
1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1998

Lecture Notes { Oct. 15, 1998

STREAMS

Contract for the stream constructor and the selectors:

(stream-car (cons-stream <x> <y>)) ==> <x>

(stream-cdr (cons-stream <x> <y>)) ==> <y>

A simple implementation of streams simply lifts the list abstraction and renames it.

(define the-empty-stream '())

(define stream-null? null?)

(define cons-stream cons)

(define stream-car car)

(define stream-cdr cdr)

Now we can do all the normal sorts of things we do with lists:

(define (add-streams s1 s2)

(cond ((stream-null? s1) the-empty-stream)

((stream-null? s2) the-empty-stream)

(else (cons-stream

(+ (stream-car s1) (stream-car s2))

(add-streams (stream-cdr s1)

(stream-cdr s2))))))

(define (stream-filter pred s)

(cond ((stream-null? s) the-empty-stream)

((not (pred (stream-car s)))

(stream-cdr s))

(else (cons-stream (stream-car s)

(stream-filter pred

(stream-cdr s))))))

(define (stream-ref s n)

(if (= n 0)

(stream-car s)

(stream-ref (stream-cdr s) (- n 1))))

(define (stream-map proc s)

(if (stream-null? s)

the-empty-stream

(cons-stream (proc (stream-car s))

(stream-map proc (stream-cdr s)))))

(define (stream-scale factor s)

(stream-map (lambda (x) (* factor x))

s))

(define (stream-for-each proc s)

(if (stream-null? s)

'done

(begin (proc (stream-car s))

(stream-for-each proc (stream-cdr s)))))

6.001, Fall Semester, 1998|Lecture Notes { Oct. 15, 1998 2

(define (display-stream s)

(stream-for-each display-line s))

(define (display-line x)

(newline)

(display x))

We can make up streams of integers over some interval with:

(define (stream-enumerate-interval lo hi)

(if (> lo hi)

the-empty-stream

(cons-stream lo

(stream-enumerate-interval (+ 1 lo)

hi))))

And we can accumulate sums, products, or many intricate other things with:

(define (accumulate-stream combiner initial s)

(if (stream-null? s)

initial

(combiner (stream-car s)

(accumulate-stream combiner

initial

(stream-cdr s)))))

Now we can program complex things without making explicit reference to iteration:

(define (sum-odd-squares from to)

(accumulate-stream

+

0

(stream-map square

(stream-filter odd?

(stream-enumerate-interval from to)))))

(define (integral f lo hi dx)

(* dx

(accumulate-stream

+

0

(stream-map f

(stream-map (lambda (x) (+ lo x))

(stream-scale dx

(stream-enumerate-interval

0

(ceiling (/ (- hi lo) dx)))))))))

But why did we need the stream abstraction? Why not just use lists? It turns out that with a

very simple twist to the implementation of our abstraction we get streams in�nitely more powerful

than lists.

Suppose we have a special form delay such that (delay exp) does not evaluate exp, but rather

returns an object that will later evaluate exp when that object is given to a procedure force as its

argument.

Now we slightly modify our constructor and selectors. In particular we make cons-stream into a

special form, so that its second argument does not get evaluated until we look at it with stream-cdr.

6.001, Fall Semester, 1998|Lecture Notes { Oct. 15, 1998 3

(cons-stream <a>) equivalent to (cons <a> (delay))

(define (stream-car stream) (car stream) ;; same as before

(define (stream-cdr stream) (force (cdr stream)))

It turns out that delay and force are not too outrageous.

(delay <exp>) equivalent to (lambda () <exp>)

(define (force delayed-object)

(delayed-object))

Now we can make in�nite streams! As we don't look too far along them they won't be there and

we won't have any problems.

(define (integers-starting-from n)

(cons-stream n (integers-starting-from (+ n 1))))

(define integers (integers-starting-from 1)))

(define (fibgen a b)

(cons-stream a (fibgen b (+ a b))))

(define fibs (fibgen 0 1))

(define (divisible? x y) (= (remainder x y) 0))

(define no-sevens

(stream-filter (lambda (x) (not (divisible? x 7)))

integers))

is an in�nite stream of all integers not divisible by 7.

(stream-ref no-sevens 100) ==> 117

We can manipulate it just like a �nite sized object.

(define (sieve s)

(cons-stream

(stream-car s)

(sieve (stream-filter

(lambda (x)

(not (divisible? x (stream-car s))))

(stream-cdr s)))))

(define primes (sieve (integers-starting-from 2)))

Recursive de�nitions of in�nite streams:

(define ones (cons-stream 1 ones))

(define integers (cons-stream 1 (add-streams ones integers)))

(define fibs

(cons-stream 0

(cons-stream 1

(add-streams (stream-cdr fibs)

fibs))))

(define double (cons-stream 1 (stream-scale 2 double)))

