
1
version November 9, 1998, 4:20 P.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1998

Problem Set 8

The Evaluator

� Issued: Tuesday, November 10, 1998

� Holiday Reminder: No recitations on Wednesday, November 11, 1998

� Tutorial preparation for: Week of November 16, 1998

� Written solutions due: Friday, November 20, 1998

� Reading: Read Section 4.3 before lecture on November 12, 1998 and Section 5.1 before lecture

on November 17, 1998.

� Drop Date Reminder: Wednesday, November 18, 1998

This problem set requires very little actual programming. In order to do it, however, you will need

to have a good understanding of Sections 4.1 and 4.2 of the textbook. If you have lost the habit

of planning your work carefully before coming to lab, this would be a good week to change your

working style|otherwise you are likely to waste a great deal of time in the lab.

Evaluator Code

The code for this problem set includes these �les:

� syntax.scm contains the procedures that de�ne the syntax of expressions, as described in

section 4.1.2.

� meval.scm is basically the metacircular evaluator described in section 4.1.1 of the notes. In

order to avoid confusing the eval and apply of this evaluator with the eval and apply of

the underlying Scheme system, we have renamed these procedures meval and mapply.

� evdata.scm contains the procedures that de�ne the evaluator's data structures, as in section

4.1.3. We have set up the initial environment so that the following names are bound to their

values in the underlying Scheme: car, cdr, cons, null?, write-line. These are the only

primitives that have been implemented. You will be installing some more primitives as part

of this problem set.

� lex-dyn.scm contains a partial implementation of an evaluator that can perform both lexical

and dynamic scoping. You will be using this code for Lab Exercise 6.

6.001, Fall Semester, 1998|Problem Set 8 2

Tutorial Exercises

These tutorial exercises are meant to help you gain some understanding of the evaluator so that

you are familiar with the code before you go to lab.

Tutorial Exercise 1: Browse through the code �les. How would you extend the initial global

environment to have bindings for + - * / = < > 1+ list pair? symbol? eq?. How would

you extend the global environment so that nil would have a binding?

Tutorial Exercise 2: Do Exercise 4.14 in the textbook which looks at extending the evaluator

to handle map.

Tutorial Exercise 3: Do Exercise 4.1 in the textbook which will help you understand how

exible the evaluator is for handling di�erent orders of argument evaluation.

Tutorial Exercise 4: Scoping rules dictate how values for free variables are found. With lexical

scoping (which is what you have seen so far), they are looked up in the environment in which

the procedure was created. With dynamic scoping however, they are looked up in the caller's

environment.

It may be easier to illustrate this using environment diagrams. With the rules you have seen so

far, when a procedure is applied, you create a frame and then you hang this new frame o� of the

frame in which this procedure was created. If dynamic scoping rules are in play, then this new

frame hangs o� of the environment in which the procedure is being applied.

What do the following expressions evaluate to if lexical scoping were used? What if dynamic scoping

were used? Draw environment diagrams to explain how your answers arise.

(let ((y 1))

(let ((f (lambda (y) (lambda (x) (+ x y)))))

((f 20) 300)))

(let ((y 1))

(let ((f (lambda (x) (+ x y))))

(let ((y 20))

(f 300))))

Using the Evaluator

Here is some helpful information for using the evalator:

� When you ``M-x load-problem-set: 8'' in Edwin, this will load the �les syntax.scm,

evdata.scm,meval.scm and lex-dyn.scm. Evaluating the code in these �les and then eval-

uating (driver-loop) in the *scheme* bu�er will start the read-eval-print loop for the

meta-circular evaluator with a freshly initialized global environment.

6.001, Fall Semester, 1998|Problem Set 8 3

� In order to help you avoid confusion, we've arranged it so that the driver loop will print input

and output prompts. For example,

;;; M-Eval input:

(+ 3 4)

;;; M-Eval value:

7

shows an interaction with the meval evaluator. To evaluate an expression, you type the expression
into the *scheme* bu�er at the ;;; M-Eval input: prompt, and press ctrl-x ctrl-e.

� You should keep in a separate �le any procedure de�nitions you want to install in an evaluator. If
your Edwin Scheme bu�er is running the read-eval-print loop of an evaluator, you can then visit this
de�nitions �le and type M-o to enter the de�nitions into the evaluator.

� The evaluator you are working with does not include any error system. If you hit an error you will
bounce back into ordinary Scheme. You can restart the evaluator, with its global environment still
intact, by evaluating (driver-loop). Evaluating (init) will also do this, but (init) will also re-
initialize the global environment, so you will lose any de�nitions you have made. At any time, you
can break out of the evaluator and get back to the underlying Scheme by typing ctrl-C ctrl-C.

� It can be instructive to trace meval and/or mapply. (You may need to do this while debugging your
code for this assignment.)

� Since environments are generally complex, circular list structures, we have set Scheme's printer so that
it will not go into an in�nite loop when asked to print a circular list. This was done by

(set! *unparser-list-depth-limit* 7)

(set! *unparser-list-breadth-limit* 10)

at the end of the �le evdata.scm. You may want to alter the values of these limits to vary how much
list structure will be printed as output.

Lab exercises

As usual, for all the lab exercises below, you should turn in listings of any procedures you de�ne

in your solutions, as well as sample evaluations demonstrating their correct behavior.

You may �nd it helpful to keep your code, including any modi�cations you make to the code we

have provided, in a separate �le. After you have loaded the problem set code, you can then evaluate

select portions of code from your answer �le to rede�ne a current de�nition.

Lab Exercise 1: Getting Acquainted Actually extend the primitives that are bound in the

initial global environment with those from Tutorial Exercise 1. Start the evaluator by typing (init)

and evaluate a few simple expressions and de�nitions. It's a good idea to make an intentional error

and practice restarting the read-eval-print loop (both with and with-out wiping the environment

clean). Turn in a listing of the procedures that were changed and an excerpt of this practice session.

(If for any reason you need other primitives de�ned, you now know how to include them in the

evaluator.)

6.001, Fall Semester, 1998|Problem Set 8 4

Lab Exercise 2: AND Extension Let's look at how we can extend the evaluator to be able to

handle the AND special form.

(a) One attempt is to type in a de�nition for AND at the evaluator prompt in the runtime environment

of the simulation. However, this will not work. Show an example of why AND doesn't behave

properly. What about AND makes it di�erent from the other procedures you've written in this

class?

The next two approaches involve modi�cations to the evaluator meval code.

(b) You've already seen how cond can be implemented as a derived if expression in the evaluator

code. Implement AND as a derived expression.

(c) Instead of repackaging the components of AND as a derived expression of another expression that

you already know how to evaluate, you can implement AND behavior by handling it directly as a

special form (which is what you would have to do if there were no way for AND to be written as a

derived expression). Show how to implement AND in this manner.

Lab Exercise 3: LET Special Form Let's have some more practice with derived expressions by

extending the evaluator so that it can handle let.

(a) Do Exercises 4.6 in the book which asks you to extend the evaluator to handle let.

(b) Do Exercises 4.7 in the book which asks you to extend the evaluator to handle let*.

Lab Exercise 4: A Loop Construct Consider the for special form: (for <var> <initial>

<pred> <next> <body>)

Here's what happens when this expression is evaluated:

1. The initial value of variable <var> is <initial>.

2. If <pred> is false, then the loop terminates and return the symbol 'ok as the value of the for

expression.

3. If <pred> is true, then <body> is evaluated.

4. The next value of <var> is then determined by evaluating <next>. Loop back to Step 2.

For example: (for x 1 (<= x 10) (+ 1 x) (write-line x)) would print the numbers from 1

to 10.

Why is for a special form? Add the for construct as a special form to the evaluator.

In the next exercise, you will be implementing dynamic scoping. You may want to put your

de�nitions in a di�erent �le because you will want to use the evaluator that you have at this point

(which has incorporated your answer from Lab Exercises 1-4) for Lab Exercise 6.

6.001, Fall Semester, 1998|Problem Set 8 5

Lab Exercise 5: Dynamic Scoping Modify the evaluator so that it follows dynamic scoping

rules rather than lexical scoping rules.

Turn in a listing that shows that your modi�cation correctly performs dynamic scoping instead of

lexical scoping. If you've successfully augmented your system to handle let, then you can use the

let expressions from Tutorial Exercise 4 to test whether dynamic scoping works.

Lab Exercise 6: Using Lexical Scoping with Dynamic Lookup This exercise explores

the possibility of lexical and dynamic scoping co-existing in the same system. Recall that when

a procedure is applied, a new environment is created and an expression is evaluated in this new

environment. Scoping rules speci�ed how environments are linked together so that this new en-

vironment is linked to either the environment in which the procedure was created (a lexical link)

or the caller's environment in which the procedure was applied (a dynamic link). In this manner,

scoping rules basically told you where to look for the value of a free variable. Imagine a hybrid

environment structure where each environment had not one but two links { both a dynamic link

dyn-env and a lexical link lex-env, and furthermore, the programmer had the ability to specify

that a free variable should be looked up in a dynamically scoped manner instead of the usual

lexically scoped way.

We must be able to do two things:

1. declare that a certain variable is a dynamic variable { i.e. its value, if not present in the

current frame, should be looked up in a dynamically scoped manner.

2. de�ne a dynamic variable (i.e. declare that it is dynamic and supply a value).

We do this by creating a special form called dynamic. If dynamic is provided with a variable name

in addition to a variable value, then this indicates that a new dynamically scoped variable is being

created and de�ned. If dynamic is provided with a variable name only, then this indicates that this

variable is a dynamic one and should be looked up in a dynamically scoped manner (by looking in

dynamically enclosing environments).

To support dynamic variable declarations and dynamic scoping as an option in addition to the

usual lexical scoping rules, we expand the notion of an environment. Speci�cally, it contains:

� the current FRAME

� the surrounding lexical environment, LEX-ENV

� the surrounding dynamic environment, DYN-ENV

� a list of declared dynamic variable names, DYNAMICS.

Note that dynamic variables and lexical variables can live in the same frame, but in order for a

dynamic variable to be accessed (when an expression is evaluated with respect to this environment)

the variable must also be present in the list DYNAMICS (i.e. declared to be a dynamic variable).

6.001, Fall Semester, 1998|Problem Set 8 6

(We will also require dynamic statements, like internal defines, to appear at the start of a proce-

dure body. If the user does not adhere to this, then anything goes and you cannot guarantee what

the outcome will be. In your implementation below though, you do not have to check for this, for

simplicity, assume that dynamic statements are correctly placed, although in practice you would

have to handle this.)

Here's an example:

(define (foo x y)

(define z 100)

(dynamic *w* 50) ;; definition (and declaration)

(bar (+ x y z)))

(define (bar b)

(gorp (* 2 b)))

(define (gorp c)

(dynamic *w*) ;; declaration

(+ c *w*))

(foo 1 2)

=> 256

These three procedures are de�ned in the global environment. Notice that in foo, *w* and a value are supplied
to dynamic and so a dynamic binding is created and in gorp, this dynamic variable is then accessed.

Let's look at what happens when we evaluate (foo 1 2):

� (foo 1 2): Here, a new frame E1 is created with both lex-env and dyn-env linked to the global
environment. Within E1, z is de�ned and bound to 100, and *w* is de�ned and bound to 50. In
addition, *w* is declared to be a dynamic variable.

� (bar 103): This leads to the creation of frame E2 which lex-env pointing to the lexical global
(because that is where bar was created), and dyn-env linked to E1 (the caller's environment). The
expression (gorp 206) is next evaluated in E2.

� (gorp 206): Now, E3 is created and this also hangs o� of the lexical global environment via lex-env,
however, dyn-env points to E2. When the (dynamic *w*) line is encountered, the value of *w* is
sought, �rst in the current frame E3 and then by following dyn-env links until it is �nally found in
E1.

Your goal now is to implement this behavior in the evaluator. Use the evaluator that you ended up with
before doing Lab Exercise 5.

To start you o�, we've provided some code for you in lex-dyn.scm including a modi�ed version of meval
and mapply. You need to complete the de�nitions of several procedures in this �le:

(a) Complete the de�nition of the syntax procedures: dynamic?, dynamic-declaration?, dynamic-definition?,
dynamic-variable and dynamic-value.

(b) Study the new environment structure. Complete the de�nitions for the selectors: enclosing-environment,
enclosing-dyn-env and dynamics-in-env, and also the de�nition for add-dynamic-in-env which adds a
variable to the DYNAMICS list.

6.001, Fall Semester, 1998|Problem Set 8 7

(c) When looking up a variable, we check if it's on the list of DYNAMICS. If it is, then we look it up in
a dynamically scoped manner (we look it up in the current frame, if it's not there, we trace dyn-env links
to the dynamically enclosing environment). If it is not on the list of DYNAMICS, we check the current
frame for the variable and if it is not found in the current, we follow lex-env links to the lexically enclosing
environment.

Complete the de�nition of lookup-dynamic-loop. (If you �nd a need to, you may modify the code for
lookup-variable-value and lookup-lexical-loop and/or provide any extra helping procedures so long
as the procedures are consistent with their speci�cations.)

Turn in a listing of all the procedures that have been modi�ed or newly de�ned.

(d) Another operation that requires traversing the environment structure is set-variable-value!. Now that
you have had experience with lookup, complete the de�nitions of set-variable-value!, set-lexical-variable-loop
and set-dynamic-variable-loop so that you set! a variable in a manner that is similar to how you would
lookup a variable.

Turn in a listing of all the procedures that have been modi�ed or newly de�ned.

(e) Turn in a listing with well chosen examples as test cases that clearly show that your code and the resulting
evaluator correctly handle both dynamic and lexical scoping.

(f) Now that you have understand how lexical scoping and dynamic scoping work, what situations might
dynamic scoping be good for? What are some advantages? Are there any risks or disadvantages?

Turn in answers to the following questions along with your answers to the questions in the problem set:

1. About how much time did you spend on this homework assignment? (Reading and preparing the
assignment plus computer work.)

2. Which scheme system(s) did you use to do this assignment (for example: 6.001 lab, your own NT
machine, your own Win95 machine, your own Linux machine)?

3. We encourage you to work with others on problem sets as long as you acknowledge it (see the 6.001
General Information handout).

� If you cooperated with other students, LA's, or others, or found portions of your answers for
this problem set in references other than the text (such as some of the archives), please indicate
your consultants' names and your references. Also, explicitly label all text and code you are
submitting which is the same as that being submitted by one of your collaborators.

� Otherwise, write \I worked alone using only the reference materials," and sign your statement.

