MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 1998

Lecture Notes, Sept. 17 — Compound Data and List Processing

Pair Abstraction

1. Constructor

(cons <x-exp> <y-exp>) ==> <P>
- <x-exp> and <y-exp> evaluate to values <x-val> and <y-val> of any Scheme type;
- returns a pair <P> whose car-part is <x-val> and whose cdr-part is <y-val>

2. Accessors

(car <P>) ==> <x-val> ; returns the car-part of the pair <P>
(cdr <P>) ==> <y-val> ; returns the cdr-part of the pair <P>

3. Predicates
(null? <P>) ==> #t if <P> is empty list, else #f
(pair? <P>) ==> #t if <P> is a pair, else #f
Box and pointer diagrams help visualize the structure of arbitrarily complex pair structures.

Pairs have the property of closure: the value resulting from cons can itself be supplied as an
argument to another application of cons.

List Convention

(cons 1 (cons 2 (cons 3 (cons 4 nil))))
is equivalent to
(1ist 1 2 3 4)

consisting of a “backbone” of cons cells, from which hang the items of the list.

Common Patterns — List Procedures
Common Pattern #1: cdr’ing down a list

(define (list-ref 1lst n)
(if (= n 0)
(car 1st)
(list-ref (cdr 1st) (- n 1))))

(define (length 1lst)
(if (null? 1st)
0
(+ 1 (length (cdr 1st)))))



6.001, Fall Semester, 1998—Lecture Notes, Sept. 17 — Compound Data and List Processing

Common Pattern #2: cons’ing up a list

(define (enumerate-interval from to)
(if (> from to)
nil
(cons from (enumerate-interval (+ 1 from) to))))
Some examples of procedures that both cdr down the list, and cons up a result:

(define (copy 1lst)
(if (null? 1st)
nil ; base case
(cons (car 1st) ; TECUTsion
(copy (cdr 1st)))))

(define (append listl list2)
(if (null? listl)
list2 ; base case

(cons (car listl) ; TECUTSTON
(append (cdr listl) 1list2)))) ; BUG CORRECTED

Common Pattern #3: transforming a list

(define (square-list 1lst)
(if (null? 1lst)
nil
(cons (square (car 1lst))
(square-list (cdr 1st)))))

(define (map proc 1lst)
(if (null? 1st)
nil
(cons (proc (car 1lst))
(map proc (cdr 1st)))))

(define (square-list 1lst) (map square 1lst))

Common Pattern #4: filtering

(define (filter pred lst)
(cond ((null? 1st) nil)
((pred (car 1st))
(cons (car 1lst)

(filter pred (cdr 1lst))))

(else (filter pred (cdr 1st)))))



6.001, Fall Semester, 1998—Lecture Notes, Sept. 17 — Compound Data and List Processing

Common Pattern #5: accumulation

(define (add-up lst)
(if (null? 1st)
0
(+ (car 1st)
(add-up (cdr 1st)))))

(define (accumulate op init 1lst)
(if (null? 1st)
init
(op (car 1lst)
(accumulate op init (cdr 1st)))))

(define (add-up 1lst) (accumulate + 0 1st))

Write length as an accumulation:

Conventional Interfaces

(define (easy lo hi)
(accum * 1
(map fib
(filter even?
(integers-between lo hi)))))

Easy as a series of black boxes connected by lists:

(define (hard 1lo hi)
(cond ((> 1lo hi) 1)
((even? 1lo) (* (fib 1lo)
(hard (+ lo 1) hi)))
(else (hard (+ lo 1) hi))))

3



