Deep compositional models for robotic planning and language

Yen-Ling Kuo, Andrei Barbu, and Boris Katz

Abstract— We demonstrate how compositionality, the key
attribute of natural language, can be encoded into a series
of recurrent neural networks which can guide an agent to
carry out never-before-seen plans. Using little training data,
our model simultaneously learns to embed features from the
environment into a space useful for planning and automatically
discovers the concepts underlying different plans. A plan, a
sentence fragment describing a command that a robot should
carry out, is parsed into RNNs, one for each constraint or
concept implied by the command, which are used to construct
a novel compositional sampling-based robotic planner. We train
these RNNs jointly, each training example providing a path
and a list of which models should constrain that path, without
manually annotating what features each model should refer to
in either the path or the surrounding environment. At test time,
we take as input a natural-language sentence, decompose it into
a series of RNNs which are structured according to the parse
of the sentence, and demonstrate how these enable the robot
to carry out novel linguistic commands.

In order to survive, humans and animals must be able to
carry out new plans in new environments. To do so, they bring
to bear their knowledge of previous plans and environments:
how those plans were broken down into components and what
they expects to observe around them when carrying out a plan.
This ability is fundamental to data-efficient learning, knowing
most of the components of a plan allows you to more easily
learn the rest. It is also critical to grounding language in
robotic planning for two reasons; first, language is inherently
compositional which must be reflected in the compositions of
the models which are used, and second, one must disentangle
which parts of a plan different words and phrases refer to.
We demonstrate how to give robots this ability to carry out
new plans specified by sentences by breaking plans down
into compositions of previously-learned primitives trained in
a weakly-supervised setting.

The planner presented here combines a sampling-based
planner, RRT [1], with a collection of RNNs, recurrent
neural networks [2, 3, 4]. It builds on our two earlier
contributions where we develop a non-compositional variant
of RRT combined with a single RNN [5] and where we
show a sentence can be used to create a series of temporal
models which encode its meaning [6]. Given a command
to a robot, that command is broken down into constraints
or individual instructions, each is looked up in a lexicon
mapping instructions to RNNs, the selected RNNs are then
collected and combined with the sampling-based planner. At

This work was supported by the Center for Brains, Minds and Machines,
CBMM, NSF STC award 1231216, as well as The Toyota Research Institute
and the MIT-IBM Brain-Inspired Multimedia Comprehension project.

Computer Science and Al Laboratory, MIT
{ylkuo, abarbu,boris}@mit.edu

Fig. 1. An example of the compositional planner in action. The robot starting
at the red square is instructed to find the green square by going through the
narrow channel and avoiding any walls. The human instructions not only
guide the robot but provide crucial information that helps it avoid getting
stuck in the bug trap. Each constraint in the human instruction corresponds
to a different RNN that is added to the planner. New nodes in the search
tree, are sampled jointly from all RNNs while each RNN maintains its own
state and observes the local environment. All the RNNs work together to
guide the robot to execute a new plan it has never encountered before.

each time step, conditioned on local observations around
the robot, the preferred direction according to the original
sampling-based planner, and the states of all of the RNNs, a
new direction is sampled. Each RNN predicts the parameters
of a multivariate normal distribution that determine the new
location to move to in the configuration space. Less certain
or temporarily irrelevant RNNs, for example an RNN that
attempts to avoid a wall while far away from any walls, will
produce a large covariance matrix rendering their preferred
directions irrelevant. A new location is sampled from the
joint distribution of all RNNs, the search tree is extended to
that location, each of the RNNs adds a new state for that
location connected to the state of the previous location, and
the process repeats. The result is a search tree in which we
find a high-likelihood path that ends in node which is likely
to be the end of a plan.

While the configuration space, action space, features,
reasoning, and internal state of the planner are all continuous,
we build symbolic notions into the structure of the planner
itself while also having a probabilistic interpretation for its
behavior. The particular RNNs used to constrain a plan derive
from the command given; few RNNs are used for any one
plan. The RNNs diverge in their states when the search tree
diverges; different hypotheses about spatial paths lead to
different hypotheses about the internal states of the RNNs.
This structures reasoning in a very intuitive and easy to
visualize way. Moreover, at each time step, each RNN predicts



its likelihood of accepting the current state as the end of a
path; this is used to find terminal nodes in the search tree
but also lends interpretability to why the robot might decide
to stop at a certain location. Since each RNN also produces
a distribution over the next move, each has some level of
interpretability on its own outside of the model as a whole.
This means its impact on a particular path can be measured —
one can in principle determine which RNNs led to a particular
decision. Together these features not only speed up inference
but also provides significantly more interpretability compared
to black-box RL or even large POMDP approaches.

At training time, the planner is weakly-supervised, much
like an RL agent that is given a single reward after a long
sequence of actions. The planner here has both a harder
and an easier task. It must not only learn the meanings of
different plan components — their temporal evolution and
expected observations — but also learn to disentangle what
each RNN, i.e., word, means. When doing so, being able
to take advantage of the context of a plan and the already-
learned plan components is critical. Intuitively, if you already
know what a plan means, acquiring the rest of it should be
much easier. Because of this, we train plans jointly. At each
training step, we provide an entire path from a source to
a goal along with the models which contribute to that path
without indicating when each model should hold or what its
meaning should be. We then jointly update the parameters
of all models.

In fig. 1, we show an example of planning with multiple
sequence models; an extension of our earlier work [S5]. The
robot begins at the red square and is told to find a green
square while going through the narrow channel and staying
away from any walls. The search tree, shown as blue circles,
is mirrored by a collection of sequence models, RNNs. Each
sequence model corresponds to one portion of the command
given to the robot, for example, the node in purple might
bias toward the channel, the node in orange might detect
toward the green square, and the node in might bias against
being near walls. There is nothing in the structure of the
planner to distinguish different models for different concepts,
each guides the planner equally according to its parameters
and each is independent of the others. When expanding, a
free-space sample is drawn, steered toward, and the resulting
node, shown as a red circle, is used to find the closest node
in the tree; as in RRT. The models, with states corresponding
to that closest node, observe this free-space sample, the path
leading to this node (technically including all free-space
samples originally produced when creating that path; omitted
for clarity), each of their prior states along this path, local
visual or map features, shown in gray, and predict a modified
direction, shown in green, which is then connected to the
search tree. A new hybrid continuous and symbolic state for
each sequence model is also predicted and connected. The
state contains a continuous vector, allowing the RNNs to
store knowledge going forward, and a symbolic portion, a
boolean representing the relevance of the RNN. This process
co-evolves a planner with multiple sequence models that
encode a novel command that might never have been seen

Fig. 2. Given the sentence “Weave through green path to reach the car” we
generate the above path and search tree. The agent needs to escape the bug
trap while satisfying the constraints specified by the sentence. The magenta
line is the found solution. The black lines are the search tree. Note that the
RNNs guide the planner to sample densely around the green path, do indeed
weave through it, and choose a solution that ends near the car.

before and together execute that command.

Given a sentence which describes a plan, we parse that
sentence using an off-the-shelf syntactic parser. Similarly to
our earlier approach to recognizing sentences that describe
videos, given a lexicon of trained RNNs we look up each
word and select the appropriate RNN for it and given the
parse we determine a linking function which connects RNNs
to the track and to each other [6]. This collection of RNNs
constrain the track the robot must follow and the sampling
process combined with RRT as descried above is used to
produce allowable paths. In this manner, given a sentence,
we can produce a robotic plan described by it. Figure 2 is an
example solution produced by our planner for the sentence
“Weave through green path to reach the car”. We are at present
looking at how such models can be made more interpretable
and how to express complex relationships between words
such as modification by having networks which affect each
other’s parameters or internal states.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846-894, 2011.

[2] J.J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, pp. 2554-2558, 1982.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[4] K. Cho, B. van Merriénboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder—decoder approaches,”
Syntax, Semantics and Structure in Statistical Translation, p. 103, 2014.

[5] Y.-L. Kuo, A. Barbu, and B. Katz, “Deep sequential models for sampling-
based planning,” in /IROS, 2018.

[6] H. Yu, N. Siddharth, A. Barbu, and J. M. Siskind, “A compositional
framework for grounding language inference, generation, and acquisition
in video.” JAIR, 2015.



