
1
version September 8, 1998, 12:39 A.M.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1998

Problem Set 1

� Issued: Thursday, September 10

� Tutorial preparation for: Week of September 14.

� Written solutions due: Friday, September 18 in recitation

� Reading: Read sections 2.1 and 2.2.1 before lecture on September 17. Finish chapter 1 before
lecture on September 22.

Henceforth, problem sets will consist of two parts:

� Tutorial preparation: These are some exercises that you should work through before going to
tutorial. Your tutor may choose not to cover every question every week, but you should be
prepared to present your answers and discuss them.

� Written programming assignments: You should begin working on the assignment once you
receive it. It is to your advantage to get computer work done early, rather than waiting until
the night before it is due. You should also read over and think through the assignment before
you sit down at the computer. It is generally much more e�cient to test, debug, and run a
program that you have thought about beforehand, rather than doing the planning \online".
Diving into program development without a clear idea of what you plan to do generally
ensures that the assignments will take much longer than necessary.

You must hand in written solutions to both the tutorial exercises and the programming assignments.
Solutions should be handed in at the beginning of recitation, and late work will not be accepted.
Your tutor will look over the homework you hand in and review it with you in tutorial.

The purpose of this problem set is to familiarize you with procedural abstractions by having you
write Scheme code within a cryptographic context. We recommend that you �rst skim through the
problem set in its entirety to familiarize yourself with the format.

In addition, there is a section entitled \Debugging Tools" which is a computer exercise designed to
acquaint you with Scheme's debugging facilities. There is nothing to turn in for the \Debugging
Tools" section, but we highly recommend that you take the time to go through the exercise, since
knowledge of the debugging tools can save you a lot of time on future problem sets.

Cryptography: Message Security1

1Earlier problem sets set in a cryptographic framework were written in 1987 by Ruth Shyu and Eric Grimson and

revised in 1992 by David LaMacchia and Hal Abelson. Hal Abelson modi�ed the encryption scheme from RSA to

ElGamal for Spring 1998. Authentication added by Tony Eng based on a whitepaper by Ron Rivest.
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Alyssa P Hacker receives a message from her colleague, Ben Bitdiddle.2 It says "Ok to let Dan
Glen F Frince borrow the laptop at 9pm tonight". Note that the contents of this message is sent in
the clear, so it is unencrypted and readable by anyone who happens to intercept the message (see
Figure 1, left portion). If this is the case, how does Alyssa know that the message was actually
sent from Ben and that it was not tampered with and modi�ed somehow while in transit? The
need to authenticate the originator of a message is crucial for many applications such as authorized
payments, purchase orders, stock quotes and o�cial press releases. However, there is often a need
to keep the contents of a message private. This is known as message con�dentiality, and when
combined with message authentication is useful for grade reports, military commands, medical
records, bank statements, and many other applications.

In this problem set, we'll �rst look at message authentication and then consider message con�den-
tiality.

1. Message Authentication

When Alyssa considers a message from Ben to be authentic, she believes two things:

� The message was indeed composed by Ben, and

� The message content was not changed after it was sent.

There are two methods for authenticating messages: MACs (Message Authentication Codes) and
digital signatures. We will consider the former here.

A MAC is a key-dependent one-way hash function. In English, that means that the MAC is a
function that takes as inputs the message (however long) and a \key" (usually a large number)
and outputs a (usually �xed-length) value called the \hash". A hash function is \one-way" if it is
di�cult to generate a message that hashes to a speci�c desired hash value even if the key and hash
function is publicly known. Thus, it is easy to compute the MAC for a given message, but it is
nontrivial to �nd another message, distinct from the �rst, that will hash to the same value because
the function is non-invertible.

Let's assume Alyssa and Ben somehow agree on a shared key K (i.e. they both know the value
of K). We can assume for now that they either arrange to meet privately or they choose K while
talking on the phone. When Ben sends his message to Alyssa (see Figure 1, right portion), he can
append to his message, a MAC computed using his message and K. This MAC is represented in
the �gure as a seal a�xed to the message. When Alyssa receives this transmission, she is able to
separate the message from the MAC, and since she and Ben alone know the value of K, she can
also compute the MAC to verify it against the MAC appended to the message.

If the MACs match, Alyssa has now authenticated the message. Since only Alyssa and Ben know
K, only Ben could have computed this MAC successfully. Furthermore, since it is hard to �nd

2Note for those people familiar with the literature on cryptography: Alyssa P. Hacker and Ben Bitdiddle hold the

patent on imaginary characters in 6.001. Union regulations prohibit Alice and Bob from participating in this problem

set.
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Figure 1: Communication between Alyssa and Ben, without authentication (left) and with authen-
tication (right)

another message (distinct from Ben's original message) that produces the same MAC, Alyssa can
rest assured that she received the original message intact. Note the distinction between encryption
and authentication { the MAC is not an encryption of the message; indeed the message used to
compute the MAC must be sent in the clear (unencrypted) in order for the MAC to be veri�able.

Implementing Message Authentication

For computing the MAC, we will use MD53, a one-way hash function invented by Ron Rivest.4

We've provided a procedure called compute-MAC which takes a text string message and a numeric
key, appends the key (converted to a string representation) to the message, and uses this concate-
nated result as the input to the MD5 algorithm which produces a 128-bit value.

For example,

(compute-MAC "My little message" 87193)

;Value: 221894140609816864960426026903967285567

3
We won't show you the code for this, which is buried in the guts of the Scheme system. If your system does not

have the code for md5 (try evaluating md5), you may be using an old release of Scheme and should try installing the

latest one.
4
For a description of the algorithm see Schneier's book Applied Cryptography, second edition, Wiley, 1996.
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Message-MAC Pairs

Once Ben has written his message m and computed its MAC, he prepares the following message,
message-from-Ben, which is transmitted to Alyssa:

(define message-from-Ben (make-message-MAC-pair m MAC))

The procedure make-message-MAC-pair is an example of a data constructor. All it does is packages
a message and its MAC together. Once a message-MAC-pair has been constructed, we can select
each of the individual pieces by using data selectors: get-message and get-MAC. Each of these take
the message-MAC-pair as an argument. Constructors and selectors are all very simple procedures,
and they are discussed in lecture on September 17.

Authenticating a Received Message

When Alyssa receives a message from Ben, she needs to be able to verify the authenticity of the
message. We will leave it to you to implement the procedure verify-MAC which takes as input a
message-MAC-pair and a shared key, and outputs true if the MAC computation checks out, and
false if it doesn't.

Alternate MAC Implementations

In the above scenario, we simply concatenated the key to the beginning of the message and used
the result as input to the MAC computing algorithm. In many cases, this may not be secure, and
may be subject to cryptanalysis. In other words, if someone has obtained a number of di�erent
messages and their corresponding MACs, all computed using the same key, it maybe be possible
to �gure out what the shared secret key is.

Often, people experiment with di�erent ways to combine the message and the key. One pos-
sibility might be to apply the MAC repeatedly: compute the MAC as before, concatenate the
key to this and use the result as input to the MAC algorithm again. This process could be re-
peated a number of times.5 You will work on and write procedures: recursive-compute-MAC and
iterative-compute-MAC which do just this.

Arriving at a Shared Secret: Di�e-Hellman Key Exchange

In the above scenario, both Alyssa and Ben needed to possess the shared secret key K. But always
arranging to meet in person to agree on a key can be inconvenient, and talking on the phone or
sending email can be insecure.

Fortunately, the Di�e-Hellman Key Exchange is a method by which two people can compute a
shared secret that will be known only to the two of them, even though all the communication that
transpires between them is public! (see Figure 2)

5Note that this particular method of computing MACs may still be vulnerable to cryptanalysis. There are other

techniques that are slightly more complicated, but for the purposes of this problem set, this is enough to get the idea

across.
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Figure 2: Alyssa and Ben agreeing on a secret key K

If Alyssa and Ben wish to communicate, �rst they agree (in public) on a large prime number
p and a number g which is a generator for p. (For g to be a generator means that the powers
g; g2; g3; : : : ; gp�1, taken modulo p, produce all the integers 1; 2; 3; : : : ; p� 1, in some order.)

Alyssa picks a secret number a and computes ka � ga mod p.6 Ben picks a secret number b and
computes kb � gb mod p. Alyssa sends Ben ka, and Ben sends Alyssa kb (alternatively, they both
simply publish these numbers; in either case, they can be assumed to be publicly known values).
Having obtained kb, Alyssa now computes (kb)

a mod p and similarly, Ben, having received ka,
computes (ka)

b mod p. But these are the same number because

ka
b
� (gb)a � gba � gab � (ga)b � kb

a
mod p � K

Now that Alyssa and Ben have this shared number (which we have been calling K), they can now
use K as a key for sending and receiving MAC-authenticated messages.

Note that during this protocol, all communication between Alyssa and Ben was public. An eaves-
dropper possessing the values ka and kb (and also p and g) would still not be able to �nd K. If p
is a large prime, there is no e�cient way to compute K.

6
The notation r � s mod p (read \r is congruent to s modulo p) means that r and s produce the same value when

they are reduced modulo p, i.e., that r and s have the same reminder modulo p.



6.001, Fall Semester, 1998|Problem Set 1 6

Implementing Di�e-Hellman Key Exchange

Our main tools for implementing encryption and decryption are computing primes and doing fast
modular exponentiation as in section 1.2.6 of the textbook.

We have the procedure that computes a power of a number modulo another number:

(define (expmod b e m)

(cond ((zero? e) 1)

((even? e)

(modulo (square (expmod b (/ e 2) m)) m))

(else

(modulo (* b (expmod b (-1+ e) m)) m))))

We also have the Fermat test which we will use to test for primality:7

(define (fermat-test n)

(let ((a (choose-random n)))

(= (expmod a n n) a)))

To test if a number n is prime, we use fast-prime? to run the fermat-test on n some speci�ed
number of times.

(define (fast-prime? n times)

(cond ((= times 0) true)

((fermat-test n) (fast-prime? n (- times 1)))

(else false)))

To generate a prime, we pick a random value with a speci�ed number of digits and start testing
successive odd numbers from there until we �nd a prime. We'll consider a number to be prime if
it passes two rounds of the Fermat test.

(define (choose-prime digits)

(let ((range (expt 10 (- digits 1))))

;;start with some number between range and 10*range

(let ((start (+ range (choose-random (* 9 range)))))

(search-for-prime (if (even? start) (+ start 1) start)))))

(define (search-for-prime guess)

(if (fast-prime? guess 2)

guess

(search-for-prime (+ guess 2))))

7
It's not a full-proof test { some composite numbers are known to pass this test, but su�ces for our purposes.
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Finding generators: safe primes

Unfortunately, it's not enough just to �nd a prime. We also have to �nd a generator for the prime
modulus. Finding a generator for an arbitrary prime can be complicated, but there is a certain
kind of prime, safe primes, for which it is easy. A safe prime is a prime number p of the form 2q+1
where q is also prime. The following theorem lets us compute generators for safe primes:8

If p = 2q + 1 is a safe prime, then for any number 2 � g � p � 2 either g2 � 1 mod p, or
gq � 1 mod p, or g is a generator for p.

We can use these ideas as follows:

� To �nd a safe prime, we choose a random prime q and test if p = 2q + 1 is also prime. If it
is, we've found a safe prime. If it's not, we keep searching by picking another q.

� To �nd a generator for a safe prime p = 2q + 1, we choose a random number g such that
2 � g � p� 2 and check whether g2 and gq are both di�erent modulo p from 1. If so, g is a
generator. If not, we try again with a new guess for g.9

Your job is to write a procedure to generate safe primes and another to �nd a generator.

Key Systems

There are four numbers involved in the Di�e Hellman key exchange: p, g, a secret x (a for Alyssa,
b for Ben) and a function of this secret, y = gx mod p (ka for Alyssa and kb for Ben). Let's refer
to these four numbers collectively as a key system. The part kept secret by each party is the value
of x. The public part of this, namely, p, g, and y, we'll call a published key. Alyssa(Ben) needs
Ben's(Alyssa's) published key to compute the shared key K.

(define (generate-key-system-parameters digits)

(let ((p (choose-safe-prime digits)))

(let ((g (find-generator p)))

(create-key-system p g))))

(define (create-key-system p g)

(let ((x (choose-random p))) ;x will be secret

(let ((y (expmod g x p))) ;y will be public

(make-key-system p g x y))))

8
We won't include the proof here, since this is not a number theory class. Just take the result on faith.

9
There's a bit of number theory we've sloughed over that guarantees that these algorithms are reasonable. Given

a safe prime, the odds that a randomly picked g is a generator are about 1 in 2. Given a prime q, the odds that

2q + 1 is also prime are about 1 in ln q. So trying random guesses is likely to succeed without too long a wait.
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Note that it is necessary that Alyssa and Ben use the same p and g. For example, Alyssa runs
generate-key-system-parameters to generate a value for p and g, and then broadcasts them to
Ben. Ben then uses them as input to create-key-systemwhich picks a random number x and com-
putes y = gx modulo p to create a key system for Ben. Alyssa similarly uses create-key-system
to create her own key system, also based on the same p and g.

The procedure choose-random used here takes an arbitrary integer n and returns a number chosen
at random between 2 and n� 2, inclusive. Picking random numbers in this range will be useful for
several of the procedures in this problem set.

The procedure make-key-system in the �nal line of the procedure is another example of a data

constructor. As with message-MAC pairs, we can select the individual pieces of a key system
by using the data selectors: get-key-system-p, get-key-system-g, get-key-system-x, and
get-key-system-y.

Once we have a key system, we can extract the public parts to form the corresponding published
key:

(define (key-system->published-key key-system)

(make-published-key (get-key-system-p key-system)

(get-key-system-g key-system)

(get-key-system-y key-system)))

Here make-published-key is another data abstraction we have provided for you, with selectors
get-published-key-p, get-published-key-g, and get-published-key-y.

Once values for p and g are agreed upon, Alyssa and Ben are now able to each create their own
published-keys and exchange them with each other. It will be your task to de�ne a procedure called
compute-shared-secret-key which takes as input one party's key system and the other party's
published-key and computes the shared key K.

Message Con�dentiality

Now Alyssa is able to verify that messages sent by Ben are indeed sent by Ben. But let's say that
Ben would prefer to keep the contents of his message secret, so that no one besides Alyssa can read
its contents. His message now is: "Okay to let Dan Glen F Frince access the top secret design plans
that no one is supposed to know we have �nished".

Until recently, the only thing Ben could do was encrypt the message with some sort of encryption
algorithm (that has a corresponding decryption algorithm that Alyssa could use to decrypt the
message). However, with a method developed by Ron Rivest called \Cha�ng and Winnowing"10,
Ben can attain message con�dentiality without the need for any encryption at all. One advantage
is that this technique then is not subject to any of the cryptographic export laws on encryption.

Cha�ng and winnowing can be used to attain con�dentiality. The idea is to break up the original
message into several portions. A sequence number is assigned to each portion and a MAC is
computed for each portion, so that one possible fragmentation of Ben's message might be:

10
More information is available at http://theory.lcs.mit.edu/~rivest/cha�ng-980701.txt.
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(1, "Okay to let",88113745325152792377081518730825748685)

(2, "Dan Glen F Frince",298000073913541298576002107633599888579)

(3, "borrow", 1134959076122225561497084604762542399)

(4, "the laptop",158229469958922351821566817068133464882)

(5, "at 9pm",243288456319990778564459053466932543310)

(6, "tonight.",122065247107374466114789321520482746691)

Counterfeit message-MAC-pairs called \cha�" are then introduced. These messages have MACs
that are just random numbers so that they would fail the verify-MAC check. For example, Ben's
message with cha� added might become:

(1, "Okay to let",88113745325152792377081518730825748685)

(1, "Don't let", 816734537705403449034601635230275145533)

(2, "Jim Shooze", 90385953833903221289864436540546992276)

(2, "Dan Glen F Frince",298000073913541298576002107633599888579)

(3, "return", 231212365228026915476703335747869866170)

(3, "borrow", 1134959076122225561497084604762542399)

(4. "the car", 950183541258206532053995756202145128305)

(4, "the laptop", 158229469958922351821566817068133464882)

(5, "at 9pm",243288456319990778564459053466932543310)

(5, "before 7pm", 376911973028858680665155047229529071630)

(6, "tonight.",122065247107374466114789321520482746691)

(6, "tomorrow.", 60883900468057673564479753807402535694)

Only Alyssa who knows K can �gure out which of the message-MAC pairs are authentic. This
winnowing process allows Alyssa to e�ciently weed out the cha�, while any other person not
knowing K would be faced with a combinatorially intensive task should he desire to reconstruct
Ben's message by considering all possible arrangements. In this manner, the contents of Ben's
message is obscured and kept con�dential without the use of any encryption technique.11

11
In practice, Ben's original message would have been fragmented all the way down to the bit-level so that the

messages are not short coherent English phrases (which leak information as to the message contents) but ones and

zeroes. However, the use of phrases su�ces for this problem set.
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3. Tutorial exercises

You should prepare these exercises for oral presentation in tutorial.

Tutorial exercise 1: Do exercise 1.3 of the text which asks you to de�ne a procedure that
involves the summing the squares.

Tutorial exercise 2: Do exercise 1.26 of the text which looks at a less e�cient variation of
expmod.

Tutorial exercise 3: Write the procedures choose-safe-prime and find-generator, which
you will need for completing the computer part of this assignment. Choose-safe-prime should
take a digits input (as does choose-prime, but note that digits will be the size of the generator
and not the prime) and return a safe prime. Find-generator should take a safe prime and return
a generator for the prime. Hint: make use of procedures we have already de�ned you! Bring your
written answers to tutorial; your tutor will help debug your coding style and suggest alternatives.

4. Programming assignment

Begin by loading the code for problem set 1, using the Edwin command M-x load problem set.

Note on debugging procedures that use randomness: Some of the procedures you will
be working with this assignment depend on selecting random numbers, and so will give di�erent
answers each time you run them. Such procedures can be confusing to debug, since it's hard to tell
whether things are changing due to your modi�cations or just due to selecting di�erent random
numbers. To help you in debugging, we've provided a procedure reset-random! (which takes no
arguments). Whenever you run (reset-random!) the random number generator will be returned
to its initial state. This permits you to do repeatable experiments.

Computer exercise 1: Implement the verify-MAC procedure, which takes as arguments a
message-MAC-pair and a shared key, and tests if the value of the MAC is correct. For testing your
procedure, we've provided two message-MAC-pairs mMAC1-ex-1 and mMAC2-ex-1 and a shared key
skey-ex-1 which was the correct key used in generating only one of these two MACs. Turn in a
listing of your procedure and demonstrate that only one message is authentic.

Computer exercise 2: In this exercise, you will work with procedures that take as input a string
message, a numerical key and an integer n, and outputs MAC that is the result of applying the
MAC algorithm n times. For example, if n = 3, the MAC is computed as: MAC(key � MAC(
key � MAC (key � message))) where � represents string concatenation.

Consider the following recursive code:
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(define (recursive-compute-MAC string key times)

(if (= 1 times)

(compute-MAC sting key)

(compute-MAC (recursive-compute-MAC string (- times 1)) key)))

(Note that compute-MAC has been specially designed to handle either strings or number versions of
strings, so you do not have to worry about converting your MAC from a number to a string.)

If you try to evaluate: (recursive-compute-MAC "I hope this works" 87193 2) you'll get an
error message. Use the debugger to help you �gure out what is wrong with the code and make a
note of the error messages that it gives you. A tutorial on the debugger is included at the end of
this problem set. Once you have debugged the code, type in the correct de�nition and check that
the MAC for "I hope this works" with key 87193 is: 163054733316285507945076193372690511037.
Hand in the code for the correct recursive version and a transcript of your debugging session.

Implement iterative-compute-MAC, the iterative version.

Once you have working recursive and iterative versions, use trace which enables you to trace
through each recursive call. For example, type (trace recursive-compute-MAC) to initiate trac-
ing of this procedure. For the iterative version, you can trace a procedure that is de�ned within
another procedure by typing, for example, (trace iterative-compute-MAC '(iter)) if iter was
the name of the internal helper procedure that you de�ned within iterative-compute-MAC.

Select some message, key and n, and demonstrate the di�erence between recursive and iterative
processes by tracing the execution of each procedure given the same inputs.

Computer exercise 3: De�ne the procedures choose-safe-prime and find-generator, which
you wrote for one of the tutorial exercises Test them by �nding a safe prime (use size equal
to 5) and a generator for it. Once this is working, you should be able to run the procedure
generate-key-system-parameters in order to do the next exercise.

Computer exercise 4: Implement the compute-shared-secret-key procedure for the Di�e
Hellman key exchange. Using your code from exercise 3, show how to generate a key system (use
size equal to 5) and a published key system for Alyssa and for Ben, and also show how Alyssa is
able to compute the shared secret key given her key-system and Ben's published key.

Computer exercise 5: To see how cha�ng and winnowing works, we've provided you with
some message-MAC-pairs. The original message was broken up into 5 fragments, and cha�ng was
introduced so that there are three message possibilities for each of the �ve sequence numbers. Thus,
the three possible messages for the �rst fragment (sequence number 1) are seq1-poss1-ex-5, seq1-
poss2-ex-5 and seq1-poss3-ex5. The possible messages for the other sequence numbers are named
similarly (seq2... and so on).12 We've also provided the shared key that was used to compute the
valid MACs: skey-ex-5.

12Note that for simplicity, the sequence number is not part of message-MAC-pair and is supplied implicitly in the

name. In other words, we've provided message-MAC-pairs whose names are of the form seqa-possb-ex-5 where a

ranges from 1 to 5, and b ranges from 1 to 3.
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(a) Find the �nal message by assembling only those fragments that have a valid MAC.

Now, let's look at what someone other than Alyssa and Ben has to do if they want to try to �gure
out the original message.

Let r be the number of fragments the message is broken up into, and let s be the number of
possibilities for each fragment (for Computer exercise 5, r = 5 and s = 3).

(b) For someone not knowing the shared key K, how many possible complete messages would
he/she have to consider? (A complete message is one where you have to choose one of the s

possible messages for each of r sequence numbers). Express your answer in terms of r and s.

(c) For someone not knowing the shared key K AND not knowing the sequence numbers of each
fragment possibility, (so that he/she simply gets rs message-MAC-pairs), how many possibilities
would there be now?

(d) For someone not knowing the sequence numbers, but possessing knowledge of K, how many
possibilities are there?

Computer exercise 6: Write a procedure find-discrete-log that takes as arguments values
for y, g, and p, and returns an x such that y � gx mod p by trying all possible valid values for x.
Once this has been de�ned, you should be able to run the supplied procedure crack-published-key
that cracks a published key, returning the original key system. Test your procedure by cracking the
published key pk-ex-6 which is prede�ned in this problem set to be p = 19079; g = 362; y = 6843.

How long did it take? To help you determine this, we've included a procedure called timed, which,
if you place at the beginning of a combination, will evaluate the rest of the combination (as if the
timed weren't there) and return the value along with the time required for the evaluation. Thus,
evaluating

(timed crack-published-key pk)

will apply the procedure crack-published-key to the argument pk (or whatever argument you
want to use) and return the result, together with the time (in seconds) required to do the compu-
tation. Find the amount of time it takes to crack pk-ex-6.

Crack some public keys of size 5. Remember that all the random choices will result in a wide range
of results, but you should be able to get some sort of average time.

Suppose you had a million times the computational resources that you are now using in working
on this problem set, and that all these resources could be dedicated to cracking a single key. If you
can expect the time to crack a key to increase by a factor of 10 for every digit added, how long
would it take to crack a key of size 50? Of size 100? Give your answer in seconds, minutes, days,
or years, whichever seems most appropriate.

Turn in answers to the following questions along with your answers to the questions in the problem
set:

1. About how much time did you spend on this homework assignment? (Reading and preparing
the assignment plus computer work.)
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2. Which scheme system(s) did you use to do this assignment (for example: 6.001 lab, your own
NT machine, your own Win95 machine, your own Linux machine)?

3. We encourage you to work with others on problem sets as long as you acknowledge it (see
the 6.001 General Information handout).

� If you cooperated with other students, LA's, or others, or found portions of your answers
for this problem set in references other than the text (such as some of the archives),
please indicate your consultants' names and your references. Also, explicitly label all
text and code you are submitting which is the same as that being submitted by one of
your collaborators.

� Otherwise, write \I worked alone using only the reference materials," and sign your
statement.

Debugging Tools

During the semester, you will often need to debug programs. This section will acquaint you with the
debugger. Additional information can be found in Don't Panic, and by typing ? in the debugger.

The Debugger

Type the following two de�ne statements into your *scheme* bu�er, and evaluate each of them.

(define p1

(lambda (x y) (+ (p2 x y) (p2 x))))

(define p2

(lambda (z w) (* z w)))

Next, type and evaluate the expression (p1 1 2). This should signal an error, with the message:

;The procedure #[compound-procedure P2] has been called with 1 argument

;it requires exactly 2 arguments.

;Type D to debug error, Q to quit back to REP loop:

Don't panic. Beginners have a tendency to quickly type Q, often without even reading the error
message. Then they stare at their code in the editor trying to see what the bug is. Indeed, the
example here is simple enough so that you probably can �nd the bug by just reading the code.
Instead, however, let's see how some helpful information about the error can be produced.

First of all, there is the error message itself. It tells you that the error was caused by a procedure
being called with one argument, which is the wrong number of arguments for that procedure.
Unfortunately, the error message alone doesn't say where in the code the error occurred. In order
to �nd out more, you need to use the debugger. To do this type D to start the debugger.
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Using the Debugger

The debugger allows you to examine pieces of the execution in progress, in order to learn more
about what may have caused the error. When you start the debugger, it will create a new window
showing two bu�ers. The bottom bu�er right now is empty, and the top bu�er should look like
this:

COMMANDS: ? - Help q - Quit Debugger e - Environment browser

This is a debugger buffer:

Lines identify stack frames, most recent first.

Sx means frame is in subproblem number x

Ry means frame is reduction number y

The buffer below describes the current subproblem or reduction.

-----------

The *ERROR* that started the debugger is:

The procedure #[compound-procedure 6 p2] has been called with 1 argument;

it requires exactly 2 arguments.

>S0 (#[compound-procedure 6 p2] 1)

R0 (p2 x)

S1 (p2 x)

R0 (+ (p2 x y) (p2 x))

R1 (p1 1 2)

--more--

You can select a frame by clicking on it with the mouse or by using the ordinary cursor line-motion
commands to move from line to line. Notice that the information bottom bu�er changes as the
selected line changes.

The frames in the list in the top bu�er represent the steps in the evaluation of the expression. There
are two kinds of steps|subproblems and reductions. For now, you should think of a reduction step
as transforming an expression into \more elementary" form, and think of a subproblem as picking
out a piece of a compound expression to work on.

So, starting at the bottom of the list and working upwards, we see (p1 1 2), which is the expression
we tried to evaluate. The next line up indicates that (p1 1 2) reduces to (+ (p2 x y) (p2 x)).
Above that, we see that in order to evaluate this expression the interpreter chose to work on the
subproblem (p2 x) which produces the error because two arguments are required.

Take a moment to examine the other debugger information (which will come in handy as your
programs become more complex). Speci�cally, in the top bu�er, select the line

>S1 (p2 x)

The bottom bu�er should now look like this:

SUBPROBLEM LEVEL: 1
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Expression (from stack):

Subproblem being executed highlighted.

(+ (p2 x y) (p2 x))

---------------------------------------------------------------------

ENVIRONMENT named: (student)

has 68 bindings (see editor variable environment-package-limit)

==> ENVIRONMENT created by the procedure: P1

x = 1

y = 2

---------------------------------------------------------------------

;EVALUATION may occur below in the environment of the selected frame.

The information here is in three parts. The �rst shows the expression again, with the subproblem
being worked on highlighted. The next major part of the display shows information about the
environments. We'll have a lot more to say about environments later in the semester, but for now
notice the line

==> ENVIRONMENT created by the procedure: P1

This indicates that the evaluation of the current expression is within procedure p1. Also we �nd
the environment has two bindings that specify the particular values of x and y referred to in the
expression, namely x = 1 and y = 2. At the bottom of the description bu�er is an area where you
can evaluate expressions in this environment (which is often useful in debugging). For example,
try evaluating (+ x y), and notice that you can do this, even though these values of x and y are
\local" to this activation of P1.

Before quitting the debugger try to continue to scroll down through the stack past the line: R1

(p1 1 2) (you can also click the mouse on the line --more-- to show the next subproblem). You
will then see additional frames that contain various bits of compiled code. What you are looking
at is some of the guts of the Scheme system|the part shown here is a piece of the interpreter's
read-eval-print program. In general, backing up from any error will eventually land you in the guts
of the system. (Yes: almost all of the system is itself a Scheme program.)

You can type q to return to the Scheme top level interpreter.

The Stepper

The stepper is another useful debugging tool that you should become acquainted with. Go into the
Scheme bu�er and type the expression (+ (* 3 4) (* 5 6)), but instead of evaluating it with
c-X c-E, type M-s. The screen will split to show two windows. The top is your Scheme bu�er; the
bottom is the Stepper bu�er, which right now should read,

(+ (* 3 4) (* 5 6)) => ;waiting

\Waiting" means that it's waiting for you to tell it to go on, which you do by pressing the space
bar. You'll see Scheme start to work on the subexpression (* 5 6). Continuing to press the space
bar will show each element in the evaluation. The various \waiting" tokens will be replaced by the
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values as the evaluation proceeds. At the end, you should be up at the top of the window again,
with 42 shown as the value of the call to the stepper. At this point, you can get out of the stepper
by moving back to the Scheme bu�er.

Try stepping this same expression a few times until you see clearly what is going on. Rather than
always hitting the space bar, there are a couple of other stepper commands you can try (press ?
to see them listed):

� o| step over the current expression: Get the value of the current expression without stepping
through the details.

� c | contract: After you've stepped through an expression, hide the details, showing only the
result.

� e | expand: Undo the contraction.

If you were to try stepping through the evaluation of (p1 1 2), which is the expression you used
above to learn about the debugger, you will �nd that when you get to the evaluation of the
expression that produces the error, you'll see #[some-unspecified-return-value] as the result|
this should give you a hint that something has gone wrong.

In general, you use the debugger and stepper to home in on bugs from two di�erent \directions."
If you have a program that signals an error, you can just let the error occur and use the debugger
to try to �gure out what happened; or you can step through the program up to the point where
you see the error happen and try to �gure out what is causing it.

Debugging can be frustrating. The debugging tools are your friends. Call on them regularly!


