
Comparing Clustering Approaches for Modeling
Players’ Values through Avatar Construction

Chong-U Lim and D. Fox Harrell
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

{culim, fox.harrell}@mit.edu

Abstract

Videogame avatars provide an expressive avenue for
players to represent themselves virtually. Research has
shown that these avatars, while virtual, can reveal as-
pects of players’ identities, along with physical, social,
and cultural values of the real-world. In this paper, we
present an approach for modeling player values through
their avatars using artificial intelligence (AI) clustering
techniques. In a study with 191 participants who created
avatars using our system, we provide a thorough com-
parison of the techniques across numerical, textual, and
visual data. Our findings showed that these data struc-
tures can effectively reveal players’ values and pref-
erences, such as conforming to stereotypes of charac-
ter roles using statistical attributes, modeling nuances
in text descriptions of avatars, and identifying “best-
example” (prototypical) avatar appearances that players
can be quantitatively shown to conform to. Our find-
ings suggest that AI clustering approaches can be used
to model players to yield insight into implicitly held val-
ues in a data-driven manner through virtual avatars.

Introduction
Many videogames provide avatar constructors for players to
customize their virtual identity representations. The com-
mon computational data structures used for such represen-
tations include images, text, numerical data, or procedural
behavioral rules (Harrell 2009). While technically imple-
mented as virtual identities, they should not be viewed sim-
ply as results of a user-directed creation process (Yee et al.
2011). In research highlighting the relationship between real
and virtual identities, virtual identities can: (1) reveal aspects
of a player’s real-world identity like demographic informa-
tion, personalities, and motivations (Tekofsky et al. 2013;
Canossa, Martinez, and Togelius 2013), (2) reveal phenom-
ena reflecting real-world social constructs (e.g., notions of
ideal body types or stereotypes) (Dunn and Guadagno 2012;
Harrell and Veeragoudar-Harrell 2012), and (3) affect play-
ers’ real-world behaviors and performance (Yee and Bailen-
son 2007; Steele and Aronson 1995).

In this paper, we present an approach to modeling player
values through their avatars using artificial intelligence (AI)
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clustering techniques. We compare four different AI clus-
tering techniques across four types of data structures com-
monly used to implement virtual avatars. Using such data-
driven AI approaches enables us to gain understanding of
the values and preferences held by players in a “bottom-up,”
emergent manner. We also seek for our findings to provide
a comparative summary of the performance of the different
techniques across different types of data structures.

Background
Here we cover related research on player modeling, avatars
and identity, cognitive categorization, and AI clustering.

Player Values and Blended Identities
To study these values and avatars computationally, we use
Harrell’s concept of a “blended identity” (Harrell 2013),
where some aspects of a player’s real-world identity (e.g.,
values, preferences, appearance, understanding of social cat-
egories, etc.) are projected onto the actual implemented
avatars. To formally describe the data structures used to con-
struct these virtual identities (avatars), which are highly ex-
pressive in visual appearance and behaviors, we use Har-
rell’s taxonomy of technical components identified for com-
putational identity technologies (Harrell 2009). They are 1)
static media assets, 2) flat text profiles, 3) modular graphical
models, 4) statistical/numerical representation, 5) formal an-
notation, and 6) procedural/behavioral rules. Combining this
taxonomy with cognitive science theories defining social re-
lationships, preferences, metaphors, and values, we can be-
gin to computationally model aspects of players’ values and
preferences categorization phenomena (Harrell 2009).

Cognitive Categorization and Prototypes
A thorough discussion of the literature from cognitive sci-
ence and the sociology of classification is beyond the scope
of this paper. However, to contextualize our motivations of
modeling players’ avatars with clustering, we use cogni-
tive categorization theories fron (Rosch 1999) that identities
prototypes as members that are “better examples” of a cat-
egory than others. Categorization is based on the distances
relative to these prototypes, termed as “centrality gradience”
in (Lakoff 1990). This notion of centrality to prototypes is
what motivates the use of AI clustering in this paper.

Player Modeling: Papers from the AIIDE 2015 Workshop
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AI Clustering Approaches
While existing research based on cluster-based or emergent
player models exist (Drachen et al. 2012; Drachen, Canossa,
and Yannakakis 2009), we focus on several prototype-based
categorization AI clustering techniques. We omit a details
of both principal component analysis (Jolliffe 2005) and K-
means clustering (MacKay 2003) given their general famil-
iarity. While PCA, NMF, and AA are applicable beyond
clustering, we adopt the view of (Drachen et al. 2014) who
applied them for behavioral clustering to identify different
World of Warcraft types based on level progression. They
found that clusters differed based on interpretability, distinc-
tion from one another, the depiction of legal/possible repre-
sentations, and how representative of the data set they were.
Our approaches differ as (1) we use not just numerical data,
but also textual (free-text descriptions) and visual (images)
data, and (2) we focus on modeling aspects of users’ real-
world values (e.g., implicit categorization of RPG classes,
preference for different types of stories in text descriptions),
which provided insight beyond in-game performance.

Non-negative Matrix Factorization Non-negative matrix
factorization (NMF) is an algorithmic process for represent-
ing data as a combination of derived factors, each represent-
ing distinct “parts”-based representations. Formally, given a
data set of points V = {x1, x2, ..., xn}, NMF decomposes
the matrix V ∈ Rn×m into an approximation V̂ – the prod-
uct of two matrices W ∈ Rn×k and H ∈ Rk×m, with
vij ∈ V , wij ∈ W , and hij ∈ H all ≥ 0. The value k
specifies the number of parts desired k � n,m. NMF min-

imizes ||V − V̂ ||2F , where ||X||2F =

√
n∑

i=1

m∑
j=1

|xij |2 is the

Frobenius norm of the matrix X . Each row in matrix H is
an m-dimension basis vector and each column in matrix W
relates each sample in vi to each basis vector via coefficients
wij ∈W , describing contribution of a basis vector j in sam-
ple xi. Besides image analysis, like identifying parts of faces
(e.g., eyes, mouth, etc.) from facial images (Lee and Seung
1999), NMF has been effective in other areas like procedural
content generation (Shaker and Abou-Zleikha 2014).

Archetypal Analysis Archetypal Analysis (AA) (Cutler
and Breiman 1994), is a method for reducing the dimen-
sionality of multivariate data. Given a set of multivariate
data points, the aim of AA is to be able to represent each
data point as a convex combination of a set of key data
points called archetypes. For example, applying AA on a
dataset of basketball players statistics (Eugster 2011) re-
vealed the four archetypes of“benchwarmer,” “rebounder,”
“three-point shooter,” and “offensive.” Individual players in
the data set was then represented as a hybrid mixture of
the archetypes (Seth and Eugster 2014). Formally, given a
data set of points {x1, x2, ..., xn}, AA seeks to find a set

of archetypes {z1, z2, ..., zk} where zj =
n∑

i=1

βijxi. Each

data point xi is represented in terms of the k archetypes as

x̂i =
k∑

j=1

αjizj . The objective function minimizes the resid-

ual sum of squares RSS = ||xi −
k∑

j=1

αijzj ||2 under con-

straints that weights
∑
βij = 1 βij ≥ 0 and coefficients∑

αji = 1 αji ≥ 0. Archetypes are located on the convex
hull (Cutler and Breiman 1994) and convex mixtures of the
data for easier interpretation (Bauckhage and Thurau 2009).

Systems & Applications
We provide an overview of the systems we developed for
players to construct avatars and for data to be collected.

AIRvatar and AIRlib
AIRvatar is our analytics system, which collects avatar cus-
tomization and telemetry data. Underlying AIRvatar is the
AI toolkit AIRlib responsible for transforming the aggre-
gated data, analyzing the data, and visualizing the results.
The deployed version of AIRvatar uses Javascript and in-
terfaces with the current version of AIRlib, which is imple-
mented in Python using the scikit-learn (Pedregosa et
al. 2011) and Python Matrix Factorization PyMF1 libraries.
AIRlib uses the Convex Hull Non-negative Matrix Factor-
ization (CHNMF) implementation (Thurau, Kersting, and
Bauckhage 2009) in place of AA, which gives equivalent
results to AA, but is computationally faster in performance.

Case-study: Heroes of Elibca
We developed an avatar customization system set in the con-
text and style of a traditional computer role-playing game
(RPG) called Heroes of Elibca. Resources and assets were
from publicly available sources (Liberated Pixel Cup 2015;
Mack Looseleaf Creator 2015) and players were introduced
to the fantasy setting their avatars at the beginning.

Static Media Assets - Images Players chose either male
or female avatar genders2, each with a base image and as-
sets for five main categories (hair, head, body, arms, and
legs) and sub-categories for more fine-grained options. Each
avatar was 32x48 pixels in size and could be animated and
seen in four rotational views. Here, we only analyzed the
32x48 front-facing image for each avatar.

Text Profiles – Tags and Descriptions Players were pro-
vide two type of text-based representations for their created
avatars: (1) a list of word tags (e.g., “strong, clever, brood-
ing”,) and (2) free-prose text for more verbose descriptions.
Both were optional and had examples to guide players.

Numerical Attributes – RPG Stats Players customized
both their character’s visual appearance and statistical at-
tributes values of six commonly used videogame attributes
(strength, endurance, dexterity, intelligence, charisma, and
wisdom) on a 7-point scale. Each was defaulted to 4 points
with 3 remaining points unallocated for a total of 27 points.

1http://code.google.com/p/pymf
2We follow role-playing conventions here, but recognize the

distinction between gender and sex. In future work, we seek repre-
sentations that decouple biological sex and gender.
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Methods
Model Construction
We represent the avatar of a player i and component j as
vector vij , modeling each dataset of N = 191 players with
an N ×M matrix Vj . The feature vector vimage was created
by flattening the 32× 48 avatar image. With each pixel rep-
resented by RGBA values, we had M = 32 × 48 × 4 =
6144. For, vattributes, we had M = 6 corresponding to
the six types of attributes. Both vtags and vdescription were
constructed using bag-of-words (BOW) representations. For
tags,M=397 was the number of unique tags observed across
the data set. For descriptions,M corresponded to the number
of unique English word terms observed after tokenizing each
of the text descriptions in the data set. It was capped at a de-
fault value ofM=500. In our experiments, we used k=4 pro-
totypes for each of the technical components except for the
numerical attributes, for which we used k=3. These numbers
were based off previous results in (Lim and Harrell 2015a;
2015c) that showed that resultant NMF and AA models had
sufficiently distinct prototypes for interpretation.

Data Collection
We conducted a user study, approved our institution’s hu-
man subjects research committee, with consenting par-
ticipants from the social news and discussion site Red-
dit (/r/samplesize). Participants were informed that
anonymous analytical data would be collected during cus-
tomization for research. Out of 191 participants – 104 par-
ticipants (54%) identified as “Male”, 81 (43%) identified as
“Female”, and 6 (3%) listed “Other.” 154 participants (80%)
were between “18-24” years old, 32 (17%) were between
“25-34” years old, and the other age groups were < 1%.

Results & Analysis
We here present the results from the clustering algorithms
on the various technical components of players’ avatars.

Statistical Attributes
Table 1 below shows the results of the four clustering al-
gorithms on the numerical statistical attributes. We describe
several notable characteristics of the resultant prototypes.

Validity/interpretability of prototypes Results from
PCA were distinctly different from the rest, with nega-
tive values, as they are eigenvectors (i.e., directions) and
not points in the same feature space. Some degree of in-
tepretation can be performed by indirectly using the rela-
tive signs of the attribute values. Identifying prototypes is
more difficult, requiring the consideration of both highest
and lowest-scoring individuals, as signs can be flipped. For
example, P1 of NMF could be viewed as a high-strength,
low-wisdom prototype, or a high-wisdom, low-strength pro-
totype. In contrast, prototypes from NMF, AA, and K-means
were easily interpretable, as they exist in the same feature
space. Only the prototypes of AA and K-means were all
valid (1 ≤ x ≤ 7), since P1 of NMF had an value of 7.5 for
“Wisdom”. Since the rest of the NMF prototypes are valid,
a solution might be to clamp the values.

C D E I S W
P1 1.2 2.0 1.7 3.2 0.2 7.5
P2 0.1 4.2 4.4 3.0 5.3 0.4
P3 6.7 2.2 1.8 2.6 1.8 0.2

(NMF)
C D E I S W

P1 1.2 6.7 6.7 4.9 6.6 1.0
P2 5.4 4.3 3.3 5.7 1.2 7.0
P3 7.0 4.0 7.0 1.0 7.0 1.0

(AA)
C D E I S W

P1 0.2 0.2 0.3 0.1 0.5 0.7
P2 0.9 0.1 0.2 0.0 0.1 0.4
P3 0.1 0.5 0.4 0.6 0.4 0.3

(PCA)
C D E I S W

P1 4.3 5.6 5.1 4.8 5.5 1.8
P2 4.3 4.3 4.6 4.7 4.5 4.6
P3 4.8 4.7 3.8 5.2 2.6 5.8

(K-means)
Key:
Charisma Dexterity Endurance Intelligence Strength Wisdom

Table 1: The results from each of the clustering algorithms
on statistical attributes. Bold values indicate the highest at-
tribute value of a prototype. Values in red are negative.

Number of maximized attributes per prototype Some
of the prototypes from AA have more than one attribute
that was maximized. Each prototype for the other algorithms
only one attribute being maximized. Prototypes in K-means,
however, did have prototypes that possessed multiple at-
tributes with values close to the maximum. This shows that
NMF and PCA produce prototypes that differ in a one key
attribute, while AA and K-means produces prototypes that
takes multiple attributes into account.

Degree of similarity (or difference) between prototypes
Unlike the others, prototypes from K-means do not vary
drastically from one another and appear well-balanced
across attributes. This reflects the nature of the K-means al-
gorithm, which seeks prototypes that generalize well to indi-
viduals located close to them. Contrastingly, NMF seeks to
discover parts-based representations, PCA seeks orthogonal
prototypes, and AA are based on extremal individuals, likely
resulting in prototypes that differ greatly from one another.

Implicit RPG character roles and categories We cate-
gorized each prototype according to familiar RPG roles. We
used the highest and lowest-valued attributes of each proto-
type to make an informed interpretation of each prototype.
Results are shown in Table 2. It again highlights the diffi-
culty of identifying and interpreting PCA prototypes, as P1
of PCA appears to be the inverse of P1 of NMF and P3 of
K-means, while P2 of of PCA appears similar to P3 of NMF.
While the prototypes reflect well-known roles and associ-
ated stereotypes, such as weak mages and uncharismatic
fighters, we note unusual roles from prototypes in AA, such
as a Charismatic Tank. This is unsurprising as these proto-
types (archetypes) correspond to actual player creations and
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alg. p. High Low Interpreted Role/Category

NMF

1. W S Weak Mage
2. S C Uncharismatic Fighter
3. C W Charismatic Thief

AA

1. DE W Agile Thief
2. W S Weak Mage
3. CES WI Charismatic Tank

PCA

1. S W Non-magic Fighter
2. C W Charismatic Thief
3. ES I Unintelligent Tank

KM

1. D W Agile Thief
2. I CD Balanced
3. W S Weak Mage

Table 2: Table showing the roles of each prototype, cate-
gorized by interpreting them using the highest and lowest-
valued attributes. Traditional RPG classes are used here.

might reflect a players’ intention to create one to “stand out”.

Tags
Table 3 shows the resultant prototypes from the four clus-
tering algorithms. For each, the five highest occurring words
aggregated from its top five weighted individuals are shown.

alg. p. tags (Sorted by decreasing frequency)

NMF

1. intelligent agile quiet adventurous slim
2. strong powerful tough leader serious
3. smart kind cunning charming charismatic
4. clever independent wise quick agile

AA

1. quick strong shy swordsman accurate
2. smart serious charming unglamorous gruff
3. clever independent strong wise prepared
4. clever charismatic powerful confident brave

PCA

1. strong powerful leader serious proud
2. clever agile intelligent strong empathetic
3. intelligent quiet healer long-range ambitious
4. quick smart strong cunning self-motivated

KM

1. strong intelligent fast <blank> narcissistic
2. strong blunt confident honest power
3. quiet smart short-tempered gruff forceful
4. quiet clever intelligent detached deliberate

Table 3: Table showing the prototypes obtained from clus-
tering on tags. The top five-weighted tags are shown.

NMF prototypes are distinct from each other and
are each thematically consistent As previously reported
in (Lim and Harrell 2015a), the NMF tags are disjoint be-
tween prototypes, but consistent within prototypes. For ex-
ample, P1 describes an intelligent, agile, and quiet character
(e.g., stealthy thief) and P2 describes a strong, powerful, and
tough leader (e.g., tank or fighter.) While no tags overlap,
some synonymic similarities appear between P1 and P4. It is
worth noting that definitions of attributes like “intelligence,”
may be conflated between common in-game meanings our
system used (e.g., for leveling up) and non game-related ev-
eryday meanings (e.g., possessing high intellect.)

AA prototypes are fairly distinct from each other, with
overlapping tags, but may possess unusual themes The
tags from the prototypes of AA appear, like NMF, to be dis-
joint from each other. P3 and P4 appear relatively particu-
larly similar, both with “clever” as the highest occurring tag.
However, an interesting observation is how tags within each
prototype are not necessarily thematically consistent. For ex-
ample, P1 describes a quick and strong, but shy swordsman,
P2 describes a charming but gruff character. The reason for
this may lie in the fact that (1) tags of each prototype cor-
respond exactly to the list of tags made by players and (2)
these prototypes are extremal individuals (archetypes) that
represent extremely unique player constructed avatars.

PCA prototypes are fairly distinct from each other, with
overlapping tags, and are thematically consistent The
prototypes of PCA appear very disjoint, P1 focuses on
strength, P2 on intelligence and agility, P3 on intelligent and
long-range capabilities, and P4 on speed and cunning. How-
ever, there are overlaps between tags used between proto-
types. This is somewhat surprising, given the intuition that
PCA would maximize orthogonality between prototypes by
having distinct tags. But it is worth noting that these over-
lapping tags do not share the same importance (unlike the
“clever” tag of P3 and P4 of the AA prototypes.) The tags
within each prototype appear to be thematically consistent.

K-means prototypes are not distinct from each other,
with overlapping tags, and possess both consistent and
unusually represented prototypes The prototypes of K-
means can be separated into two broad categories – strong
(P1,P2) vs. (quiet) characters, but there is significant over-
lap between prototypes. Additionally, some of the proto-
types appear to be thematically inconsistent, such as P3 be-
ing quiet, but short-tempered and gruff and P4 being both
detached and deliberate. Our guess is that since K-means
attempts to find centroids within the data set in forming
clusters, each prototype appears as an average of individ-
uals around them. Thus, prototypes end up being aggregated
mixtures of individuals of the data set, reducing distinctions.

Text Descriptions
Table 3 below shows the results of analyzing the free-text
descriptions of avatars using the four clustering algorithms.

NMF description prototypes are distinct from one an-
other in terms of words used, but bear some synonymic
similarities regarding story location and setting We ob-
serve that sets of words between prototypes appear disjoint,
but have synonymic similarities such as “king” (P1) and
“chief” (P4), and “town” and “village”. Within each proto-
type, there is a degree of thematic consistency such as P1
about a kingdom setting, P2 about life in the family and
home, P3 about mages and magic, and P4 on a farm/town
setting (mentioned in the opening of Heroes of Elibca.)
NMF performs fairly well with fine-grain differences in text.

AA description prototypes are distinct from one another
in both words and themes, but top-weighted individuals
share high similarities with prototypes. We note firstly
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alg. p. words (Sorted in decreasing weights)

NMF

1. village family kingdom young king
2. town life home help family
3. magic light mage parents years
4. farm good town land chief

AA

1. family town help earth like
2. food knew village avatar life
3. saw months acts days soldier
4. light magic force years parents

PCA

1. town farm family village good
2. village good farm chief army
3. village family kingdom king food
4. close people life like combat

KM

1. girl home world adventuring gain
2. <blank>
3. goes thief work non career
4. like best seek hot soldier

Table 4: Table showing factors obtained from non-negative
matrix factorization on the bag-of-words representation of
tokenized textual descriptions with varying k. The five high-
est weighted attributes are shown for each factor.

that each prototype from AA consists of words, which all ap-
pear in the description of its top-weighted individual. Thus,
each prototype contains words that are highly thematically
consistent. We note that there is no overlap in description
words used between prototypes and they each focus on fairly
disjoint themes. This is a result of finding archetypal player
descriptions that are deemed on the extremities of the data
set. However, we note that despite this, the words of the pro-
totype do occur frequently in the rest of the top-weighted
individuals. It suggests that AA is effective in capturing mix-
tures of individuals even with high dimensionality data such
as tokenized free-text descriptions as demonstrated here.

PCA description prototypes are similar in both actual
words used and themes We observe that “village” ap-
pears across three different prototypes, with it having the
highest weight in both P2 and P3. The themes share simi-
larities with one another, and some of the prototypes bear
resemblance to those seen in NMF (e.g., NMF P1 and PCA
P3.) Within each description prototype, the words are the-
matically consistent. The high number of overlapping words
between prototypes suggest that a larger number of specified
clusters k is required develop more distinct prototypes.

K-means description prototypes are highly disjointed
from one another and produced only single top-weighted
individuals Prototypes from K-means appear highly dis-
jointed, even turning up a prototype that had no descrip-
tion. While also having distinct prototypes, AA’s prototypes
had multiple top-weighted individuals, while each K-means
prototype had words that appeared only in the single, top-
weighted individual. Thus, the K-means prototypes do not
effectively model mixtures of text descriptions. We suspect
that K-means requires a larger number of iterations for an
optimal convergence compared to the other algorithms.

Images
Figure 1 shows the results of analyzing the data set of avatar
images. Each row shows the prototype basis image, followed
by its top five-weighted individuals (in descending order.)

(a) NMF (b) AA (c) PCA (d) K-means

Figure 1: The figures show the basis images (first column
of each sub-image) and their top five top-weighted samples
when across the different algorithms for 4 basis components.

Parts-based vs. holistic avatar prototype basis images
The prototype images of both AA and KM are holistic,
meaning that resultant images can on their own be taken to
be complete avatars. This is due to AA prototypes closely
matching actual avatar images and K-means prototypes av-
eraging out avatar images. Reconstructing prototype images
of PCA do not work (as shown) since they results are eigen-
vectors, not points in the feature space. Prototype images
of NMF appear mixed between holistic and parts-based im-
ages. P1 of NMF depicts capes/cloaks while P2 and P3 ap-
pear holistic, and P4 bearing a silhouette-like image.

Image consistency of top-weighted individuals Here, we
consider the top-weighted individuals for each prototype.
NMF: All individuals associated with P1 have capes, and
a majority of them have wings – aspects visible in P1. P2
and P3 appear to depict male and female avatars respec-
tively. All male avatars of P3 have swords, shoulder pads,
and gauntlets, and female avatars of P3 have swords, boots
(dressed for battle.) This contrasts with female avatars of
P4 that feature non battle-oriented attire, exemplified in P4’s
image of a silhouette with a smaller body frame. Thus, NMF
prototypes categorize avatar images into distinct categories,
each possessing perceivably similar visual characteristics.
AA: Each prototype image corresponds closely to their top-
weighted individual, which is expected for AA. The cate-
gories appear distinct from one another like for NMF. For
P1–P3, the top-weighted individuals all have visual similar-
ities to their respective prototypes, especially color as seen
with P2. P4’s images resemble female avatars with numer-
ous accessories (e.g ears, flowers, ponytails, wings.)
PCA: Focusing on the top-weighted individuals for each
prototype, it is hard to determine any distinct visual char-
acteristics both between and within prototypes. We note that
very few female avatars are seen. Perhaps reducing the data
set of images, each of represented as high dimensionality
vectors (32× 48× 4 = 6144), into just k=4 principal com-
ponents was insufficient for representing the variance.
K-means: The images of top-weighted individuals within
each prototype do not appear to have much similarity be-
tween them, whether in shape or color. However, the proto-
type images appear distinct from each other – P1 has visi-
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(a) Attributes (b) Tags (c) Descriptions (d) Images

Figure 2: The scatter plots visualize how the prototypes obtained from the clustering approaches differ for attributes and text.

bly male avatar characteristics, P3 and P4 have visibly fe-
male avatar characteristics, while P2 shows female charac-
ters possessing shorter hairstyles.The prototypes are thus ag-
gregated averages of the top-weighted individuals.

Discussion
Figure 2 visualizes the data set and clustering results. For
PCA , we show both eigenvectors and top-weighted points.

With a small number of features, as we had for attributes
(M=6), we observe that both AA and NMF result in proto-
types that lie on the boundary of the data set, compared to
those of K-means, which lie closer to the center. As M in-
creases, as for tags (M=397) and text descriptions (M=500),
NMF prototypes become located nearer the center, while
those of AA and PCA remain on the boundary. This sug-
gests that with small M , NMF’s parts-based prototypes will
seek to load high on one feature, while minimizing the rest.
The small difference between extremal points from AA and
NMF suggests that players do not seek to create overly un-
balanced characters, likely from our constraint that all 27
attribute points had to be allocated. Finally, with very large
M for images (M=6144), all algorithms are located near the
center and far from the boundaries. This suggests that (1)
k=3 prototypes is insufficient and (2) the number of itera-
tions to convergence is too low. A categorical representation
of the set of assets might provide a more structured anal-
ysis, but our intention was to gain insight into images in a
bottom-up manner, minimizing designer knowledge. Future
work will model the discrete categorical and item choices.

We observe that the number of clusters required differs
based on both algorithm and data being analyzed. From the
scatter plot of descriptions, AA performs well in identifying
extremal individuals (archetypes) even with a moderately
high number of features M . For images, all algorithms (par-
ticularly AA) result in prototypes close to one another, sug-
gesting that a larger k is required. This highlights that greater
nuance exists for visual properties of avatars. Another reason
could be that restricting M = 500 models of text descrip-
tions reduced the complexity of the problem. The plot of
tags (not shown) resulted in prototypes that had similar rel-
ative positions between algorithms as with descriptions, but
were located near the center of the data set. The proximity
of the prototypes both within and between algorithms reflect
our results for text, where prototypes either shared exact (or
synonymic words) or had similar themes.

Limitations & Future Work These findings reveal how
different clustering algorithms work for different technical
components. While our choices of the number of proto-
types and number of features for our models served our
purpose to provide a comparison between approaches, fur-
ther work into investigating the effects on both algorithmic
performance and balancing it with interpretability of proto-
types is warranted. We are are developing games based on
these player models (particularly AA) to evaluate individual
players’ perception of cognitive categories (Lim and Harrell
2015b). Evaluating these models for different videogame
genres and participant demographics (e.g., self-identified
gamers vs. non-gamers) would likely provide alternative
findings. We could also consider the use of self-organizing
maps (Kohonen 1998; Ultsch 1999), or k-medoids (Kauf-
man and Rousseeuw 1987), which finds cluster medoids that
represent data points (Bauckhage, Drachen, and Sifa 2014).

Conclusions
In this paper, we compared different AI clustering tech-
niques and their effectiveness in modeling players’ values
through their avatars. We found that NMF, AA, and PCA
are effective for finding distinct player notions on charac-
ter classes and roles in numerical statistical attributes, but
only AA and NMF produce prototypes that are directly inter-
pretable and valid. For textual data, NMF, AA, and PCA can
identify distinct differences between players, with AA iden-
tifying more unusual descriptions compared to NMF and
PCA. For images, NMF identifies distinctive parts-based vi-
sual characteristics such as the presence of accessories or the
relative size of avatars, AA identifies notable characters im-
ages that are “best examples,” which players strive toward,
and K-means form averages of clusters of players mainly by
their gender and clothing. Our findings show that such data
structures can be effectively analyzed to reveal aspects of
players’ real-world values and preferences through their cus-
tomization choices. We believe that combining data-driven
clustering models with other methods like qualitative evalu-
ation in a mixed-methods approach has strong implications
for developing better computational models of players.
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