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ABSTRACT

Videogame avatars are more than visual artifacts—they express cultural norms and expec-
tations from both the real world and the fictional world. In this paper, we describe how ar-
tificial intelligence clustering can automatically discover distinct characteristics of players’
avatars without prior knowledge of a system’s underlying data structures. Using only avatar
images collected from a study with 191 players, we applied two clustering techniques—
namely non-negative matrix factorization and archetypal analysis—that automatically re-
vealed and detected (1) an avatar’s gender, (2) regions that appeared to isolate shapes of
items and accessories, and (3) aesthetic preferences for particular colors (e.g., bright or
muted) and shapes for different body parts. These clusters correlated with players’ prefer-
ences for character abilities, e.g., male avatars in dark clothes correlated with having high
physical but low magic-casting attributes. These findings show that a bottom-up analysis
of images can reveal explicit categories like gender, but also implicit categories like prefer-
ences of players. We believe that such computational approaches can enable developers to
(1) better understand players’ desires and needs, (2) quantitatively view how systems may
be limited in supporting players, and (3) find actionable solutions for these limitations.
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INTRODUCTION

Video games and virtual worlds present the opportunity for players to experience novel
settings and environments. Often times, the human takes the role of player characters, or
avatars, to exert influence and control within these environments. Players often spend con-
siderable time customizing their avatars (Yee 2006). Some prefer to create avatars that
look like themselves (or something/someone they admire) (Boellstorff 2008); others seek
to communicate abilities and status (Lim and Harrell 2014; Gee 2003). In many cases,
avatar representations are important for both enjoyment and (in-game) practicality. Avatar
customization systems often provide a large variety of options for players to construct satis-
fying representations. Players can clothe themselves in medieval attire, sport different hair
colors and styles, or even take on a different gender identity to their own.



However, the technical data structures implementing these avatars may impose infrastruc-
tural limitations that fail to support the nuances of real-world identities (Harrell 2009). For
example, a player identifying as mixed-race (of multiple heritages) might be limited to pick-
ing just one race for an avatar simply because of the lack of support for multiple races at
the implementation level. Besides technical limitations, some issues are a result of design
choices. Consider players intending to play as characters whose race matches their own.
They might encounter tension if those characters were attributed undesirable characteristics
by design—forcing them to switch characters to avoid being disadvantaged. These exam-
ples highlight the challenge and importance of developing ways to identify such situations
from both a developer’s and player’s perspective. Our approaches seek to demonstrate how
such implicit player preferences and social identity constructs—such as racial attitudes and
stereotypes that manifest in the virtual world (Ash 2015)—can be revealed.

Motivation: Analyzing Avatars for Player Modeling
Avatars can reveal salient characteristics of one’s preferences for performing identity such as
gender and other aspects such as behaviors and motivations for play (Lin and Wang 2014).
We argue that constructing computational models of how players choose to represent them-
selves with avatars can provide better models of players. This will enable developers to (1)
better understand what their players’ desires and needs are, (2) identify how their games
may be limited in supporting these players, and (3) have quantifiable and actionable ways
to improve their game’s designs. We propose using data-driven approaches for constructing
such models. This entails collecting and analyzing player avatar data to discover emergent
patterns in a bottom-up manner—rather than adopting predefined assumptions—as a way to
develop a better understanding of one’s players. The advantages of this approach are two-
fold. First, it requires no knowledge of the underlying representation used to implement
the avatars. This better reflects how players visually perceive in-game characters—they are
often not privy to a game’s code and instead make inferences based on what they can see.
Second, it can reveal novel or unforeseen characteristics of how players choose to use their
avatars for identity construction. Such emergent patterns are better indicators of players’
needs—since they are not based on designer’s assumptions—and can help focus efforts to
improve the design of games, customization systems, and avatars alike.

Outline of this Paper's Contributions
In this paper, we present our approach of computationally revealing how different players
represent themselves virtually using avatars. While other approaches for eliciting such in-
formation exist—e.g., self-reported user surveys—our approach uses artificial intelligence
(AI) to automatically discover emergent patterns. This data-driven approach overcomes the
limitations of other approaches like survey bias (Bauckhage et al. 2014). Informed by theo-
ries of cognitive categorization (Rosch 1999; Lakoff 1990; Bowker and Star 1999) and the
psychology of color perception (Berk et al. 1982), we use AI to analyze images of player-
created avatars from a custom-built avatar creator (Lim and Harrell 2015c). We evaluate our
AI models by finding meaningful correlations with other customizable features of avatars
as well as identity-related demographic information collected from the players.

THEORETICAL FRAMEWORK
Avatars and Identity
Ducheneaut et al. (2009) conducted a qualitative assessment of players’ values and avatar
customization behaviors for three different videogames. Through self-reported surveys,
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players described how they customized their avatars, providing insight into preferences for
particular visual characteristics. Some players based characters on the notion of “idealized
selves” (Lin and Wang 2014) where avatars possessed visual characteristics that players
themselves desired in real-life; others created avatars with identities distinctly different from
their own in order to conform to societal norms (Dunn and Guadagno 2012). Researchers
also discovered that players conformed to role expectations based on their avatars’ appear-
ance (e.g., players with taller avatars were more aggressive in negotiations than counterparts
with shorter avatars) in a phenomenon known as the Proteus Effect (Yee and Bailenson
2007). Such research shows how avatars can be used to quantitatively study experiences
that are often times deemed subjective. This includes real-world social identity constructs
such as racial attitudes and stereotypes that manifest in the virtual world (Ash 2015). We
previously studied how characters in commercial games and avatars created by players could
be computationally analyzed to reveal such social phenomena (Lim and Harrell 2015c).

AI Clustering for Player Modeling
AI clustering is the process of (often automatically) categorizing a large data set of play-
ers into a smaller set of groups (clusters). Members within groups generally resemble each
other; members between groups are often dissimilar. Resemblance is based on characteris-
tics (e.g., demonstrated proficiency, spending behaviors, etc.) enabling designers to reason
more generally about common behavioral patterns. Together, this helps designers to feasi-
bly model diverse groups of players to help improve a game’s engagement, user experience,
and enjoyment (Yannakakis and Hallam 2009; Yannakakis and Togelius 2011). Many clus-
tering approaches for modeling players exist: Drachen et al. (2014) found that clusters of
different algorithms could be distinguished by (1) how interpretable they were, (2) whether
they depicted allowed/possible states, (3) how distinct they were from each other, and (4)
how well they represented the original data set. In our previous work, we extended analysis
beyond numerical data to include images and text (Lim and Harrell 2015a). This paper’s
chosen clustering techniques (described next) were informed by these previous findings.

Algorithms for Clustering
We used the non-negative matrix factorization (NMF) and archetypal analysis (AA) algo-
rithms for our AI models. Both techniques are algorithmically similar but differ in produced
clusters due to different constraints. We start with the following formulation. Assume a
player i is represented as a feature vector xi ∈ Rm where m is the number of representation
features. Given a data set of n players V = {x1, x2, ..., xn}, (regular) matrix factorization
decomposes the matrix V ∈ Rn×m into an approximation V̂ ∈ Rn×m—a product of two
smaller matrices W ∈ Rn×k and H ∈ Rk×m. The value k specifies the number of desired
clusters. Each (basis) vector hj ∈ H defines a cluster and membership requirements; they
are often termed prototypes. Each weight vector wij ∈ W associates each player i with
prototype j. Each player is then assigned to the cluster with the highest associated value.

Non-Negative Matrix Factorization
Non-negative matrix factorization is an effective image analysis algorithm, capable of as
finding different components of faces (e.g., eyes, mouth, etc.) from facial image data (Lee
and Seung 1999) and classifying documents of text (Xu et al. 2003). It imposes non-
negativity constraints on both matrices W and H when minimizing ||V − V̂ ||2F , where
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||X||2F =
√

n∑
i=1

m∑
j=1

|xij |2 is the Frobenius norm of the matrix X . The constraints produce

basis vectors that differ from other matrix factorization image analysis techniques, which
allow negatively-weighted compositions (e.g., eigen-faces) (Sirovich and Kirby 1987).

Archetypal Analysis
Archetypal Analysis (AA) can be viewed as a stricter version of NMF1. The prototypes
of AA often correspond to actual members in the data set that “stand out” (hence the term:
archetypes.) Eugster (2011) demonstrated howAAdiscovered the four archetypes of “bench-
warmer”, “rebounder”, “three-point shooter”, and “offense” in a data set of basketball play-
ers defined by their abilities. Each archetype corresponded to top-players for their respective
positions. The algorithm works by imposing additional constraints to the matrix factor-
ization. The first set of constraints are that each cluster’s prototype hj =

∑n
i=1 βijxi and

βij ≥ 0. The second set of constraints are that weights wij associating player i with each
cluster j all

∑
wij = 1. Visually, archetypes lie on the boundary of the data set and form

a convex hull. Each player can thus be represented as mixtures of archetypes (Seth and
Eugster 2014). AA has been shown to be effective at tasks like image clustering and for
recommendation systems (Bauckhage and Thurau 2009; Sifa et al. 2014).

AIRVATAR-RPG: AN AVATAR CUSTOMIZATION SYSTEM
AIRvatar-RPG is a custom avatar creation application2 set in the context and style of a
traditional computer role-playing game (RPG) (Figure 1). The system is integrated with our
remote data collection system AIRvatar (Lim and Harrell 2015c).

Figure 1: Screenshot image of the user interface of AIRvatar-RPG.

Avatar Customization Components
Static Media Assets - Images
Players were free to choose either male or female avatar genders for their character3, each
with a base image and assets for five main categories (hair, head, body, arms, and legs)

1. In fact, we used the convex hull non-negative matrix factorization (CHNMF) algorithm (Thurau et al.
2009) in place of standard AA in this paper. Results are equivalent to AA, but are faster to compute.

2. Art assets from the publicly available Mack Looseleaf Avatar Creator (http://www.geocities.jp/
kurororo4/looseleaf/) and the Liberated Pixel Cup (http://lpc.opengameart.org/)

3. We follow role-playing game conventions here to study the effects of binary models of gender. However,
we recognize distinctions between biological sex and gender, and the other nuanced ways to represent genders
of players and avatars. In future work, we seek representations that decouple biological sex and gender.
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and sub-categories for more fine-grained options. Each avatar was 32 × 48 pixels in size,
animated in a walkcycle, and viewable in four rotations (front, back, left, and right).

Numerical Attributes -- RPG Stats

Players customized both their character’s visual appearance and statistical attributes values
of six commonly used videogame attributes on a 7-point scale. Table 1 lists and provides
descriptions for each of these attributes. Each attribute was initially defaulted to a value of
4 points, with 3 points unallocated. Players had to allocate all 27 points for their avatar.

Attribute Description
Strength Character’s ability to deal damage. (i.e., Damage Points)

Endurance Character’s ability to receive damage. (i.e., Health Points)
Dexterity Character’s ability to move quickly and accurately. (i.e., Action Points)

Intelligence Character’s ability to ‘level up’ quicker. (i.e., Experience Points)
Charisma Character’s ability to charm, convince, or converse well. (i.e., Charm)
Wisdom Character’s ability to cast spells and magic. (i.e., Magic Points)

Table 1: Table detailing the six statistical attributes in AIRvatar-RPG.

User Study

We conducted a study with consenting users from the social discussion website Reddit
(/r/samplesize). They were informed that anonymous analytical data would be collected
for research purposes. Out of 191 participants, 104 participants (54%) identified as “Male”,
81 (43%) identified as “Female”, and 6 (3%) listed “Other”. 154 participants (80%) were
“18-24” years old, 32 (17%) were “25-34” years old, with the rest at < 1%. They also com-
pleted a BIG-5 personality test (Gow et al. 2005) and provided demographic information.

METHODS

Image Representations

Each avatar image was cropped from its spritesheet into a 32 × 48 front-facing image of
the avatar (in its idle state). Moving away from our previous efforts in (Lim and Harrell
2015a) that used Red-Green-Blue-Alpha (RGBA), we opted to use the Alpha-Hue-Saturation-
Brightness (AHSB) representation. HSB (alternatively termed HLS, where L is lightness) has
historically been considered an improvement over RGB (Berk et al. 1982) as it exploits the
psychology of color perception. Humans look for variation in hues (color), saturation, and
brightness, and can more easily specify a color along those dimensions. In contrast, the RGB
model is based on physical limitations of the red, green and blue phosphors of color cathode
ray tube (CRT) screens. Figure 2 shows an original image in the respective channels.

(a) AHSB (b) A (c) H (d) S (e) B

Figure 2: The images show the different image representations of avatars.

Alpha (A) values display transparent areas as black and non-transparent areas as white (Fig-
ure 2b); note that avatars do not have semi-transparent parts, and thus the data in the alpha
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channel is binary. Brightness (B) values represent a grayscale version of the base image
(Figure 2e). Saturation (S) values are normalized to the brightness channel: bright colors
like yellow, red, and blue will have higher values (Figure 2d), while white and black areas
will have low saturation values (e.g. the white pants in Figure 2d). Hue (H) is normalized
to these (normalized) S values: black (low-value) regions in the S image (Figure 2d) corre-
spond to black in the H image (Figure 2c). Blue colors have average hue values and show as
gray in Figure 2c (e.g. blue cloak) while red colors have high hue values (e.g. red vest and
hair in Figure 2c). The A, H, S and B channels can be combined together by creating tuples,
each representing a pixel. The AHSB version (Figure 2a) is a combination of all channels.

Model Construction
The dataset of N = 191 players is represented by the matrix V = {v1, v2, . . . , vN } ∈
RN×M . Each v ∈ RM vector represents a player where M is the feature dimensionality—
the length of flattened array of a chosen image representation. We constructed models for
different combinations of the A, H, S, and B channels (e.g., A, AB, SB, AHB) in order to inves-
tigate the effect of representation on the performance of the clustering algorithms. Hence,
the number of features for each model was M = 32 × 48 × C, where C represents the
number of channels required per pixel, which is based on the chosen image representation.

Model Evaluation
We evaluated our models in several ways. The first deals with a qualitative assessment
of clusters produced by our models for both clustering algorithms. The second focuses on
cluster correlations with the statistical attributes of players’ avatars. The third looks at the
relationships between the clusters and the genders of both players and their avatars.

Qualitative Analysis of Clusters
Clusters were analyzed qualitatively by visually inspecting the resultant clusters character-
ized by (1) the base (prototype) image and (2) the members of the dataset that are associated
with the clusters. Given the variation of cluster membership sizes, we considered the top-5
weighted individuals during our qualitative evaluation. This revealed how image clusters
could be meaningfully interpreted aesthetically and how distinct they were from each other.

Cluster Correlations with Statistical Attributes
We calculated Pearson’s correlations between the cluster weights of each player and each of
the statistical attributes assigned to their avatar. Doing so enabled us to discover if im-
age clusters—computed without knowledge of alternative avatar representations—could
reveal the structures underpinning developers’ design of attribute choices and players’ val-
ues toward attribute distributions. Statistically significant correlations—defined as having
p < .05 and adjusted for repeated tests—between image clusters and numerical attributes
imply that models meaningfully represented both developer and player preferences.

Cluster Associations with Player and Avatar Genders
We investigated if the image clusters obtained were associated with (a) player genders, (b)
avatar genders, and (c) player-avatar gender pairings. These associations were computed
by constructing cross-tabulations against a player’s assigned cluster. Our focus was on
whether image clusters could distinguish between either player or avatar genders without
prior knowledge. Additionally, we investigated if clusters could identify players who were
gender-bending—playing as an avatar with a different gender identity as their own.
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RESULTS

Descriptive Statistics of Gender Distributions

Table 2 shows the cross-tabulation of genders of both players and constructed avatars. While
we had more male than female players and a relatively small pool of players identifying as
“other,” we obtained an even number of avatars of both genders. Thus, a larger percentage of
male players (18.2%) created avatars of the opposite gender as compared to females (7.4%).

Player Avatar Gender
Gender Male Female Total

Female 6 75 81
Male 85 19 104
Other 4 2 6

Total 95 96

Table 2: Table showing the distribution of both player and avatar genders.

Descriptive Statistics of Attributes

Figure 3 shows the distribution of the statistical attributes of avatars from the data set. Both
“strength” and “wisdom” had the lowest means and comparatively larger standard devia-
tions. They featured strongly in our model, as described in the later sections.
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strength endurance dexterity intelligence charisma wisdom 
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Statistical Attribute

Figure 3: A boxplot showing the distribution of statistical attributes.

Image Clusters: NMF

Figure 4 shows the results of three different NMFmodels computed based on different image
representations. For each image grid, the first column shows the computed base (prototype)
image. The next five columns show the top-weighted avatars for each base image. The next
five columns show the top-weighted avatars for each base image.

Alpha Channel

The A (Figure 4a) NMF model produces clusters that differ from one another based on over-
all body shape and equipped accessories with high levels of detail. For example, the first
cluster is characterized by having a sword equipped—despite the avatars each being visu-
ally different in terms of gender, hairstyles, clothings, etc. The other clusters can also be
characterized by female hair accessories (row 2), armor-less males (row 3), cloak style (row
4 & row 6), gloves/gauntlets (row 5), shoulder pads (row 7), wings (row 8), under-armored
females (row 9) and females with long, straight hair (row 10).
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(a) A (b) B (c) AHSB

Figure 4: Images of NMF model results from different image representations.
Cluster prototypes isolate specific parts that distinguish between clusters.

Brightness Channel
The B (Figure 4b) NMFmodel clusters differ from one another based on elements within the
main body of the avatar. This contrasts with clusters of the A model that focus on artifacts
mainly outside the body. Again, a high level of detail exists—males with unobstructed faces
(row 2), females without shoes (row 6) or different skirt lengths (row 9 and 10).

AHSB Channels
The AHSB (Figure 4c) NMF model produces clusters that also account for similarities in
color hues for specific portions of the avatar. For example, it discerns the outline of the
avatars (based on their alpha) to produce clusters 9 and 10 that show avatars with large
armors, males with large armor (row 7) and females without capes/cloaks (row 8). Other
clusters include avatars with blue or dark clothes (row 6), avatars with red hair (row 4) or
characters with less saturated, earthly tones in their clothes and hair (row 5).

Image Clusters: AA
Figure 5 shows the results of AAmodels computed based on different image representations.
The presentation of images is similar to that of the NMF clusters described earlier.

Alpha Channel
The A (Figure 5a) AA model constructs clusters that differ from one another based on entire
body silhouettes. These silhouettes have distinct identifiable features. E.g., rows 1 and 2
are unarmored males and females respectively; row 3 and 7 are caped females and males
respectively; row 4 shows winged avatars. Rows 5, 9, and 10 are females with different hair
accessories. Row 6 shows both male and female caped avatars without elaborate headgear.

Brightness Channel
The B (Figure 5b) AAmodel constructs clusters based on more detailed aspects of the avatar
images than silhouettes. For example, avatars of row 4 not only have large armors, but they
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(a) A (b) B (c) AHSB

Figure 5: Images of AA model results from different image representations.
Silhouettes shapes of cluster prototypes distinguish between clusters.

are light-colored, too. Row 2 and 3 both feature avatars with wings but differ based on the
hair darkness. The base images all closely resemble the highest-weighted avatar images.

AHSB Channels
The AHSB (Figure 5c) AA model constructs clusters that identify similarities in color hues
for different clothing items and body parts of avatars, in addition to overall body shape. For
example, this combination of channels discerns between bulky, dark-armored characters in
row 5 (from a combination of S, B, and A channels), bright colorful clothing and hair in row
6, and cloaked avatars dressed in earthly tones in row 7, akin to NMF’s row 5 of Figure 4c.

Correlations between Clusters and Attributes
Table 3 provides a summary of the best performing NMF and AA models—defined as hav-
ing at least 3 significant correlations at the p < 0.05 significance level. Table 4 of the Ap-
pendix shows the full cluster-attribute correlations. The convention used for naming models
is: <image_channels>_<algorithm>_k<no_of_clusters>. From Table 3, we find that
NMFmodels (AB-NMF-k6& A-NMF-k6) and AAmodels (SB-AA-k3& AHSB-AA-k6) have
the highest number of statistically significant correlations with attributes. For each model,
we discuss characteristics of the clusters with significant correlations.

NMF Models with High Statistical Attribute Correlations
We found a cluster of AB-NMF-k6 (Figure 6a) that had significant correlations with statistical
attributes; visually, the cluster largely consisted of male avatars with dark costumes and
short hair. These avatars were positively correlated with “strength” (.250) and “endurance”
(.230) and negatively correlated with “wisdom” (.278) attribute values. The A-NMF-k6
model also revealed a cluster of significant correlations (Figure 6b); visually, the cluster
largely consisted of female avatars with hair accessories. It was positively correlated with
“wisdom” (.240) and negatively correlated with “strength” (−.235) and “endurance” (.234).
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Algorithm Format k STR END DEX CHA INT WIS # Significant
Correlations

NMF AB 6 1 1 - - - 1 3
NMF A 6 1 1 - - - 1 3
AA AHSB 6 2 1 - - - 1 4
AA HSB 4 1 1 - - - 1 3
AA HSB 8 1 1 - - - 1 3
AA SB 3 2 1 - - - 2 5
AA SB 7 1 - - - - 2 3

Table 3: Best models (≥ 3 correlations at p < .05) between clusters and at-
tributes. Cols 4–9 show the # of sig. correlations associated with that attribute.

(a) Cluster of dark-clothed males with short hair and
exposed faces. They had high physical (str/end) &
low magical (wis) attributes.

(b) Cluster of bright-haired/clothed females, mostly
adorning hair accessories. They had low physical
(str/end) but higher magical (wis) attributes.

Figure 6: Separate NMF model clusters with significant attribute correlations.

AA Models with High Statistical Attribute Correlations

We found significant correlations for two clusters in the SB-AA-k3 model (Figure 7). Fig-
ure 7a shows the cluster which largely consisted of female avatars with saturated, bright
clothing; these were negatively correlated with “strength” (.224) and “endurance” (.228)
and positively correlated with “wisdom” (.253). Figure 7b shows the other cluster of male
avatars with desaturated, dark clothing—mostly dark cloaks—and short hair; these were
positively correlated with “strength” (.218) and negatively correlated with “wisdom” (.251).

(a) Cluster of female avatars with saturated, bright
clothing. They were associated with low physical
(str/end) but higher magical (wis) attributes.

(b) Cluster of male avatars with dark cloaks. They
were associated with dealing high damage (str) but
having low magical (wis) attributes.

Figure 7: Clusters of model SB-AA-k3 with significant attribute correlations.

We found significant correlations for two clusters in the AHSB-AA-k6model (Figure 8). Fig-
ure 8a shows a cluster consisting of female avatars with saturated bright clothing or big, dark
hairstyles with bright accessories; these were negatively correlated with “strength” (.278).
Figure 7b shows the cluster consistingmostly ofmale avatars with short, bright hair—mostly
with facial hair and dark clothes; these were positively correlated with “strength” (.270) and
“endurance” (.251) and negatively correlated with “wisdom” (.341).

(a) Female avatars with big dark hair—mostly with
bright hair accessories and two with eye patches.
They were associated with low strength attributes.

(b) Cluster of dark-clothed males with shoulder pads,
most with face masks/mustaches. They had high
physical (str/end) & low magical (wis) attributes.

Figure 8: Clusters of model AHSB-AA-k6 with significant correlations.
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Relationships between Clusters with Player/Avatar Genders
Informed by the four models with high correlations discussed in the previous section, we
present results from cross-tabulating the clusters from each model with the gender break-
down of both players and their avatars. For each table listed, the rows correspond to the
model’s clusters (#rows= k number of clusters) and columns correspond to player–avatar
gender pairs (#columns= 3 player –genders ×2 avatar–genders = 6 gender pairs). The
tables of cross-tabulations referred to in this section are in the Appendix. Here, we provide
descriptive summaries of each of them to highlight characteristics of the resultant clusters.

Player/Avatar Gender Distributions in Clusters of NMF Models
In Table 5 the A-NMF-k6 model had two clusters that associated with a specific avatar
gender—one containing only female avatars and one only male avatars (Figure 9a). Three
clusters had diverse associations with both avatar genders. In Table 6, the AB-NMF-k6model
had four clusters that associated with a specific avatar gender—two clusters contained only
male and two other clusters contained only female avatars. Of the two remaining clusters,
one cluster had a diverse mix of associated avatar genders (Figure 9b).

(a) Cluster of male-only avatars in A-NMF-k6. (b) Cluster of diverse avatars in AB-NMF-k6

Figure 9: NMF clusters that revealed patterns related to avatar gender.

Player/Avatar Gender Distributions in Clusters of AA Models
In Table 7, the SB-AA-k3 model did not have clusters that associated with a specific avatar
gender. However, it can be seen that cluster 1 is often associated with female avatars, cluster
2 with male avatars, and cluster 3 evenly split between male (n = 36) and female (n = 37)
avatars. In Table 8, the AHSB-AA-k6 model had two clusters which contained only female
avatars, including the cluster shown in Figure 8a. It should be noted that the cluster in
Figure 8a not only contains only female avatars, but were all created by female players too.

DISCUSSION
The k Effect
The challenge with unsupervised learning approaches lies in determining the optimal num-
ber of clusters k. Error measures used during matrix factorization (e.g., Frobenius norm)
are by definition optimal when equal to zero, leaving them susceptible to overfitting. While
regularization (e.g., cutoff thresholds) may work during matrix factorization, they are not
effective for cross-model comparisons. Error measures are always smaller with a higher k;
it is thus challenging to find an optimal model with small k without qualitative analysis.

Increasing/Decreasing k
Figure 10 shows the effect of increasing the number of clusters k for both NMF and AA
models. Both models’ clusters differentiate based on coarser differences—like gender—at
low values of k. Differences become more localized and granular as k increases. With
brightness, NMF base images isolate specific areas of the image (e.g., faces and armor in
Figure 10c); AA base images are avatars with distinct appearance. Similar clusters exist
between both algorithms, both general (e.g., avatars with wings) and specific (e.g., smaller-
sized female avatars in the red dress and purple inner-wear). A high k helps with identifying
differences and NMF models are easier to visually interpret and differentiate qualitatively.

–11–



(a) B-NMF-k2 (b) B-NMF-k4 (c) B-AA-k2 (d) B-AA-k4

Figure 10: Images of clusters with varying k. At lower k, differences are more
“global” in scope; At higher k, differences are more localized and granular.

Determining Model Optimality with k Clusters

The notion of an optimal k depends on the goals of AI clustering: our goal was to produce
base (prototype) images that can be (a) easily interpreted, (b) result in clusters that were dis-
tinguishable, (c) showed correlations with attribute stats, and (d) showed relationships with
player/avatar gender mappings. For these goals, an NMF model with k=6 clusters worked
well. While the AA model with k=3 clusters had the highest number of correlations, we
decided that k=6 provided a slight trade-off in that regard while better describing the rela-
tionships between clusters and player/avatar gender. Hence, the optimal number of clusters
was k=6 for both NMF and AA and is dependent on the metrics for defining optimality.

NMF vs. AA

Effectiveness of Different Image Representation Formats

The NMF models with the highest number of attribute correlations used A and AB image
representations, while AA models with the highest number of attribute correlations used
SB and AHSB image representations. This implies that NMF works better without hue and
saturation, while conversely, AA works better with hue and saturation. This highlights an
important difference between both algorithms and their effectiveness in different situations.

Human vs. Machine Interpretation

AA produced prototype images that were valid (i.e. actual individuals in the data set) while
NMF produced “parts-based” prototype images (i.e. not valid). The NMF base images
however are easier for humans to interpret features that distinguish clusters from each other,
particularly at high k values. AA base images simply show us the “archetype” of clusters
that possesses the distinguishing feature but requires looking at other members to isolate
the distinguishing features. Despite being less human interpretable, the AA models appear
to produce clusters that have more significant correlations, indicating that the computer
(machine) interprets images different from visual (human) perception.

Implicit Categorization of Statistical Attributes

Clusters and Gender/Role Stereotyping

In our models, the three common attributes were “strength”, “endurance”, and “wisdom”.
It highlights how players are inclined toward well-known “physical-fighter” versus “wise-
mage” roles and associated stereotypes. For (1) role stereotypes: “strength” and “endurance”
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were always positively correlated with each other and negatively correlated with “wisdom”.
For (2) gender-stereotypes: male avatar-associated clusters were mostly positively cor-
related with being physically-strong (but unwise); female avatar-associated clusters were
mostly positively correlated with being physically-weak (but wise). While we did not sep-
arate clusters by player genders here, such stereotyping has been previously observed to be
assymetric (i.e. exhibited by players of a certain gender) due to the context, genre, and style
of the game (Huh and Williams 2010). We later discuss plans to study this for future work.

Other Attribute Correlations
We found a single occurrence of a model with statistically significant correlations besides
the three common ones (strength, endurance, wisdom). In row 15 of Table 4 of the Ap-
pendix, a cluster showed negative correlation (.243) with the “charisma” attribute. Avatars
in this cluster adorned bright clothing or hair colors with higher-weighted individuals adorn-
ing large, bright armors (Figure 11). We reason that the large armor (more intimidating) out-
weighed colorful appearances (more inviting) to result in lower associationswith “charisma”.

Figure 11: Cluster images of avatars negatively correlated with “charisma”

LIMITATIONS & FUTURE WORK
Beyond Visuals and Numbers: Relationships with Text
In AIRvatar-RPG, players also input a list of tags and freeform text to describe their avatars.
This text-based input can be converted into a bag-of-words representation and clustered in
a process called topic modeling. We aim to explore relationships between image and text
clusters—revealing how visual clusters may be associated with themes that players use to
describe their avatars. This would provide an alternative lens into player values.

Filtering Data by Different Player Demographics and Profiles
We aim to investigate the effects that players’ demographic profiles have on our approaches,
achieved by filtering our data set separately based on player gender. More players would
be needed to balance the gender ratios. This would enable us to discover if the clusters
can identify or reveal effects of gender-bending or other identity-related phenomena like the
Proteus effect (Yee and Bailenson 2007), where players conform to role expectations of their
avatar regardless of their own identity. From players’ BIG-5 personality data, preliminary
results of our approaches showed some cluster correlations, but requires further study. We
could also look into customizable avatar personalities like those used in The Sims4.

Clusters for Design and Generation
We have shown effective image analysis over our previous endeavors (Lim and Harrell
2015a). We hope to evaluate it on avatars with different graphical styles including the anal-
ysis of 3-dimensional (3D) characters. Being able to robustly produce clusters with more
clearly defined membership requirements would enable procedural assessment of game
characters that do not rely on—and not constrained by—the underlying representations of
characters. This could improve gameplay elements that dynamically adapt to players based
on more human perception of visual similarities as in (Lim and Harrell 2015b).

4. http://www.thesims.com
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CONCLUSIONS

Players spend large amounts of time customizing their avatars in videogames. These avatars
are more than visual artifacts on a computer screen. They reflect the values and preferences
of both the developer (through the system design and customization options made available)
and the player (through the customization choices made). We showed how AI clustering
algorithms, namely NMF and AA, could cluster avatar images automatically based on con-
cretely defined (e.g., avatar gender) as well as more subjective (e.g., aesthetic preferences
for particular colors, items, or accessories) features. Clusters showed statistically signifi-
cant correlations with players’ preferences for different attributes, e.g., male avatars in dark
clothes having high physical attributes (e.g., strength, endurance) but low magical abilities,
while female avatars were commonly associate with less physical attributes like magical
abilities (e.g., wisdom). We showcased AI as an effective tool for analyzing videogame
avatars for developing models of social identity and aesthetic preferences. Without needing
knowledge of the underlying implementation of systems, such emergent patterns provide
better perspectives of players that are less constrained by predefined design assumptions.
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APPENDIX

model pair c
1 AB-NMF-k6 cluster5-str 0.250
2 AB-nmf-k6 cluster5-end 0.230
3 AB-NMF-k6 cluster5-wis -0.278
4 AHSB-AA-k6 cluster2-str -0.278
5 AHSB-AA-k6 cluster4-str 0.270
6 AHSB-AA-k6 cluster4-end 0.251
7 AHSB-AA-k6 cluster4-wis -0.341
8 A-NMF-k6 cluster3-str -0.235
9 A-NMF-k6 cluster3-end -0.234
10 A-NMF-k6 cluster3-wis 0.240
11 HSB-AA-k4 cluster1-str 0.221
12 HSB-AA-k4 cluster1-end 0.221

model pair c
13 HSB-AA-k4 cluster1-wis -0.249
14 HSB-AA-k8 cluster8-end -0.254
15 HSB-AA-k8 cluster5-cha -0.243
16 HSB-AA-k8 cluster8-wis 0.236
17 SB-AA-k3 cluster1-str -0.224
18 SB-AA-k3 cluster2-str 0.218
19 SB-AA-k3 cluster1-end -0.228
20 SB-AA-k3 cluster1-wis 0.253
21 SB-AA-k3 cluster2-wis -0.251
22 SB-AA-k7 cluster4-str 0.242
23 SB-AA-k7 cluster4-wis -0.258
24 SB-AA-k7 cluster5-wis 0.236

Table 4: Table of clusters and attributes with ≥ 3 sig. correlations (p < .05)

Cross-Tabulations of Gender Pairs and Clusters in both NMF & AA Models

Male Avatar Female Avatar
F M O F M O

C
lu
st
er

1 0 16 0 6 1 0
2 2 13 2 3 1 0
3 0 0 0 13 3 0
4 0 1 0 17 8 2
5 0 2 1 36 6 0
6 4 53 1 0 0 0

Table 5: A-NMF-k6

Male Avatar Female Avatar
F M O F M O

C
lu
st
er

1 0 1 0 2 1 0
2 2 37 2 0 0 0
3 1 19 0 8 3 0
4 0 0 0 63 15 2
5 3 28 2 0 0 0
6 0 0 0 2 0 0

Table 6: AB-NMF-K6
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Male Avatar Female Avatar
F M O F M O

C
lu
st
er 1 0 8 0 37 3 1

2 4 45 2 9 1 0
3 2 32 2 29 15 1

Table 7: SB-AA-k3

Male Avatar Female Avatar
F M O F M O

C
lu
st
er
s

1 0 1 0 27 11 2
2 0 0 0 5 0 0
3 1 2 0 38 6 0
4 3 44 1 3 1 0
5 0 0 0 1 1 0
6 2 38 3 1 0 0

Table 8: AHSB-AA-k6
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