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Figure 1: SliceHub’s integrated system: (a) repository with slicing results, (b) user interface for exploring trade-offs between
different print resolution profiles and model scales, (c) infrastructure for slicing and interpolation to generate new slicing
results—the results can then be added to the repository further extending the available options.

ABSTRACT
In this paper, we explore how to augment shared 3D model repos-
itories, such as Thingiverse, with slicing results that are readily
available to all users. By having print time and material consump-
tion for different print resolution profiles and model scales available
in real-time, users are able to explore different slicing configura-
tions efficiently to find the one that best fits their time and material
constraints. To prototype this idea, we build a system called Slice-
Hub, which consists of three components: (1) a repository with
an evolving database of 3D models, for which we store the print
time and material consumption for various print resolution profiles
and model scales, (2) a user interface integrated into an existing
slicer that allows users to explore the slicing information from the
3D models, and (3) a computational infrastructure to quickly gen-
erate new slicing results, either through parallel slicing of multiple
print resolution profiles and model scales or through interpolation.
We motivate our work with a formative study of the challenges
faced by users of existing slicers and provide a technical evaluation
of the SliceHub system.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI);

KEYWORDS
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1 INTRODUCTION
3D printing a digital model typically requires a user to make certain
choices: users have to select the 3D printer and filament they would
like to use, choose a print resolution profile, and scale the model
to the desired size. This is done in a slicer, a program that uses the
selected print settings to convert the 3Dmodel into a set of machine
instructions that the 3D printer can execute.

The required print time and material consumption are strongly
influenced by these print settings. For instance, an object printed
with a higher print resolution profile requires more layers and thus
more print time than the same object printed with a lower print
resolution profile that requires fewer layers. Similarly, the scale
of the model is an important factor for print time and material
consumption since larger models require more layers and more
material per layer. Since 3D printing is slow and can take many



hours even for hand-sized objects, users often find themselves in
a situation where they have to trade-off between different print
resolution profiles and model scales [Hudson et al. 2016; Ludwig
et al. 2014].

Unfortunately, today, information on the required print time and
material consumption for different print resolution profiles and
model scales is not readily available to users. Since slicers first have
to slice the model before they can display the expected print time
and material consumption, users have to wait after each change of
the print resolution profile and model scale. Since a single slicing
process can take up to several minutes for complex 3D models,
it makes the exploration of suitable print resolution profiles and
model scales a time-consuming process.

In this paper, we present an integrated system that enables users
to explore different print settings in real-time to find the trade-off
between print resolution profile, model scale, print time and mate-
rial consumption that best fits their needs. Our idea is to augment
3D model repositories, such as Thingiverse, where the same 3D
model is downloaded and printed by hundreds of users [Maker-
bot 2015], with slicing results that have to be computed only once
and subsequently are stored and made available to all users of the
repository. This allows users to explore multiple print settings si-
multaneously in real-time without having to wait for slicing to
finish.

While our long-term vision is to integrate the slicing results into
existing 3D model platforms, such as Thingiverse, these commercial
platforms are hard to extend with functionality due to limitations
with their APIs. We therefore built the SliceHub repository to be
able to prototype and study a system that stores and reuses slicing
results. The repository contains for each 3D model, the print time
and material consumption for different print resolution profiles and
model scales, which users can download through each 3D model’s
page.

While current slicers restrict users to explore print resolution
profile and model scales one at a time, having the print time and
material consumption for different settings available in real-time
allows users to explore multiple options simultaneously. To support
this exploration, we developed a user interface embedded within an
existing slicer that provides users with an overview of the print time
and material consumption resulting from different print resolution
profiles and model scales. The user interface also supports users
in filtering results by their time and material constraints and then
displays only those print resolution profiles and model scales that
are within the time and material the user has available.

Finally, while SliceHub will contain increasing amounts of data
over time, there will always be cases where either the desired print
resolution profile and model scale have not yet been sliced or the
3D model is new to the shared repository and no data is available
yet. For these cases, SliceHub provides infrastructure to either in-
terpolate or slice the missing print resolution profiles and model
scales in parallel. For parallel slicing, SliceHub interfaces with an
existing slicing engine and instantiates multiple slicing processes
with different print resolution profiles and model scales simulta-
neously. To make this scalable, SliceHub uses a cloud computing
infrastructure that can return up to 1000 slicing results in parallel.

SliceHub’s parallel slicing infrastructure can thus return the slic-
ing results for several hundred print resolution profiles and model
scales combinations in the same time it would take to return results
for only one.

In summary, we contribute:

• an augmented repository that stores for each 3D model the
required print time and material consumption for different
print resolution profiles and model scales, which allows
future users to re-use the results in real-time;

• a user interface integrated into an existing slicer that sup-
ports exploration of multiple print resolution profiles and
model scales at once, including functionality to narrow
down available options by filtering based on time and ma-
terial constraints;

• infrastructure to efficiently generate data for missing print
resolution profiles and model scales on the shared repos-
itory either through interpolation or by slicing multiple
print resolution profiles and model scales in parallel.

2 RELATEDWORK
Our work is related to support tools for 3D printing, algorithms
that improve the slicing process, research on finding speed-fidelity
trade-offs, and data augmentations for 3D model repositories.

2.1 Supporting Users with 3D Printing
[Hudson et al. 2016] were among the first to provide an in-depth
analysis of the issues novice users (‘casual makers’) encounter when
using 3D printers including the creation of the 3D model itself and
the subsequent slicing and fabrication process. Recent studies, in-
cluding [Annett et al. 2019; Dew et al. 2019; Norouzi et al. 2021]
analyze fabrication workflows for users in various settings, ranging
from makerspaces and fabrication studios [Annett et al. 2019] to
summer programs for young people [Norouzi et al. 2021]. In recent
years, much of HCI research has focused on supporting users in the
modeling process: Measurement Uncertainty [Kim et al. 2017], for
instance, compensates for users’ measurement errors in the initial
modeling phase; RetroFab [Ramakers et al. 2016] supports users
in creating 3D models that add functionality to existing devices;
and Lamello [Savage et al. 2015] enables users to create 3D designs
with interactive input components. While there is a large body of
work in HCI on improving 3D modeling tools as part of maker
software [Schmidt and Singh 2010], only few research projects
have focused on the later steps when a design is prepared for fab-
rication. Most existing work on helping users prepare an object
for fabrication has focused on laser cutting (VisiCut [Oster 2011],
PacCam [Saakes et al. 2013], Fabricaide [Sethapakdi et al. 2021]).
When explored in the context of 3D printing existing work cre-
ated new workflows not based of conventional tools. For instance,
Scrappy [Wall et al. 2021] suggests objects to be inserted into the
3D model to replace infill material. Our work, in contrast, builds
onto slicing tools already in use today and can thus be directly
integrated into the existing fabrication pipeline.
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2.2 Improved Slicing Algorithms
Over the last years, several research projects in computer graphics
have investigated how to improve slicing algorithms to improve
print quality (Connected Fermat Spirals [Zhao et al. 2016], CurviS-
licer [Etienne et al. 2019]), generate faster printing supports [Dumas
et al. 2014; Schmidt and Umetani 2014; Vanek et al. 2014], create
better packing layouts on the print platform (Chopper [Lu et al.
2014], Dapper [Chen et al. 2015]), improve visual quality of the print
result (Perceptual Support [Zhang et al. 2015], Saliency Preserving
Slicing [Wang et al. 2015]), and increase durability (Cross-Section
Analysis [Umetani and Schmidt 2013], Orthogonal Slicing [Hilde-
brand et al. 2013], Build-to-last [Lu et al. 2014]). Finally, researchers
have also investigated how to create slicing algorithms that cre-
ate new object properties, such as infills distributed in a way that
makes an otherwise unbalanced object stand [Prévost et al. 2013]
or spin [Bächer et al. 2014] after fabrication. Rather than inventing
new algorithms for slicers, our work investigates how to facilitate
the exploration of slicing results for a 3D model.

2.3 Exploring Fabrication Trade-Offs
Supporting users in finding the best trade-off between speed and
fidelity has a long history in HCI research and has recently also
been explored in the context of 3D printing. Low-fidelity fabrication
techniques [Mueller et al. 2015], such as WirePrint [Mueller et al.
2014] and Platener [Beyer et al. 2015], for instance, allow users
to trade-off model fidelity with print speed during the fabrication
stage. During the modeling stage, SPATA [Weichel et al. 2015]
visualizes where support material will be generated, which allows
designers to come to an informed decision about either modifying
the design to avoid supports or spending the extra time on printing
them. Our work also supports users in finding trade-offs between
different options but applies it to the context of finding the most
suitable print profile resolutions and model scales for 3D printing.

2.4 Augmentations to 3D Model Repositories
Several researchers explored how to augment existing 3D model
repositories with additional data. Grafter [Roumen et al. 2018], for
instance, annotates mechanisms embedded in shared 3D models
resulting in a model-graph of mechanisms that can be used for
remixing mechanical parts. ShapeNet [Chang et al. 2015] annotates
3D models with a rich set of geometric and language annotations
that enable researchers to filter models via attributes like part de-
compositions and word taxonomies. Thingi10K [Zhou and Jacobson
2016], a dataset of 10,000 3D models, augments 3D models with
several mesh complexity and quality metrics, such as the num-
ber of vertices and if the mesh is closed or self-intersects, which
provides researchers with data that reflects real-world imperfect
meshes instead of the clean data often used by researchers. Thingi-
Pano [Berman and Quek 2020] is a large dataset, which includes
3-axis panoramic depth-map projections of 3D models together
with images and meta-data, which can be used for machine learn-
ing. Finally, HowDIY [Berman et al. 2021] provides a dataset and
platform that facilitates the exploration of various online resources
for 3D printing. In contrast to these datasets and platforms, Slice-
Hub augments 3D models with their slicing results (print time,

material consumption) for a variety of print profile resolutions and
model scales to facilitate the exploration of slicing settings.

3 FORMATIVE STUDY
To better understand the challenges regarding slicing and the strate-
gies employed by users to achieve various slicing goals for 3D
printing, we conducted interviews with 18 participants (6f/12m).
Participants had used 3D printers for a diverse range of applications:
such as 3D printing models for personal use, printing prototypes
for research purposes, and for commercial and architectural use
cases. We focused on topics such as the issues faced by participants
when using slicers, types of print constraints faced while printing,
experiences when exploring models on online 3D model reposito-
ries, and ideas for improvements. We identified several recurring
break-downs.

Long Wait Times: Participants expressed frustration with the
slow feedback of the slicer. Since the slicer by default re-slices the
model after every print resolution profile and model scale change,
participants stated that they often have to wait for the slicer even
after making only minor changes. Participant P6, for instance, com-
plained about the “long calculation times" and P8 stated “every time
I choose a profile, it needs a lot of time to calculate the print time."
Participants wondered if the wait time could be shortened. For in-
stance, P6 stated "It would be cool if instead of calculating the entire
slice operation after every change, the program would only updated
time/material use and then just do a full slice calculation once I choose
to save." P8 added that estimates for the print time and material
consumption may be enough for initial exploration: “I actually don’t
need the very precise time, I just need to know [...] it will take at least
10 hours."

Lack of Information about how Print Resolution and Model
Scale relate to Print Time and Material Consumption: Partic-
ipants expressed frustration that there was no information on how
different print resolution profile and model scale changes would
impact the print time and material consumption. P1 recounted that,
"[there was] no intuition or indication of what would affect time and
material amount and by how much. Had to do ridiculous binary
searching to find optimal value." Multiple participants (P2, P5, P8,
P10, and P11) indicated a preference towards having a recommenda-
tion or optimization system that would "compute the settings based
on some desired quality heuristics" (P10). P11 suggested that it would
be useful "if I can input a target print time, or filament usage, and it
can recommend settings for me, then I have a baseline to start with."

Difficulty in Satisfying Print Constraints: Most 3D printers
used by participants were shared, and when faced with a deadline
or during rapid prototyping, participants (P8, P10, P12) worked un-
der stressful time and material constraints. P8 recounted: "I really,
really needed to get that model done within 20 hours or else I [wasn’t]
going to make it to the deadline; I had to to find another way. [...]
I spent around 20 minutes finding the correct solution so that I can
get the thing done." P10 added: "[if] that means sacrificing a lot of
resolution to get it, it’s better than not having a product in the end."
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Participants (P7, P8, P10, P12) also expressed that exploring differ-
ent print resolution profiles and model scales took them a large
number of iterations before arriving at a suitable solution. They
shared ideas for improving the process of finding suitable print
settings under time or material constraints. P7, for instance, sug-
gested that “If the slicing program is really smart, then if I can type
my purpose [goal], it may suggest some things" and P8: “[if] there’s
a bar, and it will tell me if you scale to this, howmuchmaterial is used."

Lack of Print Information on Online Repositories: Almost all
participants had used 3D model repositories, such as Thingiverse,
when looking for 3D models. But participants often had to go back-
and-forth between the online repository and the slicer because
the repository did not include any print information. P10 stated
"the website doesn’t give you a lot of the things that the slicer soft-
ware does." Participants (P4, P5, P7, P8, P10, P11) mentioned that
including print-specific information for models on these shared
repositories would aid in determining if the model is suitable. P4,
for instance, said “having more information on the platform for a
specific model before having to download it and testing it out would
be great." P5 added: "you could have different size[s], so you could say
with this particular size, this is the printing time [..]"

To address the problem of long wait times, SliceHub’s integrated
system makes slicing results, i.e. the print time and material con-
sumption for different print resolution profiles and model scales,
available in real-time by storing slicing results and sharing them
among all users. By making the print time and material amount
of multiple print profile resolutions and model scales simultane-
ously visible in a user interface, it supports users in gaining an
understanding of how they relate to each other. To support users in
finding print profile resolutions andmodel scales that match a user’s
time and material constraints, SliceHub provides filter functionality
that narrows down the options to only those that match the time
and material the user has available. Finally, SliceHub embeds basic
print information, such as the average print time and material con-
sumption for a 3D model, on the 3D model repository page, which
allows users to take this information into account already during
the search for a suitable 3D model.

4 SLICEHUB
SliceHub is an integrated system that allows users to efficiently ex-
plore slicing results for a 3D model. It consists of three components:
(1) a repository of 3D models that contains for each 3D model the
slicing results, i.e. print time and material consumption, for vari-
ous print resolution profiles and model scales; (2) a user interface
integrated into an existing slicer, Ultimaker Cura [Ultimaker 2020],
that supports simultaneous exploration of multiple print resolution
profiles and model scales as well as filtering based on time- and ma-
terial constraints; (3) a computational infrastructure to efficiently
generate data for missing print resolution profiles and model scales
either by estimating slicing results through interpolation or by slic-
ing multiple print resolution profiles and model scales in parallel
on an external cloud-based system. Together, these components
allow users to explore trade-offs between different print resolution

profiles and model scales with respect to the print time and material
consumption for 3D printing a model.

Note that SliceHub’s components work based on print resolution
profiles, i.e. a set of slicer settings (layer resolution, print speed,
infill density etc.) that taken together print the model at a certain
resolution. This is similar to existing slicers which offer predefined
print resolution profiles (e.g. ’fast(0.2mm)’, ’fine(0.06mm)’). Varying
individual slicer settings, when not done carefully by an expert
user, can lead to invalid prints. We thus exclude this option from
SliceHub and only use predefined print resolution profiles whose
settings were calibrated by the manufacturer of the 3D printer.

In the next sections, we explain each of the three main compo-
nents of SliceHub in more detail.

4.1 Repository of Slicing Data
SliceHub’s shared repository stores for each 3D model the slicing
results for different print resolution profiles and model scales when
printed on different 3D printers and with different materials.

Content Stored in the Repository: For each 3D model, SliceHub
stores the 3D model geometry (.stl) and a meta-data file (.json) that
contains for each print resolution profile and model scale the print
time and material consumption for fabricating the 3D model. This
allows the user to explore various print settings in real-time to
find the trade-off between print time, material consumption, print
resolution and model scale that best fits their needs. Storing print
time and material consumption only requires little storage space
(12 KB in total for one model with 16 different print resolution
profiles and 16 different model scales, i.e. 256 combinations), which
is a requirement to make the repository scaleable. We achieve this
small storage overhead by discarding the print path (.gcode) since
it does not contain information required to make a decision on the
trade-offs discussed above and, additionally, an average .gcode file
has an approximate file size of 10 MB per print resolution profile
and model scale. Storing 256 .gcode files, one for each combination
of the 16 print profile resolutions and 16model scales, would require
2.5 GB on average and, thus, does not scale for large repositories.
Instead, we only store the meta-data in a .json file. At 12 KB per
model, even large data bases with thousands of models could store
and process this additional data.

Finding Content in the Repository: The repository can be ac-
cessed through the SliceHub website and displays the 3D models on
its main page (Figure 2). The user starts by selecting the 3D printer
and material they want to use. Next, the user can start a query for
specific models (e.g., "Mobius"). After clicking on the "Search" But-
ton, SliceHub lists the most relevant models to the query in a result
matrix. To provide the user with initial information on the print
time and material consumption for a 3D model, SliceHub shows
this information at a medium print resolution profile (0.15mm)
and at 100% model scale when the user hovers over a 3D model’s
thumbnail. In case no slicing results are available yet, the print time
and material consumption are displayed as ‘not available’. Clicking
on the 3D model’s thumbnail downloads a .zip archive containing
the 3D model geometry (.stl) and a corresponding meta-data file
(.json) that includes the slicing results for different print resolution
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profiles and model scales. As mentioned in the introduction, we
envision that in the future the data from the SliceHub repository
will be integrated with existing 3D model platforms, such as Thin-
giverse, with the print time and material consumption being made
available during model search and on a 3D model’s subpage, and
the meta-data file with slicing results added for download with the
3D model’s .stl file.

Figure 2: SliceHub repository: (a) select 3D printer andmate-
rial, (b) for each model average print time and material con-
sumption are shown, (c) choosemodel and download .zip file
(contains model geometry (.stl) and slicing results in meta-
data file (.json)).

Adding Content to the Repository: SliceHub’s repository can be
populated with data in two ways. First, users have the option to ‘opt-
in’ for sharing their slicing results whenever they use SliceHub’s
parallel slicing infrastructure to generate new results (see Section
4.3). Second, SliceHub can generate slicing results itself using its
cloud compute service and then subsequently add the results to
the repository. Content can be added either to an existing model
by providing slicing results for print resolution profiles and model
scales that have no data yet or by contributing a new model that
does not yet exist on the shared repository and adding an initial set
of slicing results to it (see section ‘4.2 User Interface’ for how users
can add models). SliceHub identifies if a model already exists in
the database or is new using the model’s unique identifier (similar
to Thingiverse), which is also encoded in the meta-data file. Thus,
once the slicing results are available in the repository, they can be
reused by future users without the need to re-compute them.

4.2 User Interface for Exploring Trade-Offs
After downloading a 3Dmodel and its meta-data file from the repos-
itory, users can load the content into the SliceHub user interface,
which is integrated into an existing slicer (i.e., Ultimaker Cura).
The user interface allows users to compare multiple print resolu-
tion profiles and model scales simultaneously, which facilitates the
exploration of trade-offs. In addition, the user interface enables
users to filter print resolution profiles and model scales according
to material and time constraints.

LoadingData into the User Interface The user interface takes as
input the .zip file, which includes the 3D model geometry (.stl) and
the meta-data file (.json) from the repository, which users can load
using the ‘Load Model’ button (Figure 3a). Next, SliceHub extracts

the slicing results for different print resolution profiles and model
scales from the meta-data file and populates the user interface with
the corresponding print times and material amounts (Figure 3b).

Figure 3: User Interface (Ultimaker Cura Plugin): (a) load
.zip file (3Dmodel (.stl) andmeta-data (.json)), (b) UI updates
to display print time and material consumption for each
print profile resolution and model scale. (c) Adding lower
and upper bounds for print time or material consumption
shows only valid configurations. (d) Slicing the preferred
configuration to generate the .gcode file for 3D printing.

Exploring Resolution and Scale Trade-Offs: The visualization
of slicing results (Figure 3b) shows the print time and material
amount for different print resolution profiles and model scales.
Hovering over a slicing result displays the corresponding print
time and material amount. The top left slicing result corresponds to
the highest print resolution profile and largest model scale (0.06mm
and 100%) whereas the bottom right slicing result corresponds to
the lowest print resolution profile and smallest model scale (0.2mm
and 10%). This allows users to compare different print profiles and
model scales in real-time, which facilitates finding an appropriate
trade-off. Since the focus of this paper is not on the particular visu-
alization chosen to present the slicing results, we use a simple grid
to represent the two-dimensional search space of print resolution
profiles and model scales.

Print Time/Material Constraints: When 3D printing a model,
users often work under time or material constraints as shown by
our formative user study. For instance, users may not want to fab-
ricate the model with a print resolution profile and model scale
that requires printing overnight. SliceHub provides an option to
narrow down the configurations to only those that print the model
within the user’s available time and material. Users can enter their
constraints into the corresponding text boxes for lower and upper
bounds (Figure 3c). To provide the user with information on the al-
lowable range for these values, SliceHub initially populates the text
boxes with the minimum and maximum values across all print res-
olution profiles and model scales for that particular 3D model (i.e.,
the print time and material consumption at the lowest resolution
(0.2mm) and smallest scale (10%), and highest resolution (0.06mm)
and original model scale (100%). As soon as the user enters the
constraints, SliceHub updates the visualization, highlighting only
those print resolution profiles and model scale combinations that
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are within the chosen bounds (Figure 3c). If users enter multiple
constraints, such as both print time and material amount, both
constraints are considered together.

Generating GCode: Once users settle on a print resolution profile
and model scale combination by selecting it from the visualization,
they can click the ‘Slice’ button (Figure 3d), which then slices the
3D model geometry (.stl) locally with the selected settings and af-
terwards loads the print path (.gcode) into the view. Users can then
export the .gcode file using the existing slicer software functional-
ity and then upload the .gcode file to their 3D printer to start the
fabrication process.

4.3 Infrastructure for Parallel Slicing and
Interpolation

SliceHub’s infrastructure also addresses the need to generate new
slicing results for print resolution profiles and model scales that
have no data yet. To fill in the missing data, SliceHub can either
interpolate the missing results, which can be done in real-time but
is less accurate, or parallel slice the missing results, which is more
accurate but requires additional time.

Interpolation of Missing Results:When slicing results are not
yet available, SliceHub interpolates the missing results from the
already sliced results. To indicate which print resolution profile and
model scale combinations are sliced and which are interpolated,
SliceHub marks the sliced and interpolated results with different
symbols in the visualization (Figure 4). The interpolated values can
be computed in real-time when the meta-data file (.json) is loaded.
Thus, the interpolated results are immediately available for the
user to explore. When the user hovers over one of these results,
SliceHub shows the estimated print time and material consumption
and also notes the prediction accuracy.

Parallel Slicing to Replace Interpolated Results: To compute
the slicing results for one or more interpolated values, users se-
lect the interpolated slicing results and then hit the ‘slice’ button
(Figure 4a). Alternatively, users can also use the ‘interpolation per-
centage’ slider (Figure 4b), which allows to decrease the number of
interpolated results and thus increase the accuracy of the prediction.
To speed up the process of generating new slicing results, SliceHub
contains infrastructure to compute slicing results for multiple print
resolution profiles and model scales combinations in parallel. Note
that when all slicing processes run in parallel, the total time equals
the time for a single slicing process, i.e., the time required for the
setting that needs the most slicing time, which is the model at 100%
scale printed with the highest print resolution profile. While the
slicing results are being generated, the progress slider at the bottom
of the interface updates to provide the user with an estimate of the
remaining slicing time. Once the slicing results are available, the
previously interpolated results update, i.e. convert their visual icon
and on hover show the print time and material consumption for
the sliced result rather than the interpolated estimate. When the
‘Add to SliceHub’ option in the user interface is checked (Figure 5c),
all slicing results are added to the SliceHub repository for future

Figure 4: Adding slicing results: (a) by default, all miss-
ing results are interpolated, (b) selecting individual interpo-
lated results and clicking ‘slice’ turns them into sliced result,
(c) moving the ‘slice/interpolation’ slider increases the per-
centage of sliced results via parallel slicing.

re-use by other users (i.e., when SliceHub parallel slices in the cloud
it stores the slicing results in the repository by updating the meta-
data file of the model at the same time it returns the results to the
user interface). However, users have the choice to override this
setting by de-selecting the checkbox. The slicing results are then
not stored on SliceHub and only saved as a new meta-data file on
the user’s local machine.

Periodically Adding Results to Popular Models:While we dis-
cussed in the previous sections how users can generate additional
slicing results by selecting the desired print configurations in the
user interface, SliceHub can also generate slicing results automat-
ically through the repository. For instance, SliceHub has the ca-
pability to go over the models in its repository and identify those
with missing slicing results. If SliceHub has processing capacity
available, it generates the slicing results itself through its cloud
compute service and adds them to the repository. If processing ca-
pacity is limited, SliceHub prioritizes popular models (by number of
downloads) since the slicing results generated for those models will
benefit the largest number of users on the shared repository. Once
SliceHub added the missing results by slicing each print resolution
profile and model scale combination once, they are available to all
future users.

Adding a New Model: Slicing + Interpolation: To add a new
3D model, SliceHub uses a combination of slicing and interpolation.
Users start by loading the 3D model geometry (.stl) into the Slice-
Hub user interface using the ‘Load Model’ button (Figure 5a), which
instantiates an empty visualization with no available slicing results
yet. If users have the ‘Add to SliceHub’ option selected, SliceHub up-
loads the 3D model automatically to its cloud compute service and
parallel slices it to generate 10% of the slicing results while interpo-
lating the rest of the values (Figure 5b). SliceHub uses 10% since our
technical evaluation shows that this fraction of sliced results leads
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to only a small interpolation error (Section 6.3). SliceHub then saves
the 3D model together with a newly generated meta-data file that
contains the slicing results (.json) on the server before returning
the results to the user interface. After this step, the 3D model is
available on the shared repository along with the generated slicing
results. Users can decide to slice additional results, which are then
added to the meta-data file on the server when SliceHub returns
values from parallel slicing on its cloud compute service.

Figure 5: Adding a newmodel: (a) loadmodel geometry (.stl),
(b) SliceHub slices 10% of the print profile and model scale
combinations and interpolates the rest, (c) SliceHub checks
if users allowed sharing the model on the repository and
then uploads the model and slicing results.

5 APPLICATION SCENARIOS
We next describe how SliceHub can be used for different applica-
tions.

Exploring Model Scale vs. Print Resolution Trade-Offs: In
this scenario, an architect is short on time to print out a building
model for an upcoming customer presentation. He loads the new
3Dmodel into the SliceHub user interface and since the 3D model is
not present in the repository, SliceHub proceeds to parallel slice 10%
of the data and interpolate the rest (see Technical Evaluation 7.3).
After looking at the SliceHub results for the highest print resolution
profile and 100% model scale, the architect concludes that printing
for 26 hours is beyond the time he has available since the customer
presentation is in 16 hours. The architect wants to preserve all the
fine features of the building design and thus would like to print the
model at the highest print resolution (0.06mm) if possible. He thus
decides to explore if scaling down the model would print within his
time constraint. However, upon closer inspection he realizes that
if he kept the highest print resolution, he would have to scale the
model by more than 50%, which would make the model too small.

He thus decides to slightly reduce print resolution to 0.1mm, which
allows him to print the model at 80% scale within 15 hours and 27
minutes. The architect slices the building 3D model locally with the
selected model scale, downloads the gcode file, and starts printing.

ExploringModels based on Print Times: In this application sce-
nario, a user wants to 3D print a flower pot for a plant they want to
give to their friend for their birthday, which is the next day. They
have limited access to a shared 3D printer in the local library, and
after looking at the open 3D printing times they see that for that
particular day, there is only a 10 hour print window left. Since the
user needs the flower pot within the day, she is searching for a
model that prints within that time window. The user goes onto the
SliceHub website and finds five different 3D models of flower pots,
of which two have an average print time of under 10 hours. One
of them looks more aesthetically pleasing, so the user decides to
go with this model. She downloads the 3D model, opens it in the
SliceHub user interface, generates the gcode for the default print
settings that were shown on the repository, and sends the gcode
file to the local library for printing.

Exploring how to Reduce Material Usage: In this application
scenario, a maker is prototyping an interactive toy that has capaci-
tive touch buttons across its surface. Since the conductive filament
is expensive (Electrify Conductive Filament [Multi3D 2021], ca. $200
per filament roll) , the maker wants to make sure that the prints
during prototype iteration are not using too much material. The
maker loads the 3D model into SliceHub, which causes SliceHub to
parallel slice 10% of the print profile resolutions and model scales.
When exploring different model scales, the maker is surprised that
scaling the model to 50% saves more than 80% of material since
scaling down the model linearly leads to a cubic decrease in ma-
terial volume. She thus decides that scaling the model to 75% is
sufficient for saving a lot of material. After printing the first version
and verifying that the toy works as expected, the maker prints the
toy at full scale. Since the maker is happy to share the 3D model
and slicing results with others, she selects the ’Add to SliceHub’
checkbox, which makes the model together with the slicing results
available on the repository for other users to reuse.

6 IMPLEMENTATION
SliceHub’s components, i.e. the repository, the user interface, and
the infrastructure for parallel slicing and interpolation can be im-
plemented in conjunction with a variety of existing cloud services
and slicers. For the purposes of building a prototype system, we are
using Amazon Web Services for the cloud storage and cloud slicing,
and the slicer Ultimaker Cura [Ultimaker 2020] for the user inter-
face and slicer back-end. We provide details on the implementation
of each of the components in the following sections.

6.1 Repository Backend and Frontend
There are three major components that make up the repository:
(1) a website built with ThreeJS [Danchilla 2012], (2) a cloud storage
that contains all the data for the 3D models and their slicing results
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(AWS S3), and (3) cloud processing infrastructure for parallel slic-
ing consisting of a Flask [Grinberg 2018] webserver connected to
Amazon Web Services (AWS Lambda).

Data Structure: The cloud storage contains for every 3D model,
the 3D model geometry (.stl file) and a meta-data file (.json) that
contains for each print resolution profile and model scale the cor-
responding print time and material consumption. In addition, the
cloud storage also saves a thumbnail for each model (generated
from the .stl file using the numpy-stl library [Oliphant 2006]). The
web server also contains a global meta-data file (.json) that contains
links to each 3D model folder on the cloud storage.

Data Exchange: When the user hits the ‘download’ button, Slice-
Hub packs both the 3D model geometry (.stl) and the meta-data file
(.json) in a .zip container which can be opened in the SliceHub user
interface embedded in the existing slicer Ultimaker Cura.

Adding Data: Every time SliceHub generates new slicing results,
it updates the meta-data file of the 3D model on the cloud compute
service. When a new 3D model is added, a new folder is created
and the global meta-data file of the repository is updated with the
new 3D model entry.

6.2 User Interface Plugin
The user interface is implemented as a plugin to Ultimaker Cura 3.6
using Cura’s plugin support. The backend is written in Python and
the front-end is written in QML and Javascript. When users load
the .zip file from the repository, our slicer plugin unpacks the file
and after loading the 3D model (.stl) into the view, populates the
user interface, i.e. adds to each print resolution profile and model
scale the print time and material consumption from the meta-data
file (.json). Next, it fills the constraint boxes for print time and
material consumption with the respective minimum and maximum
values from the print resolution profiles with the highest/lowest
resolutions and largest/smallest model scales. All elements in the
user interface are linked with each other, for instance, as users select
a slicing result with a smaller model scale, the model is resized in
the view.

6.3 Parallel Slicing Infrastructure
To be able to slice multiple print resolution profiles and model
scales at the same time, we automated the slicing process and then
deployed the automated slicer on the SliceHub infrastructure that
enables us to run multiple slicing instances in parallel.

Automated Slicing (CuraEngine): For automated slicing, we use
CuraEngine, an open source C++ library that can be operated as
a command line tool. CuraEngine’s slice() function takes as input:
(1) an .stl file for the 3D model, (2) a .json file containing the de-
fault print settings, and (3) a string containing the modified print
parameters for each configuration (when the user selects a different
print resolution profile the print settings, such as layer-height and
print speed, change). After slicing, CuraEngine returns the print
time and material amount to the terminal. SliceHub then reads the
print time and material amount from the terminal and adds them

to the model-specific meta-data file. Since SliceHub does not use
the .gcode file that is also generated as a part of the slicing process,
it discards it. Once the meta-data is updated, it can either be read
back to the user interface embedded into the slicer or updated on
the model repository website.

Parallel Slicing in the Cloud: To make slicing run in parallel,
SliceHub uses the cloud-compute service Amazon Web Services
and instantiates as many cloud computers in parallel as needed.
Each cloud computer is instantiated with a .zip file that contains
CuraEngine and a python script, which starts the slicing process
as soon as the cloud computer is called. After slicing has finished,
the print time and material are returned to the terminal by the
cloud computer. The cloud computers then save the model-specific
meta-data file on the cloud storage system. Depending on the print
resolution profile and model scale, some slicing processes may
finish faster than others. The user interface waits for all processes
to return and then reads the model-specific meta-data file from the
cloud storage to update the slicing results in the user interface.

6.4 Interpolation Algorithm
To be able to estimate slicing results for missing print resolution
profiles and model scales, we fit a function over the existing slicing
results of a 3D model. When users increase the percentage of sliced
results using the ‘interpolated/sliced’ slider, we distribute sliced
results uniformly across the space of print resolution profiles and
model scales.

Fitting a Function over Slicing Results: To compute the print
time and material consumption estimates for the interpolated slic-
ing results, SliceHub fits a function to the existing slicing results of
the currently loaded 3D model using the scikit-learn library. Slice-
Hub fits a second degree polynomial to all slicing results that are
available for that particular model. We use a polynomial function
since changes in print time andmaterial consumption do not change
linearly with changes in scale. The reason for this is that the overall
volume of an object shows an approximately quadratic increase
with a linear increase in scale.

ChoosingWhich Print Profile Resolutions andModel Scales
to Slice: When users increase the number of sliced results using
the ‘interpolated/sliced’ slider, SliceHub computes which print res-
olution profiles and model scales should be sliced and which should
remain interpolated. Given the selected percentage, SliceHub dis-
tributes the sliced results across the different print resolution pro-
files and model scales uniformly per dimension and uses the closest
approximation when results cannot be uniformly distributed.

7 TECHNICAL EVALUATION
We based our design decisions for the individual SliceHub compo-
nents, such as what information to store in the repository and how
many print profiles andmodel scales to provide in the user interface,
on a set of technical evaluations, which we describe below.
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Figure 6: Mean relative error for different numbers of print resolution profiles and model scales offered in the user interface
when either (a) a print time constraint or (b) a material amount constraint need to be matched.

7.1 Repository Scalability: Amount of
Meta-Data per Model

We investigated how much storage space a model with all print
resolution profiles and model scale combinations requires when all
results are sliced and when a large fraction of results is interpolated.

Average File Size All Results Sliced: For the top 1200 Thin-
giverse models, we found that the meta-data file (.json) for one
3D printer and material combination with 16x16 print resolution
profiles and model scales (256 combinations) and with all results
sliced is approximately 12 KB. When the top 7 materials are sup-
ported, which cover 90% of the 3D printing demand in plastic [Hubs
2020], the file size increases to approximately 84 KB. Further sup-
porting the top ten 3D printers, which cover 28.4% of all 3D printing
users [Hubs 2020], increases the file size to approximately 840 KB.

Average File Size 90% Results Interpolated: When 90% of re-
sults are interpolated as recommended by our technical evaluation
7.3, the average file size is reduced by 90%, i.e. 1.2 KB rather than
12KB for one material/printer combination, 8.4 KB rather than 84KB
for the top 7 materials, and 84 KB rather than 840KB for the top 10
printers.

Average File Size of Geometry (.stl) and .gcode:We found that
for the top 1200 Thingiverse models, the average 3D model geome-
try file (.stl) was 6MB and the average size for the .gcode file was
10MB.

Based on this data, we conclude that adding the SliceHub meta-data
to an existing repository, such as Thingiverse, for a range of popular
print materials and 3D printers would only require an increase in
the storage by 13.6% if all results are sliced (840 KB on top of the

6MB average model geometry file size), or 1.36% if 90% of values
are interpolated (84 KB on top of the 6MB average model geometry
file size). Storing the gcode, however, would add significant storage
overhead to the repository. Since we generate 1750 slicing results
per model (10% of 256 slicing results for 7 materials and 10 printers)
and the size of an average gcode file is 10Mb, the overall storage
increase would be approximately 17Gb per model (10Mb gcode *
1750 slicing results) and is thus not scale-able.

7.2 User Interface: Effect of Number of Print
Profiles on Constraint Accuracy

When designing the user interface, we also had to decide on the
number of print resolution profiles and model scales that the user
can choose from. If there are only few options available, the user
may not be able to find a good match for their time and material
constraints. For instance, if only two print resolution profiles (e.g.,
0.06mm and 0.2mm) are available, the high resolution profile may
take much more time than the user has available while the fast
low resolution may result in a worse print quality than the user
would have had time for. Offering more options, however, increases
computational cost to generate the slicing results. To find a good
trade-off, we ran the following experiment.

Conditions:We created six conditions, i.e. six user interfaces with
different numbers of print resolution profiles and model scales
(ranging from 2 print resolution profiles and 2 model scales (4 slic-
ing results) to 31 print profiles and 31 model scales (961 slicing
results)). The user interface with the fewest options used the print
resolution profiles with the highest resolution (0.06mm) and the
lowest resolution (0.2mm), as well as the largest (100%) and smallest
(10%) model scales. All other user interfaces iteratively added print
resolution profiles and model scales at each midpoint of the existing
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values.

Procedure:We used our data-set of the top 1200 Thingiverse mod-
els and generated slicing results for each condition. We then ran-
domly picked 20 print time and 20 material constraints from the
available min/max bounds of each model, and for each user in-
terface condition computed the mean relative error to the closest
matching slicing result.

Experiment Results: As shown in Figure 6, the more print resolu-
tion profiles and model scales the user interface offers, the smaller
the mean relative error is. For the smallest user interface (2x2) the
mean relative error for the print time is 63.4% and material amount
64.9%, whereas for the largest user interface (31x31) the mean rel-
ative error for print time is only 1.6% and material amount 2.4%.
However, while there is a strong reduction in error when a small
user interface is expanded (e.g., for print time: 2x2: 63.4% vs 3x3:
30.6%), the effect is less emphasized for larger user interfaces (e.g.,
for print time there is only a 1.3% improvement between 16x16:
2.9% vs. 31x31: 1.6%). Since a user interface with 16 print resolution
profiles and model scales requires only 26.6% of the data of a user
interface with 31 print resolution profiles and model scales, and
thus significantly lowers computational cost, we decided to use the
user interface with 16 print resolution profiles and model scales as
the default for SliceHub.

7.3 Effect of Number of Interpolated Slicing
Results on Average Prediction Error

To decide how many slicing results SliceHub should by default slice
and how many interpolate, we ran an experiment to evaluate the
effect of an increasing number of interpolated results on the mean
relative error for predicting print time and material consumption.

Experiment Procedure: We created five conditions, i.e. five user
interfaces of 16x16 print resolution profiles and model scales that
had different percentages of interpolated results. The user inter-
faces ranged from containing 0% interpolated results (all 16 print
resolution profiles x 16 model scales combinations sliced) to 98%
interpolated cells (only 2 print resolution profiles x 2 model scales
sliced). We then calculated the relative mean error for the interpo-
lated results from the computed slicing results (e.g., if the computed
print time of an object is 2h but the interpolated print time is 1h,
there is a relative error of 50%).

Experiment Results: As can be seen in Figure 7, the error in
predicted print time and material amount decreases with num-
ber of sliced results since there are more data points available for
accurately fitting the polynomial function. For instance, the inter-
polation error for print time when only 4 (2x2) out of 256 print
resolution profiles and model scales are sliced is 36.31%, whereas
the interpolation error is only 2.08% when 81 (9x9) out of 256 print
resolution profiles and model scales are sliced. Comparing the in-
terpolation error for different percentages of interpolated results
shows a strong decrease in error when 98% vs 96% of results are
interpolated (26.33% less interpolation error) and when 96% vs 90%
are interpolated (6.31% less interpolation error). The reduction in

interpolation error when 90% vs. 68% of results are interpolated
is only marginal (1.79% less error). Since interpolation accuracy
no longer strongly decreases after about 10% of sliced results (90%
interpolation), SliceHub by default slices 10% of results when a new
model is added.

8 DISCUSSION AND FUTUREWORK
We next discuss how SliceHub can be extended in the future.

Indicating Failed Print Settings: While in our work, we have focused
on making slicing results, such as print time and material consump-
tion, readily available for exploration and comparison, we currently
do not provide users with information if the chosen print profile
resolutions and model scales lead to a successful print. For future
work, we plan to allow the model designer or a user who printed
the model to indicate if specific print profile resolutions and model
scales worked or if the print did not complete. By integrating this
information in the user interface, SliceHub can provide the infor-
mation in a structured manner rather than through the informal
comments section as is commonly done in 3D model repositories,
such as Thingiverse.

Comparing Printers / Materials: While we focused on comparing
different print resolution profiles and model scales of a 3D model,
the data in SliceHub’s repository can also be used for other use
cases. For instance, SliceHub’s data allows users to compare the
print time of different 3D printers with each other enabling users
to draw conclusions which 3D printer on the market is currently
the fastest. Similarly, users can compare the print times of different
filament types with each other, which may influence their choice
of print material.

Extending the Slicing Infrastructure: Finally, we plan to extend Slice-
Hub’s slicing infrastructure. Our current implementation is based
on the slicer Ultimaker Cura and thus only works for FDM 3D
printers. By default, it is setup to generate slicing results for the
Ultimaker 3D printer series but print resolution profiles for other
FDM 3D printers (e.g., MakerBot, Prusa) can be imported and subse-
quently used for slicing. To support other 3D printing technologies,
we are currently in the process of extending our slicing infrastruc-
ture with the slicer Slic3r [Slic3r 2011], which supports a wider
variety of other 3D printers, such as those based on DLP printing
(e.g., Prusa SL1 and Formlabs Form 3).

9 CONCLUSION
We presented SliceHub, an integrated system that enables users to
explore different print settings in real-time to find the trade-off be-
tween print resolution profile, model scale, print time, and material
consumption that best fits their needs. We discussed the design and
technical implementation of the SliceHub repository for storing
slicing results, the user interface for exploring trade-offs between
multiple print resolution profiles and model scales simultaneously,
and SliceHub’s infrastructure for slicing and interpolation that fur-
ther adds to the data available in the repository. We provided an
evaluation of the data storage requirements for the repository and
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Figure 7: Higher percentages of interpolated results, lead to larger errors. The error stabilizes when 90% of results are interpo-
lated (i.e., 10 % of results are sliced). We thus use this as the default setting when a new model is added to SliceHub.

reported evaluation results to support design decisions made in the
user interface, such as the number of print resolution profiles and
model scales the user can choose from. For future work, we plan
to deploy the repository as a website and provide the plugin for
the slicer through the Ultimaker Cura marketplace. In addition, we
plan to track contributions to the repository and investigate users’
activities on SliceHub as well as collect feedback from the maker
community.
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