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Pair Abstraction

1. Constructor

(cons <x-exp> <y-exp>) ==> <P>
- <x-exp> and <y-exp> evaluate to values <x-val> and <y-val> of any Scheme type;
- returns a pair <P> whose car-part is <x-val> and whose cdr-part is <y-val>

2. Accessors

(car <P>) ==> <x-val> ; returns the car-part of the pair <P>
(cdr <P>) ==> <y-val> ; returns the cdr-part of the pair <P>

3. Predicates
(null? <P>) ==> #t if <P> is empty list, else #f
(pair? <P>) ==> #t if <P> is a pair, else #f
Box and pointer diagrams help visualize the structure of arbitrarily complex pair structures.

Pairs have the property of closure: the value resulting from cons can itself be supplied as an
argument to another application of cons.

List Convention

(cons 1 (cons 2 (cons 3 (cons 4 nil))))
is equivalent to
(1ist 1 2 3 4)

consisting of a “backbone” of cons cells, from which hang the items of the list.

Common Patterns — List Procedures
Common Pattern #1: cdr’ing down a list

(define (list-ref 1lst n)
(if (= n 0)
(car 1st)
(list-ref (cdr 1st) (- n 1))))

(define (length 1lst)
(if (null? 1st)
0
(+ 1 (length (cdr 1st)))))
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Common Pattern #2: cons’ing up a list

(define (enumerate-interval from to)
(if (> from to)
nil
(cons from (enumerate-interval (+ 1 from) to))))
Some examples of procedures that both cdr down the list, and cons up a result:

(define (copy 1lst)
(if (null? 1st)
nil ; base case
(cons (car 1st) ; TECUTsion
(copy (cdr 1st)))))

(define (append listl list2)
(if (null? listl)
list2 ; base case

(cons (car listl) ; TECUTSTON
(append (cdr listl) 1list2)))) ; BUG CORRECTED

Common Pattern #3: transforming a list

(define (square-list 1lst)
(if (null? 1lst)
nil
(cons (square (car 1lst))
(square-list (cdr 1st)))))

(define (map proc 1lst)
(if (null? 1st)
nil
(cons (proc (car 1lst))
(map proc (cdr 1st)))))

(define (square-list 1lst) (map square 1lst))

Common Pattern #4: filtering

(define (filter pred lst)
(cond ((null? 1st) nil)
((pred (car 1st))
(cons (car 1lst)

(filter pred (cdr 1lst))))

(else (filter pred (cdr 1st)))))
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Common Pattern #5: accumulation

(define (add-up lst)
(if (null? 1st)
0
(+ (car 1st)
(add-up (cdr 1st)))))

(define (accumulate op init 1lst)
(if (null? 1st)
init
(op (car 1lst)
(accumulate op init (cdr 1st)))))

(define (add-up 1lst) (accumulate + 0 1st))

Write length as an accumulation:

Conventional Interfaces

(define (easy lo hi)
(accum * 1
(map fib
(filter even?
(integers-between lo hi)))))

Easy as a series of black boxes connected by lists:

(define (hard 1lo hi)
(cond ((> 1lo hi) 1)
((even? 1lo) (* (fib 1lo)
(hard (+ lo 1) hi)))
(else (hard (+ lo 1) hi))))
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