

1

Java: According to the Court

 ‘‘Sun's Java Technology is a collection of program-
ming components that create a standard, platform-inde-
pendent programming and runtime environment. Sun's
Java Technology has two basic elements: the

Java pro-
gramming environment

 and the

Java runtime envi-
ronment

.

 ‘‘The

Java programming environment

 allows soft-
ware developers to create a single version of program
code that is capable of running on any platform which
possesses a compatible implementation of the Java
runtime environment. The Java programming environ-
ment comprises (1) Sun's specification for the Java lan-
guage, (2) Sun's specification for the Java class libraries
and (3) the Java compiler.

 ‘‘The

Java runtime environment

 comprises the
Java class libraries and the Java runtime interpreter. A
system platform or browser program that implements
the Java runtime environment can execute application
programs developed using the Java programming envi-
ronment. ’’

2

Example

void spin() {

 int i;

 for (i = 0; i < 100; i++) {

 ; // Loop body is empty

 }

}

Method

void spin()

 0 iconst_0 //Push

int

 constant

0

 1 istore_1 //Store into local 1 (

i=0

)

 2 goto 8 //First time don’t increment

 5 iinc 1 1 //Increment local 1 by 1 (

i++

)

 8 iload_1 //Push local 1 (

i

)

 9 bipush 100 //Push int constant (

100

)

11 if_icmplt 5 //Compare, loop if < (

i<100

)

14 return //Return

void

 when done

Bytecodes:

3 60 167 0 8 132 1 1 27 16 100 161 0 5 177

3

Java Design Goals

"The Java Language: A White Paper," Sun Microsystems:

"Java: a

simple,

object-oriented,

distributed,

interpreted,

robust,

secure,

architecture neutral,

portable,

high-performance,

multithreaded, and

dynamic language."

4

Java Language Elements

Primitives:

- Primitive Data
booleans:

true

,

false

integers:

byte

 (8 bits),

short

 (16 bits),

 int

 (32 bits),

long

(64 bits)
floating point:

float

 (32 bits),

double

(64 bits)
- Objects

Means of Combination:

- Arrays, e.g.

int xarr[] = {1, 2, 3};

- Method invocation

Means of Abstraction

- Variables, e.g.

int x = 27;

- Classes
- Interfaces
- Packages

5

Java Class Model

• A Class defines
- instance variables
- constructors (for instance creation)
- methods (invoked on instances)

- class variables
- class methods

• Method Invocation

• Object References
- Primitive data are

pass-by-value

- Objects are

pass-by-reference

•

Single

 Inheritance

6

Class Example 1: Class as Data Structure

class Body {

 public long idNum; //instance vars

 public String nameFor;

 public Body orbits;

 public static long nextID = 0; //class var

}

Object (Variable) Declaration:

 Body mercury; // declare but no creation

Object Creation:

 Body sun = new Body();

 sun.idNum = Body.nextID++;

 sun.nameFor = "Sol";

 sun.orbits = null;

 Body earth = new Body();

 earth.idNum = Body.nextID++;

 earth.nameFor = "Earth";

 earth.orbits = sun;

7

Class Example 2: With Constructors,
Instance Methods, and Class Methods

class Body {

 public long idNum; //instance vars

 public String nameFor;

 public Body orbits;

 public long id() { return idNum; }

 private static long nextID = 0; //class var

 public long numBodies() {

 return nextID;

 }

 Body() { idNum = nextID++; }

 Body(String bodyName, Body orbits) {

 this(); //explicit construct invocation

 name = bodyName;

 this.orbits = orbist;

 }

}

 Body sun = new Body();

 sun.nameFor = "Sol";

 sun.orbits = null;

 Body earth = new Body("Earth", sun);

 System.out.println(earth.nameFor +

 " is body number" + earth.id() +

 " out of " + Body.numBodies());

Earth is body number 1 out of 2 bodies

8

Object References

 Body sun = new Body("Sol", null);

 Body earth = new Body("Earth", sun);

 Body home = earth;

 home.nameFor = "Home Sweet Home";

 System.out.println("Earth is " +

 earth.nameFor);

Earth is Home Sweet Home

9

Garbage Collection

 Body sun = new Body("Sol", null);

 Body earth = new Body("Earth", sun);

 sun = new Body("Center of Universe", null);

Question: is the old sun object now garbage?

 earth = new Body("FlatEarth", sun);

Question: is the old earth object now garbage?
 How about the old sun object?

10

Garbage Collection and Finalization

Finalization provides an opportunity to perform user-defined
"clean up" operations just before an object is garbage collected:

public class ProcessFile {

 private Stream file;

 public ProcessFile(String path) {

 File = new Stream(path);

 }

 // ...

 public void close() {

 if (File != null) {

 File.close();

 File = null;

 }

 }

 protected void finalize() throws Throwable

 super.finalize();

 close();

 }

}

11

Inheritance

class Moon extends Body {

 public String phase;

 Moon(String name, Body orbits, String phase) {

 super(name, orbits);

 this.phase = phase;

 orbits.addMoon(this);

 }

}

class Planet extends Body {

 final int MAX_MOONS = 10;

 public Moon[] moons = new Moon[MAX_MOONS];

 public int numMoon = 0;

 public void addMoon(Moon m) {

 moons[numMoon++] = m;

 }

}

Body sun = new Body("Sol", null);

Planet earth = new Planet("Earth", sun);

Moon luna = new Moon("Luna", earth, "Full");

12

Java Inheritance

Object

Body

PlanetMoon

idNum

nameFor
orbits
id()

phase
moons
numMoon
addMoon(..)

extends

extends
extends

private

public

• Java enforces only single inheritance:

• Every class has exactly one superclass
- except Object which is the base class

13

Java Instances

sun

Body

"Sol"
orbits null

Planet
 idnum = 1

 orbits
 moons[0]

Moon
 idnum = 2

 orbits
 "Full"

earth
luna

 idnum = 0

 "Luna" "Earth"

14

Java "Interfaces"

• The interface is a way to "standardize" methods and behav-
iors across classes without inheritance
- specification of methods
- does not include implementation for these methods

• Interfaces can have (multiple) sub-interfaces

15

Interface Example

public interface Drawable {

 public void setPosition(double x, double y);

 public void draw(DrawWindow dw);

 }

class Body implements Drawable {

 private double x_pos = 0.0, y_pos = 0.0;

 public long idNum; //instance vars

 public String nameFor;

 public Body orbits;

 ...

 public void setPosition(double x, double y) {

 x_pos = x; y_pos = y;

 }

 public void draw(DrawWindow dw) {

 dw.drawCircle(x_pos, y_pos, 1.0);

 }

 ...

}

16

Java Packages

The Package is a means to scope names and provide/limit access
to classes and methods within/outside the package:

1. Naming:
- Universally(!) unique names for classes and methods:

java.lang.String.substring()

EDU.mit.www-mtl.boning.worlds.Body.numBodies()

- One can use "shortened" names for classes within a pack-
age, or from "imported" packages:

import package;

import package.class;

import package.*;

import java.lang.*; //implicit

2. Access/Inheritance: Various rules about access to packages,
classes, and fields within classes
- public classes are accessible within another package
- private fields in a class only accessible to methods within

that class
- private protected fields in a class accessible to that class

and subclasses of that class

17

Exception Handling

• Exceptions arise when methods are invoked on objects
due to:
- discovered internal state problems
- errors with objects or data
- discovery of contract violations
- array access out of bounds
- out of memory

• Exceptions are thrown by the system or by the pro-
grammer when an unexpected error condition is encoun-
tered.

• The exception is caught by surrounding code some-
where up the (dynamic) call chain designed to deal with
the exception.

• Java exceptions are objects (instances of
java.lang.Error or java.lang.Exception)
- the programmer can add their own exceptions and

exception handling

18

Exception Handling Code

try {

 // "Normal" operation of this block...

}

catch (SomeException e1) {

 // Handle SomeException...

}

catch (SomeOtherException e2) {

 // Handle SomeOtherException...

}

finally {

 // Code to do after successful try or

 // handled exception...

}

19

Example

boolean searchFor(String file, String word)

 throws StreamException

{

 Stream input = null;

 try {

 input = new Stream(file);

 while (!input.eof())

 if (input.next() == word)

 return true;

 return false; // word not found

 } catch (FileNotFoundExcept e) {

 // Don’t panic if file doesn’t exist..

 return false;

 } finally {

 if (input != null)

 input.close();

 }

}

• Note: The finally block is always executed:
- at the end of the try block (if no exceptions occurred)
- before the "return true" or "return false" in the try

block
- at the end of a caught exception - unless the catch block

itself changes the control (e.g. via a break or return)

20

Threads

• A thread is a process which can run concurrently with other
threads

• Synchronization is provided by locking on shared objects:

Account A;

...

synchronized (A) { // blocks if object A is locked

 double a1 = A.getBalance();

 a1 += 200.0;

 A.setBalance(a1);

 }

synchronized (A) { // blocks if object A is locked

 double a2 = A.getBalance();

 a2 += deposit;

 A.setBalance(a2);

 }

a1 = A.getBalance();

a1 += deposit;

A.setBalance(a1);

a2 = A.getBalance();

a2 += deposit;

A.setBalance(a2);

100

100

deposit $200

deposit $25

300

125

300

125

21

Multithreading, Continued

• One can also declare synchronized methods:

class Account {

 private double balance;

 public Account(double initialDeposit) {

 balance = initialDeposit;

 }

 public synchronized double getBalance() {

 return balance;

 }

 public synchronized double

 deposit(double amount) {

 balance += amount;

 }

}

22

Wait and Notify

• Mechanisms are also provided to negotiate control and com-
municate between threads:

synchronized void doWhenCondition() {

 while (!condition)

 wait(); // halt thread until notified

 ... Do what needs doing when condition true

}

synchronized void changeCondition() {

 ... Change some values used in a condition

 notify(); // give up lock and notify threads

}

23

Wait/Notify Example

class Queue {

 Element head, tail;

 public synchronized void append(Element p) {

 if (tail == null)

 head = p;

 else

 tail.next = p;

 p.next = null;

 tail = p;

 notify(); // Let waiters know of arrival

 }

 public synchronized Element get() {

 while(head == null)

 wait(); // Wait for an element

 Element p = head; // Remember first element

 head = head.next; // Remove it from queue

 if (head == null) // Check for an empty Q

 tail = null;

 return p;

 }

}

24

Java Application Programming Interface (API)

• A standard set of classes that programmers can use

Some Examples:

• Networking Functionality (java.net)
- URL class

• Graphical User Interfaces (java.awt)

• Input/Output Package (java.io)
- Streams: InputStream, OutputStream, Piped, Fil-
ter

- File handling
- StreamTokenizer to parse streams

• Standard Utilities (java.util)
- Enumeration

- Vector (dynamically sized)
- Stack
- Dictionary
- Hash Table
- Observer/Observable
- Date
- Random

• Java Runtime System Access (java.lang)
- Classes include: Runtime, Process, System, Math

25

Java Virtual Machine (JVM)

• Primitive data types are handled by JVM directly:
- variants of opcodes for different types:

iconst, lconst, fconst, dconst

- type conversions
i2l, i2f, f2i, ...

• Primitive operations (e.g. math, bit manipulation)
- iadd, isub, idiv, imul; ior, ishr, ishl

• Stack oriented
- operands to a JVM opcode are pushed/popped from an

operand stack -- not registers
- many opcodes deal with moving data (constants, references,

addresses) between the stack and local variable stores:
iconst, bipush, iload, iaload, istore, swap, ...

• Condition Testing and Flow control
- if_icmpeq, if_icmpne, goto, jsr

• Support for Java class model:
- data member access: getfield, putfield, putstatic
- method invocation: invokevirtual, invokestatic, ...
- method return values: return, ireturn, lreturn, ...

• Support for Exceptions: athrow

• Support for Synchronization: monitorenter, monitorexit

• Runtime system has a Byte Code Verifier on loaded classes
- verify that language constraints are satisfied

26

Java Native Interface

• Issue: how can one access programs written in other
languages (or underlying machine language)?
- "All portability and safety of the code is lost"
- Not appropriate for Applet code running on multiple

hardware platforms
- May be necessary for embedded system applications

• Need: A "standard" way to interface to native methods

• Language/Compiler native Keyword:

 public native void unlock() throws IOEx-
ception;

Note that no Java implementation is present.

• JNI - Java Native Interface
- public API to Java runtime interpreter
- links Java code to native code through the JVM
- provides native code with access to the JVM

27

Sun v. Microsoft

[...]
IV. ORDER

 Since the court finds that Sun is likely to prevail on the merits
and that it may suffer irreparable harm if Microsoft is not
enjoined, a preliminary injunction is hereby issued against
Microsoft [...] from:
[...]
(B) Selling or distributing, directly or indirectly, any software
development tool or product containing or implementing com-
puter program code copied or derived from any Sun copyrighted
program code for the Java Technology; as that term is defined in
the TLDA, including SDKJ 2.0, SDKJ 3.0 and VJ 6.0, ninety
(90) days after the date of this order unless such product:

 (1) includes a Java runtime implementation which supports
Sun's JNI (including help files, header files, etc.) in a manner
which passes the compatibility test suite accompanying the latest
version of the Java Technology contained in, implemented by, or
emulated by such product,

 (2) has the default mode in the compiler configured such that
(a) Microsoft's keyword extensions and compiler directives are
disabled and (b) has the compiler mode switch such that it
enables, rather than disables, such keyword extensions and com-
piler directives, and
[...]

28

Microsoft’s "Delegation" Extension

public class SimpleExample extends JPanel {

 JButton button = new JButton("Hello, world");

 private void button_clicked(ActionEvent e) {

 System.out.println("Hello, world!");

}

...

public SimpleExample() {

 button.addActionListener(

 new ActionDelegate(this.button_clicked));

 add(button);

 ...

}

Sun’s "Inner Classes"

public class SimpleExample extends JPanel {

 JButton button = new JButton("Hello, world");

 ...

 public SimpleExample() {

 button.addActionListener(

 new ActionListener() {

 public void actionPerformed(ActionEvent e)

 {System.out.println("Hello, World!");}

 });

 add(button);

 ...

}

...

29

Example: Sorting an Array

void sortIgnoreCase(String words[]) {

 Arrays.sort(words, new Comparator() {

 public int compare(Object o1, Object o2) {

 String s1 = ((String)o1).toLowerCase();

 String s2 = ((String)o2).toLowerCase();

 return s1.compareTo(s2);

 }

});

...

}

