MASSACHVSETTSINSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001-- Structure and Interpretation of Computer Programs
Fall Semester, 1998, Quiz Il

Be sure to write your name al all pages of this quiz.

Print Your Name: Ben Bitdiddle
Your Recitation Instructor: John Von Neumann
Your Tutor: John McCarthy

Please write clear and concise answersto the questions in the spaces provided in this booklet. You
may use scratch paper if you need, but the spaces we provide are the only places we will look at
when grading. Note that your solutions, particularly to programming problems, may be judged not
only on whether they work or not, but also on clarity and ease of understanding.

Any comments you would like to make on this quiz:

Comments from graders:

Problem | Vaue Grade Grader

25
24
15
15
21
Total 100

| | WO N| P




6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Problem 1 (25 points)
Consider the following list structure:

X— | | T

.
2 ¢a

Part a
What is the printed representation in Scheme for the value of the variable x?

ANS: (2 (abc) (abec))

Part b
Thelist structure for x shown above can be created with the following Scheme code:

(define x
(let ((y <expl>))
(<exp2>)))

Compl ete the code above by providing <expl>:

and <exp2>:
Overdl code:
(define x

(let ((y (list "a ‘b ‘c)))
(list 2yy)))



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Part c
The same list structure for x can alternatively be created with the following Scheme code:

(define x (list 2 “(a bc) 3))
(set-car! <exp3> <exp4>)

Complete the code above by providing <exp3>:

(cddr x)

and <exp4>:

(caddr x)

Part d

Show how the list structure for x in the figure above changes when the following expression is
evaluated:

(set-cdr! (cdr x) ‘d)
You should change the drawing in the figure provided at the beginning of this problem. If a

pointer changes, draw an “X” through that pointer and draw in any new pointers or values.:
d

X—>| —

C
2 ¢a

-
O a—



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Part e

You are given aglobal environment as shown (with the same x data structure asin Part a). Draw
the environment diagram that results from the evaluation of the following expression (evaluated in
the global environment):

(let ((x (list 3 (car x)))
(square (lanmbda (x) (* x x))))
(square (+ 5 (car x))))

You can assumethat | i st, car, + and* areall primitive procedures that already exist in the
global environment.

El

squar e:

Thetrickiest part of this problem isto recognize that

the (lambda (x) (* x x)) is evaluated in the Global (* x x)
Environment outside the let expression, and so the —=> 64
environment pointer of the square procedure also

points to the GE (as do the frame resulting from the

application of that procedure to the actual argument

8).




6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Problem 2 (24 points)

The vote counting for yesterday’s election is stalled because a critical part of the following
program for tallying the votes has not yet been completed. Your job isto help finish this system.

To begin, thefollowing “tally” data structure has been specified to hold the current count of votes:

(tally
(<nanmel> <#vot es>)
(<name2> <#votes>) ;; bug fix - just one paren
(<nanme3> <#votes>)) ;; bug fix -- just two parens

The system must support procedures to get the number of votes for any particular candidate, to
add avoteto the tally, and to determine the winner of the election. These areillustrated by the fol-
lowing sequence of expressions (you will note that the voter turnout was exceedingly low!):

(define governor (list ‘tally)) ; initial enpty tally

(add-vote ‘scott governor)

(add-vote ‘ paul governor)

(add-vote ‘scott governor)

(get-votes ‘paul governor) ==>1
(get-votes ‘scott governor) ==> 2
(get-votes ‘fred governor) ==> 0

(W nner governor) ==> scott

governor ==> (tally (paul 1) (scott 2))

Part a

First, write the procedure get - vot es that takes two arguments as above -- the name of a
candi dat e, and at al | y -- and returns the number of votes for that candidate. If the
candidate’s name does not appear in the tally, that indicates that they did not receive any votes.

(define (assqg key alist)
(cond ((null? alist) “())
((eq? key (caar alist)) (car alist))
((el se (assq key (cdr alist)))))

(define (get-votes candidate tally)
(let ((item (assq candidate (cdr tally))))
(if (null? iten
0
(cadr item)))



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Part b

Next, write the procedure add- vot e that also takes two arguments as above -- the name of a
candi dat e, and at al | y -- and changesthet al | y to include the new or additional vote for
that candidate.

(define (add-vote candidate tally)
(let ((item (assq candidate (cdr tally))))
(if (null? item
(set-cdr! tally (cons (list candidate 1)
(cdr tally)))
(set-car! (cdr item) (+ 1 (cadr iten))))
‘vot e- added))



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Part c

Finally, write the procedure wi nner which takes one argument -- thet al | y -- and returns the
name of the winner (the candidate with the most votes). If the electionisatie, alist of all
candidates with the largest number of votes should be returned.

(define (w nner tally)
(define (helper alist |ead-candidate |ead-votes)
(cond ((null? alist) |ead-candi date)
(el se
(let ((candidate (caar alist))
(votes (cadar alist)))
(cond ((> votes | ead-vot es)
(hel per (cdr alist) candidate votes))
((= votes | ead-votes)
(hel per (cdr alist)
(if (pair? | ead-candi date)
(cons candi dat e | ead- candi dat e)
(l'ist candi date | ead-candi date))
vot es))
(el se (hel per (cdr alist)
| ead- candi dat e
| ead-votes))))
(hel per (cdr tally) () 0))



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Problem 3 (15 points)

Part a
Assume that you have the following definition for the stream of fibonacci numbers:

(define fibs
(cons-stream O
(cons-stream 1
(add-streans fibs
(streamcdr fibs)))))

You come across the following definitions for streamss1 and s2:

(define s1
(stream map square
(streamfilter odd? fibs)))

(define s2
(streamfilter odd?
(stream map square fibs)))

You wonder if s1 and s2 generate the same stream. To figure this out, you decide to compute
what thefirst 5 elements of each are. Fill inthe following table:

fibs 0 1 1 2 3 5 8
sl 1 1 9 25 169
s2 1 1 9 25 169

Standard definitions for the various stream procedures (e.g. stream fi |l t er, st r eam map)
are provided at the end of the quiz handout in case you need them.



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Part b

Streams are often applied to model signal processing systems. For example, the following
diagram illustrates a simple digital signal processing (DSP) system that works on an input stream
x (often denoted x[ n] where n isthe discrete time index) and produces an output stream y.

x[n] » YN
; l/ {

s{n] = < w[0] =
wn] + z[n]
(?47 w[n] =y[n-1]
Y
D |« 2[0]=0
z[n] =w[n-1]

This same system can be represented in amore familiar Scheme streams processing framework as
shown in the following figure:

*2
% add- scae- y
—® streams ——| Stream
A I
cons-
S stream [ O
add-
streams | } W
A cons-
stream [ O
z




6.001 Fall Term ‘98 - Quiz 2 Y our Name:

The stream figure corresponds to the following scheme expressions for this DSP system:

(define w (cons-stream 0 y))
(define z (cons-stream 0 w))
(define s (add-streans w z))
(define y (scale-stream2 (add-streans x s)))

These definitions are recursive (y depends on s which depends on wwhich dependsony!), and it
isthe delayed evaluation capability of streamsthat allows us to create such recursive data
structures as these which often occur in digital signal processing. Standard definitions for the
various stream procedures (e.g. scal e- st r eam add- st r eans) are provided at the end of the
quiz handout in case you need them.

Complete the following table for the first few elements of the contents of these streams:

X 1 0 0 0
w 0 2 4 12
z 0 0 2 4
s 0 2 6 16
y 2 4 12 32

10



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Problem 4 (15 points)

Here we look at one implementation of streams in Scheme, and develop an understanding of this
implementation using the environment model. We will implement (cons-stream x y) asa
gpecial form that isequivalentto (cons x (Il anbda () y)) asshown below:

(cons-stream x y) = (cons x (lanbda () y))

(define (streamcar s) (car s))
(define (streamcdr s) ((cdr s)))

The following partially completed environment diagram results from the evaluation of the above
definitions, followed by the evaluation of the following expressions (in the global environment).

(define ones (cons-stream 1 ones))
(define a (streamcar ones))
(define b (stream cdr ones))

Complete the diagram for all parts marked with a question mark, including variable and binding
values, environment parts of procedures, enclosing environments for frames, and other data
structures. You might want to work through the eval uation of the five define expressions above one
at atime to ensure that you complete al 15 question marksin the environment diagram below.

GE a: ? 1 streamcar: ? streamcdr: ?
—> ones: ?
b: ?
?
?
(car s)

p: s
b: ((cdr s))

ones
‘EZ (car s)

11



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Problem 5 (21 points)

In this problem, we develop a system to perform some generic operations on geometric objects
such as circles, squares, and rectangles. We want a system that will enable usto create objects
with different dimensions, and then be able to determine such things as the area of the object, or
its perimeter. For example, we would like to

(define cl1 (make-circle 5)) ; radius 5
(define s1 (make-square 3)) ; side of size 3
(define r1 (make-rectangle 2 3)) ; sides of size 2 and 3

(define s2 (make-square 10))

(area s1) ==> 9
(area s2) ==> 100
(area rl) ==> 6
(area cl) ==> 78.5

(perineter cl) ==> 31.4
(perineter rl1) ==> 10

To support this, we will assume that the table put and get operations are available:

(put <op> <type> <procedure>)
(get <op> <type>) ==> <procedure>

Thefollowing (smplified) appl y- generi c interface is used:

(define (apply-generic op object)
(let ((proc (get op (type-of object))))
(if proc
(apply proc (contents object))
(error “No operation for op”))))

With the following type tagging approach:

(define (attach-tag object tag)
(cons tag object))

(define (type-of object)
(if (pair? object)
(car object)
(error “not a tagged object”)))

(define (contents object)
(if (pair? object)
(cdr object)
(error “not a tagged object”)))

12



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Consider the following partially complete implementation of ther ect angl e package.

(define (install-rectangl e- package)
; Internal representation
(define (make-r width height) ...)
(define (width-r r) ...)
(define (height-r r) ...)
(define (area-r r) ...)
(define (perineter-r r) ...)

External interface
(define (tag r) (attach-tag r ‘rectangle))

(put ‘make ‘rectangle ...)

(put “area ‘rectangle ...)

(put ‘perineter ‘rectangle ...)
‘ done)

(define (make-rectangle w h)
(apply (get ‘nake ‘rectangle) w h))

Part a

Define the make- r constructor procedure, as well as the accessor procedureswi dt h-r and
hei ght - r. You have the freedom to choose your internal representation of the rectangle object,
but be sure to make your constructors and accessors consistent!

(define (make-r w dth height)
(cons width height))

(define (wdth-r r) (car r))

(define (height-r r) (cdr r))

13



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

The following generic ar ea and per i net er operations are defined to work with not only
circles and squares, but also rectangles:

(define (area geonetry)
(appl y-generic ‘area geonetry))

(define (perimeter geonetry)
(appl y-generic ‘perimeter geonetry))

Part b

Definethe ar ea- r procedure (inside the rectangle package) consistent with this generic
procedure interface.

(define (area-r r)
(* (height-r r) (wdth-r r)))

Part c

Finish the interfacing of the rectangle package to the generic geometry system, by writing the two
put expressions below (which are called insidei nst al | - r ect angl e- package).

(put ‘make ‘rectangle ??7?)
ANS: (put ‘make ‘rectangle (lanbda (w h) (tag (make-r w h))))
(put ‘area ‘rectangle ???)

ANS: (put ‘area ‘rectangle area-r)

14



6.001 Fall Term ‘98 - Quiz 2 Y our Name:

Part d

We now want to extend our system to enable mutation of an existing object asin the following
example code:

(define r2 (make-rectangle 3 4))
(area r2) ==> 12

(resize r2 5 6) ==> RESI ZED
(area r2) ==> 30

We add the following r esi ze generic operation to the system. Notethat r esi ze operates by
side-effect to change the given geometric object. It does not return any new object; rather it just
returns the symbol RESI ZED to indicate success.

(define (resize geonetry . args)
(apply (get ‘resize (type-of geonetry))
(contents geonetry)
args))

Write aninternal procedurer esi ze-r (which will be added inside the rectangle package) that
will work consistently with this generic interface for r esi ze:

(define (resize-r r neww new- h)
(set-car! r neww

(set-cdr! r newh)
‘resize)

Write the appropriate put expression to interface ther esi ze- r procedure to the generic
geometry package (as before, thisput expression will be called insidei nst al | - r ect angl e-
package).

(put ‘resize ‘rectangle ???)

ANS: (put ‘resize ‘rectangle resize-r)

15



Stream definitions (in case you need them):

(define (streammap proc stream
(if (streamnull? stream
t he- enpt y- st ream
(cons-stream (proc (streamcar stream)
(streammap proc (streamcdr stream))))

(define (scal e-streamc strean)
(streammap (lanbda (x) (* x c)) strean))

(define (streamfilter pred s)
(cond ((streamnull? s) s)
((pred (streamcar s))
(cons-stream (streamcar S)
(streamfilter pred (streamcdr s))))
(el se (streamfilter pred (streamcdr s)))))

(define (add-streans sl s2)
(cond ((streamnull? sl) s2)
((streamnull? s2) sl1)
(el se (cons-stream (+ (streamcar sl) (streamcar s2))
(add-streans (stream cdr sl)
(streamcdr s2))))))

16



