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Abstract—In this paper, we present an approach for au-
tomated evaluation and generation of videogames made with
PuzzleScript, a description-based scripting language for authoring
games, which was created by game designer Stephen Lavelle [1].
We have developed a system that automatically discovers solu-
tions for a multitude of videogames that each possess different
game mechanics, rules, level designs, and win conditions. In
our approach, we first developed a set of general level state
heuristics, which estimates how close a given game level is to
being solved. It is used to adapt the best-first search algorithm to
implement a general evaluation approach for PuzzleScript games
called GEBestFS. Next, we developed an evolutionary framework
that automatically generates novel game mechanics from scratch
by evolving game design rulesets and evaluating them using
GEBestFS. This was achieved by developing a set of general
ruleset heuristics to assess the playability of a game based on its
game mechanics. From the results of our approach, we showcase
that a description-based language enables the development of
general methods for automatically evaluating games authored
with it. Additionally, we illustrate how an evolutionary approach
can be used together with these methods to to automatically
design alternate or novel game mechanics for authored games.

I. INTRODUCTION

Videogame designers impart concepts, images, and values
for world building and storytelling into games through a variety
of game design components, such as aesthetics, mechanics,
narrative, conditions for success or failure, and others. The
decisions that go into these designs affect how and what
players think, and may similarly influence the design of other
games and systems. Co-author Harrell states that “designers
need to be aware of their own needs and values, the needs and
values of users, and how to prioritize them” [2]. Even though
a large number of different games exist, there are some basic
structural elements that are shared and reoccur. The way that
these shared components are defined and structured provides a
means to categorize these games, giving rise to things like
genre and themes. These shared structures also provides a
framework for developing general computational approaches
that work on a broader variety of videogames.

We use the term design evaluation to refer to the assess-
ment of any subset of components that make up the design
of a game to gain quantifiable insight. Some examples of
related work include evaluating the quality of level designs [3],
feasibility of game mechanics [4], and playability of generated
puzzles [5]. Here, design generation refers to the procedural
content generation (PCG) [6] of games, which may cover
any subset of a game’s design components. Examples include

automatic ruleset design [7], and level designs for platformers
and real-time strategy games [6], [8]. However, most ap-
proaches are usually game-specific and are not immediately
generalizable to a larger variety of games. Our focus here is
on developing an approach to design evaluation and generation
that is general and applies to to a multitude of different
videogame designs and not just a single one.

In this paper, we present results from developing a general
approach for automatic design evaluation and generation for
games authored using PuzzleScript [1], a videogame authoring
and description language [9] created by game designer Stephen
Lavelle. Its popularity has seen the creation of hundreds of
games by both amateur and professional game designers. Thus,
a greater collection of games authored by different designers
are available for study. Our aim to study a broad variety
games implemented by different designers makes PuzzleScript
an appropriate choice for our research. In our approach, we
developed two sets of general heuristics for evaluating and
generating PuzzleScript games. The first set of level state
heuristics is used for evaluating how close the state of given
level is to completion during gameplay. We demonstrate its
effectiveness by implementing a general simulation algorithm
called GEBestFS, which adapts best-first search for our
domain of PuzzleScript games to automatically find solutions
to levels for a multitude of different videogames. We highlight
its ability to discover solutions significantly quicker than a
what a regular brute-force approach using breadth-first search
would take. The second set of ruleset heuristics evaluates
rules defining a videogame’s mechanics and assesses them for
playability. We demonstrate the ability to generate playable
rulesets from scratch using an evolutionary approach. While
the use of PuzzleScript certainly constraints the types of games
that are being explored, our approach demonstrates the effec-
tiveness of using a description language for performing general
design evaluation and generation, and may serve as a guide
to further develop description languages and computational
approaches for general design evaluation and generation.

The rest of the paper is structured as follows: Section II
covers related work that motivates this research and an
overview of PuzzleScript and selected games. Section III
details the level state heuristics and our general simulation
algorithm. Section IV details the ruleset heuristics and our
evolutionary approach. The experimental setup for both simu-
lation and evolution is outlined in Section V and we present
our results and analysis in Section VI. We discuss our findings
in Section VII and our conclusions are in Section VIII.



II. BACKGROUND & RELATED WORK

In this section, we provide an overview of the theoretical
framework and motivation for evaluating game designs, along
with other work related to description languages, general game
playing, and automated content generation and game design.
We also provide an overview of the PuzzleScript description
language and the selected games chosen for this work.

A. Evaluating Videogame Designs

Our motivation for studying computational approaches for
evaluating designs of videogames stems from the idea that de-
signing such computational systems goes beyond the technical
considerations. An example is Harrell’s analysis in [2] (using
an approach called morphic semiotics) of the independent
game developer Jason Rohrer’s Passage [10], a retro graphics
style side-scrolling game featuring game mechanics, narrative,
and designs that encode conventional metaphors for life and
death together with its use of culturally specific icons such
as hearts and gravestones. Thus, we seek to highlight that
importance of the subjective and cultural considerations that
are involved videogame design. In [2], Harrell argues that
“computing systems can express values (such as preferences
of designers, norms of societies, or traditions of civilization)”
and that these values can be “embedded in the data structures
of computing systems.” Description languages use a common
syntax and format to represent such data structures, providing
the opportunity to develop approaches to evaluate and compare
between different game designs and their components.

B. General Video Game Playing & Description Languages

Computer science and game AI researchers Levine et al.
introduce General Video Game Playing (GVGP) in [11]. The
term “general” here comes from the field of artificial general
intelligence (AGI) [12], whereby the methods encapsulate a
“broader range of environments, and under a broad range of
constraints” [11] and are not game-specific or only applicable
to a bespoke game or system. GVGP extends General Game
Playing (GGP) [13] (which covers traditional, turn-taking
games such as Chess and Othello) to include more complex
games like 2-dimensional (2D) arcade games, with the vision
of moving into 3-dimensional (3D) games. Subsequently, they
motivate the need for a Video Game Description Language
(VGDL) for GVGP that is both human-readable and in a
format that can be compiled to generate an instance of the
game. It should also “support the core mechanics and behavior
expected of classical 2D video games and be unambiguous,
extensible, and tractable that could provide opportunities for
PCG.” Python VGDL (PyVGDL) [14] by computer scientist
and AI researcher Tom Schaul is the most recent realization
of this, providing a simple high-level description language for
2D videogames based on “defining locations and dynamics
for simple building blocks and interaction effects when such
object collide.”PuzzleScript bears similarities to PyVGDL in
syntax, structure, and implementable games. Our aim to study
a broad variety games authored by different designers makes
PuzzleScript an appropriate choice for our research.

C. Automatic Content Generation and Game Design

Automatic content generation in videogames is an active
research area, with approaches to generate components such

as levels and maps [15], [16], items [17], game mechanics
[4], [18], and entire designs [7], [16], [19], [20]. Computer
scientists and game AI researchers Togelius et al. characterizes
several features of what they term generatable games [21],
which are a subset of characteristics originally identified by
game designers Elias et al [22]. Our attention focuses on
the following identified core features: heuristics (i.e., rules
of thumb that guide players to do well in the game), rules
(i.e., game mechanics), standards (i.e., commonly accepted
patterns that players are familiar with like WASD controls),
outcomes (e.g., number of moves to solve a level), ending
conditions (i.e., determining game end states), and complexity
tree growth (e.g., branching factor of actions a player can take
from a given state). Several approaches exist for automated
design evaluation and generation, such as the use of answer
set programming (ASP) to search the design space [23] or
simulation-based approaches [4], [24]. The approach we’ve
developed is a general simulation-based approach that is not
game-specific, and instead makes use of a description language
that has been used by many different game designers to author
a multitude of games. The benefits of this over alternative ap-
proaches like using ASP are that we may analyze these existing
game designs, and that we work directly with the description
language without a need to first convert a game’s mechanics
and rulesets into boolean logic prior to generation [25].

D. PuzzleScript

A PuzzleScript file is divided into of eight different sec-
tions, each for defining the elements for the various game
design components. We focus on the Rules, Levels, and
Win Conditions sections since they make up the core
components of a game’s puzzle design, game mechanics,
and winning criteria. The Levels section defines the levels
that the game possesses. Each level is represented using
a 2-dimensional array of characters. Each character in the
array references defines the objects that are present in that
position. The Rules section defines the game mechanics
of a PuzzleScript. Each Rule specifies the result of the
positioning, movement, and actions of objects in the game.
Win Conditions specify the requirements for the comple-
tion of each level. We provide more detail of the structure and
syntax of these PuzzleScript components when describing our
approach later in Sections III and IV. PuzzleScript is used as
a case-study here, but the similarities that it has with other
videogame description languages [14] allows our approach to
be generalizable to fit their respective syntax and structures.

E. Overview of Selected PuzzleScript Games

We illustrate the general applicability of our algorithmic
approaches by testing them against four different games cre-
ated by various authors. Being able to create clones of existing
games demonstrates PuzzleScript’s capabilities as videogame
description language. Figure 1 shows screenshots of them.

1) Microban: A clone of the commercial Japanese
videogame Sokoban [26], the player has to to push a number
of boxes onto designated target areas in each level. Sokoban
is a provably challenging game [27] (PSPACE-Complete) and
has been the focus of various game AI researchers.



(a) Microban (b) Block Faker (c) Lime Rick (d) Atlas Shrank
Fig. 1. Screenshots of different PuzzleScript games. Each game possesses different objects, visual appearance, rules, and win conditions.

2) Block Faker: A clone of an original game of the same
name that was made for the 48-hour game competition [28],
the player must navigate towards an exit (marked in green)
in a level filled with both movable and unmovable blocks.
Additionally, blocks may be removed whenever they form a
continuous row or column of three blocks of the same color.

3) LimeRick: A clone of a popular game of the same name
[29], the player must navigate towards a target (marked in red)
using a novel mechanic. The snake-like player character can
extend its length horizontally and vertically to enables it to
navigate across obstacles, including itself to reach higher areas.

4) Atlas Shrank: An original game whereby the player
must reach an exit (marked with a door image). The player
may pick up boulders in the game either carry them or throw
them. Basic physics simulation occurs, allowing crates to fly
across mid-air, drop down, and stack on top of each other.

III. DESIGN EVALUATION VIA SIMULATION

In this section, we present a general approach to evaluating
the various PuzzleScript games. We adopt a simulation-based
approach that is described as follows. Given a PuzzleScript
game, we seek to discover the sequence of moves, constrained
by the game’s set of Rules, that results in reaching the
game’s Win Conditions for any given Level. We re-
fer to a PuzzleScript file’s set of Rules as its ruleset, a
game’s Level as a level, and its Win Conditions as
win conditions. The moves considered are the four movement
directions UP, DOWN, LEFT, RIGHT), and the ACTION move.
The ACTION move is a generic move available for game’s to
provide interactivity, such as picking up and throwing boulders
in the game Atlas Shrank. Adopting this approach, we are able
to evaluate the games in several ways. First, given a game with
feasible rulesets, levels, and win conditions, it acts as a general
game solver that produces a solution for any given level. The
existence of a solution estimates the feasibility of a level’s
design, while the length of the solution provides a means of
evaluating the complexity of a level’s design. Additionally,
patterns of moves observed in the solution may also provide
insight into the elegance of the solution, for example, repetitive
movements might be more boring while solutions that are
precise and leave no room for error might be deemed more
challenging and exciting. Second, imagine modifying a game
component while keeping others the same in order to evaluate
if alternative designs exist. For example, if we changed the
ruleset of a game while keeping the same levels and win
conditions, our approach would evaluate whether the modified
ruleset still results in a feasible game design. A game design
is feasible if its ruleset ensures that there exists a sequence of
moves enabling the player to reach the win conditions.

Fig. 2. Screenshots of level state heuristics as applied to a level in Microban.

A. General Breadth-First Search Simulation

The first step toward a simulation-based general evaluation
approach was to implement a brute-force breadth-first search
(BFS) simulator. This was done to establish baseline perfor-
mance to compare against. A BFS approach was used by Cook
et al. [4] to evaluate if a mechanic for its platformer game
was usable, that is, “able to overcome an obstacle in order to
complete a task, such as reaching an exit.” We adapted the BFS
algorithm and implemented a General Evaluation Breadth
First Search Simulation (GEBFS), which searches for a
sequence of moves to complete a level for any PuzzleScript
game. Here, a level state is a two-dimensional array of all
objects in each tile position. Simulating a move results in a
new updated state, which may have been previously visited.
For each given state, all subsequent states one move apart are
evaluate first and added to a queue of states to be evaluated.
Moves are simulated one after another, updating the level state
until the win conditions are reached.

B. General Best-First Search Simulation

We encountered some shortcomings with the GEBFS ap-
proach. It adopts a brute-force approach since, upon simulating
a move on a state and obtaining several subsequent states, we
do not prioritize subsequent level states to be explored in any
way. This results in a large search space to be explored in the
worst case. In order to overcome these problems, we needed
some method of evaluating a cost for a given level state. We
seek to prioritize one level state over another if it is deemed
“closer” (lower cost) to the win conditions. This cost is a linear
combination of the following level state heuristics.

1) Distance between Win Condition Objects
2) Distance between Player and Win Condition Objects

We made use of the Manhattan distance as a measure, which
has been shown by computer scientists Dorst et al. to be
an effective heuristic for solving games such as Sokoban
[30]. Figure 2 shows how these heuristics apply to a level
state in Microban. The first heuristic characterizes level states
where Objects used in Win Conditions (e.g., crates and
targets) are closer together. The second heuristic characterizes
level states where the Player is closer to Objects used in
Win Conditions (e.g., player is closer to crates or targets.)



(a) Cost = 0.244 (b) Cost = 0.156 (c) Cost = 0.089

Fig. 3. Screenshots of various points during a solution run for Microban.
Level states progressively approach a winning state. (Smaller scores are better.)

Intuitively, this means we prioritize states with shorter dis-
tances between Win Condition objects and the Player.
These distances are divided by the maximum distance re-
quired to be traveled for a given Level (width × height)
to normalize the Cost value between [0, 1]. If the Rule
takes the form: “NO <object1> [ON <object2>]”, we
use 1 − COST to reflect the preference for level states that
maximize these distances instead. Figure 3 shows various
Level states of Microban together with their distance costs.
It can be seen that the values become smaller as states
approach the Win Condition. Being able to assign costs
to level states enables us to begin searching find solutions
using a greedy approach. We adapted the best-first search
algorithm to implement a General Evaluation Best-First-
Search Simulation (GEBestFS) shown in Figure 4.

IV. DESIGN EVOLUTION WITH RULESETS

In this section, we present an approach to constructing new
Rule designs for PuzzleScript through evolutionary computa-
tion. Figure 5 illustrates definitions for the various components
that make up a Rule. It has two HandSides (HS). The LHS
may have a Prefix while the RHS may have a Suffix. Each
HS contains one or more Blocks and a Block may contain
one or more Elements separated by a “|.” An Element is
made up of a Direction and an Object, both of which
may be omitted. A Rule is valid when it has the same number
of blocks and elements per block on both its LHS and RHS.
A null Rule is defined as having the form: “[ ] -> [ ].”

A. Ruleset Heuristics

Similar to seeking a scoring mechanism for level states in
Section III, here we introduce several heuristics to enable us
evaluate a given ruleset. These heuristics have to be game-
independent in order to be applicable to any PuzzleScript
game, and are used to help us identify feasible rulesets that
result a game designs with higher playability.

1) Player in ruleset: This heuristic checks each Rule
in the ruleset for whether the Player appears in any
of them, irrespective of the block or element position.
SCORE(“playerInRuleset′′) = 1.0 if so, and 0.0 otherwise.

2) Objects in Ruleset: This heuristic checks each Rule in
the ruleset for whether each Object appears in any of them,
irrespective of the block or element position. This implies
that rulesets that affect more objects in the game tend to
be favored. SCORE(“objectsInRuleset′′) = proportion of
Objects seen out of all defined in the file.

3) Player in LHS: This heuristic checks each Rule in the
ruleset for whether the Player appears on the LHS. This
increases the likelihood of a Rule specifying that player is
able to perform actions, which affect the game world. This
is a general pattern observed in most PuzzleScript games.
SCORE(“playerInLHS′′) = 1.0 if so, and 0.0 otherwise.

1: procedure GEBESTFS(state) . Returns solution
2: Open← [] . Queue of (state, score, actions).
3: Closed← {} . Indicates (state, action) seen.
4: Open.enqueue((state, COST(state), []))
5: while Open.length 6= 0 do
6: (curState, score, actions)← Open.dequeue();
7: if ISWINSTATE(curState) then
8: return actions
9: end if

10: for each action do
11: Load currentState
12: nextState← currentState.apply(action)
13: nextScore← COST(nextState)
14: actions.push(action)
15: if !Closed[(nextState, action)] AND (nextState, action) 6∈

Open) then
16: Closed[(curState, action)]=true
17: n← (nextState, nextScore, actions)
18: Open.enqueue(n)
19: Open.sort() . Prioritized by COST
20: end if
21: end for
22: end while
23: return [] . No solution.
24: end procedure

Fig. 4. General Evaluation Best-First-Search Simulation Algorithm

late [ > Player | Crate ] -> [ > Player | > Crate ] sfx0

Prefix Block Direction Object Suffix

“Hand-Side” (HS) Element

Fig. 5. Anatomy of a PuzzleScript Rule

4) Player Movement in Ruleset: This heuristic checks each
Rule in the ruleset for whether player movement is observed
(e.g., < Player). It increases the likelihood of the player
both performing and receiving actions within the game world.
SCORE(“playerMovement′′) = 1.0 if so, and 0.0 otherwise.

5) Unique Directions per Rule: This heuristics checks
each Rule in the ruleset for whether the number of
unique directional moves per Rule. Its score is inversely
proportional to this number and favors Rules with
less erratic directional changes. For example, the Rule
[ > player | crate ] -> [ > player | > crate ]has
one unique direction operator, as opposed to
[ > player | crate ] -> [ ˆ player | v crate].
Here, pushing a Crate causes it to move sideways
while the Player moves move orthogonal to it.
SCORE(“uniqueDirsPerRule′′) = 1.0

#AvgUniqueDirsPerRule .

B. Fitness Functions

Given the heuristics from the previous section, our
first fitness function calculates the weighted average of the
scores from each heuristic: FitnessHeuristics(ruleset) =∑

wi × SCOREi. These heuristics are evaluated based on the
structural definitions of each Rule in the ruleset, but do
not provide information about how well they suit a given
PuzzleScript game (i.e., a high-scoring ruleset might not actual
be sufficient to solve a given Level.) As such, we introduce
two additional fitness functions as follows:

1) Feasibility: A ruleset is feasible if it is possible to
find a solution for a given Level

2) Validity: A given ruleset is valid if it does not
produce runtime errors when solving a given Level

Ruleset feasibility is evaluated using the BestFS general
evaluation by simulation approach from III. We run the al-
gorithm for 1200 iterations, after which it is assumed that a
solution can not be found. FitnessFeasible(ruleset) = 1.0



if a solution is found and 0.0 otherwise. Ruleset validity
is evaluated using the same approach, except that we check
for runtime errors output by the PuzzleScript engine as the
simulation runs. FitnessV alid(ruleset) = 1.0 if no errors are
found and 0.0 otherwise. We calculate an overall fitness value
by averaging across the three fitness functions described.

C. Mutation

We implemented five mutation operators for rulesets.
Given a ruleset, each mutator may affect entire ruleset or just
individual Rules within them. Figure 6 illustrates an example
of how a ruleset is modified by each type of mutator, applied in
sequence, before resulting in a final ruleset. We next describe
each mutator in more detail using this same example.

1) Ruleset Size Mutator: This mutator modifies the size of
a given ruleset by incrementing or decrementing the number of
Rules. It can be viewed as a way of varying the complexity of
a game’s mechanics. When incrementing, it adds a null Rule
into a random position in the ruleset. When decrementing, it
removes a Rule frandomly for rulesets with ≥ 2 Rules. In
Figure 6, the size of the ruleset is reduced to one.

2) Object Mutator: This mutator modifies a random object
Element in a Rule. It can be viewed as a way of re-
prioritizing objects in a game by determining which may be
interacted with in the game. Candidate objects are obtained
from the PuzzleScript file’s Objects section. The direction
operator may also be modified or removed by this mutator. In
Figure 6, the Crate object is changed into a Target object.

3) Direction Mutator: This mutator modifies a random
direction operator in a Rule. It can be viewed as a way of
re-defining the game mechanics within a game by modifying
the interaction behaviors between objects. Candidate directions
are the four relative direction operators. The direction operator
may also be removed by this mutator. In Figure 6, the direction
operator of the Player object in the LHS is reversed.

4) Block Size Mutator: This mutator modifies the size of
a random block in a Rule by either incrementing, or decre-
menting, the number of elements in a block. It can be viewed
as a way of varying the complexity of a game’s mechanics
by affecting the interaction behavior of more or less objects
during each move by the player. Incrementing adds a random
element (direction + object), while decrementing removes a
random element. In Figure 6, the number of elements per block
is reduced to one for the given Rule.

5) Hand-Size Swap Mutator: This mutator swaps the hand-
sides of a Rule. It can be viewed as re-prioritizing the objects
that influence changes in the game. In Figure 6, the block
[ < Player ] moves from the LHS to the RHS, while the
block [ > Target ] moves from the RHS to the LHS.

D. Crossover Operators

Crossover operators are genetic operators used to generate
children rules from two or more parent rule, which possess
traits from both parents. We implemented two crossover
operators for rulesets. Our condition for crossover was for both
rulesets to possess the same ruleset size, number of blocks
per rule, and number of elements per block. During selection
for the crossover operation, pairs of rulesets are continuously

[ > Player | Crate ] -> [ > Player | > Crate ]

[ > Player | Target ] -> [ > Player | > Target ]
[ > Player | Crate ] -> [ > Player | > Crate ]

[ > Player | Crate ] -> [ > Player | > Target ]

[ < Player | Crate ] -> [ > Player | > Target ]

[ < Player ] -> [ > Target ]

[ > Target ] -> [ < Player ]

Original Ruleset (w/ 2 Rules)

After (1) Ruleset Size Mutator

After (2) Object Mutator

After (3) Direction Mutator

After (4) Block Size Mutator

After (5) Hand-Side Swap Mutator

Fig. 6. An example of a series of mutators being applied to a ruleset. The
red color is used in certain steps to highlight the element being mutated.

[ Crate    | Crate ] -> [          |         ]
[ > Player | Crate ] -> [ > Player | > Crate ]

[ Crate    | Crate ] -> [ > Player | > Crate ]
[ > Player | Crate ] -> [          |         ]

[ Crate    | Crate ] -> [ > Player | > Crate ]
[ > Player | Crate ] -> [          |         ]

Parent Rules

Children Rules

[ Crate    | Crate ] -> [          | > Crate ]
[ > Player | Crate ] -> [ > Player |         ]

Parent Rules

Children Rules

(2) Element crossover 

(1) Hand-Side crossover 

Fig. 7. An example of crossover operations being applied to a pair of rules. In
Hand-Side crossover (top-image), the LHS of the rules are maintained, while
the RHS are swapped with one another. In Element crossover (bottom image),
the rule element depicting player object movement in the RHS of the second
rule is swapped with the empty element in the RHS of the first rule.

chosen until these preconditions are achieved. Figure 7 shows
an example of a sequence of crossover operations on Rules.

1) Hand-Side Crossover: In this operation, a single-point
crossover occurs resulting in the the RHS of the first parent
Rule swapping with the RHS of the second parent Rule.
This is illustrated in the top half of Figure 7.

2) Element Crossover: In this operation, a two-point
crossover occurs to isolate a random element in the first parent
Rule to swap with the corresponding parent of the second
parent Rule. This is illustrated in the bottom half of Figure 7.

V. EXPERIMENTAL SETUP

In this section, we describe the steps that were undertaken
to analyze both the general evaluation via simulation approach
from Section III and the design evolution approach from
Section IV. We implemented a modified version of the Puzzle-
Script engine to extend its features to allow simulating actions
and implement the algorithms for simulation and evolution.

A. General Evaluation via Simulation Setup

For design simulation, we made use of the GEBFS and
GEBestFS simulation approaches described in Section III on
the 4 selected games representing a diversity of designs from
Section II-E. For each game, we ran our simulators on 5 levels
to obtain a solution, or until a reasonable iteration threshold
was reached. This was repeated 3 times for each level.

B. Design Evolution Setup

For design evolution, our aim was to see if using our
ruleset heuristics and simulation approach enabled us to design
new rulesets that were both feasible and valid for a given
game and level. Thus, our approach first involves modifying
an existing PuzzleScript game by removing all its Rules.



TABLE I. COMPARATIVE SUMMARY OF THE MEAN NUMBER OF
ITERATIONS EACH ALGORITHM REQUIRED TO SOLVE THE GAME-LEVELS

Game Level BestFS BFS p.value
1 atlas shrank 1 6 15 0.09331
2 atlas shrank 2 314 3062 0.00031
3 atlas shrank 3 1195 1466 0.02000
4 atlas shrank 4 6373 5802 0.90799
5 atlas shrank 5 3005
6 block faker 1 108 220 0.00016
7 block faker 2 62 136 0.00005
8 block faker 3 30 2452 0.01424
9 lime rick 1 30

10 lime rick 2 295 747 0.03095
11 lime rick 3 3926
12 lime rick 4 5731
13 lime rick 5 265
14 microban 1 1059 1311 0.00163
15 microban 2 284 2129 0.00401
16 microban 3 2466 3944 0.00136
17 microban 4 17453
18 microban 5 7479

Then, working from an initial population of rulesets, we
sought to evolve newer rulesets that enabled our simulator
to solve a given Level. We used Microban as a case-study
for this. To generate the initial population, we initialized
50 rulesets to contain only a single null Rule. Next, we
performed an initial round of mutations using all 5 mutators
to generate a population of 50 random rulesets. We made use
of fitness proportionate selection using the overall fitness
function described in Section IV-B. The mutation rate for
each generation was set to 10%. The probability of a mutator
being chosen during mutation was set to 50%. The crossover
rate was varied between 60%–70%, and we settled on 65%.

VI. RESULTS & ANALYSIS

In this section, we present the results obtained from the
experimental setup described in Section V. We first present
and analyze the results for the general evaluation via simulation
procedure, followed by the results from the design evolution.

A. Simulation Results & Analysis

For each of the four PuzzleScript games, we ran both
simulators for five levels for a total of twenty game-levels. To
illustrate the difficulty of some of these game-levels and the
complexity of their solutions, we encourage readers to view a
gallery1 containing animated playthroughs of each game-level
obtained by GEBestFS. We used the following measures to
compare the performances of GEBestFS and GEBFS.

1) Solved Game-Levels: With a total of 4 games and
5 levels each, we had a total of 20 game-levels to test.
GEBestFS was able to find a solution for 18/20 (90%)) and
GEBFS was able to find a solution for 11/20 (55%) of them.

2) Number of Iterations: In both GEBestFS and GEBFS,
each iteration of the algorithm selects a node from the queue
to be evaluated. In GEBFS, neighboring nodes, which are one
action away, are added to this queue and evaluated in the
order that they are added. In GEBestFS, neighboring node
are added and prioritized based on the cost-heuristic, seeking
more promising nodes ahead of others to find a solution
faster. Table I shows a summary of the average number of
iterations each approach took to solve the game-levels. Overall,
GEBestFS finds a solution significantly quicker than GEBFS.

1Gallery of solved game-levels: http://imgur.com/a/AkiMv
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Fig. 8. Mean solution lengths obtained by both GEBFS and GEBestFS for
game-levels that were solvable by both simulators. GEBFS always finds solu-
tions of the shortest length, while GEBestFS found longer solutions (between
10%–70% longer). The trade-off between the solution length found and time-
taken to discover a solution made GEBestFS preferred as an approach.

(a) GEBFS Simulation (b) GEBestFS Simulation
Fig. 9. Screenshots comparing simulation approaches in Lime Rick, whereby
the player character needs to reach the exit (colored red) in each level. GEBFS
is significantly slower as it keeps finding valid moves that extend the player
character by a single space, shown in Figure 9(a). GEBestFS prioritizes a path
that leads toward the exit as shown in Figure 9(b).
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Fig. 10. Scatterplot of evolved ruleset performance across generations.

The reason lies in the heuristics in GEBestFS that seek to
move closer to objects that satisfy the win conditions of a
level. Most games involve the player moving, or manipulating
objects, towards a target, and GEBFS is ineffective when the
mechanics provide freedom for the player to explore the level-
space in games such as Lime Rick, as illustrated in Figure 9.

3) Solution Length: Each game-level solution is a sequence
of moves and actions that are executed in order. A shorter
solution thus requires fewer moves. Figure 8 compares so-
lution lengths for game-levels solvable by both GEBFS and
GEBestFS. GEBFS always returns the shortest solution, while
GEBestFS does not necessarily give the shortest solution
due to its greedy approach. We feel that the trade-off of a
longer solution length but obtained in a much shorter time
(#iterations) makes GEBestFS preferable over GEBFS overall.



B. Evolution Results & Analysis

With an initial population of 50 randomly generated rule-
sets for Microban, evolution continued for 50 more genera-
tions. We used the following measures for evaluation:

1) Feasibility & Validity: In Figure 10(a), we observe that
the number of feasible rulesets in the population (i.e., rulesets
that enable the game-level to be solved) increases while the
number of invalid rulesets (i.e., rulesets that cause errors) de-
creases. Thus, starting with a design with no game mechanics
defined, our evolutionary approach designed playable rulesets
that increasingly satisfied feasibility and validity

2) Fitness: In Figure 10(b), we observe that the ruleset
fitness (FitnessHeuristic) increases over the evolved genera-
tions. The overall fitness, which combines FitnessV alid and
FitnessFeasible thus exhibits a similar increasing trend. This
illustrates that our chosen fitness functions are effective in
modeling better ruleset designs, and that they work well both
individually and collectively for evolving designs.

C. Evolved Designs

During the evolutionary process, certain generated rulesets,
while feasible and valid, resulted in mechanics and solutions
that were deemed “unplayable.” We suspect that this behavior
was a result of overfitting to the single game-level of Microban
that was used for ruleset evolution. However, we observed
several evolved rulesets that resulted in interesting and playable
game designs. We describe each of them next.

1) Evolved Design #1 – Crate Pull: The evolved ruleset
enabled mechanics for a Player to pull a Crate. Figure 11
shows this mechanic in action whereby the Crate is pulled
several times to be positioned over the Target.

2) Evolved Design #2 – Morphing: The evolved ruleset
enabled mechanics for a Player to “morph” into another
object when touching a Target. In Figure 12(a), the Player
morphs into a Wall, reducing the number of Targets to one,
which happens to already satisfy the Win Condition with
the Crate on it. In Figure 12(b), the Player morphs into a
Crate, satisfying the Win Condition for both Targets.

3) Evolved Design #3 – Spawning: The evolved ruleset
enabled mechanics for a Player to “spawn” other objects
in the level. In Figure 12(c), the Player is able to spawn
additional Crate objects at empty tile positions. Spawning a
Crate on the Target solved the level.

VII. DISCUSSION

We have described an approach that uses a videogame
description language for developing general computational
approaches to enable the evaluation a multitude of different
games and to generate alternate and novel game designs from
scratch using an evolutionary approach. Here, we address
the broader implications of this research pertaining to the
subjective aspects of videogame design like the expression of
the goals, identity, and values of both designers and players.
As different level state heuristics returned different solution
sequences (and lengths), general heuristics may be used to
develop models of different play styles in a “top-down”
manner or used to inform other approaches like empirically

Fig. 11. Screenshots showing the “Crate Pull” evolved ruleset design.

(a) Wall Morph (b) Crate Morph (c) Crate Spawn
Fig. 12. Solution states obtained via “Morphing” and “Spawning.”

derived player models, such as learning curves [16], but
with the added benefit of being generally applicable to a
broader set of games. We may map them to different player
motivations and styles [31], and generate a level requiring a
solution that involves the execution of a difficult move to cater
to achievement-driven players. The same applies for ruleset
heuristics for the purpose of designing alternative or novel
game mechanics. A more social impact-driven aim would be
to adopt more a value-driven design approach to videogame de-
sign, addressing components that are often deemed subjective
such as aesthetics (e.g., avatar representation, customization,
asset replacement during mutation). General approaches to ad-
dressing these issues may allow us to computationally evaluate
and compare games and criticallly assess the underlying values
held by designers, enabling us to seek better heuristics and
generate alternative designs that reinforce more positive values.

A. Future Work

Several extensions to this work would make progress
toward some of these aims. The first is developing additional
general heuristics for both level states and rulesets and testing
their general applicability on more games. Second, to prevent
overfitting, we could perform design generation across more
game-levels or perform co-evolution of rulesets and levels.
Third, we may use different heuristics and fitness functions to
not just generate valid and feasible rulesets, but rulesets that
increase difficulty. For example, a fitness function that prefers
longer solution lengths might generate rulesets that only allow
non-trivial action sequences. Fourth, we can extend these
approaches to apply to other game design components such
as level design or visual design through skinning. Computer
scientists Mike Treanor et al. notes that “a thoughtfully applied
skin produces a more meaningful experience by coherently
matching a games mechanics with its contents theme.” [32].
Fifth, we could use a formal approach to evaluating game
designs for playability. For example, in [2], Harrell uses
algebraic semiotics [33] and morphic semiotics [34] as a
precise language to “design systems to reflect users’ values” by
considering the precise descriptions of such structures, termed
semiotic spaces [34], [35], and their mappings from one to
another, termed semiotic morphisms [35]. Comparison between
games may be done by analyzing the structure-preserving
mappings between their design and implementation [34]. We
may then use this to guide the evaluation of the game designs
to determine those that have more desirable game mechanics.

Finally, although we focused on PuzzleScript in this paper,
our hope is that the approach will generalize to other de-
scription languages, including the much more general morphic



semiotics. One challenge in this area is that the description
language approach, while successful for simple 2D games, may
not generalize well to other types of videogames with greater
complexity. Morphic semiotics provides a formal (universal
algebra and category theory-based) approach to describing user
interfaces (including game) that is promising in this regard. We
believe it would be an effective way to extend our approach
and other related work to cover more different types of games.

VIII. CONCLUSION

We have presented a general approach for the automated
evaluation and generation of videogames authored for the de-
scription language PuzzleScript. We developed general heuris-
tics for both level states and rulesets that are applicable to
multiple videogames, each possesssing different game designs.
Our approach effectively evaluates game designs by obtaining
solutions to puzzles automatically and is used together with
an evolutionary approach to automatically generate playable
rulesets from scratch. We believe that these results will help
to inform the future development for related research areas and
seek use to address value-driven design needs of videogames.
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