
1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1998

Lecture Notes|September 24th.

Henderson Picture Language

Today's lecture will use the Henderson Picture Language as an example of how we can merge

together the themes of data abstraction, higher order procedures and procedural abstractions to

create a new language for describing pictures. You will be dealing with this language in Problem

Set 3, and much of the background for the language is discussed in Section 2.2.4 of the text.

One of the key features of the implementation is that it represents �gures as procedures.

In particular, a \picture" is de�ned to eb a procedure that takes a rectangle as input and causes

something to be drawn, scaled to �t in the rectangle. A rectangle will be represented by three

vectors: an origin, a \horizontal" vector, and a \vertical" vector. The origin o will be represented

as a vector whose coordinates give the coordinates of the origin with respect to some external

coordinate system, such as the graphics screen coordinates. The \horizontal" vector, (call it h) and

the \vertical" vector (call it v) give the o�sets of the sides of the rectangle from the origin. As a

consequence, any rectangle de�nes a linear transformation coordinate map by mapping the point

(1; 0) in its coordinate frame into the point speci�ed by the end of the horizontal vector, o�set

from the origin, and by mapping the point (0; 1) in its coordinate frame into the point speci�ed by

the end of the vertical vector, o�set from the origin.

In algebraic terms, a general point (x; y) gets mapped to the vector

o+ x� h + y � v

where o, h, and v are vectors, and x and y are scalars.

Below is the code we will be using during this lecture to discuss this language.

Basic abstractions

First, we de�ne an abstraction for vectors, and primitive operations on vectors:

(define make-vect cons)

(define xcor car)

(define ycor cdr)

Here is one simple procedure for manipulating vectors

(define (+vect v1 v2)

(make-vect (+ (xcor v1) (xcor v2))

(+ (ycor v1) (ycor v2))))

Related procedures include -vect for subtracting vectors, and scale for scaling a vector by some

amount.

6.001, Fall Semester, 1998|Lecture Notes|September 24th. 2

(define (scale s vect)

(make-vect (* s (xcor vect))

(* s (ycor vect))))

We make line segments out of vectors:

(define make-segment cons)

(define seg-start car)

(define seg-end cdr)

We also make rectangles out of vectors, consisting of an origin, and a vector from that origing to

the end of the \horizontal" axis, and one to the end of the \vertical" axis.

(define make-rectangle list)

(define origin car)

(define horiz cadr)

(define vert caddr)

Using this map, points with coordinates between 0 and 1 end up inside the rectangle, essentially

in a new coordinate system. Here is a procedure which takes a rectangle as input and returns the

corresponding coordinate transform which is itself a procedure:

(define (coord-map rect)

(lambda (point)

(+vect

(+vect (scale (xcor point)

(horiz rect))

(scale (ycor point)

(vert rect)))

(origin rect))))

Finally, we de�ne pictures and some primitives on them:

(define (make-picture seglist)

(lambda (rect)

(for-each

(lambda (segment)

(drawline ((coord-map rect) (seg-start segment))

((coord-map rect) (seg-end segment))))

seglist)))

Note the form of this procedure { it takes a list of segments as input, and returns a procedure {

when this procedure is applied to a rectangle, it will draw the segments inside that rectangle. Thus

a picture is actually a procedure.

drawline draws a line in screen coordinates from one point to another.

Now we can use these ideas:

6.001, Fall Semester, 1998|Lecture Notes|September 24th. 3

(define empty-picture (make-picture '()))

(define outline-picture

(make-picture

(list (make-segment

(make-vect 0 0)

(make-vect 0 1))

(make-segment

(make-vect 0 1)

(make-vect 1 1))

(make-segment

(make-vect 1 1)

(make-vect 1 0))

(make-segment

(make-vect 1 0)

(make-vect 0 0)))))

(define (prim-pict list-of-lines)

(make-picture

(map

(lambda (line)

(make-segment

(make-vect (car line) (cadr line))

(make-vect (caddr line) (cadddr line))))

list-of-lines)))

Now we can make a particular picture (george):

(define g (prim-pict (list (list .25 0 .35 .5)

(list .35 .5 .3 .6)

(list .3 .6 .15 .4)

(list .15 .4 0 .65)

(list .4 0 .5 .3)

(list .5 .3 .6 0)

(list .75 0 .6 .45)

(list .6 .45 1 .15)

(list 1 .35 .75 .65)

(list .75 .65 .6 .65)

(list .6 .65 .65 .85)

(list .65 .85 .6 1)

(list .4 1 .35 .85)

(list .35 .85 .4 .65)

(list .4 .65 .3 .65)

(list .3 .65 .15 .6)

(list .15 .6 0 .85))))

Rotations

To rotate a picture 90 degrees counterclockwise, we need only draw the picture with respect to the

new rectangle:

6.001, Fall Semester, 1998|Lecture Notes|September 24th. 4

(define (rotate90 pict)

(lambda (rect)

(pict (make-rectangle

(+vect (origin rect)

(horiz rect))

(vert rect)

(scale -1 (horiz rect))))))

(define (repeated function n)

(lambda (thing)

(if (= n 0)

thing

((repeated function (- n 1)) (function thing)))))

(define rotate180 (repeated rotate90 2))

(define rotate270 (repeated rotate90 3))

Horizontal
ip is also drawing with respect to a new rectangle:

(define (flip pict)

(lambda (rect)

(pict (make-rectangle (+vect (origin rect) (horiz rect))

(scale -1 (horiz rect))

(vert rect)))))

Means of combining pictures

Since pictures are speci�ed by procedures, we can create higher order procedures that combine

simple pictures together in various ways. For example, the together operation takes two procedures

and combines them into a single picture, lying superimposed.

(define (together pict1 pict2)

(lambda (rect)

(pict1 rect)

(pict2 rect)))

The beside operation takes two pictures and scales them according to some relative width to �t

in a single rectangle. beside takes as input the two pictures plus a number, a, which speci�es the

proportion (between 0 and 1) of horizontal devoted to the �rst picture.

(define (beside pict1 pict2 a)

(lambda (rect)

(pict1 (make-rectangle

(origin rect)

(scale a (horiz rect))

(vert rect)))

(pict2 (make-rectangle

(+vect (origin rect)

(scale a (horiz rect)))

(scale (- 1 a) (horiz rect))

(vert rect)))))

above is de�ned in terms of beside.

(define (above pict1 pict2 a)

(rotate270 (beside (rotate90 pict1)

(rotate90 pict2)

a)))

6.001, Fall Semester, 1998|Lecture Notes|September 24th. 5

Here are some operations de�ned in terms of the basic ones above:

(define (4pict pict1 rot1 pict2 rot2 pict3 rot3 pict4 rot4)

(beside (above ((repeated rotate90 rot1) pict1)

((repeated rotate90 rot2) pict2)

.5)

(above ((repeated rotate90 rot3) pict3)

((repeated rotate90 rot4) pict4)

.5)

.5))

(define (4same pict rot1 rot2 rot3 rot4)

(4pict pict rot1 pict rot2 pict rot3 pict rot4))

(define (up-push pict n)

(if (= n 0)

pict

(above (up-push pict (- n 1))

pict

.25)))

(define (right-push pict n)

(if (= n 0)

pict

(beside (right-push pict (- n 1))

pict

.25)))

(define (corner-push pict n)

(if (= n 0)

pict

(above (beside (up-push pict n)

(corner-push pict (- n 1))

.75)

(beside pict

(right-push pict (- n 1))

.75)

.25)))

(define (square-limit pict n)

(4same (corner-push pict n) 1 2 0 3))

