
Type Expressions for use in 6.001

Name Symbol Example Usage Expression whose type is example

primitive SchName SchNum 45
SchString “hello”

function → SchNum → SchNum (lambda (x) (* x x))
argument , SchNum, SchNum → SchNum +
empty φ φ → SchNum (lambda () 6)
variable A, B, … (A → B), A → B (lambda (f x) (f x))
product ✕ A, B → A ✕ B cons
abstract Name SchNum, SchNum → Rat make-rat
special AnyType AnyType → SchBool1 null?

Undefined Symbol, AnyType → Undefined2 define

1. Could also be written A → SchBool but more descriptive with AnyType
2. Could also be writen Symbol, A → B but more descriptive with Undefined.

Precedence: A, B ✕ C → D ✕ E means (A, (B ✕ C)) → (D ✕ E).
Definitions: Can write Name = expression to define the name, then use in later expressions.

Wrinkles for advanced students

What to do about an infinite loop that never returns:

; f: SchNum → φ
(define f (lambda (x) (if (= x 0) (f x) (f x))))

Something that might be one of two (or multiple types):

; SchNum → SchBool | SchNull
(lambda (x) (if (= x 0) #t null))

Types can be recursive and parameterized:

list<A> = null | (A ✕ list<A>)

This allows us to write the correct type for map:

(A→B), list<A> → list

