Your goals for this problem set are three-fold. First, you will gain practice with Scheme mechanisms for compound data (specifically, pairs created using cons). Second, you will become expert in manipulating both lists and trees, which are important conventional interfaces we often use to represent more complicated or hierarchical data. Finally, an important aspect of Scheme programming is learning to write and use higher order procedures; the third goal of this problem set is for you to become skilled in writing higher order procedures and analyzing the processes they generate.

While this problem set has a large number of computer exercises, you are primarily being asked to write many small procedures to gain practice, rather than understand or write a large software system. Your software development will go much faster if you can take advantage of previous procedures when you write new ones.

1. Tutorial exercises

You should prepare these exercises for oral presentation in tutorial and include written answers in your homework solution.

Tutorial exercise 1: List Representations. The following exercise focuses on the key pair and list construction, accessor, and predicate procedures cons, car, cdr, list, and null?.

Each of the following expressions are evaluated, in the order they appear. At the indicated point, show what the returned value would be, and draw a box and pointer diagram corresponding to the returned value (if the returned value is a pair). You will need to understand the printed representation of pairs and lists, as well as how the above primitive procedures work.
(define x (cons 1 2))
(define y (cons x x))
y
=> ??

(define a (cons 1 (cons x (cons 3 nil))))
a
=> ??

(define b (list 1 x 3))
b
=> ??

(null? (cdddr b))
=> ??

Tutorial exercise 2: List Procedures. Define a procedure last-pair that returns the list that contains only the last element of a given (nonempty) list:

```
(last-pair (list 23 72 149 34))
=> (34)
```

Define a closely related procedure last that returns the last element of a given (nonempty) list:

```
(last (list 23 72 149 34))
=> 34
```

Tutorial exercise 3: List manipulation Higher Order Procedures. Here you will use the implementations of the higher order procedures (HOPs) map, filter, and accumulate. These procedures are defined in the text, but you should be able to reproduce them from memory.

A. Using HOPs. Given a list of integers, write a procedure sum-some-cubes that calculates the sum of the cubes of the values in the list, but only including the cube in the sum if the cubed value is between 10 and 10000 (inclusive).

B. Copy Using HOPS. Implement a procedure copy which, given a list, produces a new list which is a copy of the input list but consisting of new cons cells. First, define copy directly using only the the simple cons, car, cdr, and null? Scheme procedures.

Next define copy using map, then using filter, and finally using accumulate. As you do this, note the similarity in structure between your directly implemented copy and each higher order procedure.
C. HOPS using HOPS. Fill in the missing expressions to complete the following definitions of some list-manipulation operations using accumulation.

\[
\begin{align*}
&\text{(define (map p sequence)} \\
&\quad \text{(accumulate (lambda (x y) <??>) nil sequence))}
\end{align*}
\]

\[
\begin{align*}
&\text{(define (append seq1 seq2)} \\
&\quad \text{(accumulate cons <??> <??>))}
\end{align*}
\]

\[
\begin{align*}
&\text{(define (length sequence)} \\
&\quad \text{(accumulate <??> 0 sequence))}
\end{align*}
\]

Tutorial exercise 4: Trees as Nested Lists. Suppose we evaluate the expression

\[
\text{(list 1 (list 2 3) (list 4 (list 5)))}
\]

Give the result printed by the interpreter, show the corresponding box and pointer diagram, and draw the interpretation of this structure as a tree (as in Figure 2.6 in SICP on page 108).

Tutorial exercise 5: fringe of a Tree. Do exercise 2.28 of the text, to implement a procedure fringe which operates on a tree that is represented using nested lists, and produces a flattened list of the leaves (in left to right order) in the tree.

2. A Look at the Stock Market - List Manipulation Procedures

One important application of computer science is in the financial markets. Communication and information technology is crucial to the management of vast amounts of market information, and sophisticated signal processing and artificial intelligence technology is often applied in an effort to, well, make money, by careful observation of the stock market.

In this section, we will track a fictional company, Acme Industries, as it is traded on the floor of the New York Stock Exchange (NYSE). We will find that list manipulation procedures can be used to help calculate information about the price and trading activity in the stock. Note that we will be manipulating lists – the government frowns upon manipulation of the stock market itself.

First, let us consider a simplified version of a stock ticker, or a list of stock prices. Our price ticker will be a sequence (list) of the stock prices that our stock, Acme in this case, has traded at throughout any given trading day. On the NYSE, stock prices are given in dollars and fractions of dollars (down to 1/16th of a “point”); we will use real numbers to indicate prices. For example, on the previous day IBM closed at 101.0, and for the current trading day, the price ticker for IBM might look like:

\[
\begin{align*}
&\text{(define ibm-previous-close 101.0) } \\
&\text{(define ibm-prices (list 100.0 99.5 99.5 99.75 100.0 100.125 100.5))}
\end{align*}
\]

In this part, you will write basic procedures to perform simple technical analysis on these prices.
Ticker Price Analysis

Begin by loading the code for problem set 2, using the Edwin command $\texttt{M-x load problem set}$. This will define for you the variable \texttt{acme-prices} to represent our ticker, as well as give you the basic list procedures \texttt{map}, \texttt{filter}, and \texttt{accumulate}.

Computer Exercise 1: price-trend. Write a procedure \texttt{price-trend} that calculates the net gain (a positive number) or loss (a negative number) in the price of the stock based on the closing price (last price) of the current trading day compared to the closing price on the previous day. The procedure should take as arguments the previous day's closing price and the day's ticker for the stock, e.g., \texttt{(price-trend <previous-close> <ticker>)}. You should feel free to use the basic list higher order procedures above, or any procedures you defined in the tutorial exercises.

\[
\text{(price-trend ibm-previous-close ibm-prices)} \\
\Rightarrow -0.5
\]

Demonstrate that \texttt{price-trend} works on some simplified cases of your own, and then show the \texttt{price-trend} result for Acme Industries. Note that variables \texttt{acme-previous-close} and \texttt{acme-prices} are defined in the problem set code for you.

Is the process your procedure generates iterative or recursive? What is the order of growth in space S and computation time T as a function of the length N of the ticker? (For this case, you should look for the depth of deferred operations to indicate space, and examine the number of basic \texttt{cons}, \texttt{car}, and \texttt{cdr} operations when considering time.)

Computer Exercise 2: price-average. Write a procedure \texttt{price-average} that calculates the average price of the stock for that trading day. Again, show test cases for your procedure, and then show the \texttt{price-average} for Acme Industries.

Is the process your procedure generates iterative or recursive? What is the order of growth in terms of space S and computation time T as a function of the length of the ticker?

Computer Exercise 3: price-high. Write a procedure \texttt{price-high} that returns the highest price of the stock during the trading day. This is just a call to a new higher order procedure you are to write named \texttt{list-max} that returns the largest item in the list:

\[
\text{(define (price-high ticker)} \\
\text{(list-max ticker))}
\]

\[
\text{(price-high ibm-prices)} \\
\Rightarrow 101.5
\]

You should write the \texttt{list-max} procedure so that it walks over the data structure directly (i.e. does not use the higher order procedures \texttt{map}, \texttt{filter}, or \texttt{accumulate}, but rather uses \texttt{car}, \texttt{cdr}, \texttt{null?}). You may also find the Scheme procedure \texttt{max}, e.g. \texttt{(max 27 35) \Rightarrow 35} helpful.
Does your procedure produce an iterative or recursive process? Now write it the other way (i.e. if you first wrote a recursive process version, write an iterative version, or vice-versa). As always, in both cases show simple test cases, and show the high price of the day for Acme Industries.

Computer Exercise 4: price-high using accumulate.

A. price-high. Now you may take advantage of the existing conventional list interfaces and higher order procedures. Rewrite your price-high procedure using accumulate.

The use of the accumulate procedure (as defined in the book and in the problem set code) by price-high results in a recursive process — explain why.

B. Alternative accumulate Our ace stock analyst Ben Bitdiddle wants to create a general iterative version of accumulate. Consider the following attempt:

(define (iter-accumulate combiner init lst)
 (define (helper so-far lst)
 (if (null? lst)
 so-far
 (helper (combiner (car lst) so-far)
 (cdr lst))))
 (helper init lst))

Can Ben correctly rewrite price-high to use iter-accumulate with a reduced order of growth in space or time?

Ben proposes to the head of the firm, Alyssa P. Hacker, that all procedures that currently use accumulate should be converted to use iter-accumulate. Alyssa disagrees, and states that it would be wrong to use iter-accumulate interchangeable with accumulate. Help show what Alyssa means by (1) giving a counter-example where different results would be obtained with accumulate and iter-accumulate; and (2) explaining under what conditions it would be safe to use iter-accumulate in place of accumulate.

Computer Exercise 5: Traversing Two Lists Simultaneously. Ben is asked to write a procedure price-range that returns a list of the form (low high) that has the lowest and highest prices for the stock for that trading day, e.g.:

(define (price-range ticker)
 (list (price-low ticker)
 (price-high ticker)))

Unlike the procedure above, however, Ben is asked to write the procedure in such a fashion that it only walks over the ticker once (whereas the procedure above must walk over the list twice). Complete Ben’s procedure below, and show the price-range for Acme’s stock:
(define (price-range ticker)
 (define (helper ticker low-so-far high-so-far)
 (if (null? ticker)
 <??>
 (helper <??>
 (min <??> <??>)
 (max <??> <??>)))
 (helper (cdr ticker) (car ticker) (car ticker)))

On the Floor of the Exchange

So far we have just considered the ticker tape of prices. Now let’s go onto the “floor” and consider in more detail the way in which trades (buying and selling) of stock occur.

In stock trading, the ask or offer-price is what a seller offers to sell at, while the bid-price is what a buyer is willing to pay. In both cases, the offerer or bidder must say not only what price she or he desires, but also the number of shares that the offer or bid applies to. We will use a Scheme pair (cons cell) to represent a bid as the combination of the bid-price and number of shares (or bid-shares), and will similarly represent the offer as the combination of the ask-price and ask-shares. (Note that we will use the term offer or ask interchangeably.)

(define (ask-price ask) (car ask))
(define (ask-shares ask) (cdr ask))

(define (bid-price bid) (car bid))
(define (bid-shares bid) (cdr ask))

In this exercise, we assume an idealized market in which an offer is made, followed immediately by a bid, followed by another offer, and so on in a paired alternating fashion. Suppose we now have a record of the bid and ask prices for our stock (by our rules above these two lists will always be of equal length):

(define ibm-ask (list (cons 101.0 200) (cons 100.5 200) (cons 101.0 100)))
(define ibm-bid (list (cons 100.5 100) (cons 100.5 100) (cons 101.0 100)))

The spread is the difference between the ask price and the bid price. When the spread becomes zero (or less than zero, although the rules are such that this should not occur), a trade will occur at the agreed upon price. For example, in the second round of the above case someone offers 200 shares of IBM for 100 1/2, and someone agrees to buy just 100 of those shares for 100 1/2. The difference or spread in price has gone to zero, and 100 shares change hands.

Computer Exercise 6: price-spreads. Write a procedure price-spreads that takes as arguments the list of offers and the list of bids, and computes a list of the spreads in the stock price for the day (you may assume the two lists are equal in length).

To begin, write this so that your procedure directly walks over the two lists (e.g. using car, cdr, cons, null?, and appropriate accessor functions). Is your process recursive or iterative, and what are the orders of growth in space and time? Show the list of spreads for Acme stock over the day.
Computer Exercise 7: map2. Now, create a new higher order procedure map2 of the form (map2 <proc> <lst1> <lst2>) that maps the procedure proc over two lists in sync and produces an output list consisting of the resulting of proc applied to the two respective elements of the list. For example,

(map2 + (list 1 2 3) (list 10 11 12))
=> (11 13 15)

Re-implement your price-spreads procedure to use map2.

Computer Exercise 8: trade?. Next, we want to produce an indication of when a trade occurs or not. Write a procedure trade? that takes a single offer (the pair of the ask-price and ask-shares), and a single bid (the pair of the bid-price and bid-shares), and returns true (#t) if a trade can occur or false (#f) otherwise.

Now given a list of offers and a list of bids as above, we wish to produce as output the ticker of stock prices (consisting only of the prices at which shares have actually exchanged hands) such as we saw in computer exercise 1. Write a procedure ticker-prices that works as:

(ticker-prices ibm-asks ibm-bids)
=> (100.5 101.0)

Computer Exercise 9: merge2. Ace analyst Ben Bitdiddle discovers that a common pattern appears again and again in procedures he is writing to look at the lists of bids and offers. He sees procedures that take two input lists, walk down the lists in parallel, perform some predicate or test on the items in the list, and depending on the outcome of the test perform “map-like” computation on the list. Ben decides he wants to abstract out this common pattern as another helpful higher order procedure that does a two-list filter integrated with a two-argument map on the result, e.g. of the form (merge2 <pred> <proc> <list1> <list2>) that might work as in the following example to produce the sums of the items in a list when both items are odd:

(merge2 (lambda (x y) (and (odd? x) (odd? y)))
 +
 (list 1 2 3 4)
 (list 5 3 5 3))
=> (6 8)

Complete the code for this merge2 higher order procedure:

(define (merge2 pred proc list1 list2)
 (cond ((null? list1) nil)
 ((<???) (car list1) (car list2))
 (cons (<???) (car list1) (car list2))
 (<<??? pred proc (cdr list1) (cdr list2)))
 (else (<??? pred proc (cdr list1) (cdr list2))))))
Computer Exercise 10: ticker-prices using merge2. With this new powerful higher order merge2 procedure, you can write quite a number of useful analysis procedures with relatively little effort. First, rewrite your ticker-prices procedure to take advantage of merge2.

(define (ticker-prices asks bids)
 (merge2 trade?
 (lambda (ask bid) (car ask))
 asks bids))

Computer Exercise 11: ticker-shares using merge2. In the daily stock market report, the public is often very interested in knowing the volume (total number of shares traded). Using the merge2 procedure, write a new procedure (ticker-shares <ask-list> <bid-list>) that produces a list consisting of the number of shares for each individual trade (again, just for those cases where a trade actually occurs). Show how this can be used with accumulate to create a procedure total-shares that takes the asks and bids, and produces the the total number of shares exchanged. Show the ticker-shares and total-shares results for Acme.

Computer Exercise 12: price-volume. Ben is asked to write a procedure price-volume that tells the total dollars that change hands for a given stock during the day, which is simply the sum of the product of the volume and price for any given trade that occurs. Write this procedure which takes as its arguments the list of asks and the list of bids for the day, and demonstrate that it works.

3. At the Acme Industries Plant - Tree Manipulation Procedures

We now have the opportunity to visit Acme's manufacturing plant to understand better how they assemble their products. Acme makes widgets. A widget is a complex object assembled from some number of smaller components. Each of these components may also be made up of smaller subcomponents, and this “nesting” of subcomponents can be arbitrary deep for arbitrarily complex widgets. Acme needs representations to help (a) manage the time and number of manufacturing stations needed to build widgets, (b) manage the number of components that go into a widget, and (c) analyze the cost of building widgets.

The first challenge is to represent the sequence of operations and time required to build widgets. Acme uses a tree structure as illustrated in Figure 1 to indicate both the overall structure of their assembly procedure, and the time required to put together parts. A leaf is inserted into the tree for each “manufacturing station,” which is the physical location on the plant floor where people and machines assemble some particular subcomponent. For this leaf in the tree, Acme indicates the number of hours it takes to assemble that component or part of the widget. If a part that is going into the assembly must itself be assembled, then that part is represented as a subtree (or “node”) rather than as the number of hours. For example, the brand new “NeoWidget” that Acme has recently begun selling consists of three top-level operations (as illustrated in Figure 1): putting the backplane together (taking 5 hours), putting the various sprockets together and into the backplane (which can take up to 9 hours), and putting the operator controls on the front (which takes 1
The assembly of the sprockets is an assembly suboperation, which consists of assembling a frob (2 hours), together with a doo-dad consisting of some big sprockets (4 hours) and some small sprockets (3 hours). The assembly hours representation is:

\[
\text{(define NeoWidget-hours (list 5 (list 2 (list 4 3)) 1))}
\]

which is drawn in a tree form as shown in Figure 1. For now, we will assume that manufacturing occurs in a sequential assembly line fashion, where the product moves from one manufacturing station to the next in sequence. In the case of the NeoWidget, the assembly line consists of a sequence of five stations.

![Tree representation of NeoWidget-hours](image)

Figure 1: Number of hours required in making and assembling the various elements of the Acme NeoWidget. The left figure shows the tree-oriented representation of the time required to make the widget (and each of its sub-assemblies). The right figure shows the order of operations assuming a sequential assembly line.

Computer Exercise 13: assembly-line-hours. Given a tree representation of an assembly operation, the first job is to write a procedure `assembly-line-hours` that produces the total number of hours required to make a widget. For example, `(assembly-line-hours NeoWidget-hours)` => 15. Hint: you may find the `fringe` procedure you wrote in the tutorial exercises to be helpful, as well as other higher order procedures.

In the problem set code, the assembly tree for the Acme “MegaWidget” is also defined (provided as `MegaWidget-hours`). Show the number of hours required to make a MegaWidget using an assembly line.

Computer Exercise 14: Tree Accumulation. Another way to think about the procedure `assembly-line-hours` is as a special case of tree accumulation, analogous to list accumulation. Unlike a simple list accumulation, in a tree we can have two kinds of “end conditions” – when we hit the end of a tree or subtree, and when we hit a leaf of the tree. We will add some flexibility to `tree-accumulate` so that we can apply one procedure (op) to a leaf, and another
procedure (combiner) to aggregate the tree. Complete the definition of the higher order procedure tree-accumulate below:

(define (tree-accumulate combiner op initial tree)
 (cond ((null? tree) (???))
 ((not (pair? tree))
 (??? tree))
 (else
 (??? (tree-accumulate combiner op initial (??? tree))
 (tree-accumulate combiner op initial (??? tree)))))))

Now rewrite your assembly-line-hours to use this procedure.

Computer Exercise 15: count-line-stations. We would like to be able to compute how many manufacturing stations (locations where assembly occurs) are needed in the serialized assembly line for a given product. Write a procedure count-line-stations that, given the tree of operations for a product (e.g. NeoWidget-hours), counts the number of stations required. Hint: we need exactly one station for each leaf in the tree, e.g. (count-line-stations NeoWidget-hours) => 5. How many assembly line stations will be needed to make the MegaWidget?

Parallel Manufacturing

As the whiz-bang outside consultant, you have been asked to see if there is any way to speed up the assembly process and shorten the manufacturing time for the product. You argue that many of the operations can be performed in parallel rather than in sequence. In discussion with the manufacturing personnel, they determine that parts can indeed be assembled in parallel; however each subassembly (indicated by a node rather than a leaf in the tree assembly representation) will then require an additional assembly work station to put together the sub-assemblies coming from the respective parallel stations. In the previous assembly line situation, nodes did not require a work station, as assembly only took place (in left to right sequence) at points corresponding to leaves in the tree. One additional hour will also be needed at each of these “merge” stations. This situation is shown schematically in Figure 2. Thus, for the NeoWidget, an additional hour (and work station) is needed after the completion of the 3 hour and 4 hour parallel operations; another hour (and station) is need to then merge with the parallel 2 hour operation, and a final additional hour (and a third additional station) is needed to merge with the parallel 5 and 1 hour operations; thus a total of 7 hours (and 8 work stations) will be required. Note that we are “pipelining” multiple instances of the same part number through the assembly line or parallel assembly flow, so that when one part (serial number) moves to the next station, the next part (with the next serial number) comes into that station. For this reason, we do not “share” or reuse stations that might appear to be unoccupied because of the sequencing requirements.

Computer Exercise 16: assembly-parallel-hours. To help determine how much better this parallel assembly is, you are asked to write a procedure assembly-parallel-hours that works on the original tree of operations (e.g. NeoWidget-hours), and computes the total number of hours
Figure 2: The same assembly operation in a “Gantt-chart” like form. The horizontal axis is time, with required sequencing constraints and additional assembly time (1 hour) due to putting together parallel assemblies shown.

required to make the product, assuming that complete parallel manufacturing can be achieved but including the extra one hour assembly time needed for respective merge operations.

Hint: this will be one hour more than the maximum number of hours it takes to parallel assemble all the subcomponents of the widget. You may also find higher order procedures defined earlier, such as list-max, to be helpful, together with wishful thinking.

How long will it take to assemble a MegaWidget in parallel?

Computer Exercise 17: count-parallel-stations. Next, write a procedure which counts the total number of manufacturing stations needed in a parallel assembly situation, including the additional stations needed to merge or integrate the parallel-fabricated parts. The procedure count-parallel-stations should take as argument the assembly hours tree structure (e.g. NeoWidget-hours). For our example in Figure 2, we need three additional stations in addition to the five original operations for a total of eight stations. In terms of our tree structure, this is equivalent to counting the sum of the number of leaves and nodes within the tree; you may find it useful to think about using the list HOPs if tree-accumulate does not match your needs.

How many manufacturing stations are needed if we parallel produce the MegaWidget?

Computer Exercise 18: parallel-scale. Acme is interested to know how much more quickly the NeoWidget (and in general any product) can be built if the underlying operation time could be reduced by some factor. For example, suppose the pure assembly time (corresponding to leaves in the original assembly tree) could be halved for all sub-assemblies, but the “merge” time of one hour remains for each of the additionally required merge stations. Clearly, the overall manufacture time is not in general half that of the original, because of the overhead of the merge time. For example

(parallel-scale 0.5 NeoWidget)

⇒ 0.643 ; from 4.5/7.0
Write the procedure `parallel-scale` that takes as the first argument the factor by which we are able to scale the primitive assembly operations, takes as the second argument the assembly tree for some product, and returns the fraction of time the new manufacturing plant would take assuming parallel assembly. You may find it useful to implement a procedure `map-tree` which maps some procedure over the leaves of a tree to produce a new tree; this can be easily be implemented in terms of `accumulate-tree`.

What is this time benefit if we cut the raw assembly time for the MegaWidget in half?

Acme Manufacturing Components and Cost

In addition to the assembly time, Acme is interested in determining the component or part counts and costs for its widgets. Again, a tree representation is chosen. The `parts-count` tree mirrors the structure of the previous assembly tree, with one important difference: for each leaf node in the assembly tree (where we indicated the number of hours required to assemble that component), the parts-count tree instead has a list of the numbers of different kinds of purchased parts that are needed for assembly of that component.

In addition, the `parts-cost` tree is structured in parallel to the `parts-count` tree, but giving the cost (in dollars) of each of the corresponding primitive parts used in that assembly. These two new tree data structures are illustrated for the NeoWidget in Figure 3.

![Diagram of parts-count and parts-cost trees for the NeoWidget](image)

Computer Exercise 19: `sum-parts-cost`. To help manage costs, Acme wants to know how much the raw materials in their widgets are costing. Write a procedure `sum-parts-cost` that takes a parts-count tree and a parts-cost tree, and computes the sum of the costs of the parts of the assembly, e.g. `(sum-parts-cost NeoWidget-parts-count NeoWidget-parts-cost) => 188`. Hint: you may find the `fringe`, `map2`, and `accumulate` procedures to be helpful. Given definitions for the trees `MegaWidget-parts-count` and `MegaWidget-parts-cost` in the problem set code, what is the sum of the parts costs for the MegaWidget?
Computer Exercise 20: summarized-costs-tree. In order to get an even better picture of where the parts costs are coming from, Acme wants a procedure that will create a new tree for them with some summarized parts cost information embedded in that tree. Write a procedure `summarized-costs-tree` that takes as arguments an assembly tree, a parts-count tree, and a parts-cost tree, and produces a new tree where the total parts cost for each subassembly is given rather than the assembly hours. For example, for example, `summarized-costs-tree NeoWidget-hours NeoWidget-parts-count NeoWidget-parts-cost) => (30 (30 34)) 70`. Note that the resulting tree should have the same structure (leaves and nodes in the same locations) as the assembly tree.

A possible strategy is to walk all three trees together, but use the structure of the assembly tree to guide what to do with the other two trees.

Create a summarized costs tree for the MegaWidget.

Problem Set Writeup. Turn in answers to the following questions along with your answers to the questions in the problem set:

1. About how much time did you spend on this homework assignment? (Reading and preparing the assignment plus computer work.)
2. Which scheme system(s) did you use to do this assignment (for example: 6.001 lab, your own NT machine, your own Win95 machine, your own Linux machine)?
3. We encourage you to work with others on problem sets as long as you acknowledge it (see the 6.001 General Information handout).

 - If you cooperated with other students, LA’s, or others, or found portions of your answers for this problem set in references other than the text (such as some of the archives), please indicate your consultants’ names and your references. Also, explicitly label all text and code you are submitting which is the same as that being submitted by one of your collaborators.
 - Otherwise, write “I worked alone using only the reference materials,” and sign your statement.