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Abstract

In this paper we present an approach to robot arm control based on exploiting the dynamical
properties of a simple neural network oscillator circuit coupled to the joints of an arm. The
entrainment and input/output properties of the oscillators are used to perform a variety of tasks
with the same architecture, without any modeling of the arm or its environment. The approach
is implemented on two real robot arms, and has been used to tune into the resonant frequency of
pendulums, perform multi-joint coordinated motion by turning cranks, and exploit the dynamics
of a ‘Slinky’ toy to coordinate the motion of two arms. By exploiting the coupling between the
physical arm and the neural oscillator, a range of complex behaviors can be achieved with a very
simple system.

Keywords: Oscillator, Neural control, Neural network, Robot Manipulator, Rhythmic move-
ment.
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1 Introduction

This paper describes the properties of a set of simple neural network oscillators actuating the
joints of a real robot arm. By exploiting the coupling between the oscillators and the physical
arm of the robot, many qualitatively different tasks have been performed. These include tuning
into the resonant frequencies of driven pendulums, turning cranks, and coordinated operation of a
‘Slinky’ toy. The tasks have all been performed using the same neural architecture, with minimal
parameter changes, and without any modeling of the arm or its environment.

The arms used are mounted on the humanoid robot Cog (Brooks and Stein, 1994), shown in
Figure 1. The arms are compliant, each joint having a variable stiffness, damping and equilibrium
point. Each joint of the robot is actuated by an independent oscillator, consisting of two simulated
neurons in mutual inhibition (Matsuoka, 1985). The output of the neural circuit controls the
equilibrium point of the joints, and the input to the neural circuit is either the force, or the position
at the actuated joint. When the arm moves, the oscillators use the joint level information to adapt
their local behavior, giving coordinated motion of the whole arm. The entrainment properties of
the oscillators allow them to do this over a range of frequencies, and in a variety of situations,
without requiring any parameter changes.

By coupling these oscillators with the dynamics of the arm, the system can exploit the nat-
ural dynamics of the combined system: the entrainment properties of the neurons, the inertias
and stiffnesses of the arm, the dynamical interaction forces between the limb segments, and the
dynamical loads from interactions with objects. The idea of exploiting and working with the arm
natural dynamics was originally presented by Bernstein (1935). Later Greene (1982) suggested
methods which would result in simple and naturally stable control. By using parts of the arm
dynamics which are suited to the task, the system can avoid the accurate calibration and modeling
that is required in more recent traditional robotic approaches (An et al., 1988, Craig, 1989).

Humans certainly learn to exploit the dynamics of their limbs for rhythmic tasks (Schneider
et al., 1989), during development (Thelen et al., 1992) and also to perform certain tasks like
overarm throwing (Bingham et al., 1989). Robotic examples of this idea include “open-loop
stable” systems (Schaal and Atkeson, 1993), where the dynamics are exploited giving systems
which require little or no active control for stable operation. Indeed McGeer (1990) has built
machines that walk stably and are completely passive. Mason and Lynch (1993) presented a more
model based approach to dynamic manipulation, and stressed the complexity of model based
approaches in dynamic tasks.

The coupling between the oscillators and the arms is also motivated by the work of Kay et al.
(1987), Bingham et al. (1991), and Kugler and Turvey (1987) who have suggested that human
rhythmic movement is self-organized through the interaction of the various non-linear components
of the physical and neural systems. Hatsopoulos (1996) suggests that it is the coupling rather than
the individual systems that is important, an idea supported by the work of Taga et al. (1991),
whose simulated biped controlled by neural oscillators shows stable walking and stability against
perturbations, through the “mutual entrainment” of the dynamics of the legs and the oscillators.
Work on invertebrate central pattern generators (Grillner et al., 1991, Getting, 1988), has also
pointed out the importance of coupling between the neural and physical systems.

Section 2 of the paper describes the behavior of the oscillators, which can lock onto the
frequency of an input over a wide range of input frequencies. The section includes a detailed
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analysis of the oscillator input/output behavior in this entrained condition. The following sections
show how the behavior of the oscillators can be used to tune into the resonant frequencies of
pendulums (section 3), perform coordinated motion without any kinematic modeling to turn
cranks (section 4), and a variety of other tasks including exploiting the dynamics of a slinky toy
to coordinate the motion of two arms (section 5). Section 6 concludes the paper with a discussion
and suggestions for further work.
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2 The arms and the oscillators

The two arms used in this experiment are mounted on the humanoid robot Cog (Brooks and Stein,
1994). The arms have been specially designed to interact stably and robustly with unstructured
environments. They have six degrees of freedom (dof) arranged in an anthropomorphic manner,
each joint being actuated by a series elastic actuator (Pratt and Williamson, 1995, Williamson,
1995). These actuators give low noise force control, shock tolerance, and are stable when inter-
acting with passive environments (Colgate and Hogan, 1989).

At the joints of the arm, a simple proportional-derivative position control loop is used, making
the torque at the ith joint

ui = ki(θvi − θi)− biθ̇i (1)

where ki is the stiffness of the joint, bi the damping, θi the joint angle and θvi the equilibrium
point. The dynamical characteristics of the arm can be changed by altering the stiffness and
damping of the arm, and the posture of the arm can be changed by altering the equilibrium
points (Williamson, 1996). This type of control preserves stability of motion, and since the inner
torque control is provided by the series elastic actuators, the overall system is both compliant and
shock resistant, making it easy to operate the arm in unstructured environments.

The oscillator model consists of two simulated neurons arranged in mutual inhibition, as shown
in figure 2. The model for the neuron is taken from Matsuoka (1985), and describes the firing
rate of a real biological neuron with self-inhibition. The firing rate is governed by the following
equations.

τ1ẋ1 = −x1 − βv1 − ω [x2]
+ −Σj=n

j=1hj [gj ]
+ + c (2)

τ2v̇1 = −v1 + [x1]
+ (3)

τ1ẋ2 = −x2 − βv2 − ω [x1]
+ −Σj=n

j=1hj [gj ]
− + c (4)

τ2v̇2 = −v2 + [x2]
+ (5)

yi = [xi]
+ = max(xi, 0) (6)

yout = y1 − y2 (7)

where xi is the firing rate, vi is a variable representing the self-inhibition of the neuron (modulated
by the adaptation constant β), and the mutual inhibition is controlled by the parameter ω. The
output of each neuron yi is taken as the positive part of xi, and the output of the whole oscillator as
yout. Any number of inputs gj can be applied to the oscillator, which can either be proprioceptive
signals, or signals from other neurons. The input is arranged to excite one neuron and inhibit the
other, by applying the positive part ([gj]

+) to one neuron and the negative part to the other. The
inputs are scaled by gains hj .

The tonic excitation c determines the amplitude of the oscillation, with amplitude proportional
to c, as shown in figure 3. There is no oscillation if c = 0. The two time constants τ1 and τ2

determine the speed and shape of the oscillator output. For stable oscillations, τ1/τ2 should
be in the range 0.1–0.5, for which the endogenous or natural frequency of the oscillator wn is
proportional to 1/τ1, as shown in figure 3. The stability and properties of this oscillator system
and more complex networks of neurons are analyzed by Matsuoka (1985, 1987). Figure 4 shows a
typical output from the oscillator.
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The oscillator is connected to the robot joints by using the output yout to move the equilibrium
point θv. One neuron flexes the joint and the other extends it about a fixed posture θp, making
the equilibrium point

θv = y1 − y2 + θp = yout + θp (8)

For the examples in this paper, the inputs to the oscillators are taken to be either the force (ui)
or the position (θi) of the joint. These signals in general have an offset (due to gravity loading,
or oscillation about a non-zero posture), so when the positive and negative parts are extracted to
be applied to the oscillators, a high pass filter is used to remove the dc component.

2.1 Input/output oscillator behavior

When no input is applied to the oscillator, it oscillates at a natural frequency wn determined
by the time constants τ1, τ2, with a fixed amplitude defined by the tonic c, as shown in figure 3.
However, when an oscillatory input is applied, the oscillator can entrain the input, locking onto
the input frequency. This is illustrated in Figure 5 which shows the output of the oscillator as the
size of the input signal is increased. The oscillator can lock onto input frequencies over a wide
range of frequencies and sizes of inputs. This is illustrated in Figure 6 which shows the minimum
input required to frequency lock the oscillator as a function of frequency. The plot was obtained
by varying the input magnitude and comparing the oscillator frequency (taken as the frequency
with the maximum magnitude in a Fourier transform of the output), with the input frequency.
The entrainment range is large, in this case wn = 7 rad/s, and the range is 1.5 to 35 rad/s.

The oscillator is a non-linear system, but given its strong entrainment property, conventional
non-linear systems representations (e.g., phase plane plots (Vidyasagar, 1978)) are not very ex-
pressive of the system behavior as the input frequency and size is varied. Better intuition is gained
by evaluating the behavior of the system at different frequencies, and presenting the analysis in a
linear system format (e.g., a bode plot). This approach is known as describing function analysis
(Slotine and Li, 1991). Throughout the rest of the paper, the non-linear behavior of the system
is plotted and displayed in a linear-like manner, as a convenient way of displaying the data, and a
way of garnering intuition about the system behavior as a whole. The strong entrainment property
of the system bolsters this intuition.

Figure 7 is such a plot, where the magnitude of the output and the phase between the input
and output of an entrained oscillator is displayed as a function of frequency. Since the oscillator
output is entrained, both the input and output oscillate at the same frequency, and the magnitude
and phase can be computed using a single frequency Fourier transform. The plot shows that the
oscillator output magnitude decreases at frequencies away from the oscillator natural frequency.
The horizontal line in the graph corresponds to the oscillator amplitude without any input, which
is slightly smaller than the driven response at wn. The lower graph shows the phase relationship,
with phases of 180◦ at low frequencies moving to 90◦ at high frequencies.

The same shape of plot is obtained independent of the size of the input signal, assuming that
it is large enough to cause frequency-locking. This means that the sensitivity of the input gain
parameter hj is low. When a different endogenous frequency is used (different τ1), the same shape
is obtained, but over a different frequency range. If the tonic excitation c is varied, the same phase
plot is produced, but the magnitude plot, and the size of the input required to cause frequency
locking are scaled.
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The ability of the oscillator to entrain the frequency of the input over a wide range of frequen-
cies, using the same set of parameters, is exploited for control of the robot. The input/output
phase properties are also exploited, since they provide interesting and appropriate behavior when
coupled to the physical arm system. In the following three sections, the behavior of the coupled
oscillator-arm system is analyzed when the robot is moving freely in space, when its motion is
constrained, and when there are perturbing forces on the system.

3 Interaction with a free mass

Human arms (and Cogs arms) can be thought of as masses connected by springs, whose frequency
response makes the energy and control required to move the arm vary with frequency. At the
resonant frequency, the control need only inject a small amount of energy to maintain the vibration
of the mass of the arm segment on the spring of the muscles and tendons. The frequency response
of the system thus determines speeds and frequencies that efficiently move the arm. Finding and
using that frequency is a desirable property of a robot arm controller.

It appears that humans exploit the natural frequencies of their arms, swinging pendulums
at “comfortable” frequencies equal to the natural frequency (Hatsopoulos and Warren, 1996), a
condition that corresponds to a minimum in metabolic cost (Herr, 1993).

When a mass or inertia I is driven by the robot, the joint torque relation given in equation 1
makes the equation of motion of the whole system

Iθ̈ + bθ̇ + kθ = kθv (9)

which is the standard equation for a mass I vibrating on a spring with stiffness k, damping b and

a forcing function kθv. The system has a resonant frequency wsys =
√

k/I, and a damping ratio

ζsys = b/2
√

kI.
When the oscillator is connected to this system, driving θv with the oscillator output (equa-

tion 8), and connecting either the position θ or the force on the mass τ to the oscillator input,
the two dynamical systems are coupled, and the final frequency and amplitude is determined by
how they interact. The system behavior for a typical set of parameters is a driven oscillation of
the mass, as illustrated in Figure 8. The plot shows the result of starting the mass in 3 different
states, which all converge to the limit cycle behavior within one cycle.

Since the two systems are tightly coupled, the oscillator with input θ and output θv and the
mass-spring system with input θv and output θ, the phase difference between θv and θ must
be the same for both individual systems. Looking at the phase behavior of the two systems
independently cannot give information about the transient behavior of the coupled system, but
can bolster intuition about the final frequency of the mass motion. The frequency response of
the two systems is illustrated in figure 9, which shows the behavior for one choice of system and
oscillator resonant frequencies, looking at position feedback for the oscillator. The top graph
shows the magnitude of the mass motion θ, with a clear resonance peak at wsys. The lower graph
shows the phase difference between θv and θ for both the oscillator and mass system. The mass
will oscillate at a frequency where the two phase differences are identical, where the two lines
intersect. This frequency is in this case is almost exactly wn, or 7 rad/s.
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When the resonant properties of the mass system are altered, the final frequency depends
on the exact shape of the two phase plots. This is illustrated in Figure 10. The top plot gives
examples of four different systems, and where the final frequency is the intersection of the mass
and oscillator phase plots. The lower graph shows the results of simulations of the actuator driving
the mass, plotting the final frequency of the mass against the system resonant frequency. The
two plots agree; for systems with wsys < wn, the system moves at approximately wn, and as wsys

is increased, the final frequency tends towards wsys. In the lower plot the result of moving the
mass under torque feedback is also shown. Although the preceding argument was developed using
position feedback, a similar argument can be developed for the oscillator under torque feedback.
The different phase profiles under torque feedback combine to give the low frequency behavior
observed in figure 10.

This behavior was verified experimentally using a single joint of the robot to drive pendulums
of different lengths with different joint stiffnesses1. This more complex scenario was chosen to
further show that the oscillators are tuning into a property of the overall system. Figure 11 shows
the results, indicating that over a range of system frequencies (5 to 9 rad/s with wn = 7 rad/s) the
behavior is to drive the system at the resonant frequency. Above 9 rad/s the oscillator drives the
motion at a lower frequency than resonance. This result is most likely explained by the motion
exceeding the actuator bandwidth limits.

These results show that an oscillator with a constant set of parameters has the ability to tune
automatically into the natural frequency of the system that it drives. It thus finds the most
efficient driving frequency for the system. The behavior is robust, driving a variety of different
systems with the same set of parameters. The tight coupling of the oscillator and the actuated
system results in quick entrainment, and stability to perturbations of the system. In addition,
since there is no modeling or system identification, the system is very computationally efficient.
These results are similar to those of Hatsopoulos et al. (1992) and Hatsopoulos (1996), who showed
similar entrainment using a simulated pendulum, using a variety of different oscillator types.

4 Interaction with a position constraint

Whenever a robot contacts an object in the world, there are position constraints imposed on the
motion. The constraint can restrict the motion in just one direction (e.g., touching a wall) or
in a more complex manner (e.g., opening a door, turning a crank). Traditional robotic solutions
to these problems have been to model the constraint, and determine ways to control the force
exerted by the robot (e.g., controlling position and force separately (Raibert and Craig, 1981),
or together (Hogan, 1985a)). In recent work by Niemeyer and Slotine (1997) and Deacon (1997),
the constraint is used to reactively define the movement, without using explicit modeling. The
approach taken in this paper is to use the constraint as much as possible, exploiting it to perform
multi-joint coordinated motion without any kinematic modeling. The coordination is achieved
through the coupling of the oscillators, the arm and the position constraint, and works because
of the entrainment and phase properties of the oscillators. The local behavior of the oscillators
interacts through the physical structure of the arm to give global coordinated motion.

1For this case, the natural frequency depends on the stiffness k, length l and inertia I, wsys =
√

g/l + k/I,
where g is the gravitational constant.
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The action of a single joint of the robot under a position constraint can be determined by
measuring the response of the oscillator when the angle of the joint is forced to move in a sine
wave:

θ = A sin(ωt) (10)

The oscillator responds either to the angle directly or to the force generated by the motion,
depending on what type of feedback is used. In a typical case, the oscillators entrain the frequency
of the applied motion, and move the equilibrium point at the same speed. Since the torque applied
is given by

u = k(θv − θ)− bθ̇ (11)

the effect of the oscillator will be to either reduce or increase the torque, depending on the
phase angle between θ and θv. This torque must be overcome to maintain the output motion in
equation 10.

The relationship between u and θ defines the output impedance Z of the system, which in the
linearized case is a complex number with a magnitude and phase. For example, the impedance of
the robot joint when the oscillator is not connected (θv = 0), is

Z(ω) = u(ω)/θ(ω) = −k − jωb (12)

where j2 = −1. For a general non-linear system, Z(ω) cannot be calculated in this way, because
u and θ will not scale linearly, or necessarily have the same frequency content. Since the oscillator
system has the entrainment property, both input and output are at the same frequency, and
a measurement of output impedance can be made. The impedance is only for that particular
input magnitude (A in equation 10), as different input magnitudes will not have the same effect
on the system, e.g., very small inputs will not cause entrainment. This limited measurement of
impedance still provides a good way to interpret the oscillator behavior.

Figure 12 shows the impedance of the oscillator, measured by calculating the size and phase
of τ using a single frequency Fourier transform at the imposed motion frequency ω. The motion
imposed was the same size as the oscillator amplitude with no inputs.

Under position feedback, at low frequencies the oscillator opposes the motion, creating large
forces at the joint (high impedance at−180◦ phase), while at high frequencies the equilibrium point
leads the motion by 90◦, so reducing the impedance. Under torque feedback, at low frequencies the
equilibrium point tracks the input resulting in low impedance, while towards wn the equilibrium
point again leads by 90◦. At high frequencies the oscillator cannot entrain and the impedance
reverts to that of the spring and damper alone.

If different amplitudes of motion are used, the oscillator behavior is more complicated, since
there is an amplitude difference between the imposed motion and the oscillator natural amplitude.
The general shape of the response is similar to that described above, however for small input
amplitudes, the force generated tends to push the input towards larger amplitudes, and for larger
inputs the opposite is the case, the oscillator acting to oppose the large motion. For very small
inputs, there is no entrainment, and the impedance measure loses its meaning.

The local impedance property of the oscillator system is useful as the joint level behavior in
multi-joint position constrained tasks. When a motion is imposed, the oscillators independently
track the motion and reduce the forces at the joints. This reduces the force required at the endpoint
to generate the motion. They can do this over a range of frequencies, without requiring parameter
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changes. The oscillators do require the motion to be imposed, since there is no guarantee that if
the oscillators drive the system, the overall behavior will be correct.

On the robot these behaviors have been used for a number of position constrained tasks,
including pumping a bicycle pump and turning a crank, as shown in figure 13. For the results
shown in Figure 14, the shoulder was driven at a constant frequency, and position feedback at
the elbow allowed the oscillator there to entrain the motion. When the feedback is on, the elbow
motion is coordinated with the shoulder and the crank is turned.

As mentioned above, the oscillators are better suited for following an imposed motion than
creating their own. However, in the crank turning task, they are used to create the motion. To
make the task easier, some inertia was added to the crank. Without the extra inertia the arms
were still coordinated, although the motion was just back and forth, not turning the crank in
full circles. In addition it was found that during the period of exploration before the oscillators
settle into a pattern of coordination, internal forces caused by unsynchronized oscillators were
disrupting the system. This was particularly true under force feedback, where the arm could
get stuck but still be exerting and tuning into the internal forces. Under position feedback the
situation is slightly better since when the crank gets stuck the input falls to zero, causing the
oscillator to return to its natural frequency, so moving the arm out of the stuck condition. A
torque limit implemented on the shoulder further reduced the effect of the internal forces, which
helped the entrainment of the system onto the desired crank turning behavior.

The performance of the crank turning is robust to changes in frequency and to perturbations,
returning to the stable crank motion. It is not robust to large changes in crank length or location,
mainly because the oscillators operate around a fixed posture, with somewhat fixed amplitudes2.
In addition, the system cannot handle very large cranks, because the sinusoidal-like outputs
of the oscillators are not appropriate as joint commands for large motions. The torque limit
mentioned above does allow the oscillators to produce a non-sinusoidal output, although in a rather
limited way. Traditional robot approaches to this kind of manipulation (hybrid force/position
control (Raibert and Craig, 1981), or impedance control (Hogan, 1985a)), use explicit kinematic
knowledge of the arm and the crank location to solve this problem. Like the oscillator system, these
methods are sensitive to errors in crank location. The advantage of using the oscillator method
is that once the posture and approximate amplitudes have been specified, the other details of the
system emerge from the interaction of the oscillators, the arm and the crank, without any further
calculation. Another advantage is that no further calculation is needed to handle changes in crank
frequency, or to deal with unexpected disturbances.

5 Interaction with external forces

As well as driving free motions, and responding to position constraints, there is another class of
tasks for the oscillators, that of driving the limb under the action of perturbation forces. These
may come from the internal dynamics of the arm (coriolis, centripetal, inertial forces) or from
interaction with objects in the world (e.g., the rhythmic force from a bouncing ball). As in the
previous two cases, the entrainment and phase properties of the oscillators lend themselves to this

2The actual amplitude of the oscillator output is partly determined by the constant c (equation 2), and partly
by the size of the feedback signal.
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application.
Figure 15 shows the response of the oscillator to a small disturbing force applied to the oscillator

output. Under position feedback, the force is rejected and ignored by the oscillator but under
force feedback the frequency of the force is entrained. This occurs at frequencies below wn, and
results in the equilibrium point of the system lagging the force perturbation by a small angle
which increases with the frequency of the disturbance. This behavior is somewhat esoteric but
has been found to be useful in the following examples.

5.1 Slinky

The force behavior can be used to coordinate two arms when operating a slinky toy, as shown in
Figure 1. As the slinky is moved from hand to hand, the weight on each hand provides a force
perturbation that can be used to entrain the oscillators. The oscillators, which can be initially
unsynchronized, and have different natural frequencies, are coordinated through the physical
motion of the slinky. Figure 16 shows the drive to the two hands with and without the force
feedback, showing that the motion of the slinky is enough to very quickly lock the phase and the
frequency of the two oscillators. If one of the hands is moved faster, the other speeds up to match
it. If both hands are stopped and released, within one cycle the anti-phase motion is established.
Interestingly, as well as the stable anti-phase motion, the system exhibits a less stable solution of
moving both hands in phase. It is difficult to get this solution, since only a small asymmetry in the
weight on the two hands results in the anti-phase motion. The slinky behavior has been achieved
using a variety of different joints, the only proviso being that the oscillators require a minimum
input for entrainment, so the mass of the slinky has to act fairly directly onto the actuating joints.

This behavior is interesting as it opens up the possibility of performing a number of rhythmic
tasks, such as ball bouncing, yo-yos, and perhaps even throwing and catching using this simple
architecture as a base. It also shows clearly how the properties of the environment (in this case
the mass of the slinky) can be used to give simple control and robust behavior.

5.2 Flailing

As well as perturbations from external objects, the arm when it moves is subject to perturbations
from the arm dynamics (Hollerbach and Flash, 1982). By relying on these internal forces, the
oscillators can be used to coordinate the arms during motion. For example, if the shoulder is
driven at a constant frequency, the elbow oscillator can sense the torques induced at the elbow
due to the shoulder motion, and entrain into the frequency of the arm motion. An example of
this entrainment is shown in Figure 17. The frequency of the shoulder motion can be varied, and
the elbow will remain entrained without any changes in parameters. The motion is also stable,
and will return to the motion when perturbed.

As in the last example, there is some sensitivity in this application to the posture of the arm,
as it has to provide a minimum force to allow the oscillators to entrain. Some postures provide
more stable flails than others, which is not surprising given the complex dynamics of the arm itself.
Buchanan and Kelso (1993) showed some results on the stability of different flailing patterns with
changing posture, although they found a change in pattern with frequency which one might not
expect in this particular system.
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5.3 Force impulses

As well as entraining the effect of rhythmic force applied from the environment, the oscillator
system can also entrain forces applied at the joints. This is useful as it gives a way to internally
influence the behavior of the oscillators while still retaining and exploiting their entrainment
properties. The extra force up can be applied by changing the joint force control to be

ui = ki(θvi − θi)− biθ̇i + up (13)

If the new force is fed back to the oscillator, the system does not entrain to the frequency of
up. Entrainment is achieved if the effect of the perturbing force is hidden, by feeding back
ki(θvi − θi)− biθ̇i.

The extra force can be any rhythmic signal; the effect of a series of impulses is shown in
Figure 18 for the wrist joint of the robot. The torque feedback synchronizes the motion of the
joint with the torque impulse. This property shows not only another way to control the joints,
but also demonstrates the oscillators ability to respond to different types of rhythmic signals.

6 Discussion

This paper has presented in detail the behavior of a simple neural oscillator coupled to a real
robot arm. The oscillator’s entrainment property over a range of frequencies and its output
phase relationship have been reported to be useful in a variety of situations. Under different
conditions of the arm and its environment, the properties of the oscillators can be exploited to
give simple as well as stable control. The system can give coordinated motion without any global
synchronization or control, the motion emerging from the local interaction of the oscillators and
the physical structure of the system.

One limitation of the present scheme is that the oscillator output waveform has a constant
shape that is scaled only by changes in frequency. If the oscillators could output more complex
waveforms, a wider range of tasks should be possible. For example, to turn a large crank requires
commands to the arm joints which are not simple sinusoids. A more complex waveform can be
achieved by changing the type of oscillator, to perhaps that suggested by Elias and Grossberg
(1975). Oscillators which use different basis functions to generate their output signals might also
be appropriate. Whatever the particular oscillator chosen, an important issue is maintaining
the coupling between the arm and the oscillator system. The coupling is crucial to the work
presented in this paper, as well as to the work of Hatsopoulos (1996). Work on gait transitions
in legged locomotion also indicates the importance of coupling: researchers have achieved similar
gait transitions independent of the particular choice of oscillator (Collins and Richmond, 1994,
Pribe et al., 1997).

An alternative to increasing the complexity of the oscillators is to increase the complexity
of the oscillator network, i.e., allow connections between the oscillators at different joints. This
would then allow coordination based on explicit connections rather than implicit coupling with
the world. In the slinky example, coupling through the physical slinky was used to coordinate
the two arms, but the force from the slinky needed to act directly on the driving joint. Other
joints that could also generate the motion, but due to the arm configuration might not have a
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strong physical coupling with the slinky force, could then be coordinated using extra software
connections.

A related idea is to use a single oscillator to control a number of joints. Complete arm motions
could then be achieved, and would respond to the dynamics of the situation in a similar way to the
joint-level oscillators. Operating at arm-level as opposed to joint-level should allow more complex
tasks to be performed. As well as having muscles that span one joint, humans have muscles
which span two or more joints (Kahle et al., 1992). This redundant actuation architecture gives
a rich repertoire of arm behaviors (Hogan, 1985b). By applying oscillators both at the joint and
spanning various joints, the human system could be mimicked. Coordination of this redundant
control system could then be achieved using the entrainment properties of the oscillators.

The stable motions exhibited by the oscillator system particularly during flailing (section 5.2),
suggest that the system could be used for general oscillatory arm motion. This could be achieved
by using these motions as primitives which are combined to create more complex motions. The
primitives could be implemented as single oscillators driving a number of joints, or with oscillators
at the joints coordinated through the arm structure. The details of the combination method (su-
perposition, winner-take-all etc.) could be adapted to provide coordinated behavior, for example
giving accurate visual-arm coordination. There is evidence for this type of hierarchical organiza-
tion of movement in the spinal cord of frogs and rats, the movement of their legs being achieved
by combining a small number of primitives (Mussa-Ivaldi et al., 1994, Bizzi et al., 1991). Using
a set of stable motion primitives to span the possible motions for the arm should confer stability
to the combined motions. The reduced number of degrees of freedom of the system (since full
arm motions rather than single joint motions are combined) should also facilitate learning. In the
work of Marjanović et al. (1996), the use of static primitives was found to reduce the complexity
of learning in a visual-motor coordination task.

Alternatively, the oscillator structure could be tuned directly to achieve a desired motion. The
amplitudes of the joint motions, the type of feedback, the time constants, and maybe even the
connections between different oscillators could be altered by a learning algorithm, using informa-
tion about the system performance. The use of the oscillator structure would then confer on the
final motion all the advantageous properties of the oscillator system: robustness to changes in
frequency, low sensitivity to parameters values, and stability against perturbations. One method
to achieve this may be to use feedback error learning (Kawato, 1990). The combination of a
feedforward oscillator controller and a feedback system could be used to generate the arm motion.
The output of the feedback system (the feedback error) could then be used to alter parameters in
the oscillator circuit, which would gradually assume responsibility for control of the entire motion.

The ability of the oscillators to respond to imposed motions (for example during the crank
turning task) opens up the possibility of putting a human in the teaching loop, guiding and
modifying the movement while it occurs. This is a natural way to teach complex motor tasks—it
is extensively used by humans when teaching tennis, golf, etc. The arm is also subjected to external
forces when it touches objects during motion, for example while painting or wiping a surface. If
it is possible to capture the effect of these external influences on the arm, then the underlying
control can be altered to reproduce the correct motion. While clearly teaching the robot in this
way is appealing, questions remains as to how the guiding influence can be measured, represented,
remembered, and maybe even generalized to other situations.

It is also appealing to suggest that this approach can be extended to discrete motions, perhaps
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by using the approach of Schöner (1990), although evidence from human motion suggests that
rhythmic and discrete motions may be planned in separate systems (Adamovich et al., 1994).

To conclude, using the approach presented in this paper may allow general oscillatory motion,
and more complex rhythmic tasks to be achieved by exploiting the coupled dynamics of an os-
cillator system and the arm dynamics. The success of the simple oscillator system demonstrated
in this paper suggests that more complex systems based on the same ideas will exhibit the same
properties: low sensitivity to parameter values, robustness to changes in frequency, and stability
against perturbations.
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Figure 1: Cog playing with a ‘Slinky’ toy. This picture shows the humanoid form of the robot,
with the two 6 degree of freedom arms used in this paper. The robot is using its elbow joints to
move the slinky, exploiting the physical structure of the slinky to coordinate the two arms (see
section 5).
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Figure 4: A sample output from the oscillator. The top graph shows the variation with time of the
states of the oscillator x1, x2, v1, v2 during normal operation. The bottom graph shows the output
of the oscillator yout = [x1]
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+. For this example τ1 = 0.25, τ2 = 0.5, c = 1.5, β = 2.5, ω = 2.5.
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on both plots. The oscillator can entrain the input over a wide range of frequencies, in this case
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the mass motion plotted against frequency, with the obvious resonance peak at wsys. The lower
plot shows the phase angle between θv and θ for both the mass (solid line) and the oscillator
(circles). Since the oscillator and mass systems are tightly coupled, the oscillator with input θ
and output θv, and the mass system with input θv and output θ, the steady state solution to the
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two systems, the mass would be expected to oscillate at 7 rad/s, the frequency at which the two
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plots could be drawn for torque feedback, which would compare the phase between θv and torque
u.
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Figure 10: The response of the oscillator when coupled to different systems. The top graph shows
a similar scenario to figure 9, plotting the phase behavior of four systems with different resonant
frequencies (w1, . . . , w4, solid lines), together with the oscillator phase behavior (crosses). The
steady state conditions are at the intersections of the lines, indicated by open circles. When the
system frequency is less than the oscillator natural frequency (e.g., w1 and w2), the steady state
frequency is close to wn. However for w3 and w4, both greater than wn, the final frequency is
closer to the resonant frequency of the systems. The lower plot shows this in more detail. Plotted
is the steady state oscillation frequency measured by simulating the mass-oscillator system. The
plot under position feedback (circles) compares well to the phase information in the upper plot,
giving frequencies close to resonance for wsys > wn. Under torque feedback, the system oscillates
at a low frequency, the behavior not strongly dependent on the system natural frequency wsys.
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Figure 11: Performance of the robot swinging a pendulum. The graph shows the pendulum
frequency when the oscillator is using angle feedback plotted against the natural frequency of the
pendulum. The pendulum is swung at its natural frequency over the range 5 to 9 rad/s. The
natural frequency of the oscillator (wn - horizontal solid line) is 7 rad/s making the entrainment
range about 60%. The behavior at higher frequencies is most likely due to actuator bandwidth
limitations.
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Figure 12: Output impedance of a robot joint driven by an oscillator. The top plot shows the
magnitude of the impedance (how much force would be generated at the output, when the input
is moved at that frequency), the middle plot the impedance phase, and the lower plot the phase
of the joint equilibrium points. The impedance where the oscillator is turned off is indicated
by the solid line. The force feedback (triangles) shows much reduced impedance over a range of
frequencies less than wn. The position feedback (circles) opposes the motion at low frequencies
(impedance is 180◦ out of phase with the motion, with large amplitude), while at high frequencies
the equilibrium point (lower graph) actively drives the motion (leading by 90◦).
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Figure 13: Photograph of the crank turning. The crank is turned in the plane of the arm, using
the shoulder and elbow joints. The wrist joint is used for the crank turning, but is passive, not
being driven by an oscillator.
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Figure 14: Two examples of shoulder and elbow angles during crank turning. The angle of the
crank is also illustrated (dash-dot), the saw tooth shape arises due to the position sensor for the
crank wrapping around. The shoulder was driven at a constant frequency, and an oscillator with
position feedback was used at the elbow. When the feedback is on, the angles are coordinated
and the crank is turned, otherwise there is no coordination.
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Figure 15: The response of the oscillator under a perturbing force. The top graph shows the
oscillator output frequency (triangles) and the perturbation frequency (solid) plotted against the
perturbation frequency. It is only at frequencies below wn (vertical line) that the oscillator is
entrained (range 1.2 to 4 rad/s). The lower graph shows the phase of the oscillator output
(triangles) and the joint angle (crosses) over the entrainment region. Both variables lag the
driving force by small angles which increase with frequency. Since the oscillator is not entrained
above wn it is impossible to calculate phases for those frequencies.
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Figure 16: Two examples of slinky operation. Both plots show the outputs from the oscillators
as the torque feedback (dashed) is turned on and off. When the traces are in phase, the slinky is
moving in anti-phase. When the feedback is on, the two arms are coordinated and the outputs
are synchronized, but when off, the oscillators are no longer synchronized. The only connection
between the oscillators is through the physical structure of the slinky.
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Figure 17: Flailing. Both plots show the angle of the shoulder (solid) and the elbow (dashed) as the
frequency of the shoulder is changed. The speed of the shoulder is changed by applying position
feedback to the shoulder oscillator (changes the frequency from wn to a higher frequency—see
Figure 10). The top graph shows the response of the arm without torque feedback at the elbow,
and the lower graph with force feedback. The synchronization is clear in the lower graph, the only
connection between the joints being through the physical structure of the arm.
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Figure 18: The response of a robot joint to force impulse. The graphs show the perturbing
force (the square wave) and the equilibrium point of the joint as the speed of the impulses is
changed. The vertical lines indicate where the frequency changed, going from 1.6Hz to 1Hz, in
approximately equal steps. When force feedback to the oscillator is provided (upper graph), the
output maintains the same frequency as the disturbing force, while when there is no feedback
(lower graph), there is no tuning.


