
1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1998

Lecture Notes { November 3, 1998

Concurrency

Bank Account (Message Passing)

(define (make-account balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount)))

(define (dispatch m)

(cond ((eq? m 'withdraw) withdraw)

((eq? m 'deposit) deposit)

((eq? m 'balance) balance)

(else (error "unknown request" m))))

dispatch)

Create a shared bank account:

(define peter-account (make-account 100))

(define paul-account peter-account)

Consider what might happen if the following two processes occur concurrently:

((peter-account 'withdraw) 10)

((paul-account 'withdraw) 25)

Problem:



6.001, Fall Semester, 1998|Lecture Notes { November 3, 1998 2

Parallel Execution Example

(define x 10)

(define p3 (lambda () (set! x (* x x))))

(define p4 (lambda () (set! x (+ x 1))))

(parallel-execute p3 p4)

a: lookup first x in p3

b: lookup second x in p3

c: assign product of a and b to x

d: lookup x in p4

e: assign sum of d and 1 to x

Possible results { consistent with partial orderings of p3 & p4: 101, 121, 110, 11, 100

Possible results { consistent with any sequential ordering of p3 & p4 { that is, no interleaving of the parts

within p3 & p4: fp3 p4g => 101 and fp4 p3g => 121

Approach: Serializers to \Mark" Critical Regions

We can mark critical regions of code that cannot overlap execution in time. This adds an additional constraint

to the partial ordering imposed by the separate processes.

(define mark-red (make-serializer))

(define (p1)

a ((mark-red (lambda () b c d))) e f g h)

(define (p2)

J K ((mark-red (lamda () L M N))) O)

(parallel-execute p1 p2)



6.001, Fall Semester, 1998|Lecture Notes { November 3, 1998 3

Serializers in Bank Example

(define (make-account balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount)))

(let ((marker (make-serializer)))

(define (dispatch m)

(cond ((eq? m 'withdraw) (marker withdraw))

((eq? m 'deposit) (marker deposit))

((eq? m 'balance) balance)

(else (error "unknown request" m))))

dispatch))

Deadlock

Even with serializers, it is still possible to have di�culties with concurrent processes:

(define mark-red (make-serializer))

(define mark-blue (make-serializer))

(define (p1)

((mark-blue (lambda () a ((mark-red (lambda () b c d e))) f))))

(define (p2)

((mark-red (lambda () J K ((mark-blue (lambda () L M N))) O P))))

(parallel-execute p1 p2)



6.001, Fall Semester, 1998|Lecture Notes { November 3, 1998 4

A Simpli�ed Serializer

Analogy: Multiple speakers in a room. How does a speaker succeed in making his speech?

1. He will �rst check for empty microphone

2. If no-one is speaking, he grabs the microphone

3. He says what he wants to say

4. When done he gives up the microphone.

Code Attempt #1:

(define (mark-red some-speech)

(if (red-microphone-available?)

(begin (grab-red-microphone)

(some-speech)

(give-up-red-microphone))))

Code Attempt #2:

(define (mark-red some-speech)

(lambda ()

(if (red-microphone-available?)

(begin (grab-red-microphone)

(some-speech)

(give-up-red-microphone)))))

Code Attempt #3:

(define (mark-red some-speech)

(define (wait-for-free-red-microphone)

(if (red-microphone-available?)

'ready

(begin (wait-for-random-time)

(wait-for-free-red-microphone))))

(lambda ()

(wait-for-free-red-microphone)

(grab-red-microphone)

(some-speech)

(give-up-red-microphone)))

Code Attempt #4:

(define (mark-red SOME-PROC)

(define (wait-for-free-red-microphone)

(if (red-microphone-available?)

'ready (begin (wait-for-random-time)

(wait-for-free-red-microphone))))

(lambda ()

(wait-for-free-red-microphone)

(grab-red-microphone)

(let ((result (SOME-PROC)))

(give-up-red-microphone)

result)))



6.001, Fall Semester, 1998|Lecture Notes { November 3, 1998 5

Coordination Procedures

How can we implement the \microphone"

coordination procedures?

(define red-mike-available #t)

(define (red-microphone-available?)

red-mike-available)

(define (grab-red-microphone)

(set! red-mike-available #f))

(define (give-up-red-microphone)

(set! red-mike-available #t))

Problem:

Approach: Seek a �ne grain "atomic action" - e.g

test-and-set!

Mutex

(define (make-mutex)

(let ((cell (list #f)))

(define (the-mutex m)

(cond ((eq? m 'acquire)

(if (test-and-set! cell)

(the-mutex 'acquire))) ; retry

((eq? m 'release) (clear! cell))))

the-mutex))

(define (clear! cell)

(set-car! cell #f))

;; SHOULD BE AN ATOMIC ACTION

(define (test-and-set! cell)

(if (car cell)

#t

(begin (set-car! cell #t)

#f)))

Serializer

(define (make-serializer)

(let ((mutex (make-mutex)))

(lambda (p)

(define (serialized-p . args)

(mutex 'acquire)

(let ((val (apply p args)))

(mutex 'release)

val))

serialized-p)))


