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Abstract—While machines and robots must interact with
humans, providing them with social skills has been a largely over-
looked topic. This is mostly a consequence of the fact that tasks
such as navigation, command following, and even game playing
are well-defined, while social reasoning still mostly remains a pre-
theoretic problem. We demonstrate how social interactions can
be effectively incorporated into MDPs by reasoning recursively
about the goals of other agents. In essence, our method extends
the reward function to include a combination of physical goals
(something agents want to accomplish in the configuration space,
a traditional MDP) and social goals (something agents want to
accomplish relative to the goals of other agents). Our Social
MDPs allow specifying reward functions in terms of the estimated
reward functions of other agents, modeling interactions such as
helping or hindering another agent (by maximizing or minimizing
the other agent’s reward) while balancing this with the actual
physical goals of each agent. Our formulation allows for an
arbitrary function of another agent’s estimated reward structure
and physical goals, enabling more complex behaviors such as
politely hindering another agent or aggressively helping them. Ex-
tending Social MDPs in the same manner as I-POMDPs extension
would enable interactions such as convincing another agent that
something is true. To what extent the Social MDPs presented
here and their potential Social POMDPs variant account for
all possible social interactions is unknown, but having a precise
mathematical model to guide questions about social interactions
has both practical value (we demonstrate how to make zero-
shot social inferences and one could imagine chatbots and robots
guided by Social MDPs) and theoretical value by bringing the
tools of MDP that have so successfully organized research around
navigation to shed light on what social interactions really are
given their extreme importance to human well-being and human
civilization.

Index Terms—social interactions, robotics, markov decision
processes, multi-agent

I. INTRODUCTION

Progress on modeling social interactions and giving machines
social goals, such as being particularly nice to a user, is
significantly hampered by the lack of theoretical models
which characterize what social interactions are. Great practical
progress was made in robot navigation and sensing, with the
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introduction of MDPs [1l] and POMDPs [2]. Defining the
problem clearly allowed us as a field to understand what we
can model and how to do so. Until we take this same step for
social interactions, they will remain on shaky ground despite
their importance to virtually every interaction humans engage
in.

We introduce an extension of MDPs, which we term Social
MDPs. In the process, we make several assumptions. First,
that agents have physical goals and social goals, and their
overall reward structure is some arbitrary combination of the
two, potentially accompanied by other terms. Physical goals
are precisely what MDPs can already express, a function of
points in a configuration space. Social goals are a function
of the estimate of the reward structure of another agent. For
example, a reward that hinders another agent is some negative
function of the estimated reward of that agent. Complicating
matters is the fact that social rewards like beliefs can be
recursive: an agent may want to help another agent help them.
To model this, Social MDPs are recursive up to some depth,
much like interactive POMDPs [3]], I-POMDPs. Unlike I-
POMDPs, Social MDPs are not recursive in terms of agent’s
beliefs about the state of the world. Instead, Social MDPs are
recursive in terms of the rewards of the agents. This makes
Social MDPs and I-POMDPs orthogonal and complementary.
Social MDPs are specifically formulated to not interfere with
the standard extension from MDPs to POMDPs, making it
possible to include partial observability. While we do not
develop a joint Social I-POMDP here, this is a reasonable
extension which would cover far more of the space of social
interactions, although one that is computationally challenging.

Our contributions are:

1) formulating Social MDPs where an agent’s reward func-
tion is an arbitrary function of the recursive estimate of
another agent’s reward and a physical goal,

2) an implementation where that function is a linear trans-
formation, which captures many notions of helping and
hindering,

3) demonstrating that the model performs zero-shot social



reasoning in agreement with a human subjects experiment,
and
4) examples of the practical utility of recursive social
reasoning,
In an anonymized online appendi we fully enumerate all
possible scenarios predicted by our model given an environment
simple enough to allow doing so, demonstrating that it captures
a diverse set of social behaviors. We also provide videos of
the behavior of our model in all these scenarios.

II. RELATED WORK

a) Modeling other agents: In order to interact with other
agents effectively, an agent must be able to reason about the
goals, preferences, and beliefs of other agents [4]. Theory-
based models for social goal attribution [3[], [6], [7], Bayesian
inverse planning to infer an agent’s goal given the observations
of their behaviors [8]], [9], and learning the reward functions of
other agents [10] have been explored. Prior research also tried
to recognize social interactions such as waving and hugging in
videos where people are involved in group activities [L1]], [12].
These methods generally involve two separate stages [13]: 1)
a social perception stage and 2) coordination or collaboration
stage where agents interact. In contrast, Social MDPs constantly
reevaluate the goals of other agents enabling them to adapt to
changes in the plans of other agents. Moreover, MDPs are more
efficient than POMDPs, even when solving them recursively.
Social MDPs also allow for enumerating social situations by
formally defining the space of what social interactions are,
opening the doors to a more theoretical approach to social
interactions.

b) Learning to interact with other agents: Interactive
POMDPs [14], [[15] (I-POMDPs) are extensions of POMDPs
that recursively model the beliefs of other agents. Social MDP
and I-POMDPs are orthogonal. Social MDPs allow agents to
reason recursively about other agents’ reward functions while
I-POMDPs allow agents to reason recursively about other
agent’s beliefs about the state of the world. The two could in
principle be combined, but while Social MDPs require solving a
modest number of additional nested MDPs, I-POMDPs require
significantly nested inference, and when the two are combined
the problem quickly becomes intractable. [16] propose a
different type of approach that does not require nested inference:
learning a low-dimensional representation of another agent’s
strategy. This approach allows an agent to avoid another agent
or to manipulate another agent into some mutually-beneficial
behavior. Social MDPs, on the other hand, allow building the
strategy of another agent directly into the reward function
of an agent, enabling behaviors such as helping or hindering
regardless of what the other agent is trying to achieve. Moreover,
Social MDPs are zero-shot, while this prior approach is not.
From the point of view of generalization and sample-efficient
robotics, a zero-shot approach is preferable; in addition, it
opens new doors for a more theoretical understanding of social
interactions. We could combine Social MDPs with this prior

ISee https://social-mdp.github.io
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Fig. 1: An example of recursively solving Social MDP for the yellow
robot at level 2 in a two-agent interaction scenario. We denote the
yellow robot as agent 1 and the red robot as agent 2. At level 2 the
yellow robot estimates the red robot’s goals (both physical g. 92 2 and
social X12 ') and social policy by assuming the red robot is running
a level 1 Social MDP. Solving the social policy 1/12 L of the red
robot at level 1 requires the red robot to estimate the yellow robot’s
goals and policy by assuming the yellow robot is running a level 0
Soc1al MDP, i.e., a regular MDP, so we can drop the estimation of
x12 here. All these estimates are in agent 1’s belief space and are
updated at every time step.

e 1 ot ot
Require: [, s", a’, xij, 9:

if [ = 0 then
solve MDP for agent
else
for all X;Zl gt bt do
complite
~1,l,t
Pix Jlt|51 1at] 1)
~1 t—
P(gy s )
1[};’1_1(8 aJ’SC/;Zl t7§; Wy t)
end for

!
compute R%(st, a%,xis,g:)
ComPUte QL (stu a’f]? XilJ7 g’b)
m; <-argmax, ¢ 4, Qi

end if

Fig. 2: The algorithm to compute social policy ! for agent
i_at level [ and time ¢. We use the estimated social policy
w; =1 g previous time step to update the estimated physical
and social goal as descrlbed in section [[lI-BT] At ¢ = 0, we
assume P(g; bt) and P(X 22") are from uniform distributions.
This algorlthm is called at all recursion steps w;.’l_l to estimate
social policy for the other agent 7 € J. The estimated goals
and policies are used to compute the rewards and Q values for
selecting the actions.

work to build in latent representations of strategies into reward
functions [17]], [18] creating more efficient approximations of
Social MDPs.

III. SociAL MDPs

Social MDPs are recursive MDPs (Markov decision process)
with nested estimates of other agent’s goals inspired by
hierarchical models of games [19] and nested MDP that reason



about the beliefs of other agents [20], [21]], [22]. Figure E]
shows an example of recursively estimating the other agent’s
goals and policy in a two-agent scenario. Like other nested
models, e.g -POMDPs, Social MDPs have the notion of a
level. A level 0 Social MDP is simply an MDP: agents reason
about the map state. A level 1 Social MDP enables each agent
to reason about the physical goals of other agents (those other
agents are treated like level 0 agents). A level 2 Social MDP
enables each agent to reason about the level 1 social goals of
other agents. To perform this nested inference, agents must
have access to another agents’ physical and social goals. These
goals are estimated by solving Social MDPs recursively at
every level.

A level 0 agent can take physical actions, but cannot reason
socially. A level 1 agent can take actions relative to another
agent’s physical goals, such as helping, hindering, stealing, etc.
A level 2 agent can take actions relative to another agent’s
social and physical goals, such as avoiding an attempt to be
hindered, recognizing that help is needed, joining in to help
together. Levels deeper than 2 continue to describe meaningful
interactions although we do not consider them here. It is unclear
what level of recursion is required before agents exceed the
social reasoning capacities of humans.

A. Formal definition of Social MDPs

A Social MDP for agent 7 with respect to all agents J
consists of an arity (here we formulate the pairwise case) and
a maximum level, [, and is defined as:

= <85AaTaXiJagivRi’ary> (1)

where

o S is a set of states in the environment where s € S.

o A= Aj is the set of joint moves of all agents in J. a;
is an action for agent .

o T is the probability distribution of going from state s € S
to next state s’ € S given actions of all agents in J:
T(s"|s,az).

e X;s 1s agent 7’s social goal toward every other agent in

J. For convenience, ;7 is a shorthand for |J ;.
. , , jedi#i
e g; is agent ¢’s physical goal.
o Rl is the I-th level reward function for agent i based on
its estimate of other agents’ rewards.

e 7y is a discount factor: 7y € (0, 1).

a) Reward: Each agent has its own physical goal, e.g.,
going to a landmark, as well a social goal, e.g., helping or
hindering other agents. What enables Social MDPs to go
beyond regular MDPs is recursive nature of the reward function
which can be written in terms of the estimated rewards of
other agents. The immediate reward of an agent ¢ at level [ is
computed as follows:

Ri(s,ay,Xis, 9i) = 7i (8,03, 9;) +

i1 ~il ~il
> i (RY TN (s a0, X55,35") — elai)
JEJjF#i

2)

where () is the static reward given the agent’s own physical
goal g;, Rl "*(+) is the estimated reward for agent j from
agent 7’s pomt of view assuming agent j is a level [ — 1 agent,
¢(+) is the cost for taking an action. For negative levels, the
reward is defined to be zero.

Xij 1s the social goal, it transforms the reward of another
agent j into a goal that is part of the reward of the target
agent ¢. In this paper, we instantiate the model with a linear
transformation, so ;; is simply a reweighting of the estimated
reward of the other agent. If it is a negative value, the target
agent will attempt to minimize the reward of another agent,
i.e. hindering. A positive value corresponds to helping. Social
goals can be eliminated entirely by setting this weight to zero.

In order to estimate another agent’s reward function, it needs
to estimate that agent S phys1cal and social goals. Throughout
the paper, we use Y j J and g° g] to denote the estimated social
and physical goals. The superscript ¢,/ indicates agent ¢ at
level [ is making the estimations.

We describe how to estimate the social and physical goals

in section [[II-B
B. Planning for Social MDPs

Analogous to MDPs, the Q function of Social MDPs is the
sum of immediate reward and the expected value in the future.

QL (s ay,xis:9i) = R(s,ai, Xig. 9i)+
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3)

Since agent ¢ is interacting with other agents j € J, it needs
to estimate what actions other agents are likely to take in
order to compute its state-action value. Social MDPs take the
expectation over the estimated goals and actions of agent j to
compute V(s', xiz, g:):
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estimate physical goal (4)
(Eq- |6}

1 l 1 ro~i,l ~i,l ~i,l
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estimate social goal estimate social policy
(Eq. (Eq.[7]
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When solving agent i’s MDP at level [, the estimated social
and physical goals are further used to update the other agent
7’s social policy to the actions agent j may take. We denote
the estimated social policy for agent 7 at reasoning level [ — 1
as wz LS x Ay x Xj , X g] — [0, 1]. Figure summarizes
the steps to compute the state-action values and select optimal
actions for any level [ at time step t. We first update the
probability of the estimated goals of other agents using the
observed state and the estimated policy from the previous time
step. The updated probability of goals are used to update the
policy of other agents and compute the reward and Q function
of the target agent. The recursion happens at estimating the
social policies of other agent at a lower level.
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Scenario 28: Red wants to help yellow (Xred,yellow = 2)

Fig. 3: Example of zero-shot social interactions.The Social MDP gives the robots the ability to understand and predict relationships, thereby
making far more efficient actions. The yellow robot wants to water the tree. Moving the yellow bucket is easy for the yellow robot, while
moving the red bucket is hard for the yellow robot. The yellow robot performs inference to understand what the red robot is doing. With a
level 1 Social MDP, the yellow robot assumes that the red robot has a physical goal, but not a social goal. With a level 2 Social MDP, the
yellow robot assumes that the red robot has both a physical and social goal, then recursively estimates the social goal of the red robot (which

is in turn modeled as a level 1 Social MDP)

1) Updating social and physical goals of other agents: An
agent’s estimate of another agent’s social and physical goals
at time step ¢ and level [ can be updated based on the actions
performed by the agents. At time step ¢ = 0, we use uniform

distributions for social and physical goals.

The social goal, estimated at time step ¢, is updated after
actions taken by all agents at the previous time step. This update
is similar to the belief update in the POMDP framework but
based on the estimated social policy of the other agent j:

~i,l,t t—1 t—1 ~i,t—1 t—2 t—2
PR st e ) o PR 58720572
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The physical goal g; of agent j is estimated by 7 as follows,
similar to [23]] but marginalized over the estimated social goal
as the agent is estimating the social goal at the same time.

‘,l, - — ‘J; ""7[7 "lx
P(gﬂj t|slt 1) o P(slt 1|’g—’tj t,X;‘i t) P(g’%j t)-

~i,l,t
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2) Estimating social policies of other agents: The [-level
social policy zZJ;-’l of the agent j is predicted by ¢ using the
Q-function at level [-1:

03 (5,00, X5, 95" = Softmax(QV (s, 4y, X5, 97))
(N
This is a softmax policy where use a temperature parameter
T to control how much the agent 5 follows the greedy actions.
As shown in eq. ] in order to use agent j’s Q function at
level [-1, it requires to compute agent ¢’s Q function at level
[-2, and so on. This involves solving Social MDPs recursively
at levels 0,1,---,1I-1.

C. Time complexity

The time complexity of solving a Social MDP at level O is
the same as that of solving an MDP. At level 1, an MDP must
be solved for every agent independently in order to compute
the likely physical goals of every other agent. Assume that the
number of models considered for each pair of agent at each
level is bounded by a number M (based on the number of
social and physical goals to consider). Solving a Social MDP
at level [ requires solving O(M (A — 1)2]) MDPs, where A is
the number of agents. Social MDPs form a tree with branching
factor A — 1 as every agent must compute the pairwise social
goal of every other agent until level 0 where the tree bottoms
out. There are many potential speedups that can alleviate this
runtime to allow for efficient inference even in the face of many
agents. For example, a distance horizon could be used where
far away agents could simply be considered non-interacting.
Similar to [24], it is also possible to speed up the algorithm
by amortized inference over goals and relations by training a
neural net to recognize goals and relations as initial guesses
and refine them through probabilistic inference.

IV. RESULTS

We apply the Social MDP framework to a multi-agent grid
world inspired by previous studies on social perceptions [9],
[5], [25]. The 10 x 10 world consists of two agents, a yellow
robot and red robot, two physical landmarks, a flower and tree,
and two objects, a yellow water can and red water can. The
yellow agent has a low cost for moving the yellow watering
can, while it has a high cost for moving the red watering can.
Robots can have a physical goal of moving the water can to
a target plant. Robots can have a social goal of helping or
hindering to different degrees. In the grid world, agents can
move in four direction (left, right, up, down) or choose not to
move.
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Fig. 4: A deep dive into how humans and each model interprets the five experiment scenarios (refer Appendix for results for all experiment
scenarios) at both levels at each time step (in red Human scores, in blue our Social MDP scores, in green Inverse planning [9], in purple the
cue-based model [23], and in dotted the ground truth). The goal of each model is to interpret how one agent perceives another. (top) At
level one, an agent has a belief over the physical goal of another agent. Humans and models predict what this belief is (the degree to which
the agent believes that the other agent is heading toward the tree or the flower). Note that all models perform rather well and follow human
judgements. (bottom) At level two, an agent has a belief over the physical and social goals of another agent. Humans and models predict
what the beliefs of the agents are about the social goals of other agents. In other words, to what degree does this agent think that the other
agent is hindering or helping them. Here our model fits human data much better because of its recursive nature. At deeper levels, our model
is capable of capturing social interactions and social inferences that other models cannot. Other models are confused, and so predict that there

is a very weak or non-existent social goal in most cases while our model follows human judgements.

(left) Weight of social goals (right) Weight physical goals

Fig. 5: Twelve human subjects, and our model, the Social MDP,
watched and scored 10 videos at different snapshots. These videos
consist of five scenarios where robots reason at either level 1 or level
2 (presented to the users in randomized order). The straight black
line represents the best linear fit to the data, and the light blue band
around the line shows the uncertainty in the linear fit. The light blue
band represents a 95% confidence interval. (left) Models and humans
were asked to predict how social the agents were and the valence of
the interaction (was it positive or negative). Non-social settings have
a weight of 0, while adversarial settings have a social weight of -2,
overwhelming the physical goal of any agent. Humans and machines
predict similar social goals both in terms of value and magnitude.
(right) Models and humans were asked to predict a weight factor on
the physical goal, how much does this agent care about its physical
goal. At 0, the physical goal is ignored. At 1, it is weighted equally
with a social goal also set at 1. Human and model scores are again
highly correlated. Our model is able to effectively generate trajectories
that humans recognize as being social interactions. It is also able to
predict the type of social interaction that humans believe occurred.

98 different experiment scenarioﬂ are systematically created

Interactions for the experimental scenarios can be viewed at https!
/Isocial-mdp.github.io/scenarios

Social MDP (ours)

0.85
0.76

Inverse Planning Cue-based

0.78 0.20
0.71 0.07

Social Goal
Physical Goal

Fig. 6: The coefficient of correlation with 95% confidence interval
between machine judgements and ground truth(final 2 time steps) for
all the 98 experiment scenarios (each scenario has agents having either
the same or different physical goals along with one of 7 different
scaling factors on each of their social goals (-2, -1, -0.5, 0, 0.5, 1,
2)). Refer to appendix for detailed results for each scenario. We
provide two baselines and our own approach. The cue-based model
is described in [23]. The inverse planning model is described in [9].
Social MDPs produce better alignment with ground truth than other
models and do not require training like the cue-based model.

in this grid world. Each scenario has agents as having either
the same physical goal or different physical goals and one of
7 different scaling factors on each of their social goals (-2, -1,
-0.5, 0, 0.5, 1, 2) (2% 7% 7 = 98 scenarios). All 98 experiment
scenarios correspond to reasonable interactions between agents.
The degree to which this is true in more complex environments
and the degree to which systematically unfolding the model
in more complex environments always results in what humans
would describe as social interactions is an important topic for
future work

Each agent’s reward for reaching its physical goal is based
on that agent’s geodesic distance from the goal after taking an
action [9]]. This physical reward function is parameterized by p
and ¢ that determines the scale and shape of the physical reward:
ri(s,a,9;) = max (p (1 — distance(s, a, g;)/d),0). We set
the cost, ¢, of an action a, to 1 for grid moves and 0.1 to staying
in place while p and § were set to 1.25 and 5, respectively.

To quantitatively establish the quality of the social inferences


https://social-mdp.github.io/scenarios
https://social-mdp.github.io/scenarios

made by the Social MDPs, we compare human judgements
of 12 subjects against those of two baseline models: inverse
planning [9] and a recent cue-based model [23]]. Humans
and models had to estimate the physical and social goals of
agents in these environments when the agents were acting both
as level one agents (unaware that the other agents are also
social) and as level two agents (who could account for the
fact that the other agents are social). In fig. [5] we show the
raw judgements of humans and of our models, along with a
best linear fit. The performance of all models against human
judgements, was measured through correlation coefficient at
95% confidence level, for social goal estimation (r = 0.89 for
the Social MDP vs. r = 0.81 for the Inverse Planning model vs.
r = 0.23 for the Cue-based model) and physical goal estimation
(r = 0.78 for the Social MDP vs. r = 0.72 for the Inverse
Planning model vs. r = 0.08 for the Cue-based model). Our
model performs considerably better than other models. This
is even more evident in the deep dive shown in fig. 4 For
level one agents, agents that are social but that assume that
other agents are not social, all models agreed with human
judgements. Yet, for level two agents, agents that are social
and can assume that other agents are also social, our models
are far better aligned with human judgements.

V. CONCLUSION

Social MDPs are a first step toward a theory of social
interactions that fits within the established frameworks we
have in robotics. They can perform zero-shot social recognition
and planning for diverse situations. The fact that MDPs can
be extended in a natural way that is also computationally
tractable to account for many social interactions by nesting
inference and allowing models to take arbitrary functions of the
estimated rewards of other agents has not been noted before.
Our experiments clearly show that Social MDPs are superior
to prior models and account for more social interactions.

We have only begun to explore what Social MDPs can
represent in this work. The environment we consider is very
simple, yet, at the same time, more than enough to differentiate
Social MDPs from other models. We have unrolled Social
MDPs only two levels, what exists at deep levels is still unclear.
It is likely that humans do not perform deeply-nested recursive
reasoning to carry out social interactions, although, what the
cutoff is, and if Social MDPs are close enough to a human’s
mental model to allow for measuring that cutoff is unknown.

We would like to see in the future that any MDP-based
system can be augmented to be social by a straightforward
extension with Social MDPs. Much like virtually any approach
can be easily augmented to partially-observed environments
using POMDPs. Social MDPs and POMDPs are compatible,
exploring their combinations and the implications of partial
observability for social interactions remains as future work.
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