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1 Introduction

In building a new system for control and morphological design of autonomous
mobile robots one must be certain that the system they are presenting is
flexible, stable, easy to use, and meets the needs of the people that will be
using that system. Over the past year, people at MIT have been designing
a new platform for autonomous mobile robots that is designed to meet all of
these goals. I hope to prove through the course of research proposed herein
that these goals are indeed met.

Our system is made whole by two distinct components: a programming
language called CREAL and a hardware platform that it may run upon.
The programming language caters specifically to behavior based autonomous
robots and there is great flexibility offered in the types and numbers of sensors
and actuators that may be used with this system. I plan to test the limits of
the hardware offered and expand the control system to facilitate the use of
multiple control architectures in a user friendly way. In particular I will be
creating an abstraction framework so that there is a simple way to implement
various architectures within our platform.

2 Background

There are many decisions to be made when students, researchers, and hobbi-
ests build autonomous mobile robots. One may build the entire thing from
scratch, designing the control system and building the body themselves. An-
other option would be to buy a pre-built pre-programmed robot that requires
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only minimal user intervention to ‘build’. There are, of course advantages and
disadvantages to each of these options. In building the whole thing yourself
you have total flexibility in design and get very familiar with the hardware
that is in use, but it takes much longer to implement and could leave the
builder with a not-quite-working machine if they don’t know exactly what
they’re doing. A pre-built machine will take almost no time to set up and
is almost guaranteed to work, but the user is limited to the parts that the
manufacturer provided.

Most robot builders fall somewhere in between those two extremes, using
either a pre-built platform that requires only control programming or using
pre-built control hardware and parts but designing both the body of the
robot and the control system model themselves.

I will briefly describe the common choices that are made in control sys-
tems and body design, as well as the types of pre-built platforms that are
currently available.

Note that in this paper the phrase “robot” will refer strictly to au-
tonomous mobile robots, not remotely operated or pre-programmed robots
which are commonly found in factories. Additionally I will be limiting my
discussion to robots that are small enough to lift and excluding things such
as autonomous vehicles.

2.1 Control Architectures

An autonomous mobile robot must sense its immediate environment and act
upon those senses to interact with and manipulate its surroundings. The
situatedness of a robot within its environment implies both that the machine
may immediately sense its surroundings, and that its actions have immediate
consequences as to how the sensing of its environment changes. It is key for
an autonomous machine to be able to react quickly and appropriately to
these changing situations.

There are a handful of popular design architectures that are used to con-
trol the ‘brains’ of these robots. These techniques may be implemented in
various sorts of programming and hardware domains, but the central de-
sign structure remains the same. I will briefly review the architectures and
methods that are commonly used to control autonomous mobile robots.

• Subsumption
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Subsumption architecture is a control system that is based upon em-
bodiment, situatedness and direct sensing of the environment and im-
mediate action in response [5]. Various sensory inputs will trigger re-
sponse signals which are prioritized through a system of inhibition and
suppression. Based on the current input signals and the signals ac-
tively propogating through the system, appropriate response signals
are generated. State may be held in subsumption modules through the
looping of signals through the system. This architecture has been used
with many types of robot morphologies, including walking ‘insects’ [3],
map-constructing wheeled robots [13], and wheeled vacuum cleaners
[9].

This architecture may be implemented in many languages, but is best
implemented in a language specifically designed for it, such as Behav-
ior Language [4]. Languages such as this can make use of real-time
processing of signals. Programming this architecture in higher level
procedural languages which favor variables, function calls and require
state to be kept, on the other hand, will lead to delays and improper
reactions due to the simple fact that these languages require a large
overhead to run on any system.

• Neural Nets

Neural nets are used by many roboticists to employ a similar sense-
and-react model. Like subsumption, neural nets take sensory inputs
and use these to produce immediate reactions within the environment.
The main difference between these two architectures is that rather than
giving preference to one signal via suppression or inhibition, as in sub-
sumption, neural nets take a combination of all input signals, with
some weighted differently than others, to produce the final output ac-
tion. There is also no state within a neural net architecture, for the
input signals are immediately used to calculate the output signals. As
in subsumption it is difficult to configure a neural net to produce a
particular desired output action, and it gets more difficult with more
complicated desired output.

• Other Architectures

In the 1980’s Ronald Arkin developed Autonomous Robot Architec-
ture (AuRA), which is based on both a hierarchical planner and a
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schema theory based reactive controller [1]. This type of architecture
has been implemented in robots that perform various tasks, including
exploration and object retrieval, and multi-agent foraging with commu-
nication. This is not a strictly reactive system, such as subsumption
and neural nets, so I will not go into detail in comparison to our plat-
form.

• Programming Language Hack

Often beginner roboticists will program their control system with a
particular programming language model in mind, rather than a robot
architecture in mind. For example, if one were to use C to program their
robot, they most likely would create procedures that will create desired
actions within the environment based upon some sensory inputs. When
checking multiple sensors for the presence of some trigger inputs, one
must use only the tools available and loop through to check if any of
the trigger input requirements are currently met. This is both time
consuming and makes designing systems that are complicated or that
must compute quickly very difficult.

It is in the research proposed in this paper that our platform will be made
to easily accommodate a few of the formal architectures listed above.

2.2 Morphologies

2.2.1 Locomotion

Mobile robots can take many forms. One defining characteristic is the form
of locomotion used. The choices of morphology and function of a robot will
greatly influence the type of control system that is appropriate and feasible
to implement. The two most popular forms of locomotion used in mobile
robots are described below.

• Wheeled

Wheels are often the simplest form of locomotion to implement within
a mobile robot. The bare minimum needed to produce motion is a mere
one actuated wheel, two if direction control is desired as well. In al-
most any control platform, signaling an axis to turn at a constant rate
is straightforward and not very difficult. Wheels are used in the vast
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majority of mobile robots seen today, but in some situations wheels
may not be the best choice. In terrain that is rough, uneven, slippery,
or particularly nonuniform wheeled robots may find difficulty in suc-
cessfully traversing. Out of simplicity of design most wheeled robots
are often built with one actuator to control forward motion and one
actuator to steer. This type of robot is not designed to move in any
arbitrary direction from its current location. In many environments
the turning radius required by wheeled robots of this sort make their
use impractical, while the complexity of other types of wheeled robot
that can in fact move in any direction and turn in place make their use
impractical as well.

• Legged

Constructing walking legged robots is not as simple as constructing
wheeled robots that are able to locomote. There are many issues to
be dealt with, including balance, proper gait and complexity, to name
a few. On the other hand legged robots can perform many tasks that
most common wheeled ones cannot, such as climbing stairs or moving
over rough terrain, omnidirectional motion, and the ability to easily
right themselves if found upside down.

2.2.2 Environment Manipulations

There are many ways in which a mobile robot may manipulate its surround-
ings. Manipulations may be done by physically changing the state of the
surrounding environment, but also by doing something that will change the
perception the robot has on its surroundings. The most straightforward way
to change perception of the surrounding environment is to move the robot
within it, changing various sensor readings in the process. From the robot’s
point of view it sees that the environment has changed.

A robot may also take a more pro-active role in changing its perception
of the environment: by moving something that was stationary. This may
be done in multiple ways, such as using the weight of the robot to push an
object around, by using arms or other manipulators that are able to grab,
pick up and move objects, or by signaling some other system to react as in
the opening of supermarket doors when a person approaches. An example
of such a situation when direct environment manipulation is needed is the
action of kicking a ball as done by soccer playing robots in RoboCup [10].
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2.2.3 Sensing

There are multiple types of sensors that are commonly used in autonomous
mobile robots, from bump, light, and IR sensors, to accelerometers and in-
clinometers. The choice of which sensors to use on a robot is completely up
to the designer and depends on what type of task this robot is to perform.
But in practically all robots that are built, some sort of sensing is performed.
Without this key element there is no form of feedback that is given to the
robot and no way for it to interpret its surroundings. The types of sensors
that a robot contains does not usually categorize the robot, as does the style
of locomotion, but it is key to note that sensors play a crucial role in the
performance and abilities of robots.

2.3 Commercial Platforms

There are many commercial platforms available which may be used to build
autonomous mobile robots, some more complicated than others. I describe
below the most commonly found commercial platforms which the function-
ality and scope of our platform may be compared.

• Lego Mindstorm

The Lego Mindstorm is an inexpensive platform that is very popular
with beginning roboticists [7]. It provides a simple graphical program-
ming interface and facilitates the interaction of sensors, actuators, and
control system. The tradeoff for simplicity is a lack of flexibility in the
types and number of peripherals that may be used and the types of
computation that may be performed. One may adapt many types of
peripherals to work with the system but there are limitations on the
range of peripherals that the Mindstorm will support.

• Handy Board / Cricket

The Handy Board [11] and Cricket [12] are control systems designed
at the MIT Media Lab that allow more flexibility than the Mindstorm
but are similar in many ways. The Cricket is a small device that allows
only a couple of sensors and actuators to be connected, but is also
fairly inexpensive and is very easily programmed. The Handy Board
offers more flexibility in the quantity of peripherals that may be used
and the computation power available, but is also more expensive than
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either the Cricket or the Mindstorm. Nonetheless it is often used by
university student who would like more support and flexibility than are
offered with the other two mentioned systems, which I might add have
children as their main audience.

• Kephera

The Kephera is a small pre-built robot that is often used by researchers
[15]. It is a fully functioning programmable mobile robot that has room
for attachment of peripherals but contain wheels that are used as its pri-
mary source of locomotion. It is flexible in the types of peripherals and
computation it supports but its size limits the types of environments
it may be used in and the sizes of peripherals that may be attached.
It is usually both too expensive and too complex for students to make
beginner usage practical.

3 Control Platform

3.1 CREAL

I will be exploring and expanding the range of functions and capabilities of
CREAL, a programming language designed by Rodney Brooks [6]. CREAL,
or CREAture Language, is designed to support large numbers of modules
executing in parallel and can be run with very little overhead. In particular,
this language was written to provide control for autonomous mobile robots.
It supports multiple threads of concurrent computation and is capable of
controlling all parts of a robot in as close to real time as we can get.

3.2 Hardware

The hardware that will be used to control my robot consists of a group
of inter-meshing task-specific boards designed by Edsinger et al [8]. The
central control of the ‘stack’ of boards is a Rabbit 2300 manufactured by
Rabbit Semiconductor [14] which will run CREAL. The Rabbit will also
be responsible for interacting with the various other task boards to retrieve
sensor readings and send actuation commands.
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4 Morphology Implementations

I intend on first building multiple control systems on one test robot. These
control systems will test everything from the capabilities and limitations of
CREAL and the ease of use, to the ability of the stack to support many
various types of sensors and actuators. These tests will be the first set of
thorough runs on these platforms and will be used both as a formal presen-
tation of the development platform that has been produced and as a beta
test to make sure that these products are capable of performing as we expect
them to.

I will be using a two-wheeled robot with two passive castors to conduct the
range of my experiments. Upon this base I will attach all other components
that are to be used. Below I will describe the types of experiments that I
will perform and the types of control systems that will be built to test our
claims about the platform.

The first stage will be a setup phase in which I configure the system to
support all of the various sensors and actuators that will be used in later
tests. This will consist of writing drivers for each type of peripheral device
so that they may be controlled by a CREAL program running on the stack.
I hope to individually cover as many varieties of sensors and actuators as
possible and find the strengths and weaknesses of each.

I also plan on testing the limitations that CREAL and the stack place on
using many sensors at once. I will try to add many sensors of the same type
in such a way that task performance of the robot should improve with the
addition of sensors. In theory this idea should not hold after some crucial
point in which the limitations of the system are pushed. These limitations
could possibly include a hard cap on the number of possible sensors that the
system will recognize, a turning point in which the accuracy of sensors is
compromised, or a divide after which the computation speed of the Rabbit
is slowed down below a critical real-time pace.

Similarly I wish to test the limits of the system in terms of actuation
capabilities. I will perform the same two types of tests as with sensors: testing
the support capabilities that our system has for multiple types of actuators,
and to test the limitations of the system. The limitations that may be reached
could include a hard cap in the number of distinct actuators that may be
controlled, a critical level where power drawn is too extreme for the system to
support, or a level of control needed to monitor all actuators such that real-
time capabilities and correctness are compromised. I am only implementing
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these tests on one wheeled robot, but tests such as this could show that
the actuation requirements needed in a legged robot, both in quantity and
strength of actuators, could be fulfilled.

In addition I plan on testing a mix of these two through experiments
described later in this paper: to run a system in which there are multiple
types of sensing and actuation that run concurrently in order to perform a
task. In this respect I hope to test if there are any problems with the way
that sensing and acting interact with one another within the system, either
by timing differences, issues of accuracy, or bounds that the platform may
place upon combined use.

In total these experiments will be done to test the flexibility of this system
and to prove or disprove the claims of being truly multipurpose. Whichever
limitations exist within the platform I hope to find them and document them.
Seeing that this platform is still evolving and developing these tests could
lead to a broader and more efficient system that truly will live up to the goals
that we place upon it.

5 Creating Architecture Compatibility

Throughout testing I hope to show the flexibility that our system provides in
designing multiple types of autonomous mobile robots. Part of this flexibility
is the ability to implement particular types of control models that accurately
match the needs of the planned system. As noted earlier, there are archi-
tectural models that are commonly used in systems today, and in order for
our platform to be truly flexible it must be shown that these models can
correctly and efficiently be implemented.

In addition, the user must be able to program such a system easily and
efficiently. The trouble with using CREAL to program a neural net based
control system, for example, is that even though the theoretical design of
the system may be straightforward the code required to build it is often not.
This same reasoning holds with all of the control architectures described in
section 2. I plan on building functionality into our system that will give users
a clean interface in which they can easily and correctly specify the details of
these various architectural designs and have them integrated into a CREAL
program. This entails creating abstraction layers that enable the user to
cleanly specify the details of their theoretical design and have it correctly
compiled into messy CREAL code.
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This abstraction will be produced through a pairing of a specified format
in which the user will provide the data, and macros that will take this for-
matted data and convert them into logically equivalent design models within
CREAL. This may be tricky. There are issues that must be dealt with in
regards to the specifics of each architecture. For example, is it reasonable
to assume that the user will know exact numbers that will be sufficient to
specify a neural net that will perform the desired task? Or will forms of net
learning such as back propagation need to be put in place in order for the
designed structure to accurately perform as desired? Similarly, how will users
know the exact values of constants that will be needed within a subsumption
architecture, such as timing and threshold values, in order to satisfy a partic-
ular goal? Is it valid to just provide this service and expect the user to find
the correct values themselves through trial and error? These are questions I
hope to have solid answers for.

6 Task Performance Tests

In order to test these modules I will simply try to design systems by hand
that will perform a task and compare this performance to what is output by
a system of the type described above that takes formatted data and macro
expands it into correct CREAL code.

In each case I will first theoretically model how the architecture could
solve the given task. I will then adapt this design to be directly performed in
CREAL. In the adaptation I will note the level of difficulty that is required
to encode by hand such a model in CREAL and the ease of use in doing so
from a user standpoint. I will also note any advantages that are seen in using
CREAL to directly implement this design and any difficulties that arise in
the process.

The next stage of experiments will involve performing the same adapta-
tion from theoretical model to CREAL code, but using the newly designed
abstraction tools rather than writing all of the code by hand. These exper-
iments will test the ability of CREAL to embrace various architectures and
still produce a desired output. I will also be noting the difficulty and pain
induced in designing and creating a functioning system through this method
as opposed to by hand.

The tasks that will be performed in these experiments will all require
multiple sensor and actuator types and will be implemented upon the same

10



wheeled chassis that is to be used for the morphology experiments. I outline
below three experiments that are to be performed, both in desired task and
the peripherals that will be needed to accomplish such a goal. These tasks
will each be performed by three separate control systems: one written by
hand in CREAL, one using subsumption, and one using neural nets.

• Exploration and Warning System

An example of a functioning subsumption based robot is given in [2]
which uses three subsumption layers to explore and navigate through
an area. These three layers, from simplest to more complex, include
the Avoid-Objects Layer, the Explore Layer, and the Back-out-of-Tight
Situations Layer. I will use this framework and subsumption design to
implement an exploratory robot that successfully avoids objects and
can free itself from unpromising locations. Additionally, my robot will
include a layer which will control an audio warning system that re-
sponds to high levels of heat. We can think of this as a mobile fire
detector.

This same task will be performed using Neural Nets and written directly
in CREAL by hand, but will be performing the same task.

This robot will be equipped with IR proximity sensors, bump sensors,
heat sensors and an alarm. It may also be equipped with a system that
is capable of transmitting a warning to a central command center to
notify of such an alarm.

• Object Finding Arm

A task that is often desired in robots is the ability for an arm to suc-
cessfully find and manipulate an object in its surrounding environment.
I plan on creating an arm that will attach to our mobile base that will
be able to detect when an object is positioned directly under it. The
arm will have a ‘hand’ on the end of it that is capable of recognizing
when the desired object is in position and closing upon the object. It
will have the ability of knowing when the object was successfully seized
and lifted, and if unsuccessful will repeat its quest.

This robot will be based on the same wheeled chassis but will not be
very mobile. It will move the base to search with the sensors on the
arm but only within a small range of motion. The sensors on the arm
will most likely be light sensors that will notice the desired object based
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on its color with respect to the surrounding environment. There will
be an LED and a photo detector mounted on the hand to detect when
an object is within grasping range, and actuators that will allow the
hand to close upon the object.

• Maze Navigation

The third task to be undertaken will be the creation of design systems
that will allow a robot to successfully navigate through a maze. Rather
than attempting to build a system that will be able to navigate through
all mazes, they will be trained on and attempting to all solve the same
maze. The maze will be of grid dimensions so that it will be possible
to keep state that tells of its assumed location.

The robot will be equipped with proximity and bump sensors to allow
wall following within the fixed-width halls of the maze, and will also
allow detection of corners and turns that could be made. There will
also be a system put in place to allow the robot to recognize when it is
at the end of the maze. This will either be through its assumed location
and the known location of the end of the maze, or a marker such as an
IR beacon or a light source that the robot will be able to detect upon
arrival at the goal location.

7 Schedule

• [current - January 31] Phase 1: Stack Completion

Much of this work has already been completed, but more time must be
spent on building and checking that the hardware stack is performing
properly. I will write drivers so that all of the sensors and actuators that
will be used in the following experiments will be properly controlled
through CREAL. A prototype robot will be used to test these various
sensors and actuators.

• [February 1 - February 28] Phase 2: Hand Write Performance
Tests in CREAL

In this phase I will hand write CREAL code to perform each of the
three outlined tasks. This will both get me familiar with the intricacies
of CREAL and will help me see the problems that I may face when
performing these tasks in alternate architectures.
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• [March 1 - April 30] Phase 3: Modify CREAL and Implement
Performance Tests in Alternate Architectures

In this phase I will modify CREAL so that alternate architectures may
be implemented, as outlined above. Two months will be given to this
phase because this will contain most of the difficult research that is to
be done.

• [May 1 - May 25] Phase 4: Final Writing Phase

A final month will be given for writing and presentation of data col-
lected over the previous months.
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