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Abstract
A robot’s ability to understand or ground natural
language instructions is fundamentally tied to its
knowledge about the surrounding world. We present
an approach to grounding natural language utter-
ances in the context of factual information gathered
through natural-language interactions and past vi-
sual observations. A probabilistic model estimates,
from a natural language utterance, the objects, re-
lations, and actions that the utterance refers to, the
objectives for future robotic actions it implies, and
generates a plan to execute those actions while up-
dating a state representation to include newly ac-
quired knowledge from the visual-linguistic context.
Grounding a command necessitates a representa-
tion for past observations and interactions; however,
maintaining the full context consisting of all pos-
sible observed objects, attributes, spatial relations,
actions, etc., over time is intractable. Instead, our
model, Temporal Grounding Graphs, maintains a
learned state representation for a belief over factual
groundings, those derived from natural-language in-
teractions, and lazily infers new groundings from
visual observations using the context implied by the
utterance. This work significantly expands the range
of language that a robot can understand by incor-
porating factual knowledge and observations of its
workspace in its inference about the meaning and
grounding of natural-language utterances.

1 Introduction
Effective human-robot interaction in homes or other complex
dynamic workspaces requires a linguistic interface; robots
should understand what owners want them to do. This is
only possible with a shared representation of the environment,
both past and present, as well as a mutual understanding of
the knowledge exchanged in prior linguistic interactions. At
present, humans and robots possess disparate world repre-
sentations which do not lend themselves to enabling natural
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human-robot interactions. Humans possess a continuously-
expanding rich understanding of the environment consisting
of semantic entities and higher-order relationships which in-
cludes knowledge about previous interactions and events. In
contrast, robots estimate a metric picture of the world from
their sensors which determine which action sequences to take.
Our goal is to bridge this semantic gap and enable robots, like
humans, to acquire higher-order semantic knowledge about
the environment through experience and use that knowledge
to reason and act in the world. To this end, we develop an ap-
proach to building robotic systems which follow commands in
the context of accrued visual observations of their workspace
and prior natural-language interactions. Natural-language in-
teractions can include both commands to perform an action
or important factual information about the environment. The
robot understands and retains facts for later use and is able to
execute the intended tasks by reasoning over acquired knowl-
edge from the past.

In recent years, probabilistic models have emerged that in-
terpret or ground natural language in the context of a robot’s
world model. Approaches such as those of Tellex et al. [2011],
Howard et al. [2014], Chung et al. [2015], and Paul et al.
[2016], relate input language to entities in the world and ac-
tions to be performed by the robot by structuring their infer-
ence according to the parse or semantic structure embedded
in language. A related set of approaches such as those of
Zettlemoyer and Collins [2007], Chen et al. [2010], Kim and
Mooney [2012], and Artzi and Zettlemoyer [2013] employ
semantic parsing to convert a command to an intermediate
representation, either λ-calculus or a closely related logic
formalism, which can then be executed by a robot. A key
limitation of current models is their inability to reason about
or reference past observations. In essence, many models as-
sume that the world is static, facts do not change, and that
perception is entirely reliable. Matuszek et al. [2014] present
a formulation that allows uncertainty in the knowledge about
object in the scene and present an approach that learns object
attributes and spatial relations through joint reasoning with
perceptual features and language information. In a similar
vein, Chen and Mooney [2011], Guadarrama et al. [2013],
Walter et al. [2014], Hemachandra et al. [2015], and Andreas
and Klein [2015], demonstrate systems more resilient in un-
certainty in the input given the need for the robot to carry out
actions. Even a simple statement such as “The fruit I placed
on the table is my snack” followed by the command “Pack up
my snack” requires reasoning about previous observations of
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the actions of an agent. While work such as that of Misra et al.
[2016], and Liu et al. [2016] incorporates context it does so
by learning the static relationships between properties of the
environment and actions to be performed; a different task from
learning facts online and remembering the actions of agents.

Complementary efforts in many communities have focused
on acquiring rich semantic representations from observations
or knowledge-based systems. These include efforts in the
vision community towards compositional activity recogni-
tion [Barrett et al., 2016; Yu et al., 2015] and work such
as that by Berzak et al. [2016] which combines activity recog-
nition with language disambiguation. Further, approaches for
associating language with semantic constructs have been ex-
plored in the semantic parsing community [Berant et al., 2013].
Cantrell et al. [2010] investigate a closely-related problem,
grounding robotic commands which contain disfluencies to
objects in images. We consider a broader notion of grounding
than Cantrell et al. [2010] in which we include the actions of
agents as well as knowledge from prior linguistic interactions
but note that their approach is complementary and could be
used to increase the robustness of the work presented here.

We seek the ability to reason about the future actions of
a robot using knowledge from past visual observations and
linguistic interactions. Enabling such reasoning entails deter-
mining which symbols grounded by past observations should
be retained to enable future inferences. One approach is to
estimate and propagate all symbols from past percepts. This is
intractable as the space of all static or dynamic semantic rela-
tions between all observed objects is exponentially large and
continues to grow exponentially as new relations are learned.
Alternatively, one can forgo symbol propagation and retain
raw observations alone. This approach incurs a linear storage
cost, but requires jointly interpreting the current utterance with
all past utterances, combinatorially increasing the inference
cost with each utterance.

In this work, we present Temporal Grounding Graphs, a
probabilistic model that enables incremental grounding of
natural language utterances using learned knowledge from ac-
crued visual observations and language utterances. The model
allows efficient inference over the constraints for future actions
in the context of a rich space of perceptual concepts such as
object class, shape, color, relative position, mutual actions, etc.
as well as factual concepts (does an object belong to an agent
such as a human) that grow over time. Crucially, the approach
attempts to balance the computational cost of incremental
inference versus the space complexity of knowledge persis-
tence. Our model maintains a learned representation as a belief
over factual relations from past language. The model accrues
visual observations but delays estimation of grounding of per-
ceptual concepts. Online, the model estimates the necessary
past visual context required for interpreting the instruction.
The context guides the construction of a constrained ground-
ing model that performs focused time-series inference over
past visual observations. This approach incurs an additional
inference cost online but reduces the need for exhaustively
estimating all perceptual groundings from past observations.
Factors in the model are trained in a data-driven manner us-
ing an aligned vision-language corpus. We demonstrate the
approach on a Baxter Research Robot following and execut-
ing complex natural language instructions in a manipulation
domain using a standardized object data set.

2 Problem Formulation
We consider a robot manipulator capable of executing a
control sequence µt composed of an end-effector trajectory
{µt(t′i ), . . . , µt(t′f )} initiated at time t. The robot’s workspace
consists of objects O that may be manipulated by the robot or
other agents such as the human operator. We assume that each
object possesses a unique identifier (a symbol) and an initial
metric pose known a-priori to the robot. The robot observes
its workspace through a visual sensor that collects an image
It at time t, each associated with metric depth information for
localization within the environment. Further, we assume the
presence of an object recognition system for a known set of
object classes which yields potential detections (each a sub-
image) with an associated class likelihood. Let Zt denote the
set of detections {zt

0, . . . , z
t
nt
} from It where nt is the total num-

ber of detections. The human operator communicates with the
robot through a natural language interface (via speech or text
input) either instructing the robot to perform actions or provid-
ing factual information about the workspace. Let Λt denote
the input language utterance from the human received at time
t which can be decomposed into an ordered tree-structured
set of phrases {λ1, . . . , λn} using a parsing formalism. We
consider the problem of enabling the robot to understand the
language utterance from the human in the context of learned
workspace knowledge from past visual observations or factual
information provided by the human. Next, we define the space
of concepts that represent meaning conveyed in a language
utterance and subsequently formalize the grounding problem.

2.1 Grounding Symbols
We define a space of concepts that characterize the seman-
tic knowledge about the robot’s workspace. The robot’s
workspace can be expressed as a set of symbols associated
with semantic entities present in the environment. These in-
clude object instances, the human operator and the robot itself,
and form the symbolic world model Υ. Concepts convey
knowledge about the properties or attributes associated with
entities or relationships between sets of entities. It is com-
mon to employ a symbolic predicate-role representation for
concepts [Russell and Norvig, 1995]. A predicate expresses
a relation σ ∈ Ω defined over a set of symbols R, each as-
sociated with an entity in the world model Υ. The space of
possible predicates that may be true for a world representation
forms the space of grounding symbols Γ:

Γ =
{
γσ
R
| σ ∈ Ω,R ⊆ Υ

}
. (1)

For example, if the workspace model consists of a human and a
box denoted as symbols o1 and o2, the grounding for the event
that involves a person lifting the box object is represented by
the grounding symbol PickUp(o1, o2).

Grounding symbols can be categorized in terms of the type
of concepts they convey about the workspace. A set of declara-
tive grounding symbols Γδ convey knowledge about the robot’s
workspace. These include perceptual concepts ΓP consisting
of entities such as objects and agents, static relations like spa-
tial regions (e.g, on, left, front) and event relations that denote
interactions (e.g., place, approach, slide) between agents and
objects present in the scene. Further, declarative groundings
include factual concepts ΓF consisting of arbitrary relations
representing abstract (non-perceptual) knowledge. As an ex-
ample, the phrase “the cup on the tray is mine and the fruit
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Table 1: The space of grounding symbols and their arities. Object
classes are provided and learned by object detectors. Regions, modi-
fiers, human actions and planner constraints are learned as described
in Section 3.4. The space of factual concepts is open and expands
through natural-language interaction.

Agents Robot1, Human1

Objects Block1, Can1, Box1, Fruit1, Cup1, . . .
Regions LeftOf2, InFrontOf2, OnTopOf2, . . .
Modifiers Quickly1, Slowly1, Big2, Red2, . . .
Human actions PickUp2, PutDown2, Approach2, . . .
Factual concepts Mine1, Favourite1, Forbidden1, . . .
Planner constraints Intersect2, Contact2, SpatialRelation2, . . .

on the right is fresh” conveys notions of possession and being
fresh that are factual. The space of facts grows through lin-
guistic interactions where any previously-unknown property
of an object is considered a fact. Facts can be true of multiple
entities simultaneously. For example, in the statement, “the
fruit and the box on the table are my snack”, the notion of
snack includes the two indicated objects in the scene.

A set of imperative groundings Γπ describe the objectives or
goals that can be provided to a robot motion planner to create a
set of robot motions. Imperative groundings are characterized
by a type of motion (e.g., picking, placing or pointing) and
a set of spatial constraints (e.g., proximity, intersection or
contact) that must be satisfied by the executed action. Further,
we include aggregative constraints conveyed as conjunctive
references (e.g., “the block and the can”) or associations (e.g.,
“a set of blocks”). Finally, the set of imperative groundings
also includes a symbol that conveys the assertion of an inferred
factual grounding1. The space of grounding symbols can be
cumulatively represented as Γ = Γπ∪ΓP∪ΓF . Table 1 lists the
representative set of grounding predicates used in this work.

2.2 Language Grounding with Context
The problem of understanding or grounding a natural language
utterance involves relating the input language with semantic
concepts expressed in the workspace. This process involves
estimating the probable set of groundings that best convey
the intended meaning of the perceived language utterance.
For example, the interpretation for the utterance, “Pick up
the block on the table” can be represented by the grounding
set Block(o1) ∧ EndEffector(o2) ∧ Table(o3) ∧ On(o1,o3) ∧
Contact(o2,o1) where object symbols o1, o2 and o3 are derived
from the symbolic world model. The estimated association
between the input language utterance and the set of grounding
symbols expresses the intended meaning of the sentence and
can be considered as determining a conceptual grounding for
the utterance. Further, the set of object symbols that param-
eterize the estimated grounding symbols must be associated
with the set of visual percepts arising with the geometric ob-
jects populating the workspace. This process can be viewed as
estimating existential groundings. In the above example, this
would entail associating object symbols o1 and o2 with the set
of detections Z0:t that correspond to the physical block and
table. In essence, the existential grounding process accounts
for uncertainty in the robot’s perception of semantic entities
present in the environment.

1As we discuss later in Section 3, an imperative grounding asso-
ciated with an asserted fact is used to propagate factual knowledge.

Following [Tellex et al., 2011], the grounding process is
mediated by a binary correspondence variable φi j ∈ Φ that
expresses the degree to which the phrase λi ∈ Λ corresponds
to a possible grounding γ j ∈ Γ. This allows groundings to be
expressed as probabilistic predicates modeling the uncertainty
in the degree of association of a concept with a phrase. Further,
limiting the domain of correspondence variables to a true or a
false association, allows the factors relating phrases and candi-
date groundings to be locally normalized, which reduces the
learning complexity. Similarly, we introduce correspondence
variables ΦO that convey probable associations between object
symbols in the world model Υ and visual detections Z0:t.

A note on convention: in the remainder of this paper, we
use the phrase “grounding natural language” to imply the con-
ceptual grounding of an input language utterance to the space
of grounding symbols that characterize workspace knowledge
acquired by the robot. We address the issue of estimating
correspondences between object symbols in the world model
with the visual percepts in Section 3.3. Further, in our formula-
tion the grounding for an utterance is obtained by determining
the likely true correspondences. For brevity at times we re-
fer to “estimating true correspondences between phrases in
the utterance and grounding symbols” as simply “estimating
groundings for language”. Finally, we use capital symbols in
equations to refer to sets of variables.

We now discuss the temporally extended scenario where
estimating the grounding for an input language utterance in-
volves reasoning over an accrued context of past visual obser-
vations and language utterances. For example, consider the
scenario where a robot observes a human place a can in the
scene. This is followed by the human uttering “the can that I
put down is my snack” and commanding the robot to “pack up
my snack”. Interpreting this sequence of language utterances
requires inferring and reasoning with factual information, such
as which objects constitute the “snack”, recognizing that the
“put down” action is associated with the “can”, and inferring
that the robot is instructed to execute a “lift and place” action
sequence to satisfy the command. Given the context of visual
observations Z0:t and utterances Λ0:t−1 leading up to time t, the
problem of estimating the set of true correspondences Φt for
the utterance Λt and control actions µt can be posed as:

P(µt,Φt |Λ0:t,Z0:t,Γt). (2)

In the following section, we develop a probabilistic model for
estimating this distribution.

3 Probabilistic Model
In this section, we present the Temporal Grounding Graphs
model for interpreting natural language utterances with past
visual-linguistic context of observations of the world coupled
with descriptive language. We pose the problem of estimating
Equation 2 as “filtering” on a dynamic Bayesian network and
subsequently detail the model for estimating groundings for an
utterance at each time step. Further, we discuss model training
and present an analysis for runtime and space complexity for
the model.

3.1 Temporal Model
We pose the problem of computing Equation 2 as incremen-
tal estimation on a temporal model. The interpretation of a
current utterance Λt can rely on the background knowledge
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The box I put down on the table is mine.

Human(x) ∧ PutDown(x, y) ∧ Box(y) ∧ On(y, z) ∧ Table(z) Assert(Mine(y))

Λδ
t−1

Λπ
t−1

Visual observations Z0:t

· · · · · ·
State Kt−1

update

Robot performing the intended action

Pack up my box.

Mine(x) ∧ Box(x)

lookup

Λδ
t

λ1 λ2

Pack up box

Λπ
t

γ1 γ2

φ1 φ2

Figure 1: An overview of grounding commands from the initial utterances to a robotic action. Utterances are jointly grounded into declarative
and imperative grounding symbols. Perceptual groundings are computed jointly with object tracks, shown with corresponding colors. Factual
knowledge is aggregated and used to disambiguate later commands. A grounding graph is illustrated for a command showing how the structure
of the model mirrors that of the sentence. Probable imperative correspondences are estimated conditioned on the declarative groundings and
prior state. They determine the constraints used by a motion planner to generate an action sequence and direct the robot’s behaviour.

K0 K1 Kt−2 Kt−1 Kt

Φ1 Φt−1 Φt

Γ1 Γt−1 Γt

µ1 µt−1 µt
Λ1 Λt−1

Λt

Z1 Zt−1 Zt

Figure 2: Grounding an instruction Λt with past visual-linguistic
observations {Z0:t,Λ0:t−1} is posed as filtering on a temporal model.
A state variable Kt provides minimal state persistence over factual
knowledge derived from past language inputs Λ0:t−1. Estimating
perceptual groundings from past visual observations Z0:t is delayed,
variables encircled with red plate. The declarative context within the
instruction Λt focuses inference over past visual observations.

derived from the past language descriptions Λ0:t−1 or semantic
information derived from accrued visual observations Z0:t. As
a result, conditional dependencies exist between the interpre-
tation for current utterance and past observations. The direct
estimation of this distribution is challenging since the inter-
pretation of the current command Λt may involve reference to
past knowledge that must be estimated jointly from past ob-
servations, creating conditional dependencies that grow with
time. One approach is to introduce a state variable incorpo-
rating inferred past groundings that is propagated over time.
An explicit state variable has the advantage of making the past
observations conditionally independent of future observations
given the current state, but such a variable must maintain all
perceptual groundings derived from the history of the visual
input. The space of perceptual groundings ΓPt is exponentially
large as it must include all possible relationships between
entities in the scene that may be referenced by a language ut-
terance and is infeasible to maintain for complex scenes over
time. Alternatively, the model can accrue observations and
directly estimate Equation 2 at each time step. Although this
approach reduces the space complexity for maintaining con-
text, the cost of incremental inference is high since the current
and past language utterances must be interpreted jointly.

We seek to balance the complexity of context maintenance
with efficiency of incremental estimation and introduce a state
variable denoted by Kt that expresses the belief over factual
grounding symbols ΓFt . We assume that factual groundings
are uncorrelated. The likelihood over the state can be factored
as a product of individual grounding likelihoods as:

Kt =

{
γσ
Rt
| ∀σ ∈ ΩF ,∀Rt ⊆ Υt

}
P (Kt) =

|ΓFt |∏
i=1

P
(
γσ
Rt i

)
. (3)

Note that the likelihood of the state variable expresses the
likelihood over the factual grounding variables. This is in
contrast to the grounding likelihood that explicitly models
the degree of association between an utterance and a factual
concept. The inclusion of the state variable in Equation 2 at
each time step enables the following factorization:

P(µt,Φt,Kt |Λ0:t,Z0:t,Γt) =∑
Kt-1

Current inference︷                              ︸︸                              ︷
P(µt,Φt,Kt |Λt,Z0:t,Kt-1,Γt)

Previous state estimate︷                      ︸︸                      ︷
P(Kt-1|Λ0:t-1,Z0:t-1,Γt) .

(4)

The state variable Kt−1 represents the cumulative belief over
factual groundings till the previous time step t − 1. The state
variable Kt−1 decouples the estimation of the grounding Φt
for the current command Λt from the past language inputs
Λ0:t−1. The factorization introduced in Equation 4 poses the
inference over the full time history as filtering at each time
step over groundings for the command and associated actions.
Further, the online estimation process also propagates or up-
dates the state variable informed by the visual and language
observations. Figure 2 illustrates the unrolled temporal model.
Crucially, we only propagate factual groundings ΓFt . The set
of visual detections Z0:t are stored directly as part of context.
The inference over perceptual groundings ΓPt is delayed till a
future utterance is received, a process we outline next.

3.2 Grounding Network
We now detail the model for inference instantiated at each
time step within the dynamic Bayesian network outlined in the
previous section. The grounding model estimates the likely
set of correspondences Φt, the control sequence µt and the
updated knowledge state Kt from the utterance Λt at time t
using the prior state Kt−1 and visual observations Z0:t. We
assume that the estimated groundings of an input command
are sufficient for determining the output robot actions. The
inference over the control sequence µt is decoupled from other
variables given the knowledge of expressed correspondences
Φt. Further, we assume that given the prior state Kt−1 and the
observed correspondences Φt, the updated state variable Kt is
conditionally independent of other variables in the model. The
above assumptions factorize the joint likelihood as:

P(µt,Φt,Kt |Λt,Z0:t,Kt-1,Γt) =

Planner︷   ︸︸   ︷
P(µt |Φt)

State update︷          ︸︸          ︷
P(Kt |Φt,Kt-1)

Grounding model︷                      ︸︸                      ︷
P(Φt |Λt,Z0:t,Kt−1,Γt) .

(5)

In the above, the grounding model P(Φt |Λt,Z0:t,Kt−1, Γt) esti-
mates the correspondences for the input instruction Λt given
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Λt

Λπ
t Λδ

t

Φδ
t

ΦOt

Φπ
t Z0:t

ΓδtΓπt

Kt−1Kt

µt

Figure 3: The grounding network for inference at each time instant
t. An utterance Λt is grounded through imperative correspondences,
Φπ

t , related to future robot actions, and declarative correspondences,
Φδ

t , relating perception and factual knowledge. A parsing mecha-
nism facilitates this by partitioning Λt into {Λπ

t ,Λ
π
t }. The declarative

grounding factor incorporates visual observations Z0:t and prior state
estimate Kt−1. Estimation of imperative groundings is conditioned
on declarative correspondences and yields constraints for planning
robot actions µt. Estimated groundings update and propagate the
state estimate Kt.

context accrued till the present time step {Kt−1,Z0:t}. Note that
an input language utterance may instruct the robot to perform
a task, refer to past or current knowledge about the workspace
or provide factual knowledge for future inferences. Estimat-
ing the conditional likelihood P(Φt |Λt,Z0:t,Kt−1,Γt) involves
determining the set of true imperative correspondences Φπ

t ,
the declarative correspondences Φδ

t and the set of correspon-
dences ΦOt that object symbols in the world model Υ with
visual percepts Z0:t. Partitioning the set of grounding variables
as imperative and declarative sets allows Equation 5 as:

P(µt,Φt,Kt |Λt,Z0:t,Kt−1,Γt) =
∑

Λπ
t ,Λ

δ
t

Planner︷    ︸︸    ︷
P(µt |Φ

π
t )

State update︷           ︸︸           ︷
P(Kt |Φ

π
t ,Kt-1)

P(Φπ
t |Λ

π
t ,Φ

δ
t ,Γ

π
t )︸               ︷︷               ︸

Imperative grounding

P(Φδ
t ,Φ

O
t |Λ

δ
t ,Z0:t,Kt-1,Γ

δ
t )︸                            ︷︷                            ︸

Declarative grounding

P(Λπ
t ,Λ

δ
t |Λt)︸         ︷︷         ︸

Parsing

.

(6)

Figure 3 illustrates the resulting factor graph. The declara-
tive grounding factor P(Φδ

t ,Φ
O
t |Λ

δ
t ,Z0:t,Kt-1, Γ

δ
t ) involves esti-

mating perceptual and factual groundings conditioned on the
context of visual observations and the propagated knowledge
state. Further, this factor jointly estimates the likely corre-
spondences that connect the symbols in the world model with
percepts obtained by the visual sensor. The estimation of im-
perative groundings is conditioned on the declarative ground-
ing variables described by the likelihood P(Φπ

t |Λ
π
t ,Φ

δ
t ,Γ

π
t ).

The declarative grounding variables decouple the estimation
of the imperative groundings from the past visual observations
and the current knowledge state. The inclusion of declarative
grounding variables in the factor estimating the imperative
grounding enables disambiguation of the future actions that
the robot may perform. For example, consider the utterance,
“lift the box that was placed by the person on the table” where
the intended manipulation of the box is constrained by the
knowledge of a past interaction between the person and the
specific box. The induced factorization in Equation 6 relies on
partitioning a set of linguistic constituents as imperative (fu-
ture actions) or declarative (knowledge from the past). Parsing
of the instruction and estimating a partitioning of the con-

stituents set as imperative or declarative is modeled by the
factor P(Λπ

t ,Λ
δ
t |Λt).

We assume that the estimated imperative groundings derived
from a language command fully characterize the goals and
objectives for future robot actions. The estimation of the
control sequence generation is conditioned on the estimated
imperative groundings alone expressed in the factor P(µt |Φ

π
t ).

If the language utterance conveys factual information about
entities in the world, then the estimated factual groundings for
the utterance serve as a “measurement” for knowledge state.
The estimated imperative grounding Φπ

t involves an action to
update the prior knowledge Kt−1 using the estimated factual
groundings to form the propagated state Kt, modeled in the
likelihood P(Kt |Φ

π
t ,Kt-1).

3.3 Factors
In this section, we detail the individual models that constitute
the ground network represented by Equation 6.

Dependency Parse and Syntactic Analysis

The parsing model P(Λπ
t ,Λ

δ
t |Λt) is realized using a dependency

parser, START [Katz, 1988], that factors the input language Λt
into a set of constituents related to each other using syntactic
dependency relationships. The structure of the computed lin-
guistic relations informs the structure of the grounding models
such that conditional dependencies between grounding vari-
ables follow the parse structure. The set of constituents and
syntactic dependencies, as well as the morphological and lex-
ical features provided by START, determine if a constituent
plays an imperative Λπ

t and/or declarative Λδ
t role in the input

utterance. This partitioning informs the grounding factors
P(Φπ

t |Λ
π
t ,Φ

δ
t , Γ

π
t ) and P(Φδ

t ,Φ
O
t |Λ

δ
t ,Z0:t,Kt-1, Γ

δ
t ). Any linguis-

tic constituents which are unknown are ignored aside from
those associated with a single entity. These are assumed to be
new facts about that entity which enables the corpus of factual
knowledge to expand online.

Declarative Grounding Model
The declarative grounding model estimates the set of corre-
spondences for declarative groundings Φδ

t . These include
facts, static spatial relations, and dynamic relations such as
events. Further, the factor also estimates the correspondences
ΦOt between objects symbols and percepts. The estimation is
conditioned on the set of declarative linguistic constituents
Λδ

t derived from the parse of an utterance, the set of visual
observations Z0:t and the prior state Kt−1. Since factual rela-
tions express abstract or non-perceptual knowledge, the set
of factual groundings is decoupled from visual observations
conditioned on the utterance and the prior state. This enables
the following factorization where we assume an undirected
representation:

Ψ(Φδ
t ,Φ

O
t ,Λ

δ
t ,Z0:t,Kt−1,Γ

δ
t ) =

Factual grounding︷                    ︸︸                    ︷
Ψ(ΦFt ,Λ

δ
t ,Kt−1,Γ

F
t )

Perceptual grounding︷                       ︸︸                       ︷
Ψ(ΦPt ,Φ

O
t ,Λ

δ
t ,Z0:t,Γ

P
t ) .

(7)

The factor Ψ(ΦFt ,Λ
δ
t ,Kt−1,Γ

F
t ) models the likelihood of a

factual grounding. The conditional likelihood is inferred from
language ΛFt and the state variable Kt−1 which includes the
estimated belief over factual knowledge propagated from a
past context.

The factor Ψ(ΦPt ,Φ
O
t ,Λ

δ
t ,Z0:t,Γ

P
t ) models the joint likeli-

hood over perceptual groundings ΦPt and correspondences
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between world model symbols and percepts ΦOt given lan-
guage Λδ

t and accrued visual observations Z0:t. This factor
is realized using a vision-language framework developed by
Barrett et al. [2016], the Sentence Tracker. It models the
correspondences between visual observations and an event
described by a sentence as a factorial hidden Markov model
[Ghahramani et al., 1997]. Given a parse of an input sen-
tence it first determines the number of participants in the event
described by that sentence. Next, it instantiates one tracker
HMM for each participant. Tracker HMMs model sequences
of object detections that both have high likelihood and are tem-
porally coherent and observe the visual input Z0:t to estimate
object tracks from raw detections. Tracker HMMs are in turn
observed by declarative grounding HMMs. An HMM for a
declarative symbol encodes the semantics of that symbol as a
model for one or more sequences of detections; for example
approach can be modeled as an HMM with three states: first,
the objects are far apart, then they are closing, and finally
they are close together. Grounding models observe trackers
according to the parse structure of the sentence thereby encod-
ing subtle differences in meaning, like the difference between
being given a block and giving away a block. For example,
given the sentence “The person put down the block on the
table” and a parse of that sentence as Human(x) ∧ Block(y)
∧ PutDown(x, y) ∧ Table(z) ∧ On(y, z) it instantiates three
trackers, one for each variable, and five declarative grounding
models, one for every predicate, and connects them according
to the predicate argument structure of the parse. Inference
simultaneously tracks and recognizes the sentence finding the
globally-optimal object tracks for a given sentence and set of
object detections. The formulation described above expresses
Equation 7 as:

Ψ(Φδ
t ,Φ

O
t ,Λ

δ
t ,Z0:t,Kt−1,Γ

δ
t ) =

Factual grounding︷                    ︸︸                    ︷
Ψ(ΦFt ,Λ

δ
t ,Kt−1,Γ

F
t )

Event grounding︷                 ︸︸                 ︷
Ψ(ΦPt ,Λ

δ
t ,Φ

O
t ,Γ

P
t )

Object tracking︷       ︸︸       ︷
Ψ(ΦOt ,Z0:t) .

(8)

It is exactly this inference over correspondences {Φδ
t ,Φ

O
t } to

groundings that allows us to forget the raw observations when
grounding future instructions that refer to events in the past.
Imperative Grounding Model

We now discuss the factor P(Φπ
t |Λ

π
t ,Φ

δ
t , Γ

π
t ) that estimates the

correspondences Φπ
t for the imperative instruction given the

imperative part of the utterance Λπ
t and the set of declarative

correspondence Φδ
t described previously. These sets of im-

perative groundings include the goals and constraints that are
provided to a robot planner to generate the motion plan to
satisfy the human’s intent. This factor is realized by extending
the Distributed Correspondence Graph (DCG) formulation
[Howard et al., 2014; Paul et al., 2016] which efficiently de-
termines the goal objectives (the object(s) to act upon) and
motion constraints (contact, proximity, visibility etc.) from
natural-language instructions. For example, an utterance like
“lift the farthest block on the right” results in contact con-
straints with one object, a block, which displays the spatial
properties, “it’s on the right”, and relations, “it’s the furthest
one”, implied by the sentence. Further, the model allows esti-
mation of aggregate constraints implied in sentences like “pick
up the can and the box”.

Formally, the imperative grounding likelihood can be ex-
pressed in the undirected form as:

Ψ(Φπ
t ,Λ

π
t ,Φ

δ
t ,Γ

π
t ) =

|Λπ
t |∏

i=1

|Γπ |∏
j=1

Imperative groundings︷                      ︸︸                      ︷
Ψ(φπi j, λ

π
i , γ

π
i j,Φ

π
ci j
,Φδ

t ) . (9)

The joint distribution factors hierarchically over the set of lin-
guistic constituents λi ∈ Λπ

t as determined by a syntactic parser.
The set of linguistic constituents are arranged in a topograph-
ical order implied by the syntactic relations in the utterance.
The structure informs the factorization of the joint distribution
over individual factors where grounding for a linguistic con-
stituent is conditioned on the estimated correspondences Φπ

ci j

for “child” constituents that appear earlier in the topological
ordering. Importantly, the conditioning on true declarative
correspondences Φδ

t from earlier constituents couples the esti-
mation of imperative and declarative groundings for an input
instruction. This probabilistic linkage allows disambiguation
of action objectives based on stated declarative knowledge in
the instruction. For example, given the utterance “pick up the
block that the human put down” the observed actions of the
human disambiguate which object should be manipulated.

Factors in Equation 9 are expressed as log-linear models
with feature functions that exploit lexical cues, spatial char-
acteristics and the context of child groundings. Inference is
posed as a search over binary correspondences and is executed
by beam search. The ordered sequence of inferred groundings
serve as an input to a planner that generates a robot-specific
motion plan µt to satisfy the inferred objective Φπ

t .
State Propagation
The state variable Kt maintains a belief over factual ground-
ings; see Equation 3. It expresses the degree to which a factual
attribute is true of an object. The support for factual grounding
variables ranges over workspace entities. For example, the
grounding for an utterance such as “the block on the table is
mine” informs the degree to which the fact, the possessive
Mine, is true for the entities which “block” is grounded to.
The grounding likelihood can be viewed as an observation
from language, informative of the latent belief over the factual
grounding contained in the knowledge state, and is used to
update the propagated state. The factor P(Kt |Φ

π
t ,Kt−1) models

the updated state variable linked with the grounding obtained
for the current utterance with the previous state estimate form-
ing the prior. Since factual groundings are assumed to be
uncorrelated2, the posterior distribution over each grounding
variable in the state is updated independently using a Bayes
filter initialized with a uniform prior. This permits the belief
over stored facts to evolve over time providing resilience to
errors and ambiguities as well as accounting for changes in
the environment.

3.4 Model Training
The imperative and declarative factors that constitute the
model are trained3 through a data-driven process while the
parsing factor used an existing rule-based model.

2In general one would want knowledge to be structured and to
include an inference mechanism to deduce consequences and ensure
consistency. This remains part of future work.

3Each factor is trained independently using labeled ground truth
data. An EM-style approach for jointly training all factors remains
future work.
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The imperative grounding factor, realized using the Dis-
tributed Correspondence Graph (DCG) model, was trained
using an aligned corpus of language instructions paired with
scenes where the robot performs a manipulation task. A data
set consisting of 51 language instructions paired with random-
ized world configurations generating a total of 4160 examples
of individual constituent-grounding factors. Ground truth
was assigned by hand. A total of 1860 features were used
for training. Parameters were trained using a quasi-Newton
optimization procedure. The declarative grounding factor, re-
alized using the Sentence Tracker, was trained using captioned
videos without any annotation about what the captions or the
words that comprise those actions referred to in the video.
An EM-like algorithm acquired the parameters of the declar-
ative grounding factor using a corpus of 15 short videos, 4
seconds long, of agents performing actions in the workspace.
The parsing factor was realized using START, a natural lan-
guage processing system which is primarily used for question
answering from semi-structured sources such as the World
Factbook and Wikipedia. START was unchanged and we used
its standard APIs for language parsing and generation and for
executing actions in response to user requests.

3.5 Complexity Analysis
Incremental estimation in temporal grounding graphs relies
on propagating a state Kt while retaining visual observations
Z0:t trading off the runtime of grounding a single utterance
with the space and time complexity of estimating perceptual
groundings from visual observations. Table 2 provides a com-
plexity analysis for the proposed approach compared to two
common alternatives: the first column of the table presents
the analysis corresponding to a model that relies entirely on
the observation history without any state maintenance, i.e.,
estimates P(Φt |Λ0:t,Z0:t, Γt). The last column corresponds to a
model that maintains a full symbolic state without retaining
either the visual or linguistic observations. We introduce the
following notation for the analysis: Λ and Z are the worst
case longest sentence and video requiring the most number of
detections, Cw is the declarative symbol with the largest state
space, CΛ is the number of participants in the event described
by the worst case sentence, ΓF and ΓP are the number of
the factual and perceptual grounding predicates, and o is the
number of possible object instances.

Not keeping any state results in low space complexity
O(Λt + Zt), while having high grounding time complexity
O(tCw

tΛZCΛ ). Note the exponential dependency on t, the num-
ber of time steps. Reasoning about any new sentence requires
re-reasoning about all previously seen sentences and any cor-
relations between those sentences resulting in an exponentially
increasing joint distribution. Even for short exchanges this
runtime is infeasible. Conversely, keeping all perceptual state
in a symbolic manner results in extremely efficient inference
of groundings, O(Cw

ΛZCΛ ). The likelihoods of any declarative
groundings are already recorded and only groundings which
are relevant to the given command must be updated from time
t − 1 to t. Yet this process must record all possible inferences
for any grounding in any previous observation so they can be
available for grounding when the stimulus is discarded. Doing
so is prohibitively expensive, O(ΓPoCΛCw t + ΓF ot), due to the
arity of groundings; even a binary grounding requires storing
a fact about every pair of possible objects.

We strike a middle ground between these alternatives by
taking advantage of two facts. First, any one sentence requires
a small number of declarative groundings which can be es-
timated using prior visual observations in time linear in the
size of those observations. Second, storing factual groundings
removes the need to re-run inference over prior utterances dra-
matically speeding up grounding time to O(tCw

ΛZCΛ ). Com-
pared to not having any stored state, we see significant speedup
due to the the lack of t as an exponent while adding only a
small amount of storage, O(ΓF ot) which increases by at most
a small constant factor with each new sentence, Note that the
propagated state contains only factual groundings. We revert
to using the visual observations to save on exponential increase
in storage complexity and record facts to lower the exponent
of inferring groundings.

4 Evaluation
The system was deployed on the Baxter Research Robot op-
erating on a tabletop workspace. The robot observed the
workspace using images captured using a cross-calibrated
Kinect version 2 RGB-D sensor at ∼20Hz with 1080x760 reso-
lution. Objects were localised using a multi-scale sub-window
search in image space with filtering using depth information.
A binary SVM with colour histogram features was used for
object recognition. The robot engaged in several interactions
with human agents that were speaking or typing natural lan-
guage sentences providing information, narrating the events,
or requesting the execution of a command. Spoken commands
from the human operator were converted to text using an Ama-
zon Echo Dot. We demonstrate the space of capabilities of the
model through a qualitative evaluation and create a corpus of
interactions to demonstrate its robustness.4 The model was
evaluated qualitatively and quantitatively, both of which we
discuss next.

4.1 Qualitative Results
Figure 4 presents representative examples of grounding a se-
quence of instructions from the human operator using the
proposed model. A robot performs five tasks requiring a com-
bination of state keeping, disambiguating partial information,
and observations of its environment. At times, such as in ex-
ample (d), all such capabilities are needed as part of a joint
inference process in order to arrive at the correct grounding.
As the scenario unfolds the robot becomes more certain about
its groundings, eventually being able to perform its assigned
task.

4.2 Quantitative Evaluation
To evaluate our approach quantitatively we collected a video
corpus of humans performing actions while providing declara-
tive facts and commands for the robot to execute. Our corpus
consists of longer videos composed by combining 96 short,
3 second long, videos consisting of a person performing one
action out of 5 (pick up, put down, slide, move toward, move
away from) with one of eight objects from the YCB data set
[Calli et al., 2015] (3 fruit, 3 cups, and 2 boxes) where each
object had one of three colors (red, green, yellow), and was
either small or large, and could be on the table or on top of

4Video demonstrations and the corpus used for quantitative evalu-
ation are available at: http://toyota.csail.mit.edu/node/28
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Table 2: O-bounds on the asymptotic complexity of different approaches to state keeping with Temporal Grounding Graphs.

No state keeping Proposed approached Full state keeping
Observations at each inference step {Λ0:t,Z0:t} Z0:t ∅
State maintained after each inference ∅ ΓF ΓP ∪ ΓF

Space complexity Λt + Zt ΓF ot ΓPoCΛCw t + ΓF ot
Grounding time complexity tCw

tΛZCΛ tCw
ΛZCΛ Cw

ΛZCΛ

(a) “The cracker box on the table is my snack.” “Pick up my snack.”
Inference disambiguates the object for the pick action by relying on the updated fact
that the box is the agent’s snack.

(b) “Lift the box that I put down.”
The object to be lifted is disambiguated in the context of a video depicting an action.

(c) “The box and the can are my snack.” “Pack up my snack.”
The inferred grounding is an abstract aggregation (snack) composed of two tracks cor-
responding to the can and the box resulting in a multi-action task.

(d) “The box I will put down is my snack.” “Pick it up.”
A combination of syntactic and visual features are used to resolve the co-reference.

(e) “The fruit on the table is mine.” “The green fruit is mine.” “Point at my fruit.”
Partial information from ambiguous statements is fused together to select an object.

Figure 4: Examples of grounding instructions given visual observa-
tions and factual information gathered through one or more natural-
language interactions.

another object. The 96 short videos were collected by filming
users, not the authors, interacting with objects on a tabletop.
They were given generic directions such as “slide a cup on
the table”. The cues ensured all possible pairings of actions,
objects and spatial layouts. These shorter videos were stitched
together to form the final video corpus consisting of between
one and three seed videos concatenated together, an optional
declarative sentence associated with that smaller component
video, and a final command for the robot to perform an action
with one of the objects. Out of the possible 963 videos we cre-
ated 255 video-sentence pairs. Of these videos, 180 depicted
either one or two actions performed by a human followed by a
command whose interpretation refers to one or both actions.
For example, “pick up the red object the person put down”
associated with a clip where one object was picked up and
another was put down making the correct interpretation of this
command depend on the actions observed. The remainder of
the corpus, 75 videos, depicts either two or three actions per-

formed by a human with optional associated declarative facts
that may refer to those actions along with a final command.
For example, a sequence of videos is paired with the sentences
“the green object is the oldest”, “the fruit on the table is the
oldest”, followed by “point at the oldest object”. Sentential
annotations for the quantitative evaluation were provided by
the authors but in the future we intend to test on more diverse
user-generated utterances.

A human judge watched these video sequences captioned
with the sentences they were paired with. That judge annotated
the expected action the robot should perform and the target
object with which it should be performed. An inferred robotic
command was only considered correct when it performed the
correct action on the correct objects in the intended location.
These annotations were compared with those generated auto-
matically resulting in an accuracy of 92.5% demonstrating the
effectiveness of the state propagation in the model. Chance
performance is 1

27 , corresponding to a 1
9 chance of choosing

the correct object and a 1
3 chance of performing the correct

action with that object. Performance on short videos was
worse, with 90.2% of inferences being correct, than on long
videos, where 94.7% of inferred actions and target objects
were correct. While longer videos provide more opportuni-
ties for failure they also provide more context for inference.
Failures occurred largely due to errors in perception. Actions
which moved objects toward or away from the camera were
difficult to perceive. Several objects were occluded while an
action was performed which occasionally led to an incorrect
interpretation of that action.

5 Conclusion
The model presented here significantly extends the space of
commands that robots can understand. It incorporates factual
knowledge from prior linguistic interactions and visual obser-
vations of a workspace including the actions of other agents in
that workspace into a coherent approach that performs joint
inference to understand a sentence providing a command or
new factual knowledge. Knowledge accrues and is refined
over time through further linguistic interactions and observa-
tions. We intend to extend this model to ground to sequences
of actions and collections of objects, to engage in dialog while
executing multi-step actions, to keep track of and infer the
locations of partially observed objects, and to serve as a basis
for a grounded and embodied model of language acquisition.
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