
1
version September 21, 1998, 11:54 P.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1998

Problem Set 3

� Issued: Tuesday, September 22.

� Tutorial preparation for: Week of September 28.

� Written solutions due: Friday, October 2 in recitation

� Reading: Finish section 2.2 before lecture on September 24. Read section 2.3 before lecture

on September 29, and section 2.4 before lecture on October 1.

� Quiz 1 Reminder: October 7, 1998. 5{7PM xor 7{9PM, room 3-270.

A Graphics Design Language
1

The goal of this problem set is to reinforce ideas about data abstraction and higher-order proce-

dures, and to emphasize the expressive power that derives from appropriate primitives, means of

combination, and means of abstraction. We'll do this by working with Peter Henderson's \square-

limit" graphics design language, which is described in section 2.2.4 of the textbook. You should

study that section before beginning work on this assignment.2

1. Tutorial exercises

Tutorial exercise 1: Do exercises 2.46, 2.47, and 2.48 of the textbook, which ask you to de�ne

selectors and constructors that implement data structures for vectors (make-vect, xcor-vect,

ycor-vect), for frames (make-frame, origin-frame, edge1-frame, edge2-frame), and for line

segments (make-segment, start-segment, end-segment), as well as some basic vector operations

(add-vect, sub-vect, scale-vect). You need not try these on the computer now (although you'll

need to do this as part of the programming assignment). Note that there are di�erent possible

answers for these: the choice of representation is up to you. In tutorial, expect that your tutor will

ask you to draw box-and-pointer diagrams to describe some of these data structures, and also to

discuss how these structures are printed by the Scheme interpreter.

1This problem set was developed by Hal Abelson, based upon work by Peter Henderson (\Functional Geometry,"

in Proc. ACM Conference on Lisp and Functional Programming, 1982). The image display code was designed and

implemented by Daniel Coore.
2Section 2.2.4 does not depend very strongly on section 2.2.3, so you can start working on this problem set without

reading 2.2.3. Be sure, however, to read all of section 2.2 before lecture on September 24.

6.001, Fall Semester, 1998|Problem Set 3 2

Type signatures

In this problem set, you will be dealing with several data types as well as higher order procedures,

and it can get confusing. Knowing the type signatures of various procedures will help you tell when

you can use which procedure and with what arguments.

Two basic types of Scheme values are numbers (Sch-Num) and booleans (Sch-Bool). The procedure

(define multiply-by-2 (lambda (x) (* 2 x))),

for example, takes as input a Sch-Num and returns a Sch-Num. In type notation, this is represented

as: multiply-by-2: Sch-Num ! Sch-Num. This is known as a type signature.

When a procedure takes more than one argument, its type signature can reect this:

; multiply-by-each-other: (Sch-Num, Sch-Num) ! Sch-Num.

(define multiply-by-each-other (lambda (a b) (* a b))),

Tutorial exercise 2: In tutorial exercise 1, you wrote constructors and selectors for data types

called vectors, frames and line segments. Assuming the types of these are Vector, Frame and

Segment respectively, what are the type signatures for the following procedures: make-vect,

make-frame, origin-frame, make-segment and end-segment?

Recall that in Scheme, procedures can be passed in as arguments and can be returned as values as

well. Consider:

; multiply-by-creator: Sch-Num ! (Sch-Num ! Sch-Num).

(define multiply-by-creator (lambda (factor) (lambda (x) (* x factor)))),

Here is a procedure that takes a Sch-Num as input and returns a procedure that takes a Sch-Num as

input and returns a Sch-Num. Note that you can think about the earlier procedure multiply-by-2

as being equivalent to (multiply-by-creator 2). As a convenience, the type signature above

could also have been written as multiply-by-creator: Sch-Num ! F, where F is shorthand for a

type signature corresponding to a single-argument Scheme mathematical \function" F = (Sch-Num

! Sch-Num).

Painters themselves are procedures that when given a frame as input, display some image within

that frame. So if the painter type is Painter, we have Painter = (Frame ! irrelevant). There

is a returned value, but it is irrelevant and not important here: all we care about is the side-e�ect

of painting the picture.

Tutorial exercise 3: What are some procedures in the Henderson language (section 2.2.4 of the

text) that have a type signature of Painter!Painter, which represents a procedure that takes a

painter as input and returns a painter as output?

Tutorial exercise 4: What are the type signatures of the following procedures: right-split,

transform-painter, squash-inwards and square-of-four?

6.001, Fall Semester, 1998|Problem Set 3 3

Tutorial exercise 5: An interesting higher order procedure is compose which is de�ned as:

(define (compose f g)

(lambda (x) (f (g x))))

If inc is the name of a procedure that adds one to its input, e.g. (define (inc x) (+ 1 x)), what

is the value returned when each of the following is evaluated?

(compose inc square)

((compose inc square) 5)

((compose square inc) 5)

((compose (compose inc square) inc) 5)

In the last example, we were able to use the result of one compose as the argument to another

compose. Indeed, if we choose the types of the procedures carefully we can nest compose calls (in

either argument) arbitrarily deeply, because the type of the compose return value is the same type

as its inputs. To see this closure property clearly, what is the type signature for compose as it is

used in the �rst example (compose inc square) above?

2. Programming assignment

We won't provide any general explanation of the square-limit language here, since this is covered in

section 2.2.4 of the textbook. One thing that is not explained in the book, however, is how primitive

painters are implemented (see the book, pages 136{137) and how to actually use a painter to draw

something on the screen.

Primitive painters

The code for this assignment includes �ve ways to create primitive painters.

The simplest painters are created with the procedure number->painter, which takes a number as

argument. These painters �ll a frame with a solid shade of gray. The number speci�es a gray level:

0 is black, 255 is white, and numbers in between are increasingly lighter shades of gray. Here are

some examples:

(define black (number->painter 0))

(define white (number->painter 255))

(define gray (number->painter 150))

You can also specify a painter using procedure->painter, which takes a procedure as argument.

The procedure determines a gray level (0 to 255) as a function of (x; y) position, for example:

6.001, Fall Semester, 1998|Problem Set 3 4

(define vertical-shading

(procedure->painter (lambda (x y) (* 255 y))))

The x and y arguments run from 0 to 1 and specify the fraction that each point is o�set from the

frame's origin along the frame's edges. Thus, the frame is �lled out by the set of points (x; y) such

that 0 � x; y � 1.

A third kind of painter is created by segments->painter, as described in the textbook. This takes

a list of line segments as argument. This paints the line drawing speci�ed by the list segments. For

example, the wave painter shown in �gure 2.10 of the book is generated by

(define wave

(segments->painter

(list (make-segment (make-vect .25 0) (make-vect .35 .5))

(make-segment (make-vect .35 .5) (make-vect .3 .6))

(make-segment (make-vect .3 .6) (make-vect .15 .4))

(make-segment (make-vect .15 .4) (make-vect 0 .65))

(make-segment (make-vect .4 0) (make-vect .5 .3))

(make-segment (make-vect .5 .3) (make-vect .6 0))

(make-segment (make-vect .75 0) (make-vect .6 .45))

(make-segment (make-vect .6 .45) (make-vect 1 .15))

(make-segment (make-vect 1 .35) (make-vect .75 .65))

(make-segment (make-vect .75 .65) (make-vect .6 .65))

(make-segment (make-vect .6 .65) (make-vect .65 .85))

(make-segment (make-vect .65 .85) (make-vect .6 1))

(make-segment (make-vect .4 1) (make-vect .35 .85))

(make-segment (make-vect .35 .85) (make-vect .4 .65))

(make-segment (make-vect .4 .65) (make-vect .3 .65))

(make-segment (make-vect .3 .65) (make-vect .15 .6))

(make-segment (make-vect .15 .6) (make-vect 0 .85))

)))

Another way to create a primitive painter is from a stored image. The procedure pgm-file->painter

uses an image from the 6001 image collection to create a painter.3 For instance:

(define rogers (pgm-file->painter "fovnder"))

will create the William Barton Rogers painter shown on page 130 of the textbook and give it the

name rogers.

The �nal way to create a primitive painter is to use vectors->painter which takes a list of vectors

as input and creates a painter which will draw the individual points corresponding to the endpoint

of each vector. (That is, you can think of a vector as a means for de�ning the location of a point

to be drawn.)

Using this, for example, you can draw the following pinwheel-like spiral:

3The images are kept in the directory speci�ed by the variable 6001-image-directory. These images are accessible

in a shared directory in the lab, and they are loaded as part of the PS3 problem set code if you are using your own

computer. Use the Edwin command M-x list-directory to see the entire contents of the image directory. Each

image is 128 � 128, stored in \pgm" format.

6.001, Fall Semester, 1998|Problem Set 3 5

(define spiral (vectors->painter (spiral-points)))

(define (spiral-points)

(define (helper t pointlist)

(if (= t 100)

pointlist

(helper (+ t 1) (cons (make-vect (/ (+ (* t (cos t)) 100) 200)

(/ (+ (* t (sin t)) 100) 200))

pointlist))))

(helper 0 nil))

Drawing on the screen

When the problem set code is loaded (don't load it yet!), it will create three graphics windows,

named g1, g2, and g3. To paint a picture in a window, use the procedure paint. Paint takes a

graphics window and a painter, determines the frame for the graphics window, and gives the frame

to the painter. For example,

(paint g1 rogers)

will show a picture of William Barton Rogers in window g1.

There is also a procedure called paint-hi-res, which paints the images at higher resolution (256�

256 rather than 128 � 128). Painting at a higher resolution produces better looking images, but

takes four times as long. Depending on how fast your computer is, you may want to work on this

problem viewing images using paint, and reserve paint-hi-res to see the details of images that

you �nd interesting.4 When you print images, we suggest that you print only images created with

paint-hi-res, not paint.

Computer exercise 1: Load the code for problem set 3 using M-x load-problem-set. Before

you can do anything else, you'll need to de�ne the data representations and operations that you

designed for tutorial exercise 1. Type in these de�nitions now, in a �le that will hold all your

answers for this problem set, and evaluate them.

If these are correct, you should be able to evaluate the expression (setup). This will create the

three graphics windows and load the rest of the problem set code, which includes all of the code from

section 2.2.4 of the textbook and the primitive painters black, white, gray, vertical-shading,

and rogers described above. If setup works, you should be able to use paint and paint-hi-res

to view images of the primitive painters.5 If you work on the problem set in multiple sessions, be

sure that you reload your data abstraction de�nitions each time, before doing setup. You need not

turn in anything for this exercise.

4Painting a primitive image like rogers won't look any di�erent at high resolution, because the original picture is

only 128 � 128. But as you start stretching and shrinking the image, you will see di�erences at higher resolution.
5If setup (or painting) does not work, there are several things that could be wrong. Your data abstraction

de�nitions might be incorrect. Or the system might not be able to locate the image �les or the compiled code �les

need for this problem set. Whatever the problem is �x it now, getting help if necessary, before going on.

6.001, Fall Semester, 1998|Problem Set 3 6

Computer exercise 2: Make a collection of primitive painters to use in the rest of this lab.

In addition to the ones prede�ned for you, de�ne at least one new painter of each of the �ve

primitive types: (1) a uniform grey level made with number->painter; (2) something de�ned with

procedure->painter; (3) a line-drawing made with segments->painter; (4) an image of your

choice that is loaded from the 6001 image collection with pgm-file->painter; and (5) something

that draws points made with vectors->painter. Turn in a listing of your de�nitions.

Computer exercise 3: Do exercise 2.50 of the textbook, which asks you for the de�nitions of

flip-horiz, rotate180 and rotate270. The way to think about these transformations is to keep

in mind where the new origin and edges of the frame should be. It will help to make a sketch. If

you are confused by this, study the de�nition of rotate90 on page 139. Turn in a listing of your

three procedures.

Computer exercise 4: Do exercise 2.51 of the textbook, which asks for two di�erent de�nitions

of the procedure below. The �rst de�nition can be tricky|make sure you understand how beside

works. Turn in listings of both de�nitions.

Computer exercise 5: Do exercise 2.44 of the textbook, which asks you to de�ne the procedure

up-split. Turn in a listing of your up-split procedure. If you do this correctly (and also exercise

4), then corner-split and square-limit (both of which have been pre-de�ned for you) should

work. You should now be able to duplicate the designs in �gures 2.9 and 2.14 of the textbook.

Computer exercise 6: Examine the procedure squash-inwards (and also the diamond-shaped

images in �gures 2.10 and 2.11). You should be able to duplicate these, since squash-inwards is

prede�ned in the problem set code. De�ne a couple of procedures that, like squash-inwards, draws

in a non-rectangular frame. It's also interesting to make the corners of the diamond go outside the

original square. Turn in a listing of your procedure.

Computer exercise 7: Do exercise 2.45 of the textbook, which de�nes the general splitting
operation split. In order not to overwrite the existing de�nitions of right-split and up-split,
test your procedure by de�ning

(define new-right-split (split beside below))

(define new-up-split (split below beside))

Turn in a listing of split. Hint: This exercise will really test your understanding of higher-order

procedures. The thing to keep in mind is that the result returned by split is a procedure that

takes as arguments a painter and a number.

Computer exercise 8: The primitive painter creator vectors->painter allows us to specify a

list of points to be painted. We can elect to display only some of these points by using a technique

known as cropping. Your goal is to write a procedure crop-points that takes as input a list of

6.001, Fall Semester, 1998|Problem Set 3 7

points6 and a crop frame, and returns a list of only those points that fall within the crop frame.

Only the points contained in this �ltered list are then painted (see Figure 1).

crop frame

ed
ge

 2

edge 1

or
igi

n

Figure 1: Cropping a given a set of points results in only those points within the crop frame being

displayed.

We need to be able to test if a point lies within a crop frame. We've provided you with a procedure

called find-checkers-for-framewhich takes a crop frame and returns a list of \checkers" for that

frame. You can think of a checker as a test, and the test is invoked when the checker is applied to

a point. The checker returns a boolean result that indicates whether or not the test was passed. A

point is within the crop frame if and only if it passes each of the crop frame's checkers.

;; given a frame, find the checkers for that frame; return them as a list

(define (find-checkers-for-frame frame)

(let ((origin (origin-frame frame))

(edge1 (edge1-frame frame))

(edge2 (edge2-frame frame)))

(let ((between-bottom-top? (lambda (point)

(point-between-lines? point

origin

(add-vect origin edge2)

edge1)))

(between-left-right? (lambda (point)

(point-between-lines? point

origin

(add-vect origin edge1)

edge2))))

(list between-bottom-top? between-left-right?))))

Given two parallel lines (e.g. the opposite sides of the crop frame for example), the procedure

point-between-lines? is able to tell whether a point lies between these lines or to one side of

6We will use \points" and \vectors" interchangeably for this problem. Again, you can think of a vector as de�ning

a point.

6.001, Fall Semester, 1998|Problem Set 3 8

both lines. To check if a point is within the crop frame, the point must be within both sets of

parallel lines that comprise the sides of the crop frame. You do not need to worry about the details

of this procedure, but it is provided in the problem set code in case you are curious.

(a) Write the procedure (in-frame? point frame-checkers) which takes a point and a list of

checkers and tests whether or not the point is in the frame by seeing if the point passes all of the

crop frame checker tests.

(Note that frame-checkers may contain any number of checkers, and your code should be general

enough to handle this.)

(b) Now you should be able to complete the following de�nition:

(define (crop-points list-of-points crop-frame)

(let ((frame-region-checkers (find-checkers-for-frame crop-frame)))

<??>

))

Once you have de�ned these procedures, show what happens when you crop spiral using the

crop-frame spiral-frame, both of which have been prede�ned for you in the problem set code.

Computer exercise 9: Spend some time playing with the Henderson Language. Some things

you might try:

1. Create some images using your primitive painters, together with the operations you've de�ned

so far in this problem set such as beside, squashes, ips, and rotations.

2. De�ne one or two other (interesting) means of combination that takes two painters as ar-

guments and produces a painter. You can use these (together with beside, below, and

superpose) in conjunction with split, to produce new recursive designs. Explore some of

these.

3. Invent a new higher-order combiner (like split) and see what interesting images you can

create.

Turn in a listing of your procedures, together with a printout of some interesting design you've

made, and the code that produced it.

PS3 Design contest (Optional): Hopefully, you generated some appealing designs in doing

this problem set. You are invited to enter printouts of your best designs in the 6.001 PS3 design

contest. Turn in your design collection together with your homework, but stapled separately, and

make sure your name is on the work. For each design, show the expression you used to generate it.

Designs will be judged by the 6.001 sta� and other internationally famous art critics, and fabulous

prizes will be awarded in lecture. There is a limit of two entries per student. Make sure to turn in

not only the pictures, but also the procedure(s) that generated them.

Turn in answers to the following questions along with your answers to the questions in the problem

set:

6.001, Fall Semester, 1998|Problem Set 3 9

1. About how much time did you spend on this homework assignment? (Reading and preparing

the assignment plus computer work.)

2. Which scheme system(s) did you use to do this assignment (for example: 6.001 lab, your own

NT machine, your own Win95 machine, your own Linux machine)?

3. We encourage you to work with others on problem sets as long as you acknowledge it (see

the 6.001 General Information handout).

� If you cooperated with other students, LA's, or others, or found portions of your answers

for this problem set in references other than the text (such as some of the archives),

please indicate your consultants' names and your references. Also, explicitly label all

text and code you are submitting which is the same as that being submitted by one of

your collaborators.

� Otherwise, write \I worked alone using only the reference materials," and sign your

statement.

