
1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Spring Semester, 1998, Final Exam Solutions

Your Name:

Below are suggested answers for each problem, though in many cases there were alternative answers.

Question 1 (12 points):

Part a: 25

Part b: 20

Part c: ((x y x z) x z)

Question 2 (20 points):

The correct answers for the true/false questions are:

T F T F F T F F F F

Question 3 (21 points):

Part a: The data abstraction for dealing with until expressions:

(define (until? exp)

(tagged-list? exp 'until))

and the selectors

(define (until-body exp)

(cddr exp))

(define (until-test exp)

(cadr exp))

Part b: The following dispatch should be added after the primitive expressions and before the

application in eval:

((until? exp)

(eval-until exp env))



6.001, Spring Semester, 1998, Final Exam Solutions|Your Name: 2

Part c: The procedure eval-until:

(define (eval-until exp env)

(let ((return (eval-sequence (until-body exp) env)))

(if (true? (eval (until-test exp) env))

return

(eval-until exp env))))

Question 4 (14 points):

The code to add the until special form of Question 3 to the Explicit-Control Evaluator:

ev-until

(save continue)

(save exp) ; save the entire expression

(assign unev (op until-test) (reg exp)) ; get the end test

(save unev) ; save it for later

(assign unev (op until-body) (reg exp)) ; get the body

(assign continue (label ev-after-until-body)) ; where to go when done

(save env) ; save the environment

(save continue)

(goto (label ev-sequence)) ; evaluate the body

ev-after-until-body ; now need to evaluate the end test

(restore env)

(restore unev)

(assign exp (reg unev))

(save val)

(save env)

(assign continue (label ev-after-until-test))

(goto (label eval-dispatch)) ; evaluate the end test

ev-after-until-test ; check to see if end test is true

(restore env)

(test (op true?) (reg val))

(branch (label done-until)) ; branch if end test true

(restore val)

(restore exp)

(restore continue)

(goto (label ev-until))

done-until ; clean up when done

(restore val)

(restore exp)

(restore continue)

(goto (reg continue))

Question 5 (14 points):

Part a: Argl will contain the value of:



6.001, Spring Semester, 1998, Final Exam Solutions|Your Name: 3

(list 3)

Part b: Lines 13 to 24 are created by compiling:

(g y)

Part c: After lines 25 to 27, plus lines 9 to 12, argl will contain:

(list 9 3)

Part d: After lines 25 to 29, plus lines 9 to 12, argl will contain:

(list 27 9 3)

Part e: Lines 6 to 39 are crated by compiling:

(f x (g y) 3)

Part f: A Scheme expression whose compilation would produce the entire code:

(define (doit x y f g) (f x (g y) 3))

Question 6 (22 points):

Part a: The environment diagram should have two frames, one from the application of the proce-

dure and one from the internal let. Trial should point to a procedure object whose environment

pointer points to the chain of frames starting with that created by the let.

Part b: The de�nition of connect:

(define (connect from to)

((from 'set-next) to)

((to 'set-previous) next))

The full de�nition of ripple:

(define (ripple new current)

;; idea is to insert in right place by moving left or right

(cond ((> (new 'value) (current 'value))

(cond ((null? (current 'next)) ;; nothing else

(connect current new))

(else (ripple new (current 'next)))))

((null? (current 'previous))

(connect new current))

((> (new 'value) ((current 'previous) 'value))

; insert between

(connect (current 'previous) new)

(connect new current))

(else (ripple new (current 'previous)))))



6.001, Spring Semester, 1998, Final Exam Solutions|Your Name: 4

Question 7 (12 points):

Part a:

(define factorials (cons-stream 1

(mul-streams factorials integers)))

Part b: The de�nition of powers:

(define (powers x)

(define pwrs

(cons-stream 1

(scale-stream pwrs x)))

pwrs)

Part c:

(define (exp-terms x)

(div-streams (powers x) factorials))

Part d:

(define (exp-approx x)

(define approx

(cons-stream 0

(div-streams (powers x) factorials))))

Question 8 (10 points):

Part a: A list of three pairs.

Part b: A list of three pairs, where the car of the second pair points to the third.

Part c: A list of three pairs, where the car of the �rst points to the second, and the car of the

second points to the third.

Part d: Procedure would never return.

A list of three pairs, where the car of the last points to the �rst.

Question 9 (23 points):

Part a: Take the product of the even-valued leaves of the tree.

(tree-manip test-tree 1 (lambda (x) (if (even? x) x 1)) car cdr *)



6.001, Spring Semester, 1998, Final Exam Solutions|Your Name: 5

Part b: Flatten a tree.

(tree-manip test-tree '() (lambda (x) (list x)) car cdr append)

Part c: Deep-reverse a tree.

(tree-manip test-tree '() (lambda (x) x) cdr car

(lambda (x y) (append x (list y))))

Part d: Create a new tree, which keeps the odd-valued leaves of the original tree

within the same tree structure, but completely removes even-valued leaves.

(tree-manip test-tree '()

(lambda (x) (if (odd? x) x '()))

car

cdr

(lambda (x y) (if (null? x) y (cons x y))))


