
The Essential Dynamics
Algorithm: Essential Results

Martin C. Martin

AI Memo 2003-014 May 2003

© 2 0 0 3 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y — a r t i f i c i a l i n t e l l i g e n c e l a b o r a t o r y

@ MIT

Abstract

This paper presents a novel algorithm for learning in a class of stochas-
tic Markov decision processes (MDPs) with continuous state and action
spaces that trades speed for accuracy. A transform of the stochastic
MDP into a deterministic one is presented which captures the essence of
the original dynamics, in a sense made precise. In this transformed
MDP, the calculation of values is greatly simplified. The online algo-
rithm estimates the model of the transformed MDP and simultaneously
does policy search against it. Bounds on the error of this approximation
are proven, and experimental results in a bicycle riding domain are pre-
sented. The algorithm learns near optimal policies in orders of magni-
tude fewer interactions with the stochastic MDP, using less domain
knowledge. All code used in the experiments is available on the
project’s web site.

This work was funded by DARPA as part of the "Natural Tasking of
Robots Based on Human Interaction Cues" project under contract num-
ber DABT 63-00-C-10102.

The Essential Dynamics Algorithm: Essential Results p. 2

1 Introduction
There is currently much interest in the problem of learning in stochastic Markov decision
processes (MDPs) with continuous state and action spaces [2, 9, 10]. For such domains,
especially when the state or action spaces are of high dimension, the value and Q-func-
tions may be quite complicated and difficult to approximate. However, there may be rela-
tively simple policies which perform well. This has lead to recent interest in policy search
algorithms, in which the reinforcement signal is used to modify the policy directly [5, 6,
10].

For many problems, a positive reward is only achieved at the end of a task if the agent
reaches a “goal” state. For complex problems, the probability that an initial, random pol-
icy would reach such a state could be vanishingly small. A widely used methodology to
overcome this is shaping [1, 3, 4, 8]. Shaping is the introduction of small rewards to
reward partial progress toward the goal. A shaping function eases the problem of backing
up rewards, since actions are rewarded or punished sooner.

When a policy changes, estimating the resulting change in values can be difficult,
requiring the new policy to interact with the MDP for many episodes. In this paper we
introduce a method of transforming a stochastic MDP into a deterministic one. Under cer-
tain conditions on the original MDP, and given a shaping reward of the proper form, the
deterministic MDP can be used to estimate the value of any policy with respect to the orig-
inal MDP. This leads to an online algorithm for policy search: simultaneously estimate the
parameters of a model for the transformed, deterministic MDP, and use this model to esti-
mate both the value of a policy and the gradient of that value with respect to the policy
parameters. Then, using these estimates, perform gradient descent search on the policy
parameters. Since the transformation captures what is important about the original MDP
for planning, we call our method the “essential dynamics” algorithm.

The next section gives an overview of the technique, developing the intuition behind
it. In section 3 we describe the mathematical foundations of the algorithm, including
bounds on the difference between values in the original and transformed MDPs. Section 4
describes an application of this technique to learning to ride a bicycle. The last section
discusses these results, comparing them to previous work. On the bicycle riding task,
given the simulator, the only domain knowledge needed is a shaping reward that decreases
as lean angle increases, and as angle to goal increases. Compared to previous work on this
problem, a near optimal policy is found in dramatically less simulated time, and with less
domain knowledge.

2 Overview of the Essential Dynamics Algorithm
In the essential dynamics algorithm we learn a model of how state evolves with time, and
then use this model to compute the value of the current policy. In addition, if the policy
and model are from a parameterized family, we can compute the gradient of the value with
respect to the parameters.

In putting this plan into practice, one difficulty is that state transitions are stochastic,
so that expected rewards must be computed. One way to compute them is to generate
many trajectories and average over them, but this can be very time consuming. Instead we
might be tempted to estimate only the mean of the state at each future time, and use the
rewards associated with that. However, we can do better. If the reward is quadratic, the
expected reward is particularly simple. Given knowledge of the state at time t, we can
then talk about the distribution of possible states at some later time. For a given distribu-
tion of states, let denote the expected state. Then

(1)

where a, b & c depend on .

s

E r s()[] a s s–()2 b s s–() c+ +()P s() sd∫ avar s() b s s–() c+ + avar s() c+= = =

s

The Essential Dynamics Algorithm: Essential Results p. 3

Thus, to calculate the expected reward, we don’t need to know the full state distribu-
tion, but simply its mean and variance. Thus, our model should describe how the mean
and variance evolve over time. If the state transitions are “smooth,” they can be approxi-
mated by a Taylor series. Let π be the current policy, and let denote the expected

state that results from taking action π(s) in state s. If denotes the mean state at time t,

and the variance, and if state transitions were deterministic, then to first order we
would have

where is the derivative of with respect to state. For stochastic state transitions, let

be the variance of the state that results from taking action π(s) in state s. It turns out
that the variance at the next time step is simply plus the transformed variance from
above, leading to

(2)

Thus, we learn estimates and of µ and ν respectively, use Eq. (2) to estimate the
mean and variance of future states, and Eq. (1) to calculate the expected reward. The
resulting algorithm, which we call the expected dynamics algorithm, is presented in
Figure 1.

µπ s()

st

σt
2

st 1+ µπ st()≈

σt 1+
2

sd

dµπ st() 
 

2

σt
2≈

µπ' µπ

νπ s()
νπ s()

st 1+ µπ st()≈

σt 1+
2 νπ st()

sd

dµπ st() 
 

2

σt
2

+≈

µ̃ ν̃

Figure 1: The essential dynamics algorithm for a one dimensional state space. The nota-
tion means “adjust the parameters that determine f to make f(x) closer to a,” e.g.

by gradient descent. is the derivative of with respect to s.

f x() a←
µ'˜

π µ̃ s π s(),()

Suppose the policy depends on a vector of parameters θ. When interacting with
the MDP, at every time t after having taken action at-1 in state st-1 and arriving in

state st:

1.

2.

3.

4.

5.
6. For every τ in t+1 .. t+n:

a.

b.

c.

d.

7. Update the policy in the direction that increases :

µ̃ st 1– at 1–,() st←

ν̃ st 1– at 1–,() st µ̃ st 1– at 1–,()–()
2

←
s̃t st=

σ̃t
2

0=

Ṽ 0=

s̃τ µ̃ s̃τ 1– π s̃τ 1–(),()=

σ̃τ
2

ν̃ s̃τ 1– π s̃τ 1–(),() σ̃τ 1–
2 µ'˜

π s̃τ 1–()()+=

r̃τ
1
2
---r'' s̃τ()σ̃τ

2
r s̃τ()+=

Ṽ Ṽ γτ t–
r̃τ+=

Ṽ θ θ α Ṽ∂
θ∂

------+=

The Essential Dynamics Algorithm: Essential Results p. 4

The next section gives a formal derivation of the algorithm, and proves error bounds
on the estimated state, variance, reward and value for the general n-dimensional case,
where the reward is only approximately quadratic.

3 Derivation of the Essential Dynamics Algorithm

A Markov Decision Process (MDP) is a tuple where: S is a set of

states; D: is the initial-state distribution; A is a set of actions; : are the

transition probabilities; r: is the reward; and is the discount factor. This
paper is concerned with continuous state and action spaces, in particular we assume

and . We use subscripts to denote time and superscripts to denote
components of vectors and matrices. Thus, denotes the ith component of the vector s at
time t.

A (deterministic) policy is a mapping from a state to the action to be taken in that
state, : . Given a policy and a distribution of states at time t, such as the initial
state distribution or the observed state, the distribution of states at future times is defined

by the recursive relation for . Given such a distribu-

tion, we can define the expectation and the covariance matrix of a random vector x with

respect to it, which we denote and respectively. Thus,

and . When is zero except for a single state
st, we introduce as a synonym for which makes the distribution explicit.

Given an MDP, we define the limited horizon value function for a given policy as

= where the probability density at time t is zero except for

state st. Also given a policy, we define two functions, the mean and covariance

matrix of the next state. Thus, and =

. In policy search, we have a fixed set of policies

and we try to find one that results in a value function with high values.

We transform the stochastic MDP M to a deterministic one
as follows. A state in the new MDP is an ordered pair consisting of a state from S and a

covariance matrix, denoted (s,). The new initial state . The
new action space is the set of all possible policies for M, that is . The
state transition probabilities are replaced with a (deterministic) state transition function

, which gives the unique successor state that results from taking action

in state . We set = .

The reward = r(s) + where denotes the matrix of sec-

ond derivatives of r with respect to each state variable. Finally, .
The strength of the method comes from the theorems below, which state that the

above transform approximately captures the dynamics of the original probabilistic MDP
to the extent that the original dynamics are “smooth.” The first theorem bounds the error
in approximating state, the second in covariance, the third in reward and the fourth in
value.

Theorem 1 Fix a time t, a policy , and a distribution of states Pt. Choose and M

S D A Ps a, r γ, , , , ,〈 〉

S �→ Ps a, S �→
S A× �→ γ

S �
ns= A �

na=
st

i

π S A→ Pt

Pτ 1+ s() Ps' π s'(), s()Pτ s'() s'd
S∫= τ t>

Et x[] cov t x() E t x[] xPt x() xd∫=

cov t
i j,

x() Et xi Et xi[]–() xj Et xj[]–()[]= Pt

E x st[] Et x[]

Vπ st() γτ t– Eτ r sτ π sτ(),()[]
τ t=

n

∑
µπ s()

νπ s() µπ st() E st 1+ st[]= νπ st()

E st 1+ µπ st()–() st 1+ µπ st()–()T st[] Π

M' S' s0' A' f' r' γ', , , , ,〈 〉=

Σ s0' ED s[] covD s[],()=
A' π π A S→:{ }=

f' s't a't,() a't π=

s't st Σt,()= f' s't a't,() f' st Σt π, ,()= µπ st() νπ st() µπ∇()Σt µπ∇()T
+,()

r' s Σ π, ,()
1
2
---tr

i j∂

2

∂
∂ r s() Σ()

i j∂

2

∂
∂ r s()

γ' γ=

π Mµ

The Essential Dynamics Algorithm: Essential Results p. 5

such that , and , where

denotes the Frobenius norm. Let be given, and define ,

and . Then .

Theorem 2 Suppose and M are chosen so that , ,

for k = 1, 2, 3, 4, and all the conditions

of Theorem 1. Let be given, and define = . Let

, similarly for . Then

Theorem 3 Suppose , and

and the conditions of the previous two theorems. Let .

Then = = where

Theorem 4 Fix a time t and a policy π, and a distribution of states Pt. Let and be

given, and define and for recursively as in theorems 1 and 2

above. Let be an upper bound for for all . Then under the condi-

tions of the above three theorems, where .

Proof: First, some preliminaries. In the first three theorems, which deal only with a single
transition and a single distribution of states at time t, namely , let for any

random variable x. Note that for any vector x and square matrices A and B,
where tr(.) denotes the trace of a matrix, , and

. In the statement of theorem 2, is a three dimensional

matrix whose i, j, k element is . Similarly,
is a four dimensional matrix, and if all of its elements are finite, then the lower powers
must also be finite. The Frobenius norm of such matrices is simply the square root of the
sum of the squares of all their elements. Also, if a, b, c & d are real numbers that are
greater than zero, then .

Note that, since is a vector valued function, is a matrix. Since , the ith

component of , is a real valued function, . Because is a matrix,

. Let denote the matrix of second partial derivatives of , evalu-

ated at . For any s, let , and .

s∀
j k∂

2

∂
∂ µπ

i s() 
 

2

i j k, , 1=

ns

∑, Mµ< µπ s̃t()∇ M< covt st st,() F M<

F s̃t s̃t 1+ µπ s̃t()=

εt
s Et st[] s̃t–= εt 1+

s Et st 1+[] s̃t 1+–= εt 1+
s εt

s Mµ+() 3
2
---M

1
2
--- εt

s
2

+ 
 <

Mν s∀ ν i j,∂
k∂

---------- s() 
 

2

i j k, , 1=

ns

∑ Mν<

Et st E– t st[] k[] F M< s̃t 1+ µπ s̃t() M<=

Σ̃t Σ̃t 1+
i j, ν i j, s̃t() µi∇ s̃t()()TΣ̃t µj∇ s̃t()()+

εt
Σ covt st st,() Σ̃t–= εt 1+

Σ

εt 1+
Σ

F εt
Σ

F εt
s Mµ Mν+ ++()M2 10 O εt

s()+()≤

s∀
i j k∂∂

3

∂
∂ r s()

 
 
 

2

i j k, , 1=

ns

∑, Mr<
i j∂

2

∂
∂ r s̃t()

 
 
 

2

i j, 1=

ns

∑ M<

r∇ s̃t() M< εt
r Et r st()[] r' s̃t()–=

Et r st()[] r' s̃t() εt
r+ r s̃ t() 1

2
---tr

i j∂

2

∂
∂ r Σ̃t() εt

r+ +

εt
r εt

Σ
F εt

s Mr+ +() 5
3
---M O εt

s()+ 
 <

s̃t Σ̃t

s̃τ Σ̃τ τ t 1…t n+ +=

Mεr ετ
r τ t t n+,[]∈

E V st()[] V' s̃t() εt
V+= εt

V 1 γn 1+–
1 γ–

--------------------Mεr<

Pt x EPt
x[]=

xTAx tr A xxT()()= tr AB() A F B F≤

xxT
F x

2
= Et st st–()3[]

Et st
i st

i–() st
j st

j–() st
k st

k–()[] E t st st–()4[]

ab cd+ a c+() b d+()<
µπ µπ∇ s() µπ

i

µπ µπ
i∇ s() �

ns∈ ν s()

ν i j, s() �∈
j k∂

2

∂
∂ µπ

i x() µπ
i

x �
ns∈ ∆ 1 s st–= ∆2 st s̃t–= ∆ ∆1 ∆2+ s s̃t–= =

The Essential Dynamics Algorithm: Essential Results p. 6

Thus, and .

Note that .

Proof of Theorem 1: Expand using a first order Taylor series with the Lagrange
form of the remainder, namely

, (3)

i.e.

(4)

for some x on the line joining s and . Then

So . ■

Proof of Theorem 2: Let . By the mean value theorem,

for some x on the line joining s and .
Also, so that

. (5)

The second term is an error term, call it . We have . For the third

term, we expand both and using Eq. (4) and multiplying out the terms, obtaining

All terms other than the first and the one involving are error terms, call their sum

. That is,

EPt
∆[] ∆ 2= Et ∆∆T[] Et ∆1∆1

T[] ∆ 2∆2
T

+ Σt ∆2∆2
T

+ Σ̃t εt
Σ ∆2∆2

T
+ += = =

∆2 εt
s=

µπ
i s()

µπ
i s() µπ

i s̃t() µπ
i∇ s̃t()T s s̃–() 1

2
--- s s̃ t–()T

j k∂

2

∂
∂ µπ

i x() s s̃t–()+ +=

µπ
i s() µπ

i s̃t() µπ
i∇ s̃t()T∆ 1

2
---∆T

j k∂

2

∂
∂ µπ

i x() ∆+ +=

s̃t

EPt
st 1+

i[] s̃t 1+
i– EPt

µπ
i st()[] µ π

i s̃t()–=

µπ
i s̃t() µπ

i∇ s̃t()T∆2
1
2
---tr

j k∂

2

∂
∂ µπ

i x() Σt ∆2∆2
T

+()() µπ
i s̃t()–+ +=

εt 1+
s M εt

s 1
2
---Mµ M εt

s 2
+()+ εt

s Mµ+() M
1
2
--- M εt

s 2
+()+ 

 < <

Mk' Et st s̃t–()k[] F=

ν i j, s() ν i j, s̃t() ν i j,∇ x() ∆⋅+= s̃t

ν i j, st() E st 1+
i st 1+

j st[] µ i st()µj st()–=

covPt
st 1+

i st 1+
j,() E st 1+

i st 1+
j[] st 1+

i st 1+
j–=

ν i j, s̃t() EPt
ν i j,∇ x() ∆⋅[] EPt

µi st()µj st()[] st 1+
i st 1+

j–+ +=

EPt
E st 1+

i st 1+
j st[][] st 1+

i st 1+
j–=

ε' i j, ε' MνM1'<

µi µj

EPt
µi st()µj st()[] µ i s̃t()µ j s̃t()=

µi s̃t() µj s̃t()∇ T∆2 µj s̃t() µ i s̃t()∇ T∆2+ +

µi s̃t()∇ T Σ̃t εt
Σ ∆2∆2

T+ +() µ j s̃t()∇+

1
2
---µi s̃t()TEPt

∆T

k l∂

2

∂
∂ µπ

j x() ∆ 1
2
---µj s̃t()TEPt

∆T

k l∂

2

∂
∂ µπ

i x() ∆+ +

1
2
--- µi s̃t()∇ TEPt

∆∆T

k l∂

2

∂
∂ µπ

j x() ∆ 1
2
--- µj s̃t()∇ TEPt

∆∆T

k l∂

2

∂
∂ µπ

i x() ∆+ +

1
4
---EPt

∆T

k l∂

2

∂
∂ µπ

i x() ∆∆T

k l∂

2

∂
∂ µπ

j x() ∆+

Σ̃t

ε'' i j,

EPt
µi st()µj st()[] µ i s̃t()µj s̃t() µi s̃t()∇ TΣ̃t µj s̃t()∇ ε ''i j,+ +=

The Essential Dynamics Algorithm: Essential Results p. 7

where

Lastly let . By Theorem 1,

Substituting into Eq. (5), we obtain:

so that and

Each term has at least one of the “small bounds” or . Using the

inequality from the preliminaries, we can “factor them out.” The four are bounded by

, as can be shown using the binomial theorem, e.g.

. ■

Proof of Theorem 3: Expand r(s) using a second order Taylor series with the Lagrange
form of the remainder, namely

. (6)

Call the last term . Thus,

and

. ■

Proof of Theorem 4:

ε'' 2 s̃t 1+ µ∇ s̃t() εt
s µ∇ s̃t()

2 εt
s 2 εt

Σ
F+()

s̃t 1+ MµM2' µ∇ s̃t() MµM3'
1
4
---Mµ

2
M4'

+

+ + +

<

ε2''' µi s̃t()µj s̃t() st 1+
i st 1+

j–=

ε''' i j, µi s̃t()µj s̃t() st 1+
i st 1+

j–=

µi s̃t()µj s̃t() µi s̃t() εt
s i+() µj s̃t() εt

s j+()–=

µi s̃t()εt
s i– µj s̃t()εt

si– εt
siεt

sj–=

ε''' 2 εt
s s̃t 1+ εt

s 2
+<

covPt
st 1+

i st 1+
j,() ν i j, s̃t() ε'i j, µi s̃t()∇ TΣ̃t µj s̃t()∇ ε '' i j, ε'''i j,+ + + +=

εt 1+
Σ ε' ε'' ε'''+ +=

εt 1+
Σ

F MνM1' 2M
2 εt

s M
2 εt

s 2 εt
Σ+() MMµM2' MMµM3'

1
4
---Mµ

2
M4'+ + + + +<

2 εt
s Mµ+() 3

2
---M

1
2
--- εt

s
2

+ 
  M εt

s Mµ+()2 3
2
---M

1
2
--- εt

s
2

+ 
 

2
+ +

εt
s εt

Σ
F M, , µ Mν

Mk'

M O εt
s()+

Et ∆1 ∆2+ 3[] Et ∆1 ∆2+()3[]≤

Et ∆1
3[] 3 ∆2 Et ∆1

2[] 3 ∆2
2
Et ∆1[] ∆ 2

3+ + +=

Et ∆1
3[] O εt

s()+=

r s() r s̃t() r∇ s̃t()
T ∆⋅ 1

2
---∆T

i j∂

2

∂
∂ r s̃t() ∆ 1

6

i j k∂∂

3

∂
∂ r x()∆ i∆ j∆k

i j k, , 1=

ns

∑+ + +=

ε'

Et r s()[] r s̃t() r∇ s̃t()T ∆2⋅ 1
2
---tr

i j∂

2

∂
∂ r s̃t() Σ̃t εt

Σ ∆2∆2
T+ +()() Et ε'[]+ + +=

r' s̃t() εt
r+=

εt
r r∇ s̃t() εt

s 1
2
--- εt

Σ
F εt

s 2
+()M

1
6
---MrM3'+ +<

εt
s εt

Σ
F Mr+ +() M

1
2
---M

1
2
---M εt

s+
1
6
---M3'+ + 

 <

The Essential Dynamics Algorithm: Essential Results p. 8

So,

. ■

The above theorems state that as long as and are small and M

is finite, and given a good estimate of the mean and covariance of the state at some time,
the transformed MDP will result in good estimates at later times, and hence the reward and
value functions will also be good estimates. Note that no particular distribution of states is
assumed, only that, essentially, the first four moments are bounded at every time. The
most unusual conditions are that the reward r be roughly quadratic, and that the value
function include only a limited number of future rewards. This motivates the use of shap-
ing rewards.

4 Experiments
The code used for all experiments in this paper is available from www.metahuman.org/
martin/Research.html.

The essential dynamics algorithm was applied to Randløv and Alstrøm’s bicycle
riding task [8], with the objective of riding a bicycle to a goal 1km away. The five state
variables were simply the lean angle, the handlebar angle, their time derivatives, and the
angle to the goal. The two actions were the torque to apply to the handlebars and the hor-
izontal displacement of the rider’s center of mass from the bicycle’s center line. The sto-
chasticity of state transitions came from a uniform random number added to the rider’s
displacement. If the lean angle exceeded �/15, the bicycle fell over and the run termi-
nated.

If the variance of the state is not too large at every time step, then the variance term in

the transformed reward can simply be considered another form of error, and only need
be estimated. This was done here. A continuous time formulation was used where,
instead of estimating the values of the state variables at a next time, their derivatives were
estimated. The model was of the form

where was a vector of features and was a vector of weights. The features were
simply the state and action variables themselves. The derivative of each state variable was
estimated using gradient descent on with the error measure
and a learning rate of 1.0. This error measure was found to work better than the more tra-
ditional squared error. The squared error is minimized by the mean of the observed val-
ues, whereas the absolute value is minimized by the median [7]. The median is a more
robust estimate of central tendency, i.e. less susceptible to outliers, and therefore may be a
better choice in many practical situations.

Model estimation was done online, simultaneous with policy search. In the continu-
ous formulation, the value function is the time integral of the reward times the discount
factor. The future state was estimated using Euler integration [7]. While the bicycle sim-
ulator also used Euler integration, these choices were unrelated. In fact, �t = 0.01s for the
bicycle simulator and 0.051s for integrating the estimated reward. It was integrated for 30
time steps.

E V st()[] γτ t–
Eτ r sτ()[]

τ t=

n

∑=

γτ t–
r' s̃τ() ετ

r+()
τ t=

n

∑=

V' s̃t() γτ t– ετ
r

τ t=

n

∑+=

εt
V γτ t–

Mεr
τ t=

n

∑< Mεr γτ t–

τ t=

n

∑ Mεr
1 γn 1+–

1 γ–
--------------------= =

εt
s εt

Σ
F M, , µ Mν, Mr

µ̃

si∂
t∂

------ µ̃wi s a,() wi ϕ s a,()⋅= =

ϕ s a,() wi

wi erri s· i wi ϕ s a,()⋅–=

The Essential Dynamics Algorithm: Essential Results p. 9

The shaping reward was the square of the angle to goal plus 10 times the square of the
lean angle. The policy was a weighted sum of features, with a small Gaussian added for
exploration, . The features were simply the state variables
themselves. When the model is poor or the policy parameters are far from a local opti-
mum, can be quite large, resulting in a large gradient descent step which may
overshoot its region of applicability. This can be addressed by reducing the learning rate,
but then learning becomes interminably slow. Thus, the gradient descent rule was modi-

fied to . Near an optimum, when , this reduces to

the usual rule with a learning rate of �/�. In this experiment, � = 0.01 and � = 1.0.
A graph of episode time vs. learning time is shown in Figure 1. After falling over

between 40 and 60 times, the controller was able to ride to the goal or the time limit with-
out falling over. After a single such episode, it consistently rode directly to the goal in a
near minimum amount of time. The resulting policy was essentially an optimal policy.

5 Discussion
For learning and planning in complex worlds with continuous, high dimensional state and
action spaces, the goal is not so much to converge on a perfect solution, but to find a good
solution within a reasonable time. Such problems often use a shaping reward to accelerate
learning. For a large class of such problems, this paper proposes approximating the prob-
lem’s dynamics in such a way that the mean and covariance of the future state can be esti-
mated from the observed current state. We have shown that, under certain conditions, the
rewards in the approximate MDP are close to those in the original, with an error that
grows boundedly as time increases. Thus, if the rewards are only summed for a limited
number of steps ahead, the resulting values will approximate the values of the original sys-
tem. Learning in this transformed problem is considerably easier than in the original, and
both model estimation and policy search can be achieved online.

The simulation of bicycle riding is a good example of a problem where the value
function is complex and hard to approximate, yet simple policies produce near optimal
solutions. Using a traditional value function approximation approach, Randløv needed to

augment the state with the second derivative of the lean angle () and provide shaping
rewards [8]. The resulting algorithm took 1700 episodes to ride stably, and 4200 episodes
to get to the goal for the first time. The resulting policies tended to ride in circles and pre-
cess toward the goal, riding roughly 7km to get to a goal 1km away.

In contrast, when the action is a weighted sum of (very simple) features, random
search can find near optimal policies. This was tested experimentally; 0.55% of random

policies consistently reached the goal when was included in the state, and 0.30% did

π s() θ ϕ s()⋅ N 0 0.05,()+=

V∂ θ∂⁄

t∂
∂θ α–

V∂ θ∂⁄
β V∂ θ∂⁄+()

-----------------------------------= V∂ θ∂⁄ β«

0

200

400

600

800

000

1000 2000 3000 4000 5000 –0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0 50 100 150 200 250 300 350

Figure 2: The left graph shows length of episode vs. training time for 10 runs. The
dashed line indicates the optimal policy. Stable riding was achieved within 200 simulated
seconds. The right graph shows angle to goal vs. time for a single episode starting after
3000 simulated seconds of training.

training time (sec)

le
ng

th
of

ep
is

od
e

(s
ec

)

simulated time (sec)

an
gl

e
to

go
al

(r
ad

ia
ns

)

Ω
··

Ω
··

The Essential Dynamics Algorithm: Essential Results p. 10

when it wasn’t.1 What’s more, over half of these policies had a path length within 1% of
the best reported solutions. Policies that rode stably but not to the goal were obtained
0.89% and 0.24% of the time respectively. Thus, a random search of policies needs only
a few hundred episodes to find a near optimal policy.

The essential dynamics algorithm consistently finds such near optimal policies, and
the author is aware of only one other algorithm which does, the PEGASUS algorithm of
[5]. The experiments in this paper took 40 to 60 episodes to ride stably, that is, to the goal
or until the time limit without falling over. After a single such episode, the policy consis-
tently rode directly to the goal in a near minimum amount of time. In contrast, PEGASUS

used at least 450 episodes to evaluate each policy.2 One reasonable initial policy is to
always apply zero torque to the handlebars and zero displacement of body position. This
falls over in an average of 1.74 seconds, so PEGASUS would need 780 simulated seconds
to evaluate such a policy. The essential dynamics algorithm learns to ride stably in
approximately 200 simulated seconds, and in the second 780 simulated seconds will have
found a near optimal policy.

This was achieved using very little domain knowledge. was not needed in the
state, and the features were trivial. The essential dynamics algorithm can be used for
online learning, or can learn from trajectories provided by other policies, that is, it can
“learn by watching.” In the bicycle experiment, the essential dynamics algorithm needed
many times more computing power per simulated second than PEGASUS, although it was
still faster than real time on a 1GHz mobile Pentium III, and therefore could presumably
be used for learning on a real bicycle. The experiments in section 4 added the square of
the lean angle to the shaping reward, but did not use any information about dynamics (i.e.
velocities or accelerations), nor about the handlebars. In fact, the shaping reward simply
corresponded to the common sense advice “stay upright and head toward the goal.”

However, these advantages do not come without drawbacks. The essential dynamics
algorithm only does policy search in an approximation to the original MDP, so an optimal
policy for this approximate MDP won’t, in general, be optimal for the original MDP. The
theorems in section 3 give bounds on this error, and for bicycle riding this error is small.

Conclusion
This paper has presented an algorithm for online policy search in MDPs with continuous
state and action spaces. A stochastic MDP is transformed to a deterministic MDP which
captures the essential dynamics of the original. Policy search is then be performed in this
transformed MDP. Error bounds were given and the technique was applied to a simulation
of bicycle riding. The algorithm found near optimal solutions with less domain knowl-
edge and orders of magnitude less time than existing techniques.

Acknowledgements

The author would like Leslie Kaelbling, Ali Rahimi and especially Kevin Murphy for
enlightening comments and discussions of this work.

1. Our experiment contained two conditions, namely with or without in the state, result-
ing in 5 or 6 state variables. The features were the state variables themselves, state and action vari-
ables were scaled to roughly the range [-1, +1], weights were chosen uniformly from [-2, +2], and
each policy was run 30 times. In 100,000 policies per condition, 549 (0.55%) reached the goal all

30 times when was included, and 300 (0.30%) when it wasn’t. For such policies, the median
riding distance was 1009m and 1008m respectively. The code used is available on the web site.

2. [5] evaluated a given policy by simulating it 30 times. The derivative with respect to each
of the 15 weights was evaluated using finite differences, requiring another 30 simulations per
weight, for a total of 30×15 = 450 simulations. Often, the starting weights at a given stage were
evaluated during the previous stage, so only the derivatives need to be calculated.

Ω
··

Ω
··

Ω
··

The Essential Dynamics Algorithm: Essential Results p. 11

References

[1] Colombetti, M. & Dorigo, M. (1994) Training agents to perform sequential behavior. In Adap-
tive Behavior, 2(3), pp. 247-275.

[2] Forbes, J., & Andre, D. (2000) Real-time reinforcement learning in continuous domains. In
AAAI Spring Symposium on Real-Time Autonomous Systems.

[3] Mataric, M.J. (1994) Reward functions for accelerated learning. In W.W. Cohen and H. Hirsch
(eds.) Proc. 11th Intl. Conf. on Machine Learning.

[4] Ng, A. et al. (1999) Policy invariance under reward transformations: Theory and application to
reward shaping. In Proc. 16th Intl. Conf. on Machine Learning, pp. 278-287.

[5] Ng, A. & Jordan, M. (2000) PEGASUS: A policy search method for large MDPs and POMDPs.
In Uncertainty in Artificial Intelligence (UAI), Proc. of the Sixteenth Conf., pp. 406-415.

[6] Peshkin, L. et al. (2000) Learning to Cooperate via Policy Search. In Uncertainty in Artificial
Intelligence (UAI), Proc. of the Sixteenth Conf., pp. 307-314.

[7] Press, W. H. et al. (1992) Numerical Recipes: The Art of Scientific Computing. Cambridge Uni-
versity Press.

[8] Randløv, J. (2000) Shaping in Reinforcement Learning by Changing the Physics of the Prob-
lem. In Proc. Intl. Conf. on Machine Learning. pp. 767-774.

[9] Santamaría, J.C. et al. (1998) Experiments with Reinforcement Learning in Problems with Con-
tinuous State and Action Spaces. In Adaptive Behavior, 6(2), 1998

[10] Strens, M. J. A. & Moore, A.W. (2002) Policy Search using Paired Comparisons. In Journal
of Machine Learning Research, v. 3, pp. 921-950.

