
1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Lecture Notes { November 26, 1996

Compilation

If we watched the evaluation of the combination (F X), we would see the following sequence of

register operations:

(assign unev (op cdr) (reg exp))

(assign exp (op car) (reg exp))

(save continue)

(save env)

(save unev)

(assign val (op lookup-var-val) (reg exp) (reg env))

(restore unev)

(restore env)

(assign proc (reg val))

(save proc)

(assign argl (op empty-arglist))

(save argl)

(assign exp (op car) (reg unev))

(assign continue (label ev-appl-accum-last-arg))

(assign val (op lookup-var-val) (reg exp) (reg env))

(restore argl)

(assign argl (op cons) (reg val) (reg argl))

(restore proc)

;; computation proceeds at apply-dispatch

With a compiler, we can build the pieces of the expression directly into the register operations.

Thus, we do not need to worry about saving exp or unev. We can also ignore the continuations

generated during evaluation of the pieces of the express (thus we needn't do the initial save of

continue in the third line above). So simply taking advantage of the fact that the form of the

exprssion can be compiled into the 
ow of the evaluation gives the following alternative to the

above code.



6.001, Fall Semester, 1996|Lecture Notes { November 26, 1996 2

1. (save env)

2. (assign val (op lookup-var-val) (const f) (reg env))

3. (restore env)

4. (assign proc (reg val))

5. (save proc)

6. (assign argl (op empty-arglist))

7. (save argl)

8. (assign val (op lookup-var-val) (const x) (reg env))

9. (restore argl)

10. (assign argl (op cons) (reg val) (reg argl))

11. (restore proc)

;; computation proceeds at apply-dispatch

With more cleverness, we can note some optimizations:

� the instruction in line 2 doesn't clobber env, so we needn't save and restore it;

� line 2 might as well move the result directly to proc;

� lines 6, 7, and 9 are unnecessary, since the only thing being save and restored is the empty

list;

� the argument evaluation doesn't clobber proc, so the save in line 5 and the restore in line 11

are unnecessary.

Thus a smarter compiler would generate the following code:

(assign proc (op lookup-var-val) (const f) (reg env))

(assign val (op lookup-var-val) (const x) (reg env))

(assign argl (op cons) (reg val) (op empty-arglist))

;; computation proceeds at apply-dispatch


