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ABSTRACT 
For visually impaired users, making sense of spatial infor-
mation is difficult as they have to scan and memorize con-
tent before being able to analyze it. Even worse, any update 
to the displayed content invalidates their spatial memory, 
which can force them to manually rescan the entire display. 
Making display contents persist, we argue, is thus the high-
est priority in designing a sensemaking system for the visu-
ally impaired. We present a tactile display system designed 
with this goal in mind. The foundation of our system is a 
large tactile display (140x100cm, 23x larger than Hyper-
braille), which we achieve by using a 3D printer to print 
raised lines of filament. The system’s software then uses 
the large space to minimize screen updates. Instead of pan-
ning and zooming, for example, our system creates addi-
tional views, leaving display contents intact and thus pre-
serving user’s spatial memory. We illustrate our system and 
its design principles at the example of four spatial applica-
tions. We evaluated our system with six blind users. Partic-
ipants responded favorably to the system and expressed, for 
example, that having multiple views at the same time was 
helpful. They also judged the increased expressiveness of 
lines over the more traditional dots as useful for encoding 
information. 
Author Keywords: 3D printing; accessibility. 
ACM   Classification   Keywords:  H.5.2 [Information inter-
faces and presentation]: User Interfaces. 
INTRODUCTION 
For visually impaired users, making sense of spatial infor-
mation is a challenge. While sighted users’ ability to per-
ceive many items in parallel allows certain similarities and 
structures to pop out, visually impaired users have to scan 
spatial information displays sequentially and slowly. Only 
after they have absorbed a relevant portion of the infor-
mation, they can start to find connections, recognize struc-
ture, and ultimately make sense of the data. 

 

 
Figure 1: (a) Linespace is a sensemaking platform for 

the blind. Its custom display hardware offers 140 x 
100cm display space and it draws lines as its main prim-
itive. Here Linespace runs the home-finder application 
that enables users to browse maps in search for a home. 

(b) Linespace’ main primitive is raised lines, which it 
produces using a modified 3D printer. 

Since building up spatial memory is key, any update to 
displayed contents is potentially dangerous as it may inval-
idate users’ spatial memory, in the worst case forcing them 
to manually rescan the entire display. Making display con-
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tents persist, we argue, is thus the highest priority in de-
signing a sensemaking system for the visually impaired. 
Unfortunately, current systems designed to allow visually 
impaired users to browse spatial information (e.g., the 
Hyperbraille 120x60 Braille dot array [9]) make it difficult 
to persist screen contents. Since they offer only a moderate 
amount of display space (30x15cm), viewing larger data 
sets requires users to switch between views or to zoom and 
pan, all of which invalidate users’ spatial memory. 
In this paper, we present a tactile display system designed 
to minimize display updates in order to preserve user’s 
spatial memory. We achieve this by making the display 
very large (140x100cm) and by designing its software 
system to leverage this display space in order to preserve 
displayed contents. 
RELATED WORK 
Our work builds on research in accessibility and personal 
fabrication.  
Traditional approaches to create spatial content 
The most common approach that allows blind users to 
create their own spatial content are line drawing boards that 
consist of plastic sheets that buckle under pressure  [23].  
To translate existing digital content into tactile content, 
blind users mainly use swell-form graphics and thermoform 
books. Swell-form graphics work with swell-touch paper 
[26]: Applying heat to the paper raises the paper’s surface 
in the heated area, thereby creating tactile content. To cre-
ate a swell-form graphic, user first create a 2D black/white 
image of their content and print it on a 2D printer. After-
wards, they insert the 2D print into a swell-form printer 
known as fuser: The black areas attract the heat, thereby 
raising the lines. Thermoform books in contrast require to 
vacuum form plastic sheets (see chapter ‘vacuum forming’ 
in [8]). While their resolution is better than swell paper 
(i.e. they produce different levels of relief), the creation 
process is more expensive and time-consuming.  
Blind technologies for interacting with spatial content 
While braille displays are normally used to sequentially 
display braille text, HyperBraille [9, 21] is a large Braille 
display that can be used to explore spatial content. To make 
optimal use of the space, Prescher et al. [21] demonstrate 
an optimized Braille-based windowing system.  
Since scaling Braille arrays involves proportional cost, 
researchers have proposed to use alternative haptic cues, 
such as vibration, as a means to communicate spatial in-
formation to visually impaired users. For instance, TGuide 
[15] uses 8 vibrating elements to output directional infor-
mation for navigation purposes. Beside vibration, research-
ers also suggested the use of force-feedback devices: Cros-
san et al. [7] designed a system that teaches shapes and 
trajectories using a force feedback arm. Similarly, Plimmer 
et al. [18] trained blind users to learn writing using a force 
feedback arm. Finally, researchers also suggested to add 
small braille displays onto force feedback arms and to 
update the display in accordance to its current location 

(PantoBraille [24]). To display 3D geometry with fine 
texture features, Colwell et al. [6] introduce a haptic device 
that  provides feedback to the user by monitoring the posi-
tion of hand and altering the force accordingly.  
Finally, researchers have also examined how to combine 
analog means for displaying spatial content with a digital 
touch screen. By overlaying swell paper onto the screen, 
users of TDRAW [16] can simultaneously draw and anno-
tate their drawings using voice over. Users create drawings 
using a pen featuring a hot tip. The hot tip causes the swell 
paper to buckle, allowing users to feel strokes produced 
earlier. However, while the device provides users with a 
means to create tactile content, the device has no means of 
creating tactile output itself.   
Audio-tactile graphics systems 
Audio tactile graphic systems help blind users to explore 
spatial information by combining tactile and audio modali-
ties. Talking Tactile tablet (TTT) [17] uses tactile sheets on 
top of a touch sensitive surface to provide audio feedback 
on various spatial content. Following up on the TTT pro-
ject, Miele et al. [18] looked at the process of automatically 
translating maps into tactile sheets for the tablet. Similarly, 
researchers have looked at how to automatically translate 
existing graphics, such as floor plans and organization 
charts, to tactile graphics by segmenting, vectorizing and 
simplifying them [3, 8, 12]. To enable the creation of multi-
model applications, Pietrzak et al. [19] introduced a soft-
ware architecture that supports developers in creating these 
complex types of applications.  
Personal Fabrication for Visually Impaired 
Originally, personal fabrication tools were developed as a 
means for rapid prototyping. However, the output created 
by personal fabrication machines, such as 3D printers and 
laser cutters is inherently tangible, giving it relevance to the 
visually impaired community. Physical visualizations [25], 
for example, result in a type of display that is accessible to 
blind users. 
Recently, 3D printers have been proposed as a means to 
generate tactile output for blind users: VizTouch [4] for 
instance, generates 3D printed graphs and data plots by 
extracting contours from a 2D input image. ABC and 
3D [5] 3D print geometric objects that allow visually im-
paired students to improve their math skills. Similarly, 
Kane et al. [13] 3D print tactile representations of debug-
ging output to make programming more accessible to the 
blind. Tactile Picture Books [14] are books for blind chil-
dren that contain 3D printed objects instead of 2D images. 
Finally, Yahoo presented a search engine that 3D prints 
physical representations of search keywords that are input 
via speech [11]. 
LINESPACE SYSTEM 
Linespace is an interactive system that consists of hardware 
and software and that allows visually impaired users to 
interact with spatial contents.  



 

Linespace offers 8 types of interaction (see Figure 7 for a 
preview). Its primary way of providing output to users, 
however, is to render information in the form of raised lines 
that visually impaired users can explore using their hands. 
As illustrated by Figure 1, Linespace’s display area is very 
large (140cm x 100cm). This is a key aspect of the system, 
as it allows the software system to minimize display up-
dates in order to preserve user’s spatial memory. 
We created Linespace’s display on top of a drafting table. 
The device can be tilted to allow for any angle between a 
horizontal and vertical setup. While users can conceptually 
sit in front of the display, we tend to use it while standing, 
as this is common for drafting table usage. 
Display hardware 
As illustrated by Figure 1, Linespace’s ability to create 
display output is based on the mechanics of a 3D-printer. 
The device operates like a plotter, i.e., its print head moves 
across the display surface in two dimensions. 
Figure 2 illustrates the horizontal component. The carriage 
that holds all motors and electronics rides along the top 
edge of the drafting table, moving the arm with the print 
head to the desired x-position.  

 
Figure 2: Horizontal actuation: the shown carriage with 

motors and electronics rides along the top edge of the 
display board.  

In addition, the carriage positions the print head vertically 
by pulling the arm with the head up and down (Figure 3). 

 
Figure 3: Vertical actuation: (a) printing at the top end 
of the board, and (b) at the bottom end. (c) When the 

printer is inactive it moves out of the way. 

As illustrated by Figure 4, the lower end of the arm holds 
the print head that extrudes plastic filament (PLA), which 
creates the raised lines. 

 
Figure 4: Close-up of the print head: A ball caster stabi-

lizes the print head and keeps it at a fixed distance to 
the display area. The ball caster also reduces friction. 

Next to the print head, we mounted a “scraper”, i.e., a nee-
dle mounted perpendicular to the display that allows the 
system to remove contents. When the scraper is not needed, 
Linespace can retract it (Figure 5).  

 
Figure 5: (a) Removing content with the scraper.        

(b) When not needed, the scraper is retracted.  

Linespace Hardware = Tactile Lines, Touch, and Speech 
As mentioned above, Linespace’s primary mode of interac-
tion is spatial interaction based on tactile lines. This func-
tionality is key as it allows the system to arrange data spa-
tially in order to leverage users’ spatial memory. Extending 
on this, we designed Linespace as a platform, i.e., to pro-
vide application builders with a rich interaction vocabulary. 
Linespace therefore also supports transient spatial interac-
tion by pointing and textual interaction based on speech. 
All interactions with Linespace are designed with sym-
metry in mind, i.e., user and system can both perform the 
same actions. Figure 6 shows this at the example of Line-
space’s permanent spatial interaction abilities. (a) The 
system renders contents by 3D printing, which (b) users 
perceive by scanning the fingers across the display. (c) 
Users create output by drawing using a plastic extruder pen 
(3Doodler [1]), which (d) the system perceives using its 
camera. 



 

 
Figure 6: Linespace’s input/output capabilities are de-

signed with symmetry in mind.  

Similarly, the system can erase lines by scraping them off 
using its scraper; so can users, simply using their fingers. 
Users can point at printed content on the display, which the 
system perceives using its camera (we use markers on 
users’ fingers for the touch recognition). Similarly, the 
system can point to objects on the display using its print 
head. The system outputs sound through a wireless speaker 
mounted to the print head, allowing users to locate the print 
head based on their auditory sense.  
Finally, also Linespace’s textual interaction is symmetric. 
The system can talk to the user based on speech output. 
Users can talk to the system by activating speech input by 
pressing a foot switch. 
Figure 7 summarizes Linespace’s input/output capabilities 
on which we based our software framework. 

   system  to  user   user  to  system  
draw  line   3d  printer   extruder  pen  
erase  line   scraper   fingers  
point   print  head,  speaker   finger  w/  marker  
text   speaker   voice  

Figure 7: Summary of input/output capabilities. 

DESIGN RATIONALE 
Linespace’s hardware provides it with a large amount of 
display space and the ability to render lines, a primitive 
particularly well suited for the content types involved in 
spatial sensemaking tasks, such as graphs, diagrams, maps, 
and drawings. Based on this hardware, our objective in 
designing Linespace’s software system was to allow users 
to build up and maintain spatial memory of the contents. 
Primary design rule: leave displayed contents intact 
In order to not destroy spatial memory Linespace’s primary 
design rule is: “leave printed display contents intact”. We 
express this using four sub rules: 
p1.   No panning and scrolling. Instead, extend contents. 
p2.   No zooming. Instead, add overviews or detail views. 
p3.   No animation. Instead, use static animation [10]. 
p4.   No pop-ups and dialogs. Instead, use auditory output. 

Secondary design rule: spend display space carefully 
Within all solutions that satisfy these rules, our secondary 
design objective is to spare display space, as it is the dis-
play space that allows the system to achieve its primary 
goal. 
s1.   No unnecessary scale. Render as small as readable. 
s2.   No chrome. Instead, structure contents with whitespace 
s3.   No display windows. Traditional windows are a way 

of reserving space oftentimes before it is really needed. 
While Linespace allows apps to run in parallel, appli-
cations are supposed to start at display size zero and 
grow their space use over time as needed. Apps have 
whatever shape their content has, which will typically 
not be a rectangle. 

s4.   No displaying of text and no displaying of elaborate 
icons. Instead, use a small number of simple tactile 
icons that play back auditory output when touched. 

Tertiary design rule: allow for speedy operation  
Within all solutions that satisfy these rules, our tertiary 
design rule is to allow for speedy operation, in particular by 
handling the limitations of Linespace’s print mechanism. 
t1.   No printing at app launch: all applications start with 

a blank display, allowing apps to start instantaneously. 
t2.   No printing at app switching: Touching content of a 

different app moves the focus to that app instantane-
ously. Remove or relocate an application only when 
another application grows into its display space. 

t3.   Let users interact while system is printing in regions 
distant enough from the print arm.  

t4.   Let system print while user is interacting; pre-render 
contents likely to become necessary soon. 

t5.   During printing sonify what is being printed: This 
allows for immediate feedback. Given that the speaker 
moves with the print head, it helps users to build up 
spatial memory of what is printed where. 

DEMO APPLICATIONS 
We now go over our 4 demo applications and use them to 
explain how they implement our 3 sets of design rules. 
1. Minesweeper 
Minesweeper is an adapted version of the minesweeper 
number puzzle that used to ship with the Windows operat-
ing system. Players’ objective is to clear a board containing 
hidden “mines”, with help from clues about the number of 
neighboring mines in each field. While not a sensemaking 
application, minesweeper does involve a good amount of 
spatial reasoning, so we included it as our first example. 
To launch minesweeper, users press the foot switch and say 
“launch minesweeper”. The app launches with a blank 
screen (t1) and welcomes users with: “Minesweeper. Your 
entire screen now is a mine field. Touch anywhere and say 
“reveal” to see whether there is a bomb. Say “usage” to 
learn more.” (s4). 
As shown in Figure 8a, users tap onto the board and say 
“reveal”. Minesweeper responds by announcing the item 
that is located there, i.e., either “free”, “mine”, or a number 

system plots raised lines 
using 3D printer 

user feels lines 
by touching 

user draws raised lines 
using 3Doodler 

system observe lines 
using camera 

a b 

c d 



 

denoting the mines surrounding that cell. At the same time, 
Linespace persists this information by plotting an icon at 
the location. To maximize content density, minesweeper 
distinguishes only between a “free” cell (a slanted line 
icon) and cells that have an adjacent mine (a circle icon); 
instead, the actual number is read out loud every time the 
user touches the cell (s4). (b) In the shown case, the cell 
was “free” which causes the app to also reveal surrounding 
cells. Note how the app separates cells using whitespace 
rather than gridlines (s2). 

 
Figure 8: The Minesweeper app (a) reveals a cell, 

(b) here a free cell. (c) Users scan a local neighborhood 
of cells with their fingers to infer the location of mines. 

(d) The prototype.  

Users' spatial task is to locate mines without revealing 
them. Users scan an area of interest with their fingers, listen 
to the number and build up a mental model of the con-
straints. When they infer where a mine must be located 
they touch that location and say “mine”. The app responds 
“marking as mine” and draws a mine icon (a triangle). 
As users continue to reveal more area of the board, the 
minesweeper application grows which extends the display 
space it occupies (p1). To explore the potential of the sys-
tem, our version of minesweeper is intentionally designed 
to fill the entire display area by default (>9000 cells). If 
users solve the entire puzzle, the app plays a congratulatory 
message and terminates. 
After a brief pause, the app manager starts to free up the 
app’s display space by scraping off all contents (Figure 9a).  

 
Figure 9: The app manager cleans up space until (a) the 
user requests a new application, which (b) causes Line-

space to interrupt its clean up immediately.  

Users do not have to wait though. They can switch to a 
different app or (b) launch a new app (e.g., re-launch the 
game) in a fresh screen region any time. The system ac-
commodates this by interrupting its clean up, allowing it to 
respond instantaneously (t3). 
2. Homefinder  
Homefinder is a simple app that allows users to search for 
real estate, such as a four bedroom in a city. 
When users launch homefinder, the app launches with a 
blank screen (t1) and welcomes users with: “Welcome to 
homefinder. What city or neighborhood to plot where?” 
(s4). Users point to an empty screen region and name their 
city and neighborhood. Homefinder responds by saying, 
e.g. “63 homes” and plotting a few characteristic land-
marks, such as an outline of the city (Figure 10a). The user 
says “filter four rooms or more” to reduce the set of houses. 
The system responds, e.g. with “12 homes found”. (b) 
When users say “draw”, homefinder plots the homes onto 
the map (Figure 10c), each one as a simple icon (a circle). 

 
Figure 10: The home finder application.  

To learn more about a home, users scan the map with their 
fingers, pause over a circle icon and say “reveal”. 
Homefinder responds with a brief verbal description of the 
place, in prioritized order starting with price, number of 
rooms, etc.  



 

(c) When the query does not find enough homes in the 
neighborhood, users can point at a blank space and say 
“extend”, causing homefinder to sketch an additional 
neighborhood and populate it with homes, in this case re-
sponding “7 additional homes found”. Users can also adjust 
the filters using speech input, e.g. also allowing three 
rooms, which causes homefinder to fill in additional 
homes.  
(d) To provide users with a sense of what has changed, the 
additional homes are plotted with a modified icon (a dash 
inside the circle icon. Similarly, users can reduce the num-
ber of homes with the filter, which (e) causes homefinder to 
scrape off the icons of the surplus homes and replace them 
with an icon indicating the absence of an item (a dash). 
(f) To learn more about the relationship between price and 
number of places, users can also query a slider by saying 
“place price slider here”, which causes homefinder to draw 
a slider at the specified location. Users can now slide their 
finger up and down the slider while homefinder is continu-
ously announcing the numbers: “300 thousand—16 
homes… 350 thousand—12 homes”. 
Note how homefinder always provides an auditory sum-
mary first and only then refreshes the screen. This is very 
different from similar applications for sighted users, that 
tend to update the screen whenever possible, e.g., continu-
ously while users drag a slider. Such tight coupling is only 
of limited use for visually impaired users, as users cannot 
take in the spatial display at a useful rate (independent of 
how fast or slow the system can render the changes). 
(g) Finally, when users have found a home that sounds 
promising and would like to get a better understanding of 
its surroundings, they can display additional detail. For this, 
users point at the place with one hand and use their other 
hand to point at a patch of blank space. When they say 
“zoom here” Linespace responds by (h) plotting a zoomed 
in map of the area (p2) in the blank space, allowing the user 
to examine its potential in detail (Figure 5a). 
3. Drawing application 
Since our first two applications are focused on allowing 
users to explore, we added a drawing app as a means for 
users to create.  
As an example drawing, we explain how to make a bicycle 
(Figure 11). To draw the front wheel, users place their 
fingers three inches apart and say “circle, draw”, causing 
the drawing application to say “drawing circle” and draw-
ing a three-inch circle in between. Users create the rear 
wheel by pointing at the front wheel and a location eight 
inches further right, then say “clone, draw”. 
To draw the fork, users start by pointing to the center of the 
front wheel and where they want the upper end to go. After 
saying “line, draw”, the app draws the line. 
To allow for efficient drawing, users can create the frame 
by using the line tool in “polyline style”, i.e. by specifying 
all five lines before updating the display. This also allows 

them to use their fingers as bookmarks as they can keep 
their fingers on the display. To save a line for later printing, 
users say “memorize line”, which causes the system to 
respond with “line memorized”. At the end, when users say 
“draw”, they get the polyline. 

 
Figure 11: Drawing a bike using the draw app (see Fig-

ure 11 for a drawing by a blind user). 

Users can also add freehand drawings, such as the curved 
handles of the bike, by using the hand-held extruder pen.  
4. App manager 
The handling of individual applications and their canvases 
and sub-canvases is done by a program called app manager. 
App manager also allows users to launch and kill other 
apps, configure them, and switch between apps. App man-
ager loads automatically whenever Linespace starts up. 
App manager launches with a blank screen display (t1) and 
does not occupy any screen space itself (s2, s3). Instead app 
manager runs in the background and listens in on speech 
input (s4), so that all interactions with app manager itself 
are based on speech. 
Users, for example, launch an app by saying “start <app 
name>”. Linespace responds by loading the respective app 
and confirms “<app name> loaded” and hands control over 
to the app, which follows up with a welcome message. The 
minesweeper app, for example, says “your entire screen 
now is a mine field. Touch anywhere and say “reveal” to 
see whether there is a bomb. Or say “usage” to learn more.” 
While app manager itself does not occupy display space, its 
apps do. Users consequently interact with the apps by 
pointing at them, then adding a verbal command, such as 
“kill” which causes app manager to terminate the app and 
remove its screen contents, or “relocate”, which deletes 
display contents and redraws it to a new location pointed 
to. 
GUIDED WALKTHROUGHS AND INTERVIEWS 
We organized feedback sessions with six blind users in 
order to observe how users use Linespace and to collect 
their thoughts about our system.  
Participants 
We contacted blind self help organizations to recruit our 
participants. We invited 6 of them (4 male, 2 female) to our 
lab. Our participants included: a blind artist (p4), a comput-
er scientist (p2), a person from the blind sport union (p5), a 
social worker of the national blind organization (p3), and a 



 

blind teacher from a blind school (p6). P1 did not want to 
state his profession. All participants were blind except one 
(p2) who had 10% remaining vision. Three participants had 
experience with tactile drawings (p4, p5, p6). Experience 
with technology varied widely from one participant who 
has never used a computer (p1) to the computer scientist 
who works on search engine optimization (p2). Partici-
pant’s ages ranged from 39 to 58. 
Procedure 
At the beginning of each session, we gave users a short 
introduction on the type of output Linespace produces and 
on how to interact with the system based on tactile lines, 
touch, and speech. We then demonstrated Linespace’s 
drawing and home finder application to our participants.  
During the walkthroughs an instructor stood beside the 
participant and demonstrated how to use the features of 
each application. After the demonstration, participants then 
used those features. At the end of the walkthroughs of the 
application, the participants were interviewed about the 
system and the principles behind its design.  
We encouraged all our users to talk aloud and offer verbal 
comments during the walkthrough. Whenever comments 
required more explanation, we encouraged participants to 
explain their thoughts in more detail. After each 
walkthrough we conducted semi-structured interviews. 
Interviews were recorded and the session was video taped.   
A guided walkthrough session with interview typically 
lasted between 1-2 hours.  
Walkthrough scenarios 
For the drawing application, we asked participants to re-
produce a very simple tactile drawing of a car that we had 
prepared on swell paper. The car consisted of two circles 
for the wheels as well as two rectangles for the body of the 
car (see Figure 11 as an example).  

 
Figure 11: Participant 2 creating a drawing of a car 

with Linespace. 

For the home finder application, we asked participants to 
find potential new homes of their home city (Figure 12). 
After selecting their preferred area of living, they used the 
filters to define the maximum price and the minimum room 
size. As an additional task, participants were asked to find 
homes with extra parking space. For this, participants se-
lected two homes of their choice which caused Linespace 

to print a detailed map of the area on the side of the over-
view map, which they could then use to compare the hous-
es.   
Results 
All participants (p1-p6) successfully operated the system 
and performed the tasks.  
Participants responded very favorably to the system. Sever-
al participants expressed seeing great potential in using a 
system like Linespace for their life and work: “there are 
many situation in which I would use it… for orientation 
when using maps…in blind schools to teach different 
shapes, what triangle and rectangle is…” (p3), “it would be 
great for sharing graphical information with my friends.” 
(p5), “for making artwork accessible, you point and be-
come special details“ (p3), “it could be fun to play games 
like chess” (p5), “blind children need to have things drawn 
to make them understandable—a system like this can help 
them.“ (p4) “If there are things I want to learn, I can tell the 
computer to do a painting”. (p6) 

 
Figure 12: (a,b) Participants using Linespace to find 

homes in a map. (c) After each guided walkthrough, we 
interviewed them. 

Large display area 
Participants pointed out the benefits of having a large dis-
play area: “It’s great to have such a big area, where you can 
put information. This is really more than the 80 characters 
that most devices can show.” (p3). “If you have a big map 
it takes a lot of space…you need to zoom in… it’s the big-
gest problem because you need many states and you lose 
the reference.” (p2). Some commented directly on the as-



 

pects we set as design goals for our system, such as “It is 
very comfortable to have both [overview and detail] at 
once, then I can look at both at once.” (p3) 
Lines vs. Dots 
Participant pointed at the increased expressiveness of creat-
ing lines instead of dots with Linespace. “Hyperbraille is 
better than nothing, but it is quite pixelated. You get very 
coarse graphics that have corners where there should be 
none. With your system this is not the case, you get smooth 
lines.” (p5). “In the refreshable displays we only have dots, 
but lines would be more comfortable.” (p3). “If you want 
detailed information of course line drawing is the best” 
(p6). "It’s more flexible compared to a braille system. In a 
braille system you can only use points. With your system 
you can make thicker and thinner lines. This allows to 
produce more details." (p5) “The texture of lines could be 
used to distinguish different types of data. It could also be 
used to indicate which parts changed”. (p4). 
On spatial memory 
We also asked participants about their experiences with 
memorizing spatial content and if additional features such 
as spatial audio would help: “Spatial audio is not necessary. 
Blind people know where they put stuff. For instance, if I 
draw a circle here then I know the circle is there. And even 
if I miss it slightly, I will quickly find it with my hands.” 
(p1). “Taking the hands off is no problem, I find stuff that I 
already have drawn before easily.” (p1). P4 pointed out that 
“changing the posture makes spatial memory harder” and 
should therefore be minimized. However, participants also 
mentioned that there is a limit to spatial memory, especially 
when it includes long in-between time spans: “when I draw 
my paintings, I have to wait for each color to dry before I 
can continue. When I draw very large paintings (> 
100x120cm) it can get difficult to remember everything.” 
(p4). A strategy all participants used to orient themselves 
on the large board was to use one hand as a static reference 
point while the other hand was exploring nearby content. 
Suggested features 
Several participants suggested that the system should allow 
users to take the tactile drawing off the drafting table: “If I 
had a map of an area with navigation hints, it would be 
great if I could take it with me.” (p4), and “If I draw some-
thing for my friend, it would be great if I could take it with 
me when I visit him next time.” (p3). A straightforward 
way of implementing this would be to attach large sticky 
notes before a session starts. 
One participant felt strongly that the display should be 
horizontal, barely above her knees (p4). While we had set 
up the system to an angle of about 45˚ with ergonomics in 
mind, her main point was to maintain physically constant to 
the display while the system was drawing in order to better 
maintain spatial memory and re-find her last location on the 
board faster. 
The same participant also suggested thicker lines to speed 
up recognition, as well as textured lines to allow recogniz-

ing different types of display elements more quickly. We 
will consider these in future versions e.g., by replacing the 
nozzle of the embedded 3D printer with a thicker one, as 
well as adding a texture feature to the line drawing primi-
tive. 
Interestingly, speed was not an issue for participants: “It is 
the best that we have, even if it’s slow.” (p3). 
HARDWARE IMPLEMENTAITON 
In order to help readers replicate our design, we present a 
brief overview of the design decisions behind our display 
hardware. To put some of the design aspects in perspective, 
we include a discussion of the design process and refer to 
the earlier versions of Linespace (see Figure 13). 
Increased display area 
We built our first prototype on a low-end off-the-shelve 3D 
printer (PrintrBot [22]). This printer is open source and 
easy to modify, making it well-suited for the project.  
During prototyping our application home finder on our V1 
device, it became clear that the display area (25.7cm x 
12cm even slightly smaller than a Hyperbraille) was so 
small that any reasonably complex app would have to con-
stantly redraw display contents.  
Increasing the display area (v2: 42 x 47.5cm, v3: 65 x 
45cm, v4: 140 x 100cm) required us to address several 
technical challenges. As the arm holding the print head 
increased in length with every version, we introduced the 
caster to hold it up and we reinforced the arm to prevent it 
from jittering sideways. Next we switched to a thicker 
display surface (now 2.5cm), as previous versions started to 
bend under the weight of the attached printer. 

 
Figure 13: (a) Linespace V1 based on PrintrBot, 

(b) Linespace V2 with increased display size, 
(c) Linespace V3 with stationary display and moving 

printer unit. V4 is shown in Figure 4. 



 

Keeping the table stationary 
The original PrintrBot 3D prints by moving the print head 
in and out, while moving the print bed left and right. This 
was unsatisfactory, as it caused users to lose their spatial 
reference. It also prevented users from interacting while the 
device was in operation (design principles t3, t4). 
We addressed this by rebuilding the printer, introducing the 
carriage shown in Figure 2 that has two stepper motors to 
move along the horizontal edge of the board and to vertical-
ly position the printhead. Earlier versions of the carriage 
moved on linear bearings along a linear shaft. In the final 
version of Linespace, the carriage actuates itself by pulling 
along a belt as shown in Figure 14. 

 
Figure 14: The backside of the final Linespace proto-

type.  

Ergonomic posture 
When we switched to the tiltable drafting table for better 
ergonomics, we added the large wheel at the backside of 
the device shown in Figure 14. By pushing against the back 
of the table, the wheel generates a counterforce that pre-
vents the carriage from falling off the edge when the print 
head is moved to the top edge of the device. 
SOFTWARE IMPLEMENTATION 
Linespace’s software is written in Python 3. It uses the 
PrintrRun library for controlling the printer and several 
Inkscape extensions for simplifying path geometry.  
We use an event driven architecture for sending and receiv-
ing events between different components of the system, 
such as when users select a printed part via touch or when 
users query information via a voice command. Events are 
sent to the app manager component and then propagated to 
the respective apps and their widgets.  
For organizing the widgets in apps, we provide various 
layout containers, such as a stack container and a docking 
container. These enable system developers to specify how 
the widgets are distributed in an app.  
In the current prototype, the content of the apps comes 
from the Linespace database and is manually optimized for 
rendering via the 3D printer. Future versions of Linespace 
will use live-data from the web, which will also require 

automatically optimizing the graphics for rendering with 
Linespace (e.g. using methods from [10]).   
Converting vector files to 3D printing g-code 
Linespace automatically imports SVG files that specify the 
tactile paths for an application and and converts them into a 
set of lines. Linespace then stores these lines as internal 
geometric objects to enable geometry operations such as 
resizing the content based on the available space on the 
print bed. 
When the tactile paths are queried for printing, the corre-
sponding internal geometric objects are converted to 3D 
printer instructions in GCODE. We take the beginning and 
end point of each line for the print head travel commands 
(e.g. G1 X0 Y0 followed by G1 X10 Y0 draws a horizontal 
line). We use three different travel speeds: moving (F3600), 
printing (F1200), and erasing (F2400). This translated to 
the printer moving at a speed of 6cm/sec, printing at 
2cm/sec and scraping at 4cm/sec. Finally, Linespace also 
computes how much material should be extruded while 
moving along a path. For this, Linespace uses a fixed extru-
sion amount per unit, which is defined by the length of the 
filament that will be extruded through the nozzle while 
moving along a certain distance (e.g. printing a distance of 
1cm requires the extruder stepper motor to extrude 5mm of 
filament, GCODE: E5).    
Generating GCODE for removing outdated content 
To effectively remove lines, we move the scratching pin 
along the zigzag pattern shown in Figure 15b. To generate 
the GCODE for the print head movement, we first segment 
a shape into lines, then offset the start point of each line 
either towards the normal of the line or the reverse normal.  
Beside the horizontal pin movement, Linespace also gener-
ates the GCODE for moving the pin up and down via a 
solenoid. We drive the solenoid directly from the PrintrBot 
microcontroller. For this, we connected the solenoid to a  
general-purpose I/O pin on the microprocessor. To activate 
and deactivate the solenoid, we set the voltage of the pin 
accordingly (M42 S255 P14 vs. M42 S0 P14).  

        
Figure 15: Removal GCODE generation: (a) To remove 
this rectangle, (b) the scraper moves along the red path.  

Tracking user input via the camera 
To translate the camera coordinates to print bed coordi-
nates, we perform a homography on all camera images. 
After this, we threshold the HSV values from the camera 
image to track the input color markers on users’ fingers.  
Audio output and speech input 
For both speech input recognition and speech output, Line-
space uses the Microsoft Speech Platform SDK 11.  



 

CONTRIBUTION, BENEFITS, LIMITATIONS 
The main contribution of this paper is a sensemaking plat-
form for the blind. The key principle driving its design is to 
preserve user’s spatial memory by leaving displayed con-
tents intact. To allow for this strategy, we provide Line-
space with a very large display, i.e., 23x more display space 
than a Hyperbraille array. We achieve this by basing our 
mechanical design on a 3D printer that draws screen con-
tents. Its ability to draw lines also makes our system partic-
ularly suited for the content types involved in spatial 
sensemaking tasks, such as graphs, diagrams, maps, and 
drawings. 
We also contribute a software framework that allows de-
velopers to quickly build applications for Linespace. 
Finally, the approach of using a 3D printer allows us to 
fabricate the device inexpensively ($400, about 1/200th of a 
Hyperbraille). The printing material incurs (insignificant) 
running costs. 
The main limitation of Linespace is that plotting contents 
takes time; also the turn taking between user and device 
requires users to wait. We address these challenges in part 
using the design principles mentioned earlier in the paper.  
CONCLUSION 
We presented Linespace, an interactive system that allows 
visually impaired users to interact with spatial contents. By 
basing our design on a 3D printer, we were able to extend 
the display area to 140cm x 100cm. The increased interac-
tion space allowed us to eliminate the necessity for many 
types of display updates, such as panning and zooming, 
thus allowing blind users to always stay within their spatial 
reference system. 
As future work, we plan to examine how Linespace can be 
extended to help blind users with more complex sense 
making tasks. We are also planning on creating a mobile 
version. 
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