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MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Problem Set 10

Register Machines and Compilation

Issued: Tuesday, November 19, 1996

Written solutions due: Friday, December 6, 1996

Reading:

� Complete chapter 5; you do not need to know the details of section 5.2.

� Look over the attached code �les compiler.scm eceval.scm.

� Auxiliary �les regsim.scm assemble.scm evdata.scm syntax.scm compdata.scm are also

attached for reference.

**FINAL EXAM**: The �nal will be held on Wednesday, December 18 (1:30 P.M. - 4:30

P.M.) in the Johnson Athletic Ctr (W34-100). It will cover the whole course with extra emphasis

on the material not covered in the previous two quizzes, namely, Problem Sets 9 and 10 and

chapters 4{5 of the book.

Register machines provide a means of customizing code for particular processes. In principle,

customization leads to more e�cient code, since one can avoid the overhead that comes from a

compiler's obligation to handle more general computations1. In this problem set you will hand-

craft two simple machines and compare them to the compiler and the explicit control evaluator of

Chapter 5.

The register machines you de�ne should use only the following few primitives:

+ - * / inc dec = < > zero? not true false nil

cons car cdr pair? null? list eq? symbol? write-line

Even though code generated by the compilers uses more complex primitives such as

lookup-variable-value extend-environment ...,

your hand-crafted code should turn out to run more e�ciently.

1For example, the compiler in Chapter 5 generates code in which arguments of procedures are maintained as a

list in the argl register. On the other hand, a register machine customized for a procedure of, say, three arguments

might usefully keep the arguments in three separate registers.
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Remember that register machine instructions are only of the following types:

test branch assign goto save restore perform

In this problem set, you should not need to use perform. Remember also that the only values that

can be assigned to registers or tested in branches are constants, fetches from registers, or primitive

operations applied to fetches from registers. No nested operations are permitted2.

Tutorial Preparation

The following exercises should be prepared for discussion in tutorial. In addition

Tutorial Exercise 1 De�ne, in Scheme, two di�erent procedures that compute the \parity" of

a list of numbers, which we will de�ne as the product of the signs of those numbers. For example,

(parity 5 2 -3) evaluates to -1; (parity -1 0 -3) evaluates to 1, as we will count the parity

of zero as 1. You should make sure you de�ne everything in terms of the available primitives. For

each of your procedures, say what order of growth in time (number of machine operations) and

space (stack depth) you expect them to use. Pick your two procedures to have di�erent orders of

growth in space (i.e. iterative vs. recursive).

Tutorial exercise 2 Implement each of your procedures from exercise 1 as a register machine,

and show both the data paths and controllers for each machine. For the data paths, a diagram is

needed; for the controllers, a textual description in the manner of Chapter 5 is adequate.

When implementing register machines, you should observe the following caveats:

� Every instruction is one of the following types: assign, branch, goto, save, restore. You

should not need to use perform.

� The only values that can be assigned to registers or tested in branches are constants, fetches

from registers, or primitive operations applied to fetches from registers. No nested operations

are permitted.

To do in lab

In lab, you will use the register machine simulator to test the register machines you designed in the

tutorial exercises. To use the simulator, load the code for problem set 10 and type in your machine

de�nitions:

2For example,

(assign val (op inc) ((op *) (reg a) (reg b)))

is not permitted, since a call to * is nested inside a call to inc.
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(define my-machine

(make-machine

'(x l val ...)

standard-primitives ; + - * / inc, etc.

'((test ...) ; add your machine controller code here
...

)))

You will �nd it convenient to de�ne test procedures that load an input into a machine, run the

machine, print some statistics, and return the result computed by the machine. Here is an example

that works for a machine that has an input register lst and returns its result in register result.

Depending on how you design your machine, you may need to make your own version:

(define (test-machine machine arg)

(set-register-contents! machine 'lst arg)

(newline)

(display ";Resetting... ignore")

(machine 'initialize-stack)

(machine 'initialize-ops-counter)

(newline)

(display ";Running on arg: ") (display arg)

(start machine)

(newline)

(display ";Run complete:")

(machine 'print-stack-statistics)

(machine 'print-ops)

(get-register-contents machine 'result))

In addition to routines that gather statistics for stack usage and total number of operations, there

are some procedures to help you debug your machines. trace-reg-on will show all assignments to

a speci�ed machine register as they occur. Evaluating:

(trace-reg-on my-machine 'z)

before running your test procedure will show you all the changes to the z register. To see even

more stu�, try:

(trace-on my-machine)

which will print each machine instruction as it is executed. To get rid of these traces, use

trace-reg-off and trace-off.

Lab exercise 1A: Debug your machines, run them on some representative inputs, and make

a table that records the total number of machine operations, total number of stack pushes, and

maximum stack depth as a function of the length of the list.

PostLab exercise 1B: Try to derive formulas for the total number of machine operations, total

number of pushes, and maximum stack depth used by your machines, as functions of the length of
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the list. In most cases, the functions will turn out to be polynomials in the list length, in which

case you should be able to exhibit exact formulas, not just orders of growth.

Running the Compiler

There are two ways to run the compiler. First, you may simply compile an expression and obtain

the list of machine instructions as a result, so that you can study it. For instance,

(define test-expression '(define (f x y) (* (+ x y) (- x y))))

(define result (compile test-expression 'val 'return))

(pp result)

A way to look just at the produced code even more easily is:

(compile-and-display test-expression)

which does exactly the same call to compile as above.

The second way to run the compiler is to apply the procedure compile-and-go to the expression.

This compiles the expression and executes it in the environment of the explicit control evaluator

machine eceval. When evaluation is complete, you are left in the read-eval-print loop talking to

the explicit control evaluator. Then you can experiment with the compiled expression by evaluating

further expressions.

Running the Evaluator

The evaluator for this problem set is the explicit control evaluator of section 5.4. For your conve-

nience, we have extended it to handle cond and let.

To evaluate an expression in the eceval read-eval-print loop, type the expression after the prompt,

followed by ctrl-X ctrl-E. After each evaluation, the simulator will print the number of stack

and machine operations required to execute the code.3

Here is an example:

(compile-and-go

'(define (fact n) (if (= n 0) 1 (* n (fact (- n 1))))))

(total-pushes = 0 maximum-depth = 0)

(machine-ops = 9)

;;; EC-Eval value: (the-unspecified-value)

;;; EC-Eval input: (fact 4) <== you type this and return

(total-pushes = 31 maximum-depth = 14)

(machine-ops = 278)

;;; EC-Eval value: 24

;;; EC-Eval input: (fact (fact 3)) <== you type this

(total-pushes = 68 maximum-depth = 20)

(machine-ops = 594)

;;; EC-Eval value: 720

3These counts may include a few extra operations needed to run the driver loop itself. This is a small constant

overhead that you can ignore when you collect statistics.
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;;; EC-Eval input: fact

(total-pushes = 0 maximum-depth = 0)

(machine-ops = 13)

;;; EC-Eval value: <compiled-procedure>

;;; EC-Eval input:

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1))))) ;<== fact gets redefined

(total-pushes = 3 maximum-depth = 3)

(machine-ops = 45)

;;; EC-Eval value: (the-unspecified-value)

;;; EC-Eval input: fact

(total-pushes = 0 maximum-depth = 0)

(machine-ops = 13)

;;; EC-Eval value:

;;; (compound-procedure (n)

;;; ((if (= n 0) 1 (* n (fact (- n 1))))) <procedure-env>)

;;; EC-Eval input:

(fact 4) ;<== redefined fact gets interpreted -- slower!

(total-pushes = 144 maximum-depth = 20)

(machine-ops = 1572)

;;; EC-Eval value: 24

To exit back to regular Scheme type ctrl-C ctrl-C. To re-enter the evaluator with the pre-

vious global environment, you may do another compile-and-go, or you may simply evaluate

(eval-loop) in Scheme. To start the evaluator with a reinitialized global environment, evalu-

ate (start-eceval).

Lab exercise 2A: Compile and run the (Scheme) de�nitions of your two parity procedures,

and make tables to record statistics.

Lab exercise 2B: Now rede�ne your two parity procedures within the eceval read-eval-print

loop and record corresponding statistics for the interpreted de�nitions.

PostLab exercise 2C: Derive formulas for the total number of machine operations, total number

of pushes, and maximum stack depth required, as functions of the length of the list, for the compiled

and interpreted procedures.

Post Lab exercise 2D: We'll consider the time used for a computation to be the total number

of machine operations, and the space used to be the maximum stack depth. For each of your

procedures, determine the limiting ratio, as the list length becomes large, of the time and space re-

quirements for your hand-coded machines, versus the time and space requirements for the compiled

and interpreted code.
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Lab exercise 3A: Make listings of the code generated by the compiler for the de�nitions of

your two procedures. Annotate these listings to indicate what various portions of the generated

register code corresponds to, e.g. procedure de�nition, construction of argument lists, procedure

application, etc.

PostLab exercise 3B: Compare the listings with your hand-coded versions to see why the

compiler's code is less e�cient than yours. Suggest one improvement to the compiler that could

lead it to do a better job. Write one or two clear paragraphs indicating how you might go about

implementing your improvement. You needn't actually carry out the the implementation, but

your description should be reasonably precise. For example, you should say what new information

the compiler should keep track of, what new data structures may be required to maintain this

information, and how the information should be used in generating the new, improved code.

Lab exercise 4: To gain more understanding of the compiler (as described in Chapter 5 of the

book), you will next make a small change to the language and modify the compiler accordingly. In

particular, we wish to change variable assignment to actually return a useful value, in this case the

old value of the variable. For example

(define x 1)

(set! x 2)

; Value: 1

(set! x 2)

; Value: 2

(* (set! x (+ x 1)) 10)

; Value: 20

To do this problem, you will need to think carefully about how the compiler generates code and

\preserves" registers by using the stack. You should not add any new registers to your machine.

Turn in listings of your modi�cations to the compiler, together with test cases that show both the

compiled code generated (using compile-and-display) and the results returned for your test cases

(using compile-and-go). Remember, compiled code for your set! expressions will have this new

behavior, but eceval itself will not, so keep this in mind when you are debugging.

Some test cases you should consider include:

(set! x 1)

(set! x (+ 1 2))

(begin (set! x (+ 1 2)) 3)

That's all folks { the last problem set! We hope you have found them entertaining, engrossing, and

educational.


