version November 16, 1998, 11:08 A.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 1998

Problem Set 9

Register Machines and Compilation

e [ssued: Tuesday, November 17, 1998
e Tutorial preparation for: Week of November 23, 1998
e Written solutions due: Friday, December 4, 1998

e Reading: Read Sections 5.1 and 5.2 for November 17, Section 5.4 for November 19, Section
5.5 for November 24, and Section 5.3 for December 1.

— Chapter 5: you do not need to know the details of section 5.2.
— Look over the attached code files compiler.scm, eccomplr.scm, and support.scm.

— Auxiliary files regsim.scm, and syntax.scm are available on-line for reference.

o **FINAL EXAM**: The final will be held on Wednesday December 16 from 1:30 to
4:30pm in Johnson Athletic Center (W34-100). It will cover the whole course with extra
emphasis on the material not covered in the previous two quizzes.

Register machines provide a means of customizing code for particular processes. In principle,
customization leads to more efficient code, since one can avoid the overhead that comes from a
compiler’s obligation to handle more general computations'. In this problem set you will handcraft
two simple machines and then compare the performance of your handcrafted code to that of a
compiler and the explicit control evaluator of Chapter 5.

Register Machines
Some things to keep in mind when writing your register machine code:

e The register machines you define should use only the following few primitives: + - * / = <
> ? mnot cons car cdr pair? null? 1list eq? symbol? write-line.

'For example, the compiler in Chapter 5 generates code in which arguments of procedures are maintained as a
list in the argl register. On the other hand, a register machine customized for a procedure of, say, three arguments
might usefully keep the arguments in three separate registers.

6.001, Fall Semester, 1998—Problem Set 9 2

e Even though code generated by the compilers uses more complex primitives,
(e.g. lookup-variable-value, extend-environment ...,) your hand-crafted code should
turn out to run more efficiently.

e LEvery instruction is one of the following types: test, assign, branch, goto, save, restore,
perform. You should not need to use perform.

e The only values that can be assigned to registers or tested in branches are constants, fetches
from registers, or primitive operations applied to fetches from registers. No nested operations
are permitted?.

Tutorial Preparation

The following exercises should be prepared for discussion in tutorial.

Tutorial Exercise 1 The procedure expt is a procedure that takes two arguments, n and m, and
returns n raised to the m-th power. So, for example, (expt 2 3) evaluates to 8. Assuming that m
is non-negative, define, in Scheme, three different implementations for expt that all have different
orders of growth. At least one of your three implementations must generate a recursive process and
one must generate an iterative process. For each of your procedures, say what order of growth in
time (number of machine operations) and space (stack depth) you expect them to use.

Make sure you define everything using only the available primitives.

Tutorial exercise 2 Implement each of your procedures from Tutorial Exercise 1 as a register
machine, and show both the data paths and controllers for each machine. For the data paths, a
diagram is needed; for the controllers, a textual description in the manner of Chapter 5 is adequate.
Also, be sure to clearly specify (e.g. as a comment in the code) which registers are input registers
and which are output registers.

Working with Your Register Machines

You will use the register machine simulator to test the register machines you designed in the tutorial
exercises. To use the simulator, load the problem set code and type in your machine definitions.
For example, you might use something like:

(define my-machine

(make-machine
’(x 1 val ...) ; list the registers you will use here
standard-primitives ; + - * / etc.

" (

2For example, (assign val (op +) ((op *) (reg a) (reg b)) (comst 1)) is not permitted, since a call to *
is nested inside a call to +.

6.001, Fall Semester, 1998—Problem Set 9 3

; add your machine controller code here, for example
(assign x (reg val))

)

Running Your Register Machines

You will find it convenient to define test procedures that load an input into a machine, run the
machine, print some statistics, and return the result computed by the machine. Here is an example
that works for a machine that has an input register 1st and returns its result in register result.
Depending on how you design your machine, you will most likely adapt this code:

(define (test-machine machine arg)
(set-register-contents! machine ’lst arg) ;; place input arg into ’lst register
(newline)

(display ";Resetting... ignore")
(let ((the-stack (machine ’stack)))
(the-stack ’initialize)
(newline)
(display ";Running on arg: ") (display arg)
(start machine)
(newline)
(display ";Run complete:")
(the-stack ’print-statistics))
(get-register-contents machine ’result))

Notice that we use the approximation that the number of operations performed is proportional to
the number of save operations performed. This is a pretty good approximation for code from our
compiler, but it isn’t good for hand written code.

Computer Exercise 1A: Define a test procedure and use it to debug your machines by running
them on some representative inputs. Make a table that records the number of stack pushes (our
approximation for the number of operations) and maximum stack depth (our approximation for
the amount of space required) as a function of the magnitude of the exponent m.

Written Exercise 1B: Try to derive formulas for the total number of pushes and maximum stack
depth used by your machines, as functions of the magnitude of m. In most cases, the functions will
turn out to be polynomials in the magnitude of the exponent, in which case you should be able to
exhibit exact formulas, not just orders of growth.

Having built hand-crafted register machines for our problem, we now want to compare their per-
formance with code generated by the compiler and code generated by the evaluator.

6.001, Fall Semester, 1998—Problem Set 9 4
Using the Compiler

There are two ways to run the compiler. First, you may simply compile an expression and obtain
the list of machine instructions as a result, so that you can study it. For instance,

(define test-expression
>(define (f x y) (x (+ xy) (- x y))))

(define result (compile test-expression ’val ’return))

(pp result)

The second way to run the compiler is to apply the procedure compile-and-go to the expression.
This compiles the expression and executes it in the environment of the explicit control evaluator
machine eceval. When evaluation is complete, you are left in the read-eval-print loop talking to
the explicit control evaluator. Then you can experiment with the compiled expression by evaluating
further expressions.

Running the Explicit-Control Evaluator

The evaluator for this problem set is the explicit control evaluator of section 5.4. Warning: Do
not use cond and let when interacting with the explicit control evaluator and the compiler (the
explicit control evaluator does not handle these special forms, the compiler does not handle let).

To evaluate an expression in the eceval read-eval-print loop, type the expression after the prompt,
followed by ctrl-X ctrl-E. After each evaluation, the simulator will print the number of stack
and machine operations required to execute the code.?

Note that you can start up the evaluator by invoking (start-eceval) or you can use compile-and-go
to enter the evaluator. Here is an example:

(compile-and-go
’(define (fact n) (if (=n 0) 1 (* n (fact (- n 1))))))
(total-pushes = 0 maximum-depth = 0)
;33 EC-Eval value:
ok

;33 EC-Eval input:

(fact 4) <== you type this, then C-X C-E
(total-pushes = 31 maximum-depth = 14)

;33 EC-Eval value:

24

;335 EC-Eval input:

(fact (fact 3)) <== you type this
(total-pushes = 68 maximum-depth = 20)
;33 EC-Eval value:

720

3These counts may include a few extra operations needed to run the driver loop itself. This is a small constant
overhead that you can ignore when you collect statistics.

6.001, Fall Semester, 1998—Problem Set 9 5

;335 EC-Eval input:

fact

(total-pushes = 0 maximum-depth = 0)
;33 EC-Eval value:
<compiled-procedure>

;335 EC-Eval input:

(define (fact n) (if (=n 0) 1 (*x n (fact (- n 1))))) ;<== fact gets redefined
(total-pushes = 3 maximum-depth = 3)

;33 EC-Eval value:

ok

;335 EC-Eval input:

fact

(total-pushes = 0 maximum-depth = 0)

;33 EC-Eval value:

(compound-procedure (n) ((if (=n 0) 1 (*x n (fact (- n 1))))) <procedure-env>)

;33 EC-Eval input:

(fact 4) ;<== redefined fact gets interpreted -- slower!
(total-pushes = 144 maximum-depth = 20)

;33 EC-Eval value:

24

To exit back to regular Scheme type ctrl-C ctrl-C. To re-enter the evaluator with the previous
global environment, you may do another compile-and-go. To start the evaluator with a reini-
tialized global environment, evaluate (start-eceval). To restart the read-eval-print loop without
clearing the global environment, do (continue-eceval).

Computer Exercise 2A: Compile and run the (Scheme) definitions of your three expt proce-
dures, and make tables to record statistics.

Computer Exercise 2B: Now redefine your expt procedures within the eceval read-eval-print
loop and record corresponding statistics for the interpreted definitions.

Written Exercise 2C: Derive formulas for the total number of pushes and maximum stack
depth required, as functions of the magnitude of m, for the compiled and interpreted procedures.

Written Exercise 2D: We'll consider the time used for a computation to be the total number
of stack pushes, and the space used to be the maximum stack depth. For each of your procedures,
determine the limiting ratio, as the exponent becomes large, of the time and space requirements for
your hand-coded machines, versus the time and space requirements for the compiled and interpreted
code.

6.001, Fall Semester, 1998—Problem Set 9 6

Computer Exercise 3A: Make listings of the code generated by the compiler for the definitions
of your three procedures. Annotate these listings to indicate what various portions of the generated
register code corresponds to, e.g. procedure definition, construction of argument lists, procedure
application, etc.

Written Exercise 3B: Compare the listings with your hand-coded versions to see why the
compiler’s code is less efficient than yours. Suggest one improvement to the compiler that could
lead it to do a better job. Write one or two clear paragraphs indicating how you might go about
implementing your improvement. You needn’t actually carry out the the implementation, but
your description should be reasonably precise. For example, you should say what new information
the compiler should keep track of, what new data structures may be required to maintain this
information, and how the information should be used in generating the new, improved code.

Computer Exercise 4: To gain more understanding of the compiler (as described in Chapter 5 of
the book), you will next make a small change to the language and modify the compiler accordingly.
In particular, we wish to change variable assignment to actually return a useful value, in this case
the new value of the variable. For example

(define x 1)
(set! x 2)
; Value: 2

(x (set! x (+ x 1)) 10)
; Value: 30

To do this problem, you will need to think carefully about how the compiler generates code and
“preserves” registers by using the stack. You should not add any new registers to your machine.
You will also have to consider (at least when you are testing your code) what order arguments are
evaluated in — we’ve said “in any order” but the compiler and the interpreter use a particular order
(and is it the same?).

Turn in listings of your modifications to the compiler, together with test cases that show both the
compiled code generated (using compile-and-display) and the results returned for your test cases
(using compile-and-go). Remember, compiled code for your set! expressions will have this new
behavior, but eceval itself will not, so keep this in mind when you are debugging.

Some test cases you should consider include:

(set! x 1)

(set! x (+ 1 2))

(begin (set! x (+ 1 2)) 3)
(+ x (set! x 10))

That’s all folks — the last problem set! We hope you have found them entertaining, engrossing, and
educational.

6.001, Fall Semester, 1998—Problem Set 9 7

Turn in answers to the following questions along with your answers to the questions in the problem
set:

1. About how much time did you spend on this homework assignment? (Reading and preparing
the assignment plus computer work.)

2. Which scheme system(s) did you use to do this assignment (for example: 6.001 lab, your own
NT machine, your own Win95 machine, your own Linux machine)?

3. We encourage you to work with others on problem sets as long as you acknowledge it (see
the 6.001 General Information handout).

e If you cooperated with other students, LA’s, or others, or found portions of your answers
for this problem set in references other than the text (such as some of the archives),
please indicate your consultants’ names and your references. Also, explicitly label all
text and code you are submitting which is the same as that being submitted by one of
your collaborators.

e Otherwise, write “I worked alone using only the reference materials,” and sign your
statement.

