

User Interface Continuations

Dennis Quan, David Huynh, David R. Karger, Robert Miller
MIT Computer Science and Artificial Intelligence Laboratory

200 Technology Square, Cambridge, MA 02139 USA
E-mail: {dquan,dfhuynh}@ai.mit.edu; {karger,rcm}@lcs.mit.edu

ABSTRACT
Dialog boxes that collect parameters for commands often
create ephemeral, unnatural interruptions of a program’s
normal execution flow, encouraging the user to complete the
dialog box as quickly as possible in order for the program to
process that command. In this paper we examine the idea of
turning the act of collecting parameters from a user into a
first class object called a user interface continuation. Pro-
grams can create user interface continuations by specifying
what information is to be collected from the user and sup-
plying a callback (i.e., a continuation) to be notified with the
collected information. A partially completed user interface
continuation can be saved as a new command, much as
currying and partially evaluating a function with a set of
parameters produces a new function. Furthermore, user
interface continuations, like other continuation-passing
paradigms, can be used to allow program execution to con-
tinue uninterrupted while the user determines a command’s
parameters at his or her leisure.

KEYWORDS: Continuations, dialog boxes

INTRODUCTION
Countless applications use dialog boxes to prompt the user
for additional information needed to complete commands.
Many dialog boxes are presented modally such that the user
cannot use other functionality in the application until the
dialog box is dismissed. Haphazard use of modal dialogs can
inhibit the usability of a program. For example, some e-mail
clients have a button that allows the user to look up a des-
tination address in the address book, presented as a modal
dialog box. The user experiences trouble when the person’s
name being looked up is actually in the body of the e-mail,
obscured by the dialog box. Modal dialog box versions of
base program functionality, such as address books, also tend
to be less functional than their non-modal counterparts.

Although not modal, modeless dialog boxes and property
inspectors can be similarly troublesome when users try to

use them on more than one object at a time. For example, if
an application exposes a font property inspector that allows
the user to inspect the formatting of whatever text is selected,
the user will have trouble trying to compare or copy the
formatting of two different pieces of text at the same time.
Furthermore, going back to the previous example, simply
making the destination address lookup dialog box modeless
is not the solution because the user may wish to select ad-
dresses for more than one e-mail at once, and any navigation
state attained by browsing for a destination address for one
e-mail (e.g., looking through contact groups, doing searches
from a corporate directory, etc.) would be lost when the user
temporarily switches to addressing one of the other e-mails.

These problems arise from the fact that applications do not
treat the state of a command as a first class object. Unlike
documents, which can be opened, saved, copied, and ma-
nipulated, dialog boxes are usually singleton and ephemeral.
In this paper we propose that the in-progress state of a
command be given first class status in a program. This is
accomplished by packaging the code that will be executed
upon completion of the dialog box as a continuation and
attaching it to the in-progress state. The dialog box then
becomes a manifestation of the first class continuation on the
screen. Together, the dialog box and the continuation are
referred to as a user interface continuation.

The definition of continuation we adopt here arises from the
literature on continuation-passing style [7]. Conventional
programs use stack frames to keep track of which function is
currently being executed. A function completes when it
releases its stack frame and returns to the calling function
(the parent stack frame). In contrast, continuation passing
style does not use a stack; instead, functions are called with
an extra parameter known as a continuation. As the name
implies, a continuation is a function that represents the re-
maining flow of execution of a program. Instead of returning
a value, a function written in continuation passing style calls
the supplied continuation with the return value. By analogy,
a dialog box under our scheme calls the supplied continua-
tion with the data gathered from the user.

Our approach brings about a number of advantages. First,
user interface continuations gain many of the features of
documents: the same sets of tools that can be used to look up
information for insertion into a document can be employed

LEAVE BLANK THE LAST 2.5cm
OF THE LEFT COLUMN
ON THE FIRST PAGE
FOR US TO PUT IN

THE COPYRIGHT NOTICE!

to satisfy continuations. There is also little urgency to com-
plete a user interface continuation since the program does
not need to suspend its state while waiting for the user to
complete the command; the state needed to continue the
program is encapsulated within the continuation. Finally,
user interface continuations can be saved by means of a
process called partial evaluation, which in effect creates a
copy of an existing command in which some of the pa-
rameters have already been filled in. These partially com-
pleted commands can then be organized and searched like
other documents.

We demonstrate these techniques in the context of Haystack,
an environment designed to help users manage all their
information, including e-mails, appointments, documents,
and Web pages [1]. Haystack employs user interface con-
tinuations and other supporting abstractions to let users
begin commands and complete them at their convenience.
More information about Haystack, including a download-
able version of the system, can be found at the project home
page: http://haystack.lcs.mit.edu/.

OPERATION ABSTRACTION
Haystack abstracts most user interface commands into op-
erations—object-oriented pieces of functionality with de-
fining metadata such as name, icon, and the types of the
parameters. This metadata is defined using Haystack’s
flexible data model, which is based on the Resource De-
scription Framework (RDF) [3]. RDF is a generalized di-
rected graph representation that models metadata in terms of
nodes (objects) and directed arcs (relationships between
objects) and is used to model all of the metadata concerning

the user’s documents and other objects [2]. We have mod-
eled operations in RDF, but any key-value pair metadata
scheme (e.g., s-expressions, XML, etc.) can be employed.
Indeed, the use of declarative specifications for commands is
not new and has been investigated in the past; Myers et al.
applied the technique of treating commands as objects for
the purposes of supporting undo [5].

To illustrate the user interface continuation concepts dis-
cussed in this paper, we will describe the implementation of
a command that allows information about any object in the
system to be sent to some recipient. Pseudocode for this
operation’s metadata is given below:

MailAnObject
 type Operation
 title “Send this item to someone”
 params Recipients,ItemToSend,WhatPartsToSend

Recipients
 type Parameter
 title “Recipients”
 parameterType Person

ItemToSend
 type Parameter
 title “Item to send”
 parameterType Anything

WhatPartsToSend
 type Parameter
 title “Kind of information to send”
 parameterType InformationExtractor

To model the current state of an operation in Haystack we
use an operation closure, which is an object that has, as
properties, the parameters for an operation in progress.

Figure 1: Screenshot of user interface continuation: (a) the user interface continuation; (b) dragging an item from a
document into a user interface continuation

(a)
(b)

Closures are also modeled in RDF. An example closure for
our send object command is as follows:

closure20
 type Closure
 operation MailAnObject
 Recipients DonaldCox,MarySmith
 ItemToSend DepartmentMeeting
 WhatPartsToSend SummaryExtractor

USER INTERFACE CONTINUATIONS
When an operation that requires parameters is activated by
means of a menu, a toolbar, or context menu, Haystack
checks to see if the selection unambiguously satisfies any of
the operation’s parameter types. If there are unresolved
parameters or the selection type checks against multiple
parameters, Haystack exposes the in-progress operation
closure as a user interface continuation. Like a dialog box, a
user interface continuation prompts the user for needed
information—in this case, the unresolved parameters.

Unlike modal dialog boxes, user interface continuations are
modeless, allowing the user to use whatever tools in the
system he or she is most familiar with to find the information
needed to complete the operation. Our interface is similar to
a shopping cart on an e-business website: the user can drag
and drop relevant items into the “bins” representing the
operation’s parameters, as shown in Figure 1. The user can
even decide to perform other tasks and come back to the
operation later. When the user has finished obtaining the
necessary information and is ready to perform the operation,
he or she clicks the “OK” button on the user interface con-
tinuation. The system then invokes the continuation, which
in the case of an operation invocation, is a function that
performs the operation using the parameter bindings speci-
fied in the operation closure.

Support for user interface continuations is not dependent
upon the software environment making use of declarative
specifications of commands. The essence of a user interface
continuation, as mentioned earlier, is a user interface for
accepting values from the user (e.g., a dialog box) and a
function to call when the user has finished supplying the
needed information. However, user interface continuation
support is especially well suited for use with declara-
tively-specified operations. With an operation abstraction,
the act of presenting a dialog box is reduced to the job of
displaying an editor for the operation closure. The presenta-
tion of a user interface continuation is automatically pro-
duced from an operation’s declarative specification with
widgets specialized for the kind of input required. (The
problem of laying out dialog box widgets has been further
explored in previous work [8].) In this way, Haystack frees
the developer from needing to design specialized, miniature
user interfaces for retrieving information from within modal
dialog boxes, reusing the existing browsing environment and
at the same time providing the user with a seamless experi-
ence. The operation’s implementation, a function, is already
written in a form that makes it suitable to be called from a
continuation. Furthermore, the presentation of the user in-
terface continuation can be customized by implementing a
custom view (cf. Model-View-Controller) for the continua-
tion [4].

CURRYING
Finally, users are able to save an in-progress operation clo-
sure and turn it into a new operation by selecting the option
from the user interface continuation’s context menu that
instructs the system to bind the state of the current operation
together with the already specified parameters. This binding
process can be described as currying followed by partial
evaluation, but we will refer to the entire process as currying

as a shorthand. Currying is a term used in
programming languages such as Haskell and
ML that refers to the conversion of a function

Figure 3: Creating a curried operation

Figure 2: Currying an operation from the context menu

that takes n parameters into a “curried” function that takes
the first original parameter and returns a function that ac-
cepts the remaining n - 1 parameters (also in a curried
fashion). In other words, currying takes a function f of the
form:

f : a1 × a2 × … × an → b

and turns it into a function of the form:

curry[f] : a1 → a2 → … → an → b

Similarly, when a user creates a new operation through
currying, he or she is creating a new function from the cur-
ried form of the original function in which the parameters
that have already been specified have been applied to the
curried function. Another way to put this is if a user wishes
to curry an operation f with the parameters a1 through am
already specified, then the resulting curried operation g has
the following form:

g = uncurry[curry[f] a1 a2 … am] : am × am+1 × … × an → b

There is nothing special about the way in which currying in
implemented in Haystack. Instead, currying is exposed to the
user as simply another operation that takes an existing op-
eration closure and a name as parameters. Figure 2 illustrates
the use of a context menu for saving an operation closure as
a new operation. Additionally, the screenshot given in
Figure 3 depicts a user filling in a user interface continuation
to create a new operation from an existing user interface
continuation.

One benefit of currying is its ability to allow users to create
specialized commands suited for their own purposes. In the
example depicted in Figure 2, the user has likely observed
that he or she sends summaries to Gregory McConnley
frequently enough to warrant its own command. Most ex-
isting environments support this level of customized func-
tionality only through macros or most recently used (MRU)
lists. Furthermore, because curried operations and user in-
terface continuations are described in the data model, they
can be organized, searched, and shared with others just as
documents can (e.g., placed in folders, sent as e-mail at-
tachments, etc.).

Finally, currying can be used to construct first class support
for command customizations. For example, the Print dialog
box in Windows remembers settings such as copy count,
which printer to use, and collation options only for the life-
time of an application. This simple approach obscures two
important user interface problems. First, unless the user has
observed the Print dialog box’s behavior over a long period
of time, the circumstances under which a program retains the
last used print options may be unclear to the user at first.
Second, there is no support for remembering more than one
of the user’s frequently-used configurations (e.g. dou-
ble-sided duplicate copies with staples, one-sided single

copy to the color printer, etc.). By storing these settings in
curried operations, applications can give users first class
support for commonly-used groups of settings while re-
moving the ambiguity surrounding an application’s policy
on maintaining default options. (Developers would have to
expose settings such as double-sidedness as parameters to
the print operation rather than as properties of the printer.
Also, any curried form of an operation used widely enough
would likely gain built-in support from the application, e.g.,
“Print on Standard Paper”; our approach enables users to
create such customizations without developer realization.)
Although we have not implemented support for automatic
generation of MRU lists, previous work has explored the
notion of exposing such MRUs in the user interface [6]. In
Haystack, users are free to place their curried operations into
the system’s menus and toolbars.

CONCLUSION
User interface continuations enable first class support for
saving the state of a command and presenting it in a mode-
less fashion. Users benefit from using the tools already
present within an application for locating the relevant pa-
rameters to the command instead of being restricted to the
more limited functionality provided in special-purpose
modal dialog boxes. Like documents, continuations can be
completed at the user’s leisure, saved as curried operations,
and sent to colleagues. Finally, curried operations provide an
elegant means for implementing customized commands
without macros.

ACKNOWLEDGMENTS
This work was supported by the MIT-NTT collaboration,
the MIT Oxygen project, and IBM.

REFERENCES
1. Huynh, D., Karger, D., and Quan, D. Haystack: A Platform for Cre-

ating, Organizing and Visualizing Information Using RDF. In Pro-
ceedings of the Semantic Web Workshop, The Eleventh World Wide
Web Conference 2002.

2. Quan, D., Huynh, D., and Karger, D. Haystack: A Platform for Au-
thoring End User Semantic Web Applications. To appear in the Pro-
ceedings of the International Semantic Web Conference 2003.

3. Resource Description Framework (RDF) Model and Syntax Specifi-
cation. http://www.w3.org/TR/1999/ REC-rdf-syntax-19990222/.

4. Quan, D., Karger, D., and Huynh, D. RDF Authoring Environments
for End Users. In Proceedings of Semantic Web Foundations and
Application Technologies 2003.

5. Myers, B., and Kosbie, D. Reusable Hierarchical Command Objects.
In Proceedings of CHI ‘96.

6. Terry, M. and Mynatt, E. Side Views: Persistent, On-Demand Pre-
views for Open-Ended Tasks. In Proceedings of UIST ’02.

7. Steele, G. and Sussman, G. LAMBDA: The Ultimate Imperative. MIT
Artificial Intelligence Laboratory Memo 353.

8. Vander Zanden, B. and Myers, B. Automatic, Look-and-Feel Inde-
pendent Dialog Creation for Graphical User Interfaces. In Proceed-
ings of CHI ’90.

