
1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Spring Semester, 1998, Final Exam

Your Name:

Open Book

Please write clear and concise answers to the questions in the spaces provided in this booklet. You

may use scratch paper if you need, but the spaces we provide are the only places we will look at

when grading.

Circle Your Recitation Section (2 points)

Time Instructor T.A. Time Instructor T.A.

9 Berthold Horn Christiana Toutet 10 Berthold Horn Vinay Pulim

10 Gerry Sussman Derek Bruening 11 Hal Abelson Ben Adida

10 Larry Rudolph Jeremy Lin 11 Larry Rudolph Tony Ezzat

10 Mike Leventon George Dolina

11 Paul Viola Barbara Cutler 12 Paul Viola Calista Tait

11 Madhu Sudan Shantanu Sinha 12 Madhu Sudan Pedro Zayas

12 Eric Grimson Ilya Shlyakhter 1 Jim Miller Chris Tserng

1 Duane Boning Mike Allen 2 Duane Boning Alex Lee

Please do not write below this line:

Problem Value Grade Grader Problem Value Grade Grader

0 2 6 22

1 12 7 12

2 20 8 10

3 21 9 23

4 14 { { { {

5 14 Total 150



6.001, Spring Semester, 1998, Final Exam|Your Name: 2

Question 1 (12 points):

Each of the parts below should be treated as independent. For each part, a sequence of expressions

is given, which you may assume is typed to a Scheme interpreter and evaluated in the order shown.

Write the value that will be printed in response to the last expression in each sequence.

Part a:

(define square (lambda (x) (* x x)))

(define f

(lambda (g)

(lambda (f)

(f g))))

((f 5) square)

Part b:

(define stream

(cons-stream 1

(stream-map (lambda (x) (expt 2 x))

stream)))

(stream-car

(stream-cdr

(stream-cdr

(add-streams stream (stream-cdr stream)))))

Part c:

(define x (list 'x 'y))

(define y (list x 'x 'z))

(set-cdr! (cdr x) (cdr y))

y



6.001, Spring Semester, 1998, Final Exam|Your Name: 3

Question 2 (20 points):

For each of the following statements, indicate whether the statement is true or false by circling T

or F:

T F Independent creation is a valid legal defense against claims

of copyright infringement.

T F The main reason Scheme requires garbage collection is that

procedures can be recursive.

T F The time required to perform a stop-and-copy garbage col-

lection grows as the amount of memory in actual use, not the

total amount of memory available to Scheme.

T F It is possible to write a Scheme procedure, safe?, with the

behavior that, for any procedure proc and list of arguments

args, (safe? proc args) will return true if (apply proc

args) returns a value, and will return false if (apply proc

args) either signals an error or enters an in�nite loop.

T F Using the AMB evaluator, the possible values of (+ (amb 0

1) (amb 0 1)) are the same as the possible values of (* 2

(amb 0 1)).

T F PICS is a system developed by the World Wide Web Consor-

tium for attaching content labels to Web pages.

T F If A and B are two events in a concurrent system, it is always

possible to deduce from the program that either A happens

before B, A and B happen simultaneously, or A happens after

B.

T F Quantum computing can be faster than classical computing

because qubits can have the values 0, 1/2, or 1 while classical

bits can only have the values 0 or 1.

T F Suppose Alice and Bob have never communicated before to-

day. Suppose they now start communicating, and that Eve

can hear everything that Alice and Bob say to each other.

Then any information that will be shared by Alice and Bob

will be known to Eve.

T F Image-guided surgery is a promising new technique being de-

veloped at the MIT Arti�cial Intelligence Lab, which will

start being tried with real patients next yer.



6.001, Spring Semester, 1998, Final Exam|Your Name: 4

Question 3 (21 points):

In parts a, b, and c of this problem, (on the next few pages), you will be adding a special form to

the Metacircular Evaluator. This special form is an until expression, for example:

(until (>= i limit)

(process i)

(set! i (+ i 1))

i)

An until expression consists of an end test (in the example, the expression (>= i limit)) and

a body, which is a sequence of expressions (in the example,r the sequence (process i) (set! i

(+ i 1)) i). The evaluation of an until form should occur in the following manner:

� First the body is evaluated. The body's value is the value of the last expression in the body.

� Next the end test is evaluated.

� If the value of the end test is true, then the value returned for the until expression is the

value computed when evaluating the body in the previous step.

� If the end test is false, then the body is evaluated again, and this continues until the end test

evaluates to true.

In the above example, the expression would ultimately return the value of limit, assuming that i

had a value no larger than limit before the until expression was evaluated.

Part a: We need a data abstraction for dealing with until expressions.

De�ne the predicate until?.

De�ne the selectors until-body and until-test which should respectively return the body and

end test of a complete until expression.



6.001, Spring Semester, 1998, Final Exam|Your Name: 5

Part b: Assume that the procedure eval-until (which you will write shortly) handles the actual

evaluation of an until expression. What changes should be made to the eval procedure to allow it

to recognize until special forms? Any such change should be consistent with other parts of eval.

Part c: Write the procedure eval-until.



6.001, Spring Semester, 1998, Final Exam|Your Name: 6

Question 4 (14 points):

You are to add the until special form of Question 3 to the Explicit-Control Evaluator. To the

eval-dispatch part of the evaluator, we add

(test (op until?) (reg exp))

(branch (label ev-until))

Complete the code at the label ev-until by �lling in the blanks below with the appropriate

instructions.

ev-until

(save continue)

(save exp) ; save the entire expression

(assign unev (op until-test) (reg exp)) ; get the end test

(save unev) ; save it for later

(assign ________________ (op until-body) (reg exp)) ; get the body

(assign continue (label ev-after-until-body)) ; where to go when done

(save env) ; save the environment

(save continue)

(goto _____________________) ; evaluate the body

ev-after-until-body ; now need to evaluate the end test

(restore env)

_____________________________

_____________________________

_____________________________



6.001, Spring Semester, 1998, Final Exam|Your Name: 7

(save env)

(assign continue (label ev-after-until-test))

(goto _______________________________) ; evaluate the end test

ev-after-until-test ; check to see if end test is true

(restore env)

(test (op true?) ___________________________)

(branch (label done-until)) ; branch if end test true

______________________________________

______________________________________

______________________________________

(goto (label ev-until))

done-until ; clean up when done

______________________________________

______________________________________

______________________________________

(goto _______________________)



6.001, Spring Semester, 1998, Final Exam|Your Name: 8

Question 5 (14 points):

The following controller code was produced by the compiler of Problem Set 12. We have added the

line numbers for referencing purposes only.

1 ((assign val (op make-compiled-procedure) (label entry10) (reg env))

2 (goto (label after-lambda9))

3 entry10

4 (assign env (op compiled-procedure-env) (reg proc))

5 (assign env (op extend-environment) (const (x y f g)) (reg argl) (reg env))

6 (assign proc (op lookup-variable-value) (const f) (reg env))

7 (save continue)

8 (save proc)

9 (assign val (const 3))

10 (assign argl (op list) (reg val))

11 (save env)

12 (save argl)

13 (assign proc (op lookup-variable-value) (const g) (reg env))

14 (assign val (op lookup-variable-value) (const y) (reg env))

15 (assign argl (op list) (reg val))

16 (test (op primitive-procedure?) (reg proc))

17 (branch (label primitive-branch13))

18 compiled-branch12

19 (assign continue (label after-call11))

20 (assign val (op compiled-procedure-entry) (reg proc))

21 (goto (reg val))

22 primitive-branch13

23 (assign val (op apply-primitive-procedure) (reg proc) (reg argl))

24 after-call11

25 (restore argl)

26 (assign argl (op cons) (reg val) (reg argl))

27 (restore env)

28 (assign val (op lookup-variable-value) (const x) (reg env))

29 (assign argl (op cons) (reg val) (reg argl))

30 (restore proc)

31 (restore continue)

32 (test (op primitive-procedure?) (reg proc))

33 (branch (label primitive-branch16))

34 compiled-branch15

35 (assign val (op compiled-procedure-entry) (reg proc))

36 (goto (reg val))

37 primitive-branch16

38 (assign val (op apply-primitive-procedure) (reg proc) (reg argl))

39 (goto (reg continue))

40 after-call14

41 after-lambda9

42 (perform (op define-variable!) (const doit) (reg val) (reg env))

43 (assign val (const ok))

44 (goto (reg continue))



6.001, Spring Semester, 1998, Final Exam|Your Name: 9

Part a: Consider lines 9 and 10. Write a Scheme expression whose value is the same as the value

in argl after these lines are executed.

Part b: Consider lines 13 to 24. Write a Scheme expression whose compilation would produce

these lines.

Part c: Consider lines 25 to 27, plus lines 9 to 12. Assume that g is bound to (lambda (x) (* x

x)) and that y is bound to 3. Write a Scheme expression whose value is the same as the value in

argl after these lines are executed.

Part d: Consider lines 25 to 29, plus lines 9 to 12. Assume that x is bound to 27. Write a Scheme

expression whose value is the same as the value in argl after these lines are executed.

Part e: Consider lines 6 to 39. Write a Scheme expression whose compilation would produce these

lines.

Part f: Write a Scheme expression whose compilation would produce the entire code.



6.001, Spring Semester, 1998, Final Exam|Your Name: 10

Question 6 (22 points):

Consider the following expression:

(define (make-thing init)

(let ((value init)

(previous '())

(next '()))

(lambda (m)

(cond ((eq? m 'value) value)

((eq? m 'init) init)

((eq? m 'increment)

(lambda (change)

(set! value (+ value change))))

((eq? m 'reset)

(set! value init))

((eq? m 'previous)

previous)

((eq? m 'set-previous)

(lambda (th)

(set! previous th)))

((eq? m 'next)

next)

((eq? m 'set-next)

(lambda (th)

(set! next th)))))))

(define trial (make-thing 10))

Part a: Assume that the above two expressions are evaluated in the global environment. Draw

an environment diagram that represents the environment created during the evaluation of these

expressions. You need not write out the entire body of any procedure objects in your diagram.



6.001, Spring Semester, 1998, Final Exam|Your Name: 11

Part b: Now suppose that we have a large collection of \things" constructed by make-thing. For

simplicity we will assume that each has a unique value. We want to assemble this collection into a

linear list, ordered by value. The idea is that if a thing has a next neighbor, then the thing's value

is less than next's. Similarly, if a thing has a previous neighbor, then the thing's value is greater

than previous's.

We will connect all the things together by using the following (partially incomplete) procedure.

(define (ripple new current)

;; idea is to insert in right place by moving left or right

(cond ((> (new 'value) (current 'value))

<exp1>)

((null? (current 'previous))

<exp2>)

((> (new 'value) ((current 'previous) 'value))

<exp3>)

(else <exp4>)))

The idea is that we can take an unconnected thing (new) and a set of connected things, and insert

the unconnected thing by \rippling" it with any member of the connected set (by picking any one

of them, current). We can do this for each unconnected thing until we have connected all of them.

When we are done, each thing should be bidirectionally linked, that is it should point to both its

previous and next elements, if any.

The �rst thing we need to do is create a procedure to establish a bidirectional connection between

two things. (Connect from to) should mutute from so that its next variable points to to, and

should mutate to so that its previous variable points to from { i.e. make a connection from from

to to.

Complete the de�nition below:

(define (connect from to)



6.001, Spring Semester, 1998, Final Exam|Your Name: 12

Now using connect, complete the de�nition for ripple. For each piece below, you may need to

write more than one expression. Don't worry about what value is returned by ripple.

(define (ripple new current)

(cond ((> (new 'value) (current 'value))

<exp1>)

((null? (current 'previous))

<exp2>)

((> (new 'value) ((current 'previous) 'value))

<exp3>)

(else <exp4>)))

What code is needed in place of <exp1>?

What code is needed in place of <exp2>?

What code is needed in place of <exp3>?

What code is needed in place of <exp4>?



6.001, Spring Semester, 1998, Final Exam|Your Name: 13

Question 7 (12 points): Many useful mathematical functions can be expanded into what is

known as a power series, a sum of terms of increasingly higher-order powers of the function's

argument. For example, we have

e
x = 1 + x+

x
2

2!
+

x
3

3!
+

x
4

4!
+ : : :

We are going to approximate exponentiation by adding up terms in this series. Thus our �rst

approximation to e
x would be

0

and our subsequent approximations would be

1

1 + x

1 + x+
x
2

2!

1 + x+
x
2

2!
+

x
3

3!

1 + x+
x
2

2!
+

x
3

3!
+

x
4

4!

and so on.

We are going to do this using streams.

Assume that the functions add-streams, div-streams, mul-streams and scale-stream are pro-

vided.

(define (add-streams s1 s2)

(stream-map + s1 s2))

(define (div-streams s1 s2)

(stream-map / s1 s2))

(define (mul-streams s1 s2)

(stream-map * s1 s2))

(define (scale-stream stream factor)

(stream-map (lambda (x) (* x factor)) stream))

The following de�nition will be of use to you.

(define ones (cons-stream 1 ones))

(define integers

(cons-stream 1

(add-streams ones integers)))



6.001, Spring Semester, 1998, Final Exam|Your Name: 14

Part a:

De�ne factorials to be an in�nite stream of factorials. Assume that the �rst few elements of this

stream should be 1; 1; 2; 6; 24; : : :.

Part b: We need to generate a stream of powers of x, for any x. To do this, we will create a

procedure powers which should behave as follows:

(display-stream (powers 2))

1

2

4

8

16

32

...

Here is a partial de�nition of powers:

(define (powers x)

(define pwrs

(cons-stream 1

(scale-stream <exp1> <exp2>)))

pwrs)

Provide the expression needed in place of <exp1> to complete this de�nition

Provide the expression needed in place of <exp2> to complete this de�nition



6.001, Spring Semester, 1998, Final Exam|Your Name: 15

Part c: We can use the pieces de�ned above to create a stream of terms for a power series. The

procedure (exp-terms 2), for example, should return the sequence of values

1

1

2

1!

22

2!

23

3!

24

4!

and so on.

(define (exp-terms x) <exp>)

Provide the expression needed in place of <exp> to complete this de�nition.

Part d: Using this, complete the de�nition below so that exp-approx will return a stream of

successively better approximations to e
x, as listed at the beginning of this problem.

(define (exp-approx x)

(define approx

(cons-stream 0 <exp1>))

approx)

Provide the expression needed in place of <exp1> to complete this de�nition:



6.001, Spring Semester, 1998, Final Exam|Your Name: 16

Question 8 (10 points): The following is intended to count the number of pairs in a list structure.

(define (count-pairs x)

(if (not (pair? x))

0

(+ (count-pairs (car x))

(count-pairs (cdr x))

1)))

This procedure will NOT correctly count the number of pairs. Draw box-and-pointer diagrams of

list structures with exactly three pairs, for which this procedure would behave as follows.

Part a: Procedure would return 3.

Part b: Procedure would return 4.

Part c: Procedure would return 7.

Part d: Procedure would never return.



6.001, Spring Semester, 1998, Final Exam|Your Name: 17

Question 9 (23 points):

Consider the following procedure for dealing with trees:

(define (tree-manip tree init leaf first rest accum)

(cond ((null? tree) init)

((not (pair? tree)) (leaf tree))

(else (accum

(tree-manip (first tree) init leaf first rest accum)

(tree-manip (rest tree) init leaf first rest accum)))))

Suppose that we provide a test tree:

(define test-tree '(1 (2 (3 (4) 5) 6) 7))

For each of the following parts, write the additional expressions needed so that evaluating tree-manip

with the argument test-tree will accomplish each of the following:

Part a: Take the product of the even-valued leaves of the tree, which for test-tree should result

in:

;Value: 48

(tree-manip test-tree



6.001, Spring Semester, 1998, Final Exam|Your Name: 18

Part b: Flatten a tree, which for test-tree should result in:

;Value: (1 2 3 4 5 6 7)

(tree-manip test-tree

Part c: Deep-reverse a tree, which for test-tree should result in:

;Value: (7 (6 (5 (4) 3) 2) 1)

(tree-manip test-tree



6.001, Spring Semester, 1998, Final Exam|Your Name: 19

Part d: Create a new tree, which keeps the odd-valued leaves of the original tree within the same

tree structure, but completely removes even-valued leaves. For test-tree this should result in:

;Value: (1 ((3 5)) 7)

(tree-manip test-tree


