} and {t2, t4} are returned as complementary minimums by
FindComplemets(). So, complements = {{t1, t3}, {t2, t4}} after step 5 of kSmilarRun(). When
step 6 of kSmilarRun() concludes, T is empty. So, complements is returned at step 7 of
kSmilarRun() as the set of clusters that are minimally distorting. The call to kS milarRunParts()
in step 7 of kSmilarRun() returns O because T is empty. The final step of kSmilar() executes
TableConstruct() on clusts ={{t1, t3}, {t2, t4}}. The result is shown in Figure 104 with the ID

values still appended for ease of reference.

The possible cluster combinations and their distortion are: {{t1, t2}, {t3, t4}} a 8 levels of
generalization is 2.67; {{t1, t3}, {t2, t4}} at 6 levels of generalization is 2.00; and, {{t1, t4}, {t2,
t3}} at 10 levels of generalization is 3.33. The combination of clusters with the least distortion is
{{t1, 13}, {2, t4} }, which is the same found by kSmilar().

Al A2 A3
Home ZIP |Hospital ZIP |Work ZIP
t1] 02138 02138 021**
t2| 02138 02139 0213*
t3| 02138 02138 021**
t4] 02138 02139 0213*

Figure 104 Result from k-Similar applied to PT in Figure 84

Example

Given the private table PT shown in Figure 34 (on page 102), the domain and value
generalization hierarchies based on the depictions in Figure 33 (on page 101), a k-anonymity
requirement of k=2, the k-Similar algorithm, which is listed in Figure 89, provides the table GT,
as shown in Figure 104, as a k-minimal distortion of PT over the quasi-identifier QI = { Race,
BirthDate, Gender, ZIP}. Here is awalk through the k-Similar algorithm to demonstrate how MT

is constructed.

Figure 34 shows the uniquely identifying valuestl, t2, t3, ..., t12 appended to the table after step

1 of thek-Similar algorithm executes. These values are associated witD tagribute. Figure

105 showstlique, which is constructed after step 2 of t&imilar algorithm concludes. The
nodes are the tuples BfT. The edges are labeled with the distance vectors between every two
tuples inPT. The clique is stored in Figure 105 as a 2-dimensional array. Each row and each

column represent a tuple. The cell located att@md columrt; stores the distance vectdg ..
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
t1/0000/0200/{0212 02120412 0412(1402/ 12121402 1402 1302 1302
1202000000/ 0212 02120412/ 0412(/1402/1212/1402[ 1402 1302 1302
t3]0212 02120000 0200040004001410/1201]1411f 1411 1310 1310
14/ 0212 021202000000 04000400[/1410/1201]1411[ 1411 1310 1310
150412 0412/04000400/0000/0200[{1210/1401]1211f 1211 1410 1410
16/0412 041204000400/ 0200/0000[/1210/1401]1211f 1211 1410 1410
t7/14021402/14101410/121012100000/0411]0201[ 0201 0400 0400
181 1212[(12121201/1201/1401/1401/0411/0000/0410/ 0410 0311 0311
19/14021402/(141111411/1211]1211/0201/04100000f 0200/ 0401 0401
1101 1 402(14021411/(1411/1211/12110201/04100200 0000 0401 0401
11111302/ 1302/1310/1310/1410/14100400/0311/0401] 0401 0000[ 0200
112/ 1302/1302/1310/13101410/141004000311/]0401f 0401 0200/ 0000

Figure 105 Clique showing distance vector s between tuples of Figure 34

None of the base conditions in the first 3 steps of kSmilarRun() are applicable. T in thiscaseis
PT. It has 12 tuples and k=2, so |[T|>2k. Figure 106 shows the value of mins after step 4
concludes. The method GenerateMinimums() identifies the set of minimals for each tuple by
traversing clique to identify each tuple's nearest (k-1) tuples. Traversing clique from t1 provides
the minimal {t1, t2}, from t2 provides {t1, t2}, from t3 provides {t3, t4}, from t4 provides {t3,
t4, from t5 provides {t5, t6}, from t6 provides {t5, t6}, from t7 provides {t7, t9} and {t7, t10},
from t8 provides {t3, t8} and {t4, t8}, from t9 provides {t9, t10}, from t10 provides {t9, 110},
fromt11 provides {t11, t12}, and from t12 provides {t11, t12}.

{11, 12}
{13, 14}
{15, 16}
(17,19}
{17,110}
{13, 18}
{14, 18}
{19, 110}
{111, 112}

Figure 106 Resulting mins from GenerateMinimums()

The minimals {t1, t2}, {t5, t6} and {t11, t12} are returned as complementary minimums by
FindComplemets(). So, complements = {{tl1, t2}, {t5, t6}, {t11, t12}} after step 5 of
kSmilarRun(). When step 6 of kSmilarRun() concludes, T[ID] is{t3, t4, t7, t8, t9, t10} with mins
={{t3, t4}, {t3, 18}, {t4, t8}{t7, t9}, {t7, t10}, {19, t10}}. So, complements is returned at step 7
of kSmilarRun() as a set of clusters that are minimally distorting that comprise part of the

overall solution
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The call to kSmilarRunParts() executes in step 7 of kSmilarRun() on the remaining tuples and
minimals. The Partition() method returns the partition {{t3, t4}, {t3, t8}, {t4, t8}} and the
subsequently{{t7, t9}, {t7, t10}, {t9, t10} } . Each of these are clustered together in kS milarRun()
to be: {13, t4, t8} and {7, t9, t10} because each of these partitions have less than 2k (or 4) tuples.
The final step of kSmilar() executes TableConstruct() on clusts ={{t1, t2}, {t5, t6}, {t11, 112},
{t3, t4, t8}, {t7, 19, t10}}. The result is shown as GT1 in Figure 35 (see page 102). The
appended I D values have been discarded.

In the example on page 122, MinGen(PT)=GT1. The same solution derived by k-Smilar() was
determined to be a k-minimal distortion of PT over QI with respect to DGH, where
Prec(GT1)=0.83.

8.3 Comparison to Mingen

A comparison to MinGen [123] requires examining: (1) the computational complexity of the
algorithm to ensure it operates in reasonable time; and, (2) the correctness of the algorithm. These are
discussed in the following subsections.

8.3.1 Complexity of the k-Similar algorithm

The k-Similar algorithm listed in Figure 89 with supporting methods in Figure 90 through Figure
102 was not written as efficiently as possible. Nevertheless, here is a walk through the algorithm noting
the methods that characterize the computational complexity.

The CligueSetup() method, which is listed in Figure 90, is executed in step 2. Comparing every
two tuples and determining their distance vector is done in O(|T[) time. The GenerateMinimums()
method, which is listed in Figure 98, working along with its accompanying traverse() method, which is
listed in Figure 100, pose a serious problem for the computational speed of k-Smilar(). As implemented,
they operate in combinatoric time because every combination of |T| tuples drawn k at a time are
examined. While some efficiencies may be possible in future versions, the version provided here is
combinatoric. Clearly, this overwhelms computational complexity of the remainder of the algorithm. The

efficiencies gained by partitioning the clusters into sub-clusters make the algorithm useful in some real-
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world applications and dramatically improves the performance over MinGen. However, combiantoric

operation is not practical for most uses.

More importantly however, the techniques presented in this algorithm concerning the use and
operations on distance vectors and partitions of clusters holds promise as ways to reduce the

computational complexity.

8.3.2 Correctnessof thek-similar algorithm

The correctness of the k-Similar algorithm relies on its ability to produce solutions that adhere to
a given k-anonymity requirement, assuming of course a proper quasi-identifier and a proper value for k
have been provided. In this subsection, | will show that the k-Similar algorithm provides solutions that do
adhere to a given k-anonymity requirement. Here is a walk through the program, noting its correctness

with respect to the k requirement.

A result from k-Similar properly adheres to the k requirement if each and every cluster provided
by kSmilarRun() is of size k or more because TableConstruct() merely generalizes the tuples identified
in each cluster provided from kSmilarRun(). A table must have at least k tuples to adhere to k-
anonymity. So, in step 3 of kSmilarRun(), a table that has k or more tuples, but less than 2k tuples,

resultsin asingle cluster. This cluster istherefore of size k or more.

Execution of k-SmilarRun() continues for tables that have more than 2k tuples. The set of
minimals produced by GenerateMinimums() at step 4 of kSmilarRun() have clusters of size k because
GenerateMinimums() traverses paths of k-1 in clique from a given tuple and returns the path with the
maximal distance vector that has the minimal distance. All minimals identified by GenerateMinimums()
therefore has k elements. of the minimals returned from GenerateMinimums(), some are identified as

complementary minimums and appended to the solution set. Each of these minimumsis of sizek.
Finaly, in the case where non-complementary tuples are partitioned and each partition then

processed by the algorithm, each partition is guaranteed to have minimals of size k that have combined

into connected partitions. Therefore each partition is necessarily larger than k.
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8.4 Comparison to Datafly and p-Argus

In comparison to Datafly and p-Argus, the k-Similar algorithm has greater precision because it
effectively uses generaization and suppression enforced at the cell level. datafly and p-Argus
generalized values at the attribute level. Datafly suppressed at the tuple level, though p-Argus suppressed
at the cell level. In some cases, Datafly may have less precision than p-Argus, but Datafly always
provides results that are adequately protected. On the other hand, p-Argus, in some cases, can provide
results that do not necessarily adhere to the k requirement. In comparison, k-Similar provides results that
are adequately protected and minimally distorted. On the other hand, Datafly and p-Argus operate in

real-time where k-Similar does not.

8.5 k-Similar asan anonymous data system

k-Similar uses the following disclosure limitation techniques: de-identification, equivalence class

substitution, generalization, and suppression. Below is a description of the framework in which k-Similar
operates.

S = {subjects whose information isincluded in PT}

P = set of all people whose information could possibly bein PT

PT = privately held information about S

QI = set of attributes with replicationsin E

us=p

RT = k-Smilar (PT)

E = set of publicly available information in today’s society

G = set of standard communication methods.

f=k-Smilar

Thesystem A(S, P, PT, Ql, U, {RT}, E, G, k-Smilar) isan ADS,,

Informal proof.

Let PT = datain Figure 34.

There cannot exist fewer than k tuplesin RT having the same values across QI
based on the correctness of the k-Similar clustering algorithm.

So, k-map protection is provided and A isan ADS,,
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8.6 Futurework

1

The k-Similar agorithm, unlike Datafly and p-Argus made use of the vaue
generalization hierarchies to seamlessly integrate generalization and suppression
together so as to be treated as one disclosure limitation technique. Incorporate
additional disclosure limitation techniques [124] into this approach.

The core Datafly algorithm relies on a heuristic to guide its generalization strategy.
This heuristic selects the attribute of the quasi identifier having the greater number of
distinct values in the modified table as the attribute to generalize. As was discussed
earlier [125], this heuristic is computationally efficient but provides no protection
against unnecessary generalization. There are many other heuristics that are just as
computationally efficient. Develop a nearest neighbor strategy based on distance
vectors, like those used in the k-similar agorithm, to perform attribute-level

generalization and tuple-level suppression that operatesin real-time.

Construct a more efficient version of k-Similar by taking advantage of constraints
placed on distances rather than computing the distances of al combinations of k
tuples. If you do not compute a distance vector between two tuples but have
computed the distances of other tuples that include those tuples, then the 0 and ©
operations described in Figure 87 can be used to compute the range of possible values
for the distance vector between those two tuples.

The k-Similar algorithm has been described as a data-clustering algorithm that has a
symbiotic relationship to the k-nearest neighbor algorithm [126]. Compare and
contrast these two algorithms as general -purpose data clustering algorithms. Explore
ways distance vectors and value generalization hierarchies can be used to improve
results in k-nearest neighbor.

Earlier in this work, k-map, wrong-map and null-map forms of data protection were

introduced [127]. These later chapters have been narrowly focused on a version of k-
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map protection called k-anonymity [128]. Explore disclosure control techniques and

systems that use other formal protection models.
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Chapter 9 Results: Scrub

Datafly [129], p-Argus [130], k-Similar [131] and even MinGen [132] all work with field-
structured data sets. My Scrub system, presented in this chapter, locates personally identifying
information in textual documents and within textual fields of a database. Thisis a change in format from
the earlier chapters. As you will see the problem of locating personally identifying information in text
can be very difficult, but even when it is resolved perfectly, the results are merely de-identified and not

typically rendered anonymous.

9.1 Overview of the Scrub System

The Scrub System, which locates and replaces personaly identifying information in text
documents, textua fields of the database textual information found on the World Wide Web. A close
examination of two different computer-based patient record systems, Boston’s Children’s Hospital [133]
and Massachusetts General Hospital [134], quickly revealed that much of the medical content resided in
the letters between physicians and in the shorthand notes of clinicians. This is where providers discussed
findings, explained current treatment and furnished an overall view of the medical condition of the

patient.

At present, most institutions have few releases of data that include these notes and letters, but
new uses for this information is increasing; therefore, the desire to release this text is also increasing.
After all, these letters and notes are a valuable research tool and can corroborate the rest of the record.
The fields containing the diagnosis, procedure and medication codes when examined alone can be
incorrect or misleading. A prominent physician stated at a recent conference that he purposefully places
incorrect codes in the diagnosis and procedure fields when such codes would reveal sensitive information
about the patient [135]. Similarly, the diagnosis and procedure codes may be up-coded for billing
purposes. The General Accounting Office estimates that as much as 10% of annual Federal health care
expenditures, including Medicare, are lost to fraudulent provider claims [136]. If these practices become
widespread, they will render the administrative medical record useless for clinical research and may
already be problematic for retrospective investigation. Clinical notes and letters may prove to be the

only reliable artifacts.
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The Scrub System provides a methodology for removing personally identifying information in
medical writings so that the integrity of the medical information remains intact even though the identity
of the patient remains confidential. | term this process "scrubbing”. Protecting patient confidentiality in
raw text is not as simple as searching for the patient’'s name and replacing all occurrences with a pseudo

name. References to the patient are often quite obscure; consider for example:

“...he developed Hodgkins while acting as the U.S. Ambassador to England and was diagnosed

by Dr. Frank at Brigham’s.”

Clinicians write text with little regard to word-choice and in many cases without concern to grammar or
spelling. While the resulting “unrestricted text” is valuable to understanding the medical condition and
treatment of the patient, it poses tremendous difficulty to scrubbing since the text often includes names

of other care-takers, family members, employers and nick names.

| examined electronically stored letters written by clinical specialists to the physician who
referred the patient. The letter in Figure 107 is a fictitious example modeled after those studied. It
contains the name and address of the referring physician, a typing mistake in the salutation line, the
patient's nick name, and references to another care-taker, the patient's athletic team, the patient's mother

and her mother's employer and phone number. Actual letters are often several pages in length.

Wednesday, February 2, 1994

Marjorie Long, M.D. RE: Virginia Townsend
St. John’s Hospital CH#32-841-09787
Huntington 18 DOB 05/26/86

Boston, MA 02151
Dear Dr. Lang:

| feel much better after seeing Virginia this time. As ypu
know, Dot is a 7 and 6/12 year old female in follow up
for insulin dependent diabetes mellitus diagnosed in
June of 1993 by Dr. Frank at Brigham's. She is curreptly
on Lily Human Insulin and is growing and
gaining weight normally. She will start competing agfin
with the U. S. Junior Gymnastics team. We will

contact Mrs. Hodgkins in a week at Marina Corp
473-1214 to schedule a follow-up visit for her daughter.

Patrick Hayes, M.D. 34764

Figure 107. Sample letter reporting back to areferring physician.
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February, 1994

Erisa Cosborn, M.D. RE: Kathel Wallams
Brighaul Hospital CH#18-512-32871
Alberdam Way DOB 05/86

Peabon, MA 02100
Dear Dr. Jandel:

| feel much better after seeing Kathel thistime. As

Y ou know, Cobisa7 and 6/12 year old female in follow-
up for insulin dependent diabetes mellitus diagnosed in
June of 1993 by Dr. Wandel at Namingham's. She is
currently on Lily Human Insulin and is growing and
Gaining weight normally. She will start competing aga
with the . We will

Contact MrsLearl in a week aGarlaw Corp

912-8205 to schedule a follow-up visit for her daughter.

o

Mank Brones, M.D. 21075

01/08/01 8:22 AM

Figure 108. Scrub System applied to samplein Figure 107.

Figure 107 shows a sample letter and Figure 108 shows its scrubbed result. Notice in the

scrubbed result that the name of the medication remained but the mother’'s last name was correctly

replaced. Dates were changed to report only month and year. The reference “U.S. Junior Gymnastics

team” was suppressed since Scrub was not sure how to replace it. The traditional approach to scrubbing

is straightforward search and replace, which misses these references; this is shown in Figure 109.

Wednesday, February 2, 1994

Marjorie Long, M.D. RE: Kathel Wallams
St. John’s Hospital CHi8-512-32871
Huntington 18 DOB 05/26/86

Boston, MA 02151
Dear Dr. Lang:

| feel much better after seei@thel this time. As you
know, Dot is a 7 and 6/12 year old female in follow
up for insulin dependent diabetes mellitus diagnosed}in

June of 1993 by Dr. Frank at Brigham's. She is curreptly
on Lily Human Insulin and is growing and
gaining weight normally. She will start competing agfin
with the U. S. Junior Gymnastics team. We will
contact Mrs. Hodgking1 a week at Marina Corp

473-1214 to schedule a follow-up visit for her daughter.

Mank Brones, M.D. 21075

Figure 109. Search-and Replace applied to samplein Figure 1-8.
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9.2 Human approach

The Scrub System was modeled after a human approach to the problem. It uses templates and
localized knowledge to recognize personally identifying information. In fact, the work on Scrub shows
that the recognition of personally identifying information is strongly linked to the common recording
practices of society. For example, Fred and Bill are common first names and Miller and Jones are
common last names; knowing these facts makes it easier to recognize them as likely names. Common
facts, along with their accompanying templates of use, are considered commonsense knowledge; the

itemization and use of commonsense knowledge is the backbone of Scrub.

| conducted an experiment to determine how well humans locate personally-identifying
information in letters between physicians. The subjects were 5 adults. None of the subjects had any

medical experience or experience with the information contained in the database.

Each of the adults were given a marker that writes in a read-through yellow color and seven (7)
printed letters. One of the letters appeared with al its text in uppercase but consisted of complete
sentences. The other letters were in standard letter format with upper-lower case. Each subject was asked
to highlight al information in each letter that personally identified any person and to do so within 30

seconds per |etter.

All the subjects found all obvious references to names, addresses, organizations, cities, states, zip
codes and phone numbers (100%). More obscure occurrences such as nick names, abbreviations,
identification numbers and incorrect capitalization were sometimes missed (99%). References embedded
in the text that did not appear in upper-lower case were sometimes missed (95%) and performance on
identifying obvious references in the upper case letter was much worse than in the upper-lower case
counterparts (94% compared to 100%). Subjects reported reviewing most words in the letters but all
subjects stated they did not read the letters.

| sought to model the human approach because it did not require a complete semantic model. The
subjects used templates and localized knowledge to recognize personally identifying information.
Consider the list of names, phone numbers and dates in Figure 110. The writing conventions and

immediate context help identity the kind of information presented.
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Names Phone numbers Dates

Frank Graves 255-1423 March 1, 1991
F.R. Graves, MD | (304) 255-1423 3/1/91

Dr. Graves 304/ 255-1423 first of March
Frank Red Graves | 255-1000 ext 1423 | 1-MAR-91
“Red” Graves phone: 255-1423 03-01-91
frank red graves extension 1423 March 1st

Figure 110 Samples of personal information.

9.3 Computer approach

The Scrub System utilizes numerous detection algorithms competing in parallel to label
contiguous characters of text as being a proper name, an address block, a phone number, and so forth.
Each detection algorithm recognizes a specific kind of information, where recognizable kinds of
information can be thought of as fields such asfirst name, last name, street address, and date. Thereis at

least one detection algorithm for each kind of information.

Scrub  Entities
1. identification {6,7,8,9,10, 15, 11, 12, 13,
block 14, 25, 16, 17, 18, 20, 21, 25}
2. mailing label {6,7,8,9, 15,11, 12, 13, 14,
17, 18}
3. address block {6,7,8,9, 15}
4. full name {11, 12, 13, 14, 17}
5. location {7, 8, 15}
6. street 15. country
7. city 16. social security
8. state 17. title
9. zip 18. organization
10. phone 19. measurement
11. first name 20. age
12. middle name 21. date
13. last name 22. medical term
14. nick name 25. reference number

Figure 111 Some of the entities recognized by Scrub are listed above in relative order of precedence.

Figure 111 lists some of the types of entities detected by Scrub. For each entity there is a
detection algorithm and the precedence of the algorithm is based on the number of entities that constitute
the algorithm’s assigned entity. Examples of constituent entities are listed in braces in Figure 111. For
example, detecting a geographical location may make it possible to identify a city, a state or a country.

The more constituents an entity has, the higher its precedence. Figure 111 shows five levels of
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precedence with identification block having the highest and entities 6 through 25 all having the same low

precedence.

Detection algorithms can be executed sequentialy in order of precedence to avoid paralel
execution. For each character in the input text the detection algorithm with the highest precedence
reporting the greatest likelihood above a threshold value is considered to have identified an instance of

its entity. Figure 112 provides an overview.
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Figure 112 Block diagram of Scrub detection system.

Knowing what instances have already been found in the text can be quite useful in reducing
ambiguity. For example, if the system encountered the hame “Virginia P. Weston” then later encountered
a sentence that read “After seeing Virginia this time, | feel much better,” the system could more reliably
interpret the second reference to Virginia as a person’s hame and not the state. When an instance of an
entity is found in the text, its corresponding detection algorithm can post its results -- making them
available to all detection algorithms while processing the remainder of the document. In these cases, an

entity can only post values for its constituent entities and if there are no constituents, it can post for itself.
A few detection algorithms work differently. Some classify the format of the document as being

a letter, notes, or delimited text. These detectors continuously report findings. There are also special

detectors like those for medical terms and verbs whose instances are typically not replaced but are

200



Computational Disclosure Control 01/08/01 8:22 AM

detected because having their results reduces the number of false positives. At run-time the user sets the
threshold and use of special detectors.

Figure 113 repeats the second column of Figure 110 but includes associated templates and
probabilities. The d is a digit, the asterisk (*) matches any wild character and the set notation denotes
possibilities. During a training session on the database, template probabilities are adjusted and their
effectiveness measured. If there is not enough variation between templates then performance will
deteriorate. If templates use features that are not present in the database, performance may deteriorate.
For example, if name templates expect names to be written in upper-lower case then these templates will
be uselessif al text appears in uppercase. The training session pinpoints problem areas and weaknesses
beforehand.

Phone numbers Templates Likelihood
255-1423 ddd - dddd 40
(304) 255-1423 (ddd) ddd - dddd 85
304/ 255-1423 ddd / ddd - dddd 50
255-1000 ext 1423 ddd - dddd ext* d* 70
extension 1423 ext* d* 40
phone: 255-1423 {tel*, ph*} 90
ddd - dddd

Figure 113 Samples of templates and their probabilities.

As I've shown, the detection algorithms employ a host of lists. For example, detecting a first
name may use a stored list of common first names, the first names of all patients, words that sound like
first names or all three depending on the user’'s specifications. These lists are compiled beforehand.
Storage requirements and speed are dramatically reduced using multiple hashed Boolean lookup tables
[137] or in the case of words that sound like a group of words, using a table of orthographic rules [138].
With Boolean look-up tables, look-ups are done in constant time, O(10) since there are 10 binary checks
per word. Using orthographic rules, look-ups require O(2n) time where n is the number of syllables in the
word. Storage using Boolean look-up tables require roughly 30 bits per word which is a tiny fraction of a

typical word list or dictionary [139].
9.3.1 Replacement Strategies.

Once personally identifying information is detected, it must be replaced with some pseudo-value.
There are several strategies for accomplishing this feat. Associated with each detection algorithm in
Scrub is a replacement algorithm that is responsible for producing the replacement text; these are the

same as was used in Datafly [140]. In general, the format of the replacement text matches the template

201



Computational Disclosure Control 01/08/01 8:22 AM

that was recognized. If the detected entity was a date, for example, the replacement date may involve
lumping days to the first of the nearest month or some other grouping. On the other hand if the detected
entity was afirst name, the typical strategy is to perform a hash-table lookup using the original name as
the key. The result of the look-up is the replacement text. This provides consistent replacements since
every time a particular name is encountered, it maps to the same replacement. In terms of the
replacement content, several other strategies are available including the use of orthographic rules called
Sprees™ that replace personally identifying information with fictitious names that sound like reasonable

names but in fact belong to no known person.

9.4 Results

The Scrub System accurately found 99-100% of all personally identifying references in more
than 3,000 letters between physicians, while the straightforward approach of global search-and-replace

properly located no more than 30-60% of all such references; these values are summarized in Figure 114.

The database | used was a scrubbed subset of a pediatric medical record system [141;;-]. It
consisted of 275 patient records and included 3,198 letters to referring physicians. Many of the letters
were delimited notes but most were proper letters with a heading block, salutation and well-formed

sentences.

The higher figure for search and replace (84%) includes using additional information stored in
the database to help identify the attending physician’s name, identifying number and other information.
Since the letters were properly formatted, the heading block was easily detected and compositional cues
were available using keywords like “Dear.” This dramatically improved the results of the search-and-
replace method to around 84%; however, most references to family members, additional phone numbers,
nick names and references to the physician receiving the letter were still not detected, whereas Scrub was

able to correctly identify and replace these instances.

M ethod Letters
Straight search 37%
Search with cues 84%
Scrub( threshold 0.8) 98%
Scrub( threshold 0.7, 100%
false positive reduction)

Figure 114 Comparisons of Scrub to standard techniques
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9.5 Discussion

Despite this apparent success, the Scrub System merely de-identifies information and cannot
guarantee anonymity. Even though all explicit identifiers such as name, address and phone number are

removed or replaced, it may be possible to infer the identify of an individual. Consider the text in 115.

“At the age of two she was sexually assaulted. At the age of three she set fire to her
home. At the age of four her parents divorced. At the age of five she was placed in
foster care after stabbing her nursery school teacher with scissors.”

Figure 115 Sample de-identified text

If her life continues to progress in this manner, by the age of eight she may be in the news, but
nothing in this text required scrubbing even though there would probably exist only one such child with
this history. An overall sequence of events can provide a preponderance of details that identify an
individual. This is often the case in mental health data, discharge notes and person-specific textual

information.

Although Scrub reliably locates explicitly identifying information in textual documents, it merely
de-identifies the result because its detectors are aimed primarily at explicitly identifying values.
Similarly, in field-structured databases de-identification typically provides insufficient protection, as was
demonstrated earlier in this document. Other values remaining in the data can combine uniquely to
identify subjects. The Scrub work demonstrates that thisis as true in textual documents as it isin field-
structured databases. But perhaps more importantly, the Scrub work implies that solving the problem in
one data format (either textual documents or field-structured databases) will reveal comparable strategies

for solving the problem in the other format.

The Scrub System is both troublesome and insightful in another regard. While Scrub is
inadequate for privacy protection, it is quite useful in automatically detecting and gathering personally
identifying information from email messages, World Wide Web pages, and other textual information
appearing in an electronic format and then using the results to draw damaging inferences from other
publicly available field-structured data sets. In this way, Scrub demonstrates the symbiotic relationship
between data detective tools and data protection tools. Re-identification experiments and the tools used
to accomplish re-identifications improve our understanding of the identifiability of data and our tools for

rendering data sufficiently anonymous.
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9.6 Scrub asan anonymous data system

Scrub uses the following disclosure limitation techniques: de-identification, equivalence class
substitution, generalization, and suppression. Below is a description of the framework in which Scrub
operates.

S = {subjects whose information is discussed in textual documents PT}
P = set of all people whose information could possibly be PT

PT = set of documents about S

QI = set of attributes for which Scrub detectors are available

U={d; x...xd} JP

RT = Scrul{PT)

E = set of publicly available information in today’s society

G = set of standard communication methods.

f = Scrub System

Thesystem A(S, P, PT, QI, U, {RT}, E, G, Scrulj isnot an ADS,,

Informal proof.

Assume A isan ADS,

Let p; be the person who is the subject of the text in Figure 115.

E includes newspaper reports and phone books that include p;’s family.

By simply linking the information, p; can be re-identified, violating property 9 of an ADS,.
So, A isnot an ADS,
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Chapter 10 Discussion

The Scrub System demonstrated that medical data, including textual documents, can be de-
identified, but as | have shown, de-identification alone is not sufficient to protect confidentiality. Not
only can de-identified information often be re-identified by linking data to other databases, but also
releasing too many patient-specific facts can identify individuals. Unless society is proactive, the
proliferation of medical data may become so widespread that it will be impossible to release medical data
without breaching confidentiality. For example, the existence of rather extensive registers of business
establishments in the hands of government agencies, trade associations and firms like Dunn and
Bradstreet has virtually ruled out the possibility of releasing database information about businesses
[142].

The Datafly, p-Argus and k-Similar systems illustrated that medical information can be
generalized so that attributes and combinations of attributes adhere to aminimal k requirement, and by so
doing, confidentiality can be maintained. Such schemes can provide anonymous data for public use.

There are drawbacks to these systems, but the primary shortcomings may be counteracted by policy.

One concern with both p-Argus, Datafly and k-Similar is the determination of the proper value
for k and its corresponding measure of disclosure risk. There is no standard that can be applied to assure
that the final results are adequate. It is customary to measure risk against a specific compromising
technique, such as linking to known databases that the data holder assumes the recipient is using.
Severa researchers have proposed mathematical measures of the risk, which compute the conditional

probability of the linker's success [143].

A policy could be mandated that would require the producer of data released for public use to
guarantee with a high degree of confidence that no individual within the data can be identified using
demographic or semi-public information. Of course, guaranteeing anonymity in data requires a criterion
against which to check resulting data and to locate sensitive values. If this is based only on the database
itself, the minimumk and sampling fractions may be far from optimal and may not reflect the general
population. Researchers have developed and tested several methods for estimating the percentage of
unique values in the general population based on a smaller database [144]. These methods are based on

subsampling techniques and equivalence class structure. In the absence of these techniques, uniqueness
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in the population based on demographic attributes can be determined using population registers that
include patients from the database, such as local census data, voter registration lists, city directories, as
well as information from motor vehicle agencies, tax assessors and real estate agencies. To produce an
anonymous database, a producer could use population registers to identify sensitive demographic values

within a database, and thereby obtain a measure of risk for the release of the data.

The second drawback with the p-Argus, Datafly and k-Similar systems concerns the dichotomy
between researcher needs and disclosure risk. If data are explicitly identifiable, the public expects
patient permission to be required. If data are released for public use, then the producer must guarantee,
with a high degree of confidence, that the identity of any individual cannot be determined using standard
and predictable methods and reasonably available data. But when sensitive de-identified, but not
necessarily anonymous, data are to be released, the likelihood that an effort will be made to re-identify an
individual increases based on the needs of the recipient, so any such recipient has a trust relationship
with society and the producer of the data. The recipient should therefore be held accountable.

The Datafly, k-Similar and p-Argus systems quantify this trust by having the data holder identify
quasi-identifiers among the attributes requested by the recipient. But recall that the determination of a
quais-identifier requires guesswork in identifying attributes on which the recipient could link. Suppose a
quasi-identifier is incorrect; that is, the producer migudges which attributes are sensitive for linking. In
this case, the Datafly, k-Similar and p-Argus systems might release data that are less anonymous than
what was required by the recipient, and as a result, individuals may be more easily identified. This risk
cannot be perfectly resolved by the producer of the data since the producer cannot always know what
resources the recipient holds. The obvious demographic attributes, physician identifiers, and billing
information attributes can be consistently and reliably protected. However, there are too many sources of
semi-public and private information such as pharmacy records, longitudinal studies, financial records,

survey responses, occupational lists, and membership lists, to account apriori for al linking possibilities.

What is needed is a contractual arrangement between the recipient and the producer to make the
trust explicit and share the risk. Figure 116 contains some guidelines that make it clear which attributes
need to be protected against linking. Using this additional knowledge and the techniques presented in the
Datafly, k-Similar and p-Argus systems, the producer can best protect the anonymity of patientsin data
even when sensitive information is released. It is surprising that in most releases of medical data there
are no contractual arrangements to limit further dissemination or use of the data. Even in cases where

thereis an IRB review, no contract usually results. Further, since the harm to individuals can be extreme
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and irreparable and can occur without the individual’'s knowledge, the penalties for abuses must be
stringent. Significant sanctions or penalties for improper use or conduct should apply since remedy
against abuse lies outside technology and statistical disclosure techniques and resides instead in

contracts, laws and policies.

1. There must be a legitimate and important research or administrative purpose served by the
release of the data. The recipient must identify and explain which attributes in the database
are needed for this purpose.

2. The recipient must be strictly and legally accountable to the producer for the security of the
data and must demonstrate adeguate security protection.

3. Thedata must be de-identified. The release must contain no explicit individual identifiers nor
should it contain data that would be easily associated with an individual.

4. Of the attributes the recipient reguests, the recipient must identify which of these attributes,
during the specified lifetime of the data, the recipient could link to other data the recipient will
have access to, whether the recipient intends to link to such data or not. The recipient must
also identify those attributes for which the recipient will link the data. If such linking
identifies patients, then patient consent may be warranted.

5. The data provider should have the opportunity to review any publication of information from
the data to insure that no potentia disclosures are published.

6. At the conclusion of the project, and no later than some specified date, the recipient must
destroy all copies of the data.

7. Therecipient must not give, sell, loan, show or disseminate the data to any other parties.

Figure 116. Contractual requirementsfor restricted use of data based on federal guidelines and the Datafly System.

In closing, a few researchers may not find this presentation of the magnitude and scope of the
problem surprising, but it has disturbed legislators, scientists and federal agencies [145], so much so, |
warn against overreaction especially as it may lead to inappropriate and inoperable policies. | present the
problem and these incremental solutions from a belief that knowledge and not ignorance provides the
best foundation for good policy. What is needed is a rational set of disclosure principles, which are
unlikely to evolve from piecewise reactions to random incidents, but require instead comprehensive
analysis of the fundamental issues. The technology described here is quite helpful, but society must still
make conscious decisions. There is a danger in over-simplifying this work. It does not advocate giving
all the data on all the people without regard to whether individuals can be identified. It does not
advocate releasing data that is so general it cannot be useful; substantial suppression does not appear to
be the norm. From the viewpoint of the person who is to receive the data, these systems seek to provide

the most general data possible that is practically useful. From the viewpoint of privacy, if that level of
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generality does not provide sufficient protection, then the techniques presented here identify the nature
and extent of trust required for a given release of data. Polices and regulations regarding the agreements

necessary to make that trust explicit and enforce itsterms lie outside the technology.

Consider the case of data released to researchers. When anonymous data is useful, then the data
should be released. In some cases completely anonymous data is not practically useful; in those cases,
society (and the data holder) can quantify the trust given to researchers who receive more identifiable
data. Changes should be made such that public-use files adhere to a reasonably high level of anonymity.
In cases where more identifiable data is needed, society should consciously decide how to release such
data and the recipient should be held responsible not to violate the contractual agreements that spell out

the conditions of trust.

Finally | also warn against doing nothing. Consider an alternative to autonomous database
systems, since the burden of determining the risk of disclosure may appear cumbersome. Suppose
instead that society had a centralized federal repository for medical data like those found in Iceland and
other countries. Though institutions and businesses could maintain their own data for internal purposes,
they could not sell or give data away in any form, except of course for disclosure to the federa
repository, remuneration for services and required reporting. The recipients of these data would, in turn,
be equally restricted against further dissemination. The trusted authority that maintains the central
repository would have nearly perfect omniscience and could confidently release data for public use.
Questions posed by researchers, administrators and others could be answered without releasing any data;
instead the trusted authority would run desired queries against the data and then provide non-

compromising results to the investigators.

In releases of de-identified data, the exact risk could be computed and accompanying penalties
for abuse incorporated into the dissemination process. While this type of system may have advantages to
maintaining confidentiality, it requires a single point of trust or failure. Current societal inclinations
suggest that the American public would not trust a sole authority in such arole and would feel safer with
distributed, locally controlled data. Ironically, if current trends continue, a handful of independent
information brokers may assume this role of the trusted authority anyway. If information brokers do
emerge as the primary keepers of medical data (akin to the function that Dunn and Bradstreet serve for
business data) they may eventually rank among the most conservative advocates for maintaining
confidentiality and limiting dissemination. Their economic survival would hinge on protecting what
would be their greatest asset, our medical records.
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GDSP, 40 Social Security number, 48, 49
generdlization, 60, 77, 83, 86 statistical databases, 53
generalization of atable, 86 substitution, 60

generalization strategy, 90 summary data, 54, 120, 157, 158
generalization, attribute, 77 summary data attack, 120, 157, 158
generaization, cell, 77 suppression, 56, 77

GIC, 50, 111 suppression, attribute, 77

global disk storage per person, 40 suppression, cell, 77

heuristic, 122 swapping, 60

Hippocratic oath, 36 table, 52, 69
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uniqueness in US population, 50 voterslist, 109
value generalization hierarchy, 84 wrong map, 78
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