
DON'T PANIC

An Introductory Guide to the 6.001 Computer System

Edition 1.2

December 1997

by
Jason A. Wilson
and the Scheme Team



Copyright c 1992, 1998 Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science.

Permission is granted to distribute verbatim copies of this manual provided that the copy-
right notice and this permission notice are preserved on all copies.



Chapter 1: The 6.001 Lab and other Scheme Implementations 1

1 The 6.001 Lab and other Scheme
Implementations

1.1 Important Information

Please make special note of the following points:

� Don't Turn O� the Lab Computers. The switch is below the yellow ashing light near
the oppy disk drive so be careful not to mistake it for the oppy disk eject button.

� Read The Entire Problem Set BEFORE you begin your work. Often, a question you
have will be explained in a later section of the problem set.

� Browse the 6.001 Web page at least once a week. It contains course handouts, an-
nouncements Scheme software, documentation, advice on where to get help, and other
useful information. The page is located at http://mit.edu/6.001.

� Read Chapter 3 [Logging In], page 6, for information about logging in for the �rst time
in the 6.001 lab.

We have put this information here in case you decide not to read this entire guide.
Generally, this manual is organized on a \learn-as-you-go" basis. Anything that is not
essential to doing a problem set is not explained here; however, we will describe how you
can �nd additional information on-line. Although this extra information might not be
necessary to complete the problem sets, it will make the problem sets easier and so we urge
you to explore.

1.2 Scheme Implementations for 6.001

The 6.001 Lab is reserved for the exclusive use of students in 6.001. You'll �nd it
convenient to work here because the Lab Assistants are available to help you, and you can
share the warmth and camaraderie of your classmates while you work on problem sets. If
you want to use your own computer, the 6.001 sta� provides implementations of Scheme
for Linux, Windows NT 4, and Windows 95 (sorry, no Macs). See the course web page for
software and installation instructions.

The problem sets are designed so that they run on all of these implementations, and
you can move your work between them if you �nd this useful. For example, you might
start problem set at home, then spend some time debugging it in the lab where the Lab
Assistants can help you, and then �nish things up at home.

6.001 is not supported on Athena. The implementation of Scheme on Athena is not
compatible with the 6.001 implementations, and we do not guarantee that it can run all the
problem sets (and we do guarantee that cannot run some of the problem sets, e.g., PS2).

One way you can use Athena is as a repository for your own working �les, and for
transferring the �les between the 6.001 lab and your personal machine. See the course web
page for information on how to do this. (Don't use FTP from the 6.001 lab! See the 6.001
web page for information.)

When you work in the lab, you'll normally be storing your �les on a oppy disk because
there is no permanent storage for students on the 6.001 lab system.

The 6.001 sta� is also experimenting with ways for you to get help on problem sets
without coming having to come to the lab. Again, see the web page for information.



Chapter 1: The 6.001 Lab and other Scheme Implementations 2

1.3 Lab Location

The 6.001/.004 lab is located in room 34-501. The easiest way to get there is by the
elevator in building 36. Since the door outside the lab has an electronic lock, you will want
to bring along the combination, which is given out in lecture. Make sure you also bring
your textbook, your oppy disks, this guide, and a copy of the problem set.

1.4 Lab Assistants

Lab Assistants (LAs) are an integral part of the 6.001 lab. They make sure that every-
thing runs smoothly by maintaining hardware and �xing certain problems so that the lab is
available to as many students as possible. However, LAs are not in the lab just to maintain
hardware; their real purpose is to o�er you assistance on problems that you encounter while
trying to do the problem sets. If you get stuck, check the blackboard for the help queue
status. If the queue is on, write the name of your machine in the next available space. If
the queue is o�, look for an LA walking around or using a computer to assist you.

Don't think that you must have a major problem to ask for help. Although the LAs are
not there to write your code for you, they can assist you when you stop making progress
on your problem set. The best way to make sure that all of your questions get answered is
to get to the lab early in the week. The night before the problems set is due is not a good
time to ask an LA to explain a complicated issue. Instead, come to the lab early or make
an o�ce appointment with your recitation instructor or TA if you begin having di�culties.
The lab will be very busy the night before the problem set.

If you notice hardware problems, you should contact one of the LAs on duty. If one is
not in the room, place a note by the computer that explains what you think the problem
is and when you noticed it. If an extreme problem occurs (like a �re) when an LA is not
around, contact someone at the equipment desk located outside of the lab.



Chapter 2: The Scheme of Things 3

2 The Scheme of Things

The 6.001 text book describes how to program in Scheme but it gives none of the details
of how these programs are entered into the computer, tested and changed. This chapter
describes the basic things that happen when you use the computer.

2.1 Flow of Control

Control of the computer begins with you. You can direct the computer by moving the
mouse1 or by typing at the keyboard. These keystrokes and mouse actions are �rst inspected
by a program called the \window manager" to see if you are requesting that it perform some
operation. The window manager then passes your keystrokes to the application that has
the focus (the highlighted window has the focus). Ordinarily, the only application that you
see is Edwin, a text editor very similar to Emacs. You will usually want Edwin to have the
focus. You can tell the window manager to give Edwin the focus by clicking the mouse on
the border surrounding the Edwin window. This should make the border dark grey and
allow Edwin to receive your keystrokes.

A text editor is a program that allows you to compose text (programs, memos, letters,
books, etc.) much as you would with a typewriter. Unlike a typewriter, Edwin will allow
you to modify text that you have already written so that you don't have to type it in all
over again. Edwin also allows you to work on more than one piece of text at a time, each
in its own bu�er.

Bu�ers are not permanent, however, Edwin lets you save bu�ers in �les. If you are
working in the lab with a oppy disk, then when you log in Edwin will read all of the �les
from your oppy disk and place them onto your lab machine's disk so that you can edit
them. When you log out, Edwin will automatically checkpoint your oppy disk (store your
changes onto the oppy). The �les on the computer's hard disk are not permanent and
will go away when someone else logs into the machine. To retain these �les, Edwin must
place them onto your oppy disk. This operation is known as checkpointing. If something
goes wrong, talk to an LA who may be able to recover your work from the the hard disk.
Whenever you would like to make sure that changes to your �les on the hard disk appear
on the oppy disk, you may also explicitly request that Edwin do a checkpoint and return
to your work.

If you are working in the Lab without a oppy disk and keeping your �les on Athena,
remember to transfer your modi�ed �les back to your Athena directory before logging out.

Once you have written your programs using Edwin, you can instruct Edwin to send
them to the Scheme interpreter and record the results. Although almost any bu�er can
send expressions to the Scheme interpreter, the Scheme interpreter writes its responses only
into the `*scheme*' bu�er. The `*scheme*' bu�er is the default bu�er that Edwin displays
when you �rst log in.

2.2 Special Bu�ers

Here is a short list of most of the bu�ers that you will working with:

1 A mouse is a device that controls a small \pointer" (usually shaped like an arrow or an
`x') on the screen.



Chapter 2: The Scheme of Things 4

`*scheme*'
This is the bu�er where you get responses from the Scheme interpreter. Also,
you should evaluate test expressions in this bu�er.

`*transcript*'
This bu�er also gets all the responses from the Scheme interpreter. It di�ers
from the `*scheme*' bu�er in that you are not meant to type expressions here.
Like a \black-box", think of it more as a diary of what has taken place since
you have logged in. You copy text out of this bu�er to make a transcript. You
very rarely want to type things into this bu�er.

Problem Set Code Bu�ers

These bu�ers contain the code that makes the problem sets do their magic.
Normally they are read-only signifying that you should not change them. If it
becomes necessary for you to change the code in one of these bu�ers, copy only
those parts which you need to change into your answer bu�er.

Answer Code Bu�ers

This is where you spend time writing programs. Normally your answer bu�ers
end with `.scm' which tells Edwin that the contents of the bu�er is Scheme
code. Usually you only need one answer bu�er per problem set for code but
using additional bu�ers to store partial transcripts and comments to yourself
is very useful. You will also want your answer bu�ers to correspond to a �le
on your oppy disk. To do this, remember to save your changes and then
checkpoint your disk or log out (which will automatically checkpoint the disk)
or else your work will be lost when you leave the lab.

2.3 Standard Conventions

We have already told you enough about communicating with the window manager to get
you through 6.001. Obviously, much more will be said about communicating with Edwin
and thus the Scheme interpreter.

Normally, pressing an alphanumeric key tells Edwin to insert a character in the current
bu�er. However, you can press special keys in combination with normal keys to give Edwin
commands. The Control key is located next to the `a' key. It works like the shift key
meaning that you should hold it down while pressing another key. For example, when we
say C-x we mean: hold down the key labeled hCTRLi while you press `x'. The Meta key
also works like the shift key. It is located on either side of the space bar and is labeled
hEXTEND CHARi on the lab machines and hALTi on most PC keyboards. When we say M-x,
we mean hold down the Meta key while you press `x'. Sometimes it is necessary to hold
down both hCTRLi and hEXTEND CHARi at the same time. When we want you to do this, we
will say C-M-x.

Some commands take immediate e�ect while others wait for you to type a response to a
question posted in the mini-bu�er. At this point, pressing just one more key will sometimes
cause the command to take e�ect. Otherwise, Edwin expects you to type a few words into
the mini-bu�er and press RET to tell Edwin when you are done. For more information, see
Section 4.2.1 [Mini-bu�er], page 8.

Like Meta and Control, there are other keys that we refer to with special abbreviations.



Chapter 2: The Scheme of Things 5

TAB the tab key

RET the Return key

SPC space or the space-bar

LFD line-feed or C-j

ESC the escape key



Chapter 3: Logging In and Loading the Problem Set 6

3 Logging In and Loading the Problem Set

3.1 Logging In

Here's how to log in at the 6.001 lab:

1. Place your Primary oppy disk in the disk drive. Your primary disk is the
one that you will normally use for storing your 6.001 �les. It's a (very)
good idea to regularly back up your primary disk to another backup disk.

2. Type u 6 0 0 1 RET at the \Login:" prompt and then type u 6 0 0 1 RET

at the \Password:" prompt.

3. Indicate to Edwin that you want to log in normally, by pressing RET or
typing L (which is the default).1

4. You are done with the log in. Make sure the Primary disk is in the disk
whenever you want to checkpoint it or whenever you want to log out or
else all of your new work will be lost.

The oppy disks use an MS-DOS �le format so you should be able to access your �les
with a PC, an Athena workstation (using dosread and doswrite), and some Macintoshes
(although we don't support the 6.001 Scheme system for Macs or for Athena). Note that
this means that all of your �les (and bu�ers) must have names that contain only alphabetic
and numeric characters. Due to DOS restrictions, the �le names may have one period in
them and you can put up to 8 characters before the period and three characters after it.

3.2 Loading Problem Sets

Type M-x load-problem-set. Edwin prompts you for the problem set number in the
mini-bu�er. Edwin should also show a default problem set in parentheses. To select the
default just type RET. Otherwise, enter the correct problem set number and then hit RET.

If you are working on your own computer, and starting a new problem set, you'll need
to download the problem set �les to the correct directory on your own machine. After
that, M-x load-problem-set will work as above. You'll �nd the weekly problem set �les,
together with instructions for downloading them, on the course web site.

1 There are other login options for logging in without a disk, and for initializing a disk. The
disks you got at the Instrument Room should have been pre-formatted. Reformatting a
disk takes about 5 minutes; don't do this unless you really need. And of course, don't
reformat a disk that contains �les that you need|the �les will be destroyed.



Chapter 4: Editing Your Code 7

4 Editing Your Code

Edwin normally displays the `*scheme*' bu�er, the mode line, and the mini-bu�er when
it starts up. The mode line tells you useful information like the name of the bu�er above it
and whether that bu�er is read-only, modi�ed or unmodi�ed. It has the following appear-
ance:

--ch-Edwin: bu�er (major minor)----pos-----------

The italicized �elds have the following meaning:

ch is `**' if the text has been modi�ed or `--' if the bu�er has not been modi�ed
since last being saved. A read-only bu�er contains `%%' in this �eld.

bu�er is the name of the bu�er.

major is the major mode of the bu�er. For example, most bu�ers contain \Scheme"
here.

minor (an optional �eld) is the minor mode of the bu�er. For example, \Fill" appears
when a bu�er is in auto-fill mode.

pos is information about the position of the point in the bu�er. This �eld may be
either `All',`Top', `Bot', or a percentage.

The `*scheme*' bu�er and any bu�er that ends with `.scm' have an additional �eld, the
run-light, to tell you whether it is currently evaluating a Scheme expression. For example:

--**-Edwin: *scheme* (REPL: listen)----ALL-----------

means that Edwin is ready to evaluate something. Edwin changes listen to eval when
it is busy evaluating an expression. If Edwin has been evaluating for a long time and you
would like to stop it, type C-c C-c to interrupt the Scheme interpreter and get back to
\listen" status.

The mini-bu�er is the bottom line in the Edwin window. It is used for communicating
with Edwin when you request certain commands. For example, when you visit a �le, Edwin
prompts you for the �le's name in the mini-bu�er.

The commands you will use most often will deal with editing your code. We will briey
describe those commands in this chapter.

4.1 Loading a File into a Bu�er

In order to modify a �le or to create a new one, you must �rst instruct Edwin to \visit"
the �le. Do this by typing C-x C-f �le-name. This will cause Edwin to create a new bu�er
and place the contents of the �le into it. If the �le does not exist, Edwin will make an
empty bu�er and allow you to edit that instead. If you didn't want to start a new �le, type
C-x k RET to kill the bu�er and try again.

4.2 Switching Between Bu�ers

Once you have a few bu�ers in memory, you will want to switch between them quite
often. Typing C-x b bu�er-name allows you to enter the name of the bu�er that you would
like to switch to. It will also display a default bu�er that you may select by pressing return.



Chapter 4: Editing Your Code 8

C-x C-b switches you to the `*buffer list*' bu�er. This bu�er isn't meant for editing
text. Instead, you use `*buffer list*' to select bu�ers from a list of all the bu�ers that
Edwin knows about. You may use the cursor keys to move to the line of the bu�er and
press `f' to select it.

Other commands have a natural side e�ect of moving you to a new bu�er. For example
C-x k will kill the current bu�er and then place you into the previous bu�er. Remember
that if you kill a bu�er without saving it, all of your changes will be lost. Edwin will warn
you if you try to kill an unsaved bu�er, and give you a chance to back out of the command.
If you really want to kill the bu�er without saving your changes, type yes.

4.2.1 The Mini-bu�er

The mini-bu�er is the last line of the Edwin window where Edwin sometimes expects
you to type responses to questions that it asks. There are two things that you should
know about the mini-bu�er. First of all, pressing C-g will exit the mini-bu�er at any time.
Second, pressing hSPCi or hTABi while in the mini-bu�er will generally cause Edwin to try to
complete what you have begun to type. If you have typed a unique pre�x to a word, then
Edwin will complete that word. Otherwise, Edwin will list all of the possible completions
to your pre�x. You may then type just enough characters to give you the command, �le,
or bu�er that you really want. This feature of Edwin will save you countless keystrokes.
To learn how Edwin can complete Scheme procedure and variable names, see Section B.3
[Scheme Completion], page 22.

4.3 Editing A Bu�er

4.3.1 What you should and should not edit

In general, you should never change the bu�ers that contain read-only code given to
you in the problem sets, nor should you change the `*transcript*' bu�er. If you want to
change these bu�ers, you should copy the sections you want into one of your bu�ers �rst
(see Section 4.3.4 [copying text], page 9). Otherwise, you will end up with tiny changes
that no one will be able to �nd. This will make your code much more di�cult to debug.

4.3.2 Inserting Letters and Moving The Point

Once you are in the bu�er you want to edit, typing characters causes text to be inserted
into the bu�er at the point (the little reverse-video box), but nothing is overwritten. If you
would like to delete a character or two use Back space to remove the character to the left
of the point and C-d to delete to the right of the point. If you want to delete a whole line,
use C-k to erase all the text right of the point on the current line (C-y will bring the text
back if you make a mistake).

The cursor motion keys (the keys with triangles on them) allow you to move the point
to a new location and begin inserting characters there. There are also commands that allow
you to move the point around much faster over larger areas. C-v will move the point down
an entire screen while M-v will move the point up by the same amount. C-e will move the
point to the end of a line while C-a will move it to the beginning. Refer to the on-line
documentation for more commands to move the point around.



Chapter 4: Editing Your Code 9

4.3.3 Undoing Mistakes

If you make a mistake while editing your code, type C-x u. Edwin remembers about
8000 characters worth of changes that it will allow you to undo. Consecutive repetitions
of C-x u will cause Edwin to undo older and older changes. Any command other than an
undo breaks the sequence. At this point C-x u will allow you to undo your undos, known
as redoing an undo.

If you really mess up, it is sometimes desirable to restore the bu�er to the way it was
the last time you saved it. You can do this by typing M-x revert-buffer.

4.3.4 Using the Region to Copy or Move Text

Many Edwin commands operate on a region of text. First you set up the region and
then you type a command to operate on it. You begin the region by setting up what is
known as the mark. To do this, move to the beginning of the text that you want to de�ne
as the region and then press C-SPC. Next move the point to where you want the region to
end and invoke a command. For example, C-w will delete the region and place it into what
is a�ectionately called the kill ring. You can get this text back by typing C-y. Also, you
can type M-w which will place a copy of the text into the kill ring without deleting it. You
can also extract this copy with C-y. To �nd out where the mark is at any time, press C-x
C-x which swaps the point and the mark. Pressing C-x C-x again will swap the point and
mark back.

4.4 Saving A Bu�er

You should save your answer bu�ers periodically so that if the computer crashes, you
do not lose all your work. This is done by typing C-x C-s. If you are working in the lab
with a oppy disk then when you log out, saved �les are transferred onto your oppy disk
replacing the old versions. Remember that if you log out incorrectly and your �les are not
checkpointed then you will lose your work when someone else logs into the machine.

4.5 Using Dired to Manage Your Files

Generating all these �les means that we will need some way to manage them. Edwin
provides a command, M-x dired, for showing a visual representation of a directory of �les.
Dired creates a special bu�er which you can not edit in the normal way. Instead, you have
an easy way to rename �les, to mark �les for deletion, and to load �les into bu�ers for
editing. When you are in the Dired bu�er, typing C-h m will display all of the commands
available there.

To select a �le for editing, move the point to the line of a �le and then press `f'. This
is like typing C-x C-f �le-name. Pressing `o' will do nearly the same thing except that the
�le will be loaded into another text window and the Dired bu�er will stay where it is.

To delete individual �les, move the cursor to the correct line and press `d' and Edwin
will place a `D' beside the �le. You can unmark the �le by pressing `u' when you are on the
line. When you have marked all the �les that you are sure you want to be deleted, press
`x' and answer yes. Now when you checkpoint your disk or when you log out, Edwin will



Chapter 4: Editing Your Code 10

remove these �les from your oppy drive too. If you accidentally erase a �le talk to an LA
because sometimes it is possible to recover lost �les.

To delete backup copies of �les with Dired, press `~' and all the backup �les will have
a D placed beside their names. Now pressing `x' will cause Edwin to ask you if you would
like to delete these �les. Type yes and then those �les will be deleted. Again, the process
isn't complete until you checkpoint your disk or log out.



Chapter 5: Running and Testing Your Code 11

5 Running and Testing Your Code

5.1 Evaluating Code

There are a few ways to evaluate code from a bu�er. One way is to type M-o. This
command tells Edwin to send the entire bu�er to the Scheme interpreter to be evaluated.
M-o is not de�ned in the `*scheme*' bu�er. Another command, M-z, tells Edwin to only
send the current de�nition to Scheme in order to be interpreted. A de�nition in this case is
not necessarily an expression such as (define (foobar baz) ...). Instead, Edwin searches
backwards until it �nds an open parenthesis on the left margin, searches forward to �nd
its mate and evaluates the expression in between. This makes it convenient for all sorts of
\top-level" expressions. A third way to evaluate expressions gives more control than either
of the �rst two methods. C-x C-e evaluates the expression just before the point regardless
of where it is in relation to all the parentheses.

Some people try to remember which de�nitions they have changed so that they only
evaluate those portions of their program. This is often more trouble than it is worth
because if you forget to update just a single de�nition, then a bug that you thought you
just �xed still appears and you could be confused for a long time. If you always use M-o

then your code will be up-to-date with what is written when you test it.

5.2 The `*scheme*' bu�er

The most sensible place to test your code is in the `*scheme*' bu�er. Typing a test
case (a Scheme expression meant to test portions of your code) and then M-z or C-x C-e

generates a nice listing of trial expressions and their results. If you would like to repeat a test
case that you have evaluated already, M-p will allow you to cycle through your most recent
expressions. Every time you press M-p, Edwin shows copies of older and older expressions
that have been evaluated in the `*scheme*' bu�er. When this history runs out, Edwin just
starts over at the beginning. It is often the case that you would like to repeat the last
evaluated expression with di�erent arguments. There is a right and a wrong way to do
this. The right way is to type M-p, edit the expression, and then type C-x C-e. The wrong
way is to use the cursor keys to move up through the Scheme bu�er and edit the previous
expression in its original context. It is much faster and easier to use the history mechanism,
and using it won't leave you with a confusing bu�er, unlike direct editing.

5.3 Debugging

When testing your code you will �nd that often it doesn't work as expected. Sometimes
your code will stop dead in its tracks and produce an error message on the screen, sometimes
it will return an incorrect result, and sometimes it won't return anything at all because it is
caught in an in�nite (or at least an unreasonably long) loop. These mistakes in your code
are called bugs and getting rid of them is an art-form known as debugging1.

The �rst kind of bug is often the easiest to �x. Sometimes you have just misspelled a
variable or procedure name, or have misplaced a parenthesis. Usually your typos are obvious

1 The Cynic's First Law states that programs don't become more reliable as they are
debugged; the bugs just become harder to �nd.



Chapter 5: Running and Testing Your Code 12

when the computer points them out to you. At other times the computer screams at you
when your program is trying to do an illegal operation (like trying to add two procedures!).
In cases like this, it is useful to enter the debugger and see what you can learn about the
bug. Questions you should ask yourself are:

� How did my procedure get into this state?

� Do any variables have values that they clearly should not?

� Are all the procedures that I use in this procedure working correctly?

� Do I have the arguments in the correct order?

� Am I using the correct variables?

� Does my procedure have a logical error?

� Did I remember to evaluate all the changes that I made?

� Did I do anything that would cause any old de�nitions to still be around?

� Did I write this code?

These are useful questions to ask no matter what kind of bugs you have. Remember that
even if your procedure seems to work with one or two test cases, you could still have errors
in it. Make sure to test the boundary conditions (if you don't your TA will). For example,
maybe you forgot to test your absolute value procedure with the number zero. Question:
how many fence posts do you need to buy to make 100 feet of fence with a fence post every
10 feet? If you quickly answered 10, then you are especially susceptible to fence-post errors.
Otherwise, see how many of your friends will fall for this one.

Only experience can help you become a master debugger. Often the �rst thing that
a beginner does when he or she gets an error message is to type q to avoid entering the
debugger. This violates a very important rule of debugging: don't throw away information.
So when you get an error, go ahead and see what information you can gather.

If the debugger doesn't give you the needed information, sometimes it is useful to put
a display expression into your code to gather information. Also, you may make your
procedures robust so that when they get illegal values, they give you information that the
debugger wouldn't give you. These two methods are especially useful with the never-ending-
procedure variety of bugs.

A more useful way to gather information is to use the procedure error. error displays
its �rst argument which should be a string and then displays the rest of its arguments which
are any objects of special concern to debugging. Then you are asked if you would like to
enter the debugger. Here is an example:

(define (cube x)

(if (not (number? x))

(error "Argument should be a number instead of" x)

(* x x x)))

;cube --> #[compound-procedure 28 cube]

;Value: #[undefined-value]

(cube 'hi)

;Argument should be a number instead of hi

;Type D to debug error, Q to quit back to REP loop:



Chapter 5: Running and Testing Your Code 13

One of the best ways of debugging code is to get a lab assistant to help you. Even if they
can't immediately �nd your bug, they can probably tell you whether what you are trying
to do is a good idea. Another powerful debugging technique is to completely rewrite some
of your code in an improved way. It is often easier to avoid bugs than to �nd them so use
a clear design instead of clever or tricky code that is sure to fail during the next waning
crescent. However, if you enjoy debugging code, feel free to make lots of mistakes so that
you can �nd them later.

For more information on using the debugger, see Appendix C [Debugger], page 24.

5.4 Stepper

If you type an expression in `*scheme*' bu�er and, instead of evaluating it with C-x

C-e, type M-s, Edwin will invoke the Scheme stepper, which permits you to go through
step through evaluation of the expression element by element and see the evaluation of each
subexpression.

In general, you use the debugger and stepper to home in on bugs from two di�erent
\directions." If you have a program that signals an error, you can just let the error occur
and use the debugger to try to �gure out what happened; or you can step through the
program up to the point where you see the error happen and try to �gure out what is
causing it.



Chapter 6: Using On-Line Documentation 14

6 Using On-Line Documentation

There are di�erent forms of on-line documentation. Some on-line documentation is
meant to teach you skills. For example, the Edwin tutorial is an interactive tutorial useful
for when you �rst begin using Edwin. It is accessed by typing C-h t.

Most of the on-line documentation is meant to be used as reference material. This is
available through web from the 6.001 home page. The documentation �les are included
with the 6.001 distributions as HTML �les that you can read locally with a web browser if
you are using your own computer and are not connected to the network.

You can also access some of this documentation directly through Edwin via the Info
system.

6.1 Info

When you �rst type M-x info, you are placed into the directory node which contains a
menu of the nodes beneath it. A node is an informational unit: it contains descriptive text
and possibly a menu from which you can quickly access other nodes. At this point you can
press h to get a tutorial on using Info. Also, pressing a question mark will bring up a short
list of commands.

The most useful command that you can type is `m' followed by the name of a node. This
will allow you to access a subnode. For example, typing m R4RS, and then RET will allow
you to visit the on-line documentation for the fromal de�nition of the Scheme language.

Sometimes a complete node will not �t on one screen. In this case you could use the
cursor motion keys to move around the bu�er. As an alternative, SPC will move forward a
whole screen while Back space will move you back a whole screen.

If you have typed m and selected a menu, you can usually get back to where you were
by typing u. This command brings you back \up" in the node structure. Also, d will bring
you to the directory node. n and p bring you to the next and previous nodes.

6.2 What is Especially Useful

Here is a short summary of the on-line information available by typing M-x info

`Don't Panic'
This manual in its on-line incarnation.

`Scheme Reference Manual'
This is the MIT Scheme Reference Manual. It documents the special forms and
procedures that are available in MIT Scheme.

`Scheme User's Manual'
This has some details on MIT Scheme and Edwin.

`R4RS' The Revised Report on the Algorithmic Language Scheme is the o�cial (and
not very readable) speci�cation of the Scheme language.

`Emacs' This is the on-line version of the GNU Emacs Manual. Since Edwin and Emacs
are so much alike, you may �nd it very handy. Note that this is available in
printed form at the Coop. (This is available on-line in the 6.001 lab only.)



Chapter 6: Using On-Line Documentation 15

`Info' This describes the on-line Info system.



Chapter 7: Printing and Backing Up Disks 16

7 Printing and Backing Up Disks

7.1 Printing A Bu�er

To print out a bu�er type M-x print-buffer. Remember to get your print-out right
away or it may get lost in a huge heap of paper. The header has the machine name on it.

7.2 Making A Transcript

The easiest way to get a transcript is to copy text from the `*transcript*' bu�er and
accumulate it into another bu�er. You should remove the test cases that you do not wish
to keep and place your name and other information including the problem set number and
the exercise at the top. You might also want to make special comments about some of the
test cases. When you are done with the entire problem set, you can print out this bu�er.
It's a good idea to comment the transcript after each problem, while the details are still in
your mind. Incrementally building your �nal transcript takes less e�ort than doing it all at
the end.

7.3 Printing Out Graphics

To print out graphics in the 6.001 Lab, type M-x print-graphics. Edwin will ask you
to indicate which window you would like to print. You can either type in a window name
(such as g1), or simply press hRETi. In this last case, Edwin will expect you to click on a
desired graphics window with a mouse.

To print graphics using a Windows PC, select the graphics window you want to print
and type hAlti-hPrintScreeni, which copies the active window to the clipboard. You can then
paste the clipboard into an appropriate Windows application (Wordpad, for example) to
print the result.

7.4 Backing Up Your Primary Disk in the 6.001 Lab

Sometimes oppy disks lose the data that you have stored on them. To counter this
problem, you should back up your Primary disk on to your Backup disk from time to time.
M-x checkpoint-floppy enables you to update your Backup diskette. To do this, follow
the steps below.

1. Insert the Backup disk into drive.

2. Type M-x checkpoint-floppy.

3. When Edwin is done, put the primary disk back into the drive.

4. You might also want to checkpoint the Primary disk to make sure that it
is up to date. To do this at this time, type M-x checkpoint-floppy.

If you have done all of these steps, then both your Primary disk and your Backup disk
should contain the same �les.



Chapter 8: Logging Out and Giving Feedback 17

8 Logging Out and Giving Feedback

8.1 Logging Out

To logout, make sure your have saved all of your �les and then type M-x logout. If you
have forgotten to save any of your bu�ers, Edwin will give you a chance to do it now. If
you still don't save all of the bu�ers, Edwin will say \Modi�ed bu�ers exist. Exit anyway?"
If you don't want to save these bu�ers then answer yes. Now Edwin will checkpoint your
oppy disk. Edwin will ask if you want to kill Scheme. Type yes if you really want to exit
Edwin and Scheme and return to the main Login screen. Now you should take the oppy
disk out of the oppy drive. If you do leave something behind in the lab and can't �nd it
later, check the lost and found box near the front of the lab.

8.2 Feedback

If you �nd any bugs, have a complaint, or anything at all, send mail to:

6001-feedback

You can send email to the 6001 sta� via the address 6001-feedback@sicp-00.mit.edu.
You can also use Edwin to send email to anyone from the 6001 lab, and continue to do
your work. Type C-x m to get a mail bu�er, then �ll in the \To:" �eld. The �rst time you
type C-x m, Edwin will also prompt you for an email return address so that someone can
respond to your message. If you don't enter your email address here, you will be sending
mail anonymously. When you have �nished writing the text of your letter, you can send
the message by typing C-c C-c. If you don't want to send the letter, kill the bu�er using
C-x k.



Chapter 9: Common Problems and Solutions 18

9 Common Problems and Solutions

If you have any problems that aren't listed here, please pass them along to us so that
we can include them in the next printing of this document. For directions on doing this,
see Section 8.2 [Feedback], page 17.

9.1 Edwin won't respond to anything I type!

One cause of this is that Edwin is not receiving any keystrokes from the window manager.
If this is the case, the border around Edwin will be light grey instead of dark grey. To �x
this problem, click the left mouse button when the cursor is in the border of the Edwin
window.

9.2 How Can I Reach a \Steady State?"

Often times you will lose and just want to return to some sort of steady state so that
you can continue to do your work. If all of a sudden you do something that seems to trash
half of your bu�er, stop and relax. The �rst thing that you should try is C-x u, the undo
command. If this fails to do any good, you might try performing a yank using C-y. If
neither of these seems to work, use the write command, C-x C-w which will allow you to
save the bu�er under a di�erent name. Now you can load up the old version using C-x

C-f. Next, visually compare these two bu�ers to see if you can recover any recent changes.
You might also want to save your bu�ers often so that you can always restore to a steady
state by doing a M-x revert-buffer. If your problem is that Edwin does not seem to be
evaluating things properly, try typing C-c C-c a few times. Look at the mode line in the
`*scheme*' bu�er and make sure you see the word \listen" which means that Scheme is
ready to accept expressions. For really drastic problems, try saving all of your bu�ers that
don't seem screwed up and logging out. When you log back in, things should be back to
normal. If this doesn't help then it is time to talk to an LA.



Appendix A: Edwin Major Modes for Scheme 19

Appendix A Edwin Major Modes for Scheme

Edwin uses major modes to determine which keyboard commands are available in a
bu�er. Edwin de�nes two major modes that facilitate the writing and testing of Scheme
programs. The repl major mode is the default mode of the `*scheme*' bu�er and Scheme
mode is normally used in bu�ers of Scheme source code. repl and Scheme mode are very
similar to each other and to the Emacs lisp major modes. repl and Scheme modes include
the editing commands from fundamental mode and enhance these with more commands for
evaluating Scheme expressions.

A.1 Scheme Mode

The Scheme major mode is specialized for editing Scheme code. It adds indentation and
evaluation commands to the normal array of editing commands.

TAB indent the current line for Scheme.

C-M-q indent the next expression.

The following commands evaluate Scheme expressions:

M-ESC Read and evaluate an expression in mini-bu�er (eval-expression).

M-z Evaluate the current de�nition (eval-defun).

C-x C-e Evaluate the expression preceding point, placing the result in the `*scheme*'
bu�er (eval-last-sexp).

M-o Evaluate the bu�er (eval-current-buffer).

C-M-z Evaluate the current region (eval-region).

TAB indents the current line to show the nesting of parentheses. Pressing TAB anywhere
on a line has the same e�ect: attractive source �les that make parenthesis-balancing clear.

C-M-q is a great way to indent the current de�nition. Move to the beginning of the
current de�nition (using C-M-a) before you use this command.

M-z is the work horse evaluation command in a repl bu�er, but it is also useful in a
Scheme bu�er. M-z looks backwards to �nd an expression that starts on the left margin
and then evaluates it.

For more precise control over what is evaluated, use C-x C-e. C-x C-e evaluates the
expression before the point regardless of where it is in a parenthesized structure. Unlike M-
z, it is not meant for evaluating just top-level expressions (more importantly, it can evaluate
expressions that are not combinations).

M-o evaluates the bu�er, which is useful because it insures that all of your changes
are evaluated. To make this command even more useful, you should refrain from putting
procedure de�nitions and operations that are meant to test these procedures in the same
source �le. For example, if you have the �bonacci de�nition in a �le along with (fib

100000) then evaluating the entire bu�er will take too long. Instead, do all your testing
in the `*scheme*' bu�er. To preserve your tests, you can write them out as a separate �le.
Once you have fully tested a procedure, you should save the transcript of your successful
test cases into a separate bu�er and write it to disk. At the end of the problem set, you
can collect all of these transcripts into a single bu�er and then print it out all at once.



Appendix A: Edwin Major Modes for Scheme 20

A.2 repl Mode

repl is the major mode for communicating with an inferior read-eval-print loop (the
`*scheme*' bu�er is normally in the repl major mode). All the editing and evaluation
commands from Scheme mode are available in addition to the ones listed below.

C-c C-c Stops an evaluation and returns to the top level. Can also be used like `Q' when
Edwin displays ;Type D to debug error, Q to quit back to rep loop.

Expressions submitted for evaluation are saved in an expression history. The history may
be accessed with the following commands:

M-p Cycle backward through the history.

M-n Cycle forward through the history.

C-c C-r Search backward for a matching string.

C-c C-s Search forward for a matching string.

M-p is the most frequently used history command. Imagine that you have typed (+ 2

5) and then M-z. Now you wish to evaluate the same expression using a zero instead of
the �ve. Typing M-p will recall the previous expression and place it into the current bu�er
where the point is located. Now you can use the normal editing commands to change the
expression into the desired form. When you are done, you can type M-z to evaluate your
new expression. At this point, typing M-p twice would recall the �rst expression, (+ 2 5),
while typing M-p just once would recall just the most recent expression, (+ 2 0).



Appendix B: Editing Commands 21

Appendix B Editing Commands

This chapter documents the special features that Edwin shares with Emacs that allow
you to edit Scheme code e�ciently. These commands are almost always available in any
major mode meant for editing.

B.1 Lists and S-expressions

By convention, Edwin keys for dealing with balanced expressions are usually Control-

Meta characters. They tend to be analogous in function to the corresponding Control- and
Meta- commands.

These commands fall into two classes. Some deal only with lists (parenthetical group-
ings). They see nothing except parentheses, brackets, braces, and escape characters that
might be used to quote those.

The other commands deal with expressions or s-expressions. The word `s-expression'
is derived from symbolic expression, the ancient term for any kind of expression in lisp.
S-expressions are symbols, numbers, string constants, and lists.

C-M-a Move to the beginning of the current de�nition (beginning-of-defun).

C-M-e Move to the end of the current de�nition (end-of-defun).

C-M-f Move forward over an expression (forward-sexp).

C-M-b Move backward over an expression (backward-sexp).

C-M-k Kill expression forward (kill-sexp).

C-M-u Move up and backward in list structure (backward-up-list).

C-M-d Move down and forward in list structure (down-list).

C-M-n Move forward over a list (forward-list).

C-M-p Move backward over a list (backward-list).

C-M-t Transpose expressions (transpose-sexps).

C-M-SPC Put mark after following expression (mark-sexp).

These commands can be used to �nd an unbalanced parenthesis quite easily. To �nd
an extra close parenthesis, move to the the beginning of the bu�er and type an open
parenthesis. Then move backwards one character and type C-M f. The point should move
to the de�nition with the extra parenthesis.

B.2 Indentation

hTABi Indent current line \appropriately" for the current mode.

C-j Perform hRETi followed by hTABi (newline-and-indent).

M-^ Join current line with line above (delete-indentation). This cancels out the
e�ect of hLFDi.



Appendix B: Editing Commands 22

C-M-o Split line at point; text on the line after point becomes a new line indented to
the same column that it now starts in (split-line).

M-m Move (forward or back) to the �rst non-blank character on the current line
(back-to-indentation).

C-M-\ Indent several lines to same column (indent-region).

C-x hTABi Shift block of lines rigidly right or left (indent-rigidly).

M-x indent-relative

Indent from point to under an indentation point in the previous line.

In a Scheme mode bu�er, lines are indented according to their nesting in parentheses.
To indent a line, press hTABi. In Scheme or repl mode, hTABi aligns the line according to its
depth in parentheses. No matter where in the line you are when you type hTABi, it aligns
the line as a whole.

B.2.1 Indenting Several Lines

There are several commands that will re-indent several lines of code.

C-M-q Re-indent all the lines within one expression (indent-sexp).

C-u hTABi Shift an entire expression rigidly sideways so that its �rst line is properly in-
dented.

C-M-\ Re-indent all lines in the region (indent-region).

You can re-indent the contents of a single expression by positioning the point before the
beginning of it and typing C-M-q (indent-sexp). The indentation of the current line is
not changed; therefore, only the relative indentation within the list, and not its position, is
changed. To correct the position as well, type a hTABi before the C-M-q.

C-M-q is a great way to indent the current de�nition. Move to the beginning of the
current de�nition using C-M-a before you use this command.

If the relative indentation within an expression is correct but the indentation of its
beginning is not, go to the line the expression begins on and type C-u hTABi. When hTABi

is given a numeric argument, it moves all the lines in the grouping starting on the current
line sideways the same amount that the current line moves. It is clever, though, and does
not move lines that start inside strings.

Another way to specify the range to be re-indented is with the point and mark. The com-
mand C-M-\ (indent-region) applies hTABi to every line whose �rst character is between
the point and mark.

B.3 Completion for Scheme Symbols

Completion maximizes the entropy of your keystrokes. Whenever the computer can
�gure out what you mean to type, you may tell it to type the rest for you. Usually completion
happens in the mini-bu�er. But one kind of completion is available in Scheme and REPL

bu�ers: completion for Scheme symbol names.



Appendix B: Editing Commands 23

The command M-hTABi takes the partial Scheme variable name before point to be an
abbreviation, and compares it against all bound variables in the repl environment. Any
additional characters that they all have in common are inserted at the point.

If the partial name in the bu�er is not a unique pre�x, a list of all possible completions
is displayed in another window. At this point you can type enough characters to make the
symbol unique and press M-hTABi again.

C-u M-hTABi works like M-hTABi except that it also completes symbols.



Appendix C: Debugger 24

Appendix C Debugger

When an error occurs in your code, you will be asked whether you would like to enter the
debugger. The debugger creates two bu�ers in which debugging information is presented.
The contents of the bu�ers will change based on the commands you enter.

left-mouse-button

Select a subproblem or reduction and display information in the description
bu�er.

C-n

down-arrow

Move the cursor down the list of subproblems and reductions and display info
in the description bu�er.

C-p

up-arrow Move the cursor up the list of subproblems and reductions and display info in
the description bu�er.

e Show the environment structure.

q Quit the debugger, destroying its window.

p Invoke the standard restarts.

SPC Display info on current item in the description bu�er.

? Display help information.

Each line beginning with `S' represents either a subproblem or a stack frame. A sub-
problem line may be followed by one or more indented lines (beginning with the letter `R')
which represent reductions associated with that subproblem. To obtain a more complete
description of a subproblem or reduction, click the mouse on the desired line or move the
cursor to the line using the arrow keys (or C-n and C-p). The description bu�er will display
the additional information.

The description bu�er contains three major regions which contain information associ-
ated with the selected subproblem or reduction. The �rst region contains a pretty printed
version of the expression. The second region contains a representation of the environment.
The variables in the frames are listed along with there values. The bottom of the descrip-
tion bu�er contains a region for evaluating expressions in the environment of the selected
subproblem or reduction (similar to the `*scheme*' bu�er). This is the only portion of
the bu�er where editing is possible. Evaluating expressions here can be useful in gathering
information about the circumstances of the bug.

Typing e creates a new bu�er in which you may browse through the current environment.
In this new bu�er, you can use the mouse, the arrows, or C-n and C-p to select lines and view
di�erent environments. The environments listed are the same as those in the description
bu�er. If the selected environment structure is too large to display (if there are more
than environment-package-limit items in the environment) an appropriate message is
displayed. To display the environment in this case, set the environment-package-limit

variable to #f. This process is initiated by the command M-x set-variable. You can not
use set! to set the variable because it is an editor variable and does not exist in the current



Appendix C: Debugger 25

scheme environment. At the bottom of the new bu�er is a region for evaluating expressions
similar to that of the description bu�er.

Type q or to quit the debugger, killing its primary bu�er and any others that it has
created.

NOTE: The debugger creates description bu�ers in which debugging information is pre-
sented. These bu�ers are given names beginning with spaces so that they do not appear in
the bu�er list; they are automatically deleted when you quit the debugger using q. If you
wish to keep one of these bu�ers, rename it using M-x rename-buffer: once it has been
renamed, it will not be deleted automatically.

C.1 Subproblems and Reductions

Understanding the concepts of reduction and subproblem is essential to good use of
the debugging tools. The Scheme interpreter evaluates an expression by reducing it to a
simpler expression. In general, Scheme's evaluation rules designate that evaluation proceeds
from one expression to the next by either starting to work on a subexpression of the given
expression, or by reducing the entire expression to a new (simpler, or reduced) form. Thus,
a history of the successive forms processed during the evaluation of an expression will show
a sequence of subproblems, where each subproblem may consist of a sequence of reductions.

For example, both (+ 5 6) and (+ 7 9) are subproblems of the following combination:

(* (+ 5 6) (+ 7 9))

If (prime? n) is true, then (cons 'prime n) is the reduction for the following expression:

(if (prime? n)

(cons 'prime n)

(cons 'not-prime n))

This is because the entire subproblem of the if combination can be reduced to the
problem (cons 'prime n), once we know that (prime? n) is true; the (cons 'not-prime

n) can be ignored, because it will never be needed. On the other hand, if (prime? n) were
false, then (cons 'not-prime n) would be the reduction for the if combination.

The subproblem level is a number representing how far back in the history of the current
computation a particular evaluation is. Consider factorial:

(define (factorial n)

(if (< n 2)

1

(* n (factorial (- n 1)))))

If we stop factorial in the middle of evaluating (- n 1), the (- n 1) is at subproblem
level 0. Following the history of the computation \upwards," (factorial (- n 1)) is at
subproblem level 1, and (* n (factorial (- n 1))) is at subproblem level 2. These expres-
sions all have reduction number 0. Continuing upwards, the if combination has reduction
number 1.

Moving backwards in the history of a computation, subproblem levels and reduction
numbers increase, starting from zero at the expression currently being evaluated. Reduction
numbers increase until the next subproblem, where they start over at zero. The best way to
get a feel for subproblem levels and reduction numbers is to experiment with the debugger.



Glossary 26

Glossary

Bu�er A bu�er is a block of text that you may examine and change. Whenever you
edit in Edwin, you change the contents of a bu�er. To preserve a bu�er for
another time you will use Edwin, you must save the bu�er to a �le on disk.
Then you must remember to checkpoint your oppy disk.

Commands

A command is an instruction you give Edwin through a special key combination.
For example, use the C-x C-f command to copy a �le from a disk into a new
bu�er.

Cursor The cursor is a solid rectangle visible on the screen whenever the computer is
waiting for you to type something. If you type an ordinary character (letter,
number, or punctuation), it will be inserted at the current cursor position, and
the cursor will move past it.

Extended Commands

An extended command is a command used by name, rather than by a special
key. To use an extended command, press M-x, followed by the name of the
command. Your typing will appear at the bottom of the screen, in the mini-
bu�er (see below). When you've typed the full name of the extended command,
press RET.

File A �le is a block of text stored on a disk. A �le may be copied from a disk into
a bu�er. A �le is created by saving the contents of a bu�er on a disk.

Kills The several most recently-deleted regions are kept in the kill ring. Killed text
can be retrieved with a yank.

Mark The mark is an invisible point in a bu�er. Many commands set it to the bu�er
location where they were performed. Each bu�er has its own mark. C-x C-x

exchanges the point and the mark, thus revealing the mark.

Mini-bu�er

The mini-bu�er is that last line of the Edwin window. It is used by Edwin to
display informative messages and to prompt you for various inputs, for example,
�le names, con�rmation, etc.

Modes Every bu�er has one major mode, and maybe some minor modes. Major modes

determine special Edwin behavior particular to the language you are using
(e.g., Scheme or English). Minor modes add special features regardless of the
language you are using in the bu�er.

Point The current cursor location in each bu�er is called the point. The cursor is just
a reection of the point in the current bu�er.

Region Text between the point and the mark is called the region.

Saving To save is to create a disk �le from a bu�er. The �le and the bu�er are identical,
but only the �le remains when you log out; the bu�er is erased. However if you
don't checkpoint your �les onto your oppy disk, your �les will be erased when
someone else logs into the machine.



Glossary 27

Window A window has two meanings. When referring just to Edwin, it is a rectangular
area on the screen sometimes called a text window. When referring to a program
in general, it is an area of the screen that contains text or graphics and is
manipulated by the window manager. Each text window displays part of some
bu�er. Because most bu�ers are too big to �t in one window, only part of the
bu�er is visible at any time; you can see other parts by using Edwin commands
to scroll through the bu�er.



Concept Index 28

Concept Index

*
`*buffer list*' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

`*scheme*' . . . . . . . . . . . . . . . . . . . . . 3, 7, 11, 16, 19, 20

`*transcript*'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 16

A
aborting commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B
back-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 7, 26

bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

C
C- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

completion (symbol names) . . . . . . . . . . . . . . . . . . . . 22

Control-Meta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

copying text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

cursor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 26

cursor motion keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

cut and paste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

D
debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Dired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

E
environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

evaluate a bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

evaluate a de�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 19, 20, 24

expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

extended commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F
�le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 26

focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

G
graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

H
help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I
indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 21, 22

info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

K
kill-ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

killing bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

kills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

L
list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

logging out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

M
M- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 26

Meta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

mini-bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 8, 26

mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

mode line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

mode-speci�c help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

mouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

P
point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 26

printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Q
quitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

R
read-eval-print loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

redo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 25

region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 26

repl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 20

reverting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

run-light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



Concept Index 29

S
s-expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

saving bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

scheme completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

scheme mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

stepper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

subproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 25

T
text editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

transcript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

U
unbalanced parenthesis . . . . . . . . . . . . . . . . . . . . . . . . 21

undo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

V
visiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

W
window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

window manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Y
yanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Z
zen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



i

Table of Contents

1 The 6.001 Lab and other Scheme
Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Important Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scheme Implementations for 6.001 . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Lab Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Lab Assistants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Scheme of Things . . . . . . . . . . . . . . . . . . . . . 3
2.1 Flow of Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Special Bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Standard Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Logging In and Loading the Problem Set . . . . 6
3.1 Logging In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Loading Problem Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Editing Your Code . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Loading a File into a Bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Switching Between Bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2.1 The Mini-bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Editing A Bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.1 What you should and should not edit . . . . . . . . . . . . 8
4.3.2 Inserting Letters and Moving The Point . . . . . . . . . . 8
4.3.3 Undoing Mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3.4 Using the Region to Copy or Move Text . . . . . . . . . . 9

4.4 Saving A Bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5 Using Dired to Manage Your Files . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Running and Testing Your Code . . . . . . . . . . . 11
5.1 Evaluating Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 The `*scheme*' bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Stepper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Using On-Line Documentation. . . . . . . . . . . . . 14
6.1 Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 What is Especially Useful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Printing and Backing Up Disks . . . . . . . . . . . . 16
7.1 Printing A Bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2 Making A Transcript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.3 Printing Out Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.4 Backing Up Your Primary Disk in the 6.001 Lab . . . . . . . . . . 16



ii

8 Logging Out and Giving Feedback . . . . . . . . . 17
8.1 Logging Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

9 Common Problems and Solutions . . . . . . . . . . 18
9.1 Edwin won't respond to anything I type! . . . . . . . . . . . . . . . . . 18
9.2 How Can I Reach a \Steady State?" . . . . . . . . . . . . . . . . . . . . . 18

Appendix A Edwin Major Modes for Scheme
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.1 Scheme Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2 repl Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Appendix B Editing Commands . . . . . . . . . . . . . 21
B.1 Lists and S-expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.2 Indentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.2.1 Indenting Several Lines . . . . . . . . . . . . . . . . . . . . . . . . 22
B.3 Completion for Scheme Symbols . . . . . . . . . . . . . . . . . . . . . . . . 22

Appendix C Debugger . . . . . . . . . . . . . . . . . . . . . . 24
C.1 Subproblems and Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Concept Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28


