
A Hierarchical Volumetric Shadow Algorithm for Single Scattering

Ilya Baran Jiawen Chen Jonathan Ragan-Kelley Frédo Durand Jaakko Lehtinen

Computer Science and Artificial Intelligence Laboratory∗

Massachusetts Institute of Technology

lig
ht

 ra
ys

integration samples

view
ray i

view
ray i+1

eye

…

epipolar
recti�cation integration

blocker
integration sample
blocked sample light rays (integration direction)vi

ew
 r

ay
s

(in
cr

em
en

ta
l e

vl
ua

tio
n)

Figure 1: Rendering volumetric shadows in participating media requires integrating scattering over view rays. Left: The visibility component
of this integral has a special structure: once a light ray hits an occluder, that light ray does not contribute to the integral along any view ray
past the occluder. Middle: Our method exploits this structure by computing the integrals in an epipolar coordinate system, in which light
rays (dashed grey) and view rays (solid black) are orthogonal and the integration can be performed asymptotically efficiently using a partial
sum tree. Right: This enables us to compute high-quality scattering integrals much faster than the previous state of the art.

Abstract

Volumetric effects such as beams of light through participating me-
dia are an important component in the appearance of the natural
world. Many such effects can be faithfully modeled by a single
scattering medium. In the presence of shadows, rendering these ef-
fects can be prohibitively expensive: current algorithms are based
on ray marching, i.e., integrating the illumination scattered towards
the camera along each view ray, modulated by visibility to the light
source at each sample. Visibility must be determined for each sam-
ple using shadow rays or shadow-map lookups. We observe that
in a suitably chosen coordinate system, the visibility function has
a regular structure that we can exploit for significant acceleration
compared to brute force sampling. We propose an efficient algo-
rithm based on partial sum trees for computing the scattering inte-
grals in a single-scattering homogeneous medium. On a CPU, we
achieve speedups of 17–120x over ray marching.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shadowing

Keywords: volumetric scattering, global illumination

1 Introduction

Volumetric phenomena, such as “god rays” that appear when sun-
light scatters through clouds, are important lighting effects that con-
tribute greatly to the realism of a scene. They are caused by occlu-

∗e-mail: {ibaran,jiawen,jrk,fredo,jaakko}@csail.mit.edu

sion within the participating medium. Well-known techniques exist
for rendering such images: ignoring multiple scattering, marching
along each view ray and computing in-scattering modulated by vis-
ibility to the light source yields good results when using enough
samples, but this method prohibitively slow due to the large num-
ber of samples necessary. In effect, ray marching requires sampling
visibility in the entire 3D view volume. A well-known property of
visibility is that along light rays, it is a 2D step function: light is
unblocked until it hits a surface, and all points along the ray after
that surface are shadowed. (This is the basis of shadow mapping.)
Our main idea is to make use of this property and compute the scat-
tering incrementally over view rays. To facilitate this, we use a
coordinate transformation that maps the diverging view rays and
light rays into a rectilinear grid (Fig.1, middle). This allows us to
perform the integration for each view ray using a tree data struc-
ture that is maintained incrementally. Together, these steps reduce
algorithmic complexity drastically by removing the need to sam-
ple visibility in the volume. We demonstrate 17–120x performance
improvements on the CPU over brute force sampling.

The main contribution of this paper is a hierarchical algorithm
for approximating the scattering integrals, which has significantly
lower algorithmic complexity O(s(r + d) log d) (where rs is the
image resolution and d is the effective number of integration sam-
ples) than ray marching’sO(rsd). We also present an epipolar sam-
pling scheme that guarantees sufficient sampling for a rectangular
image at a lower cost than uniform sampling.

In this work we do not consider complex light transport effects
such as caustics [Sun et al. 2010], transparent blockers, or multiple
scattering, which necessitates a more complex approach due to the
diffusion within the volume [Jensen and Christensen 1998; Jarosz
et al. 2008].

2 Overview and Related Work

In the presence of a single-scattering participating medium of uni-
form scattering cross-section σ, computing the in-scattered radi-

ance reaching the eye along a view ray is an integration problem.
The radiance L scattered by the medium towards the eye over the
entire ray is

L =

∫ d

0

e−σs Li(s) ds (1)

where s is the path length over the ray, Li(s) is the radiance scat-
tered from the light source towards the ray origin at each point along
the ray, d is the distance at which the eye ray terminates into an
opaque surface, and e−σs is the extinction due to out-scattering be-
tween the eye and point s on the ray. The in-scattered illumination
at point s on the ray due to a directional light is

Li(s) = σLin(s, l)ρ(l,v),

where Lin(s, l) is the radiance incident to point s from light direc-
tion l, v is the direction towards the eye, and ρ(l,v) is the scattering
phase function, which we assume to be uniform (ρ ≡ 1/4π). See
Pharr and Humphreys [2004] for details. In the presence of occlud-
ers, the integral is difficult to compute analytically since arbitrary
portions of the path may be in shadow and do not contribute a light-
ing component; more precisely, Lin(s, l) = V (s, l)L̃in(s, l), where
V (s, l) is the visibility towards the light source and L̃in(s, l) is the
incident radiance assuming no occlusion. The final integral we are
evaluating is

L =

∫ d

0

e−σs V (s, l)σ L̃in(s, l) ρ(l,v) ds. (2)

2.1 Related Work

The traditional method for computing physically based volumet-
ric shadows in a single-scattering medium is ray marching. Pharr
and Humphreys offer a useful introduction [2004]. For each pixel
in the output image, a ray is cast from the eye through the pixel.
Equation (1) is then approximated by point sampling along the ray,
casting a shadow ray from from each sample towards the light. If
it is occluded, the sample is discounted from the integral. The ray
terminates once it hits an opaque object or exits the scene bounding
volume. For a scene with p rays (pixels) and where the visibility
is evaluated at n samples along each ray, the complexity of the al-
gorithm is O(pn). In this work we concentrate on the problem of
determining visibility within the medium. Scattering models and
methods for evaluating them in the absence of occlusion (e.g. [Sun
et al. 2005; Pegoraro and Parker 2009]) are orthogonal to our ap-
proach.

Ray marching can perform well enough in scenes of limited depth
ranges, particularly when aided by limiting the computations to
regions where volumetric shadows actually appear [Wyman and
Ramsey 2008]. However, this is hard to do in scenes where in-
teresting volumetric effects take place at multiple locations over a
large distance. In addition to ray marching with jittered sampling,
several earlier interactive techniques approximate the scattering in-
tegral using volume rendering techniques. This means sampling
the integrand along parallel planes that slice the volume, effectively
computing a Riemann sum [Dobashi et al. 2000]. Several methods
use shadow volumes for determining visibility for view ray seg-
ments. For example, Billeter et al. [2010] render volumetric shad-
ows by explicitly constructing visibility boundaries between lit and
shadowed volumes. They avoid a strong dependence on scene com-
plexity by extracting the boundaries from shadow maps, but like
with all shadow volume algorithms, the complexity of the visibility
function still determines the running time for each pixel. In all, no
matter how the volume is sampled, obtaining high quality results in
large scenes with complex visibilities with high image resolutions
remains challenging due to the need to sample visibility over the

entire 3D view volume. Our technique addresses this fundamental
cost by performing an initial 2D sampling followed by incremental,
hierarchical evaluation.

In recent work, Sun et al. [2010] describe a technique for render-
ing single scattering effects by gathering in the space of light and
view rays, employing 6D hierarchies for culling. They do not target
volumetric shadows, but rather more expensive effects for off-line
rendering, such as volumetric caustics.

In addition to performing actual visibility sampling along rays, im-
age space blurring techniques may also be employed for approxi-
mating light shafts [Mitchell 2008]. Such techniques can produce
compelling results, but offer no guarantees on correctness. In par-
ticular, they require the light source to be visible on the screen, and
do not handle occlusion properly.

It has been observed previously that the volumetric shadow problem
can be simplified using epipolar geometry [Max 1986; Engelhardt
and Dachsbacher 2010]. Max [1986] adapts a span-based scan con-
verter and the shadow volume algorithm to epipolar coordinates,
and incrementally updates the hidden portions of view rays along
epipolar planes. He then computes the scattering integrals on the
visible segments of the ray analytically, implying an integration cost
proportional to the complexity of the visibility function. Further-
more, the shadow volume algorithm has a strong dependence on
scene complexity. Recently, Engelhardt and Dachsbacher [2010]
observed in a similar vein that the values of the scattering integral
mostly vary continuously along epipolar image lines except at depth
discontinuities. They take image space samples at discontinuities
detected from a Z buffer using brute force ray marching, and use
shadow maps for visibility. This may work well for scenes with
limited amounts of depth discontinuities, but the dependence on
their number can lead to poor performance with complex visibility,
such as foliage. Furthermore, the dependence on depth disconti-
nuities can lead to scattering features being missed (see Sec. 10).
We also build on epipolar coordinates, but we avoid ray marching
by using incremental integration with partial sum trees that enable
us to compute the scattering integrals at all pixels at a significantly
lower asymptotic cost that is independent of the scene complexity.

2.2 Algorithm Overview

We evaluate the scattering integral along epipolar lines in the out-
put image. In practice, we first render a depth map from the point
of view of the camera, and a shadow map from the light. We then
transform both of these maps into a rectified epipolar coordinate
system (Sec. 3). This coordinate system makes light and view
rays mutually orthogonal. Our key contribution is the observation
that the parameterization enables incremental evaluation of visibil-
ity between view rays (Fig. 4, Sec. 4). We incrementally maintain
a hierarchical representation, a partial sum tree, of the integrand
when iterating over the view rays. The tree enables us to integrate
each view ray in logarithmic time, regardless of the complexity of
the visibility function along it (Sec. 5-6). This enables us to avoid
exhaustive sampling of visibility in the 3D view volume, leading to
significant speedups. We also make use of depth distributions to cut
down on the number of integration segments along each view ray
(Sec. 7). Once the scattering integrals have been computed in the
epipolar coordinate system, we resample the results back into the
original image domain.

For simplicity, we will describe our algorithm for directional lights
and discuss the changes necessary for spot lights in Section 9.

image
plane

view
frustum

eye

epipolar line
in image space

epipolar slice,
contains camera
and light direction

light rays

view rays

Figure 2: Illustration of an epipolar slice, i.e., a planar section
(green) that contains the eye point, view rays (blue) and the light
direction (orange).

view ray

β

eye

p

lig
ht

 ra
y

γ

Figure 3: Rectified coordinates of point p within a slice: the angle
β specifies the view ray and the distance γ specifies the light ray.

3 Epipolar Geometry

Consider the line that passes through the eye point and is parallel to
the light direction. This line defines a family of halfplanes around it
that we call epipolar slices. Figure 2 illustrates one such slice. The
intersections of these halfplanes with the image plane are epipolar
rays, along which streaks of lighting (“god rays”) appear to em-
anate. The scattering results of all view rays within a slice only
depend on the light rays within the same slice, which implies that
we can process the slices independently.

Our incremental integration algorithm relies on the ability to index
the view rays and light rays independently. To achieve this, we
“rectify” the coordinate system to one in which view rays are paral-
lel to one axis, and light rays to another, essentially doing a change
of variables. Each point in space p (except those on the light ray
through the eye point) is the unique intersection of a view ray and
light ray; we give it the coordinates (α, β, γ), as illustrated in Fig-
ure 3. The first coordinate, α, specifies the slice p is in. The β
coordinate specifies the view ray by measuring the angle between
the view ray through p and the light direction. Using an angle in-
stead of distance measured along the screen makes all slices have
the same geometry in world space, a key symmetry that we will
exploit later (Sec. 6). It results in a fairly uniform sampling if the
camera’s field of view is not unreasonably wide. The γ coordinate
specifies the light ray by measuring the distance from the light ray
containing p to the eye point.

The first stage of our algorithm is to compute a depth map from the
point of view of the camera and a shadow map from the light, and

lig
ht

ra
ys view

ray β

view
ray β+1

...

γ
γ+1

γ-1

γ+2

blocker
integration sample
visibility update
blocked sample

Figure 4: A visibility update, stepping from view ray β to β + 1.
Two light rays (γ and γ + 1) terminate at view ray β + 1. Their
integrand entries b[γ] and b[γ + 1] are set to zero (and the partial
sum tree updated) before computing the integral for view ray β+1.
The entries b[γ] and b[γ + 1] remain zero for all subsequent view
rays.

rectify these into the epipolar coordinate system. Note that this is
not a mere resampling, as also the values of the functions change:
for example, for each blocker depth in the shadow map, we compute
the angle β that corresponds to the view ray direction of the blocker,
and vice versa for camera depth maps.

The rectification (and the unrectification of the integrated result at
the end) running times are proportional to the size of the relevant
target image. For s slices, each with r camera rays on average, and
d light rays, rectification of the camera depth map and the unrec-
tification take O(sr) time and the rectification of the shadow map
takes O(sd) time.

4 Incremental Integration

Once rectification has been performed, evaluation of the scattering
integrals within a slice proceeds by looping over the view rays (β)
and approximating the integrals along them as Riemann sums over
the light rays (γ): for each β, we sum the product of visibility and
the relevant scattering terms over all γ until the view ray terminates.
The lengths of the view rays,D[β], are read from the rectified depth
map rendered from the point of view of the camera. Visibility at
each step is determined by comparing the current β to a blocker
distance S[γ] that is read from the rectified shadow map, exactly as
in traditional shadow mapping.

The above procedure can be written as a conditional summation as
follows:

I[β] =
∑

γ<D[β]

e−σs(γ,β) σ L̃in ρ V (γ, β)

∣∣∣∣ dsdγ
∣∣∣∣∆γ =

∑
γ<D[β]

I(γ, β)V (γ, β) =
∑

γ<D[β]

S[γ]>β

I(γ, β). (3)

Here ∆γ is the step size in the γ direction, s(γ, β) is the world-
space path length along the view ray β, ds/dγ is its derivative along
the view ray, and I(γ, β) contains all other terms in the integrand
except visibility. This equation means that for each view ray (β),
we look at all light rays from 0 to D[β] and add the contributions
of light rays whose stored blocker distance is greater than the β
coordinate; these are exactly the segments of the view ray that are
not occluded from the light.

This summation has a special structure: once we have considered a
particular shadow-map value S[γ], all corresponding segments for
subsequent eye rays will be shadowed and will not contribute to
the integrals of the view rays below. In Section 6, we will show

how to approximate I(γ, β) as the sum of a few terms of the form
Γ(γ)B(β). For now, assume that this can be done and consider the
integration of one of these terms. As we sweep over the camera
rays β from the light away, we incrementally maintain a function
b[γ] that for each γ stores Γ(γ)V (γ, β). In the beginning, β = 0,
and b[γ] = Γ(γ) for all γ. Now, when we step from one view ray
to the next, we set b[γ] = 0 for all light rays that terminate at the
current view ray, i.e., for which S[γ] = β (see Fig. 4). Whenever an
entry of b[γ] is set to zero, it will remain so for all subsequent view
rays, indicating that the corresponding segments will be shadowed
and thus their visibility need not be checked any more. The integral
at β is then B(β)

∑
γ<D[β] b[γ].

Despite the fact that visibility is maintained incrementally, the
above algorithm still has the same complexity as ray marching be-
cause each eye ray has to iterate over all γ until D[β] to perform
the sum. To reduce the complexity, we store b[γ] in a partial sum
tree as described below.

5 Hierarchical Integration

A partial sum tree is a complete binary tree where each node is
the sum of its two children. The leaves of the tree store the n
data elements and interior nodes store a hierarchy of partial sums
(Fig. 5a). Partial sum trees feature an efficient query operation,
which, in O(logn) time, lets us query for the sum of an arbitrary
interval within the array of n elements. The tree also supports an
update operation, which lets us modify any leaf element and the
nodes above it in O(logn) time. The tree can be compactly stored
as a contiguous array of size 2n. It can be built in linear time by
starting with the input array at the leaves and recursively summing
up to the root.

To update an element in the array, one simply updates the leaf node
and recursively updates each parent up to the root (Fig. 5b). To
answer a prefix-sum query

∑q
k=0 b[k], we observe that each node

holds a partial sum of the form
∑j
k=i b[k]. To retrieve the sum

from the tree, we simply check if q is in the interval represented
by the root node. If so, then the sum is the value of the left child
plus the recursive prefix sum of the right child (Fig. 5c). Recursion
terminates when q is outside the interval range, in which case we
simply return the value of the node. Both UPDATE and QUERY make
a single pass down the tree; thus, their runtimes are both O(logn).

Half-tree. The fact that we only ever integrate (sum) over the ele-
ments starting from index 0 (corresponding to the eye) leads to the
interesting observation that the recursive query never uses the right
child of any node, be it leaf or internal: if it did, the correct answer
would already have been computed higher up in the tree. The reader
may want to convince herself of this fact by looking at Figure 5c,
where the right children are marked by dashed lines. This allows us
to store only half of the elements in the tree and on average cuts in
half the number of elements that need to be modified for an update.
The observation that an efficient data structure is possible with only
half of the tree nodes is due to Fenwick [1994].

In order to avoid aliasing artifacts from the discretization, D[β] is
stored as a float rather than an integer index, and we linearly inter-
polate the results of querying the tree at bD[β]c and dD[β]e. The
second query is done by storing the complete lowest level of the
tree (instead of half, like the other levels) and looking up the next
element, rather than doing a full tree query. In all, we can answer
cumulative sum queries in O(logn) time with only 1.5n total ele-
ments of data.

Putting together the incremental evaluation and the partial sum tree,
as shown in Figure 6, we are now able to render volumetric shadows

// D contains lengths of view rays along γ
// S contains lengths of light rays along β
proc INTEGRATESLICE(int[] D, int[] S)

// Mark where light rays terminate
termination depths← empty list
for each light ray γ in S

APPEND(termination depths[S[γ]], γ)
end for
// Initialize the incremental counter, tree, and result
tree← BUILD-TREE(Γi)
results← ZEROS

// Walk over view rays
for each view ray β

// Set the counter to zero for light rays that terminate at this β
for all light rays γ in termination depths[β]

UPDATE-TREE(tree, γ) // sets the γ node to zero
end for
// Query two nearest results
res1← QUERY-TREE(tree, dD[β]e)
res2← QUERY-TREE(tree, bD[β]c)
// Lerp results and multiply by SVD factors Bi
results[β]i← Bi[β] LERP(res1, res2, D[β]− bD[β]c)

end for

Figure 6: Pseudocode for incremental hierarchical integration.

in O(s(r + d) log d) time, where s is the number of slices, r is the
number of view samples on a slice (the resolution of the β axis),
and d is the number of light rays (the resolution of the γ axis). The
sr log d term is the number of queries, and sd log d is the number of
updates made into the tree. These terms dominate the O(s(r + d))
complexity of the rectification. In comparison, the brute force ray
marcher requires O(srd) time.

6 Variation Along and Across Light Rays

The function I(γ, β) encodes all of the integration terms other than
visibility. However, to make our incremental algorithm work, we
need to approximate it as a sum of outer products of functions
that are constant along γ and β, respectively. For this, we sample
I(γ, β) at discrete values, and compute the singular value decom-
position [Golub and Van Loan 1996] of the resulting matrix.

I(γ, β) ≈
N∑
i

Γi(γ) Bi(β). (4)

Our algorithm integrates the products of each Γi(γ) and the visibil-
ity function, and then sums the results multiplied by Bi(β). In prac-
tice, this merely means that the tree stores N -dimensional vectors,
rather than scalars. The greater N is, the better our approximation
of I , but the slower the running time.

View rays and light rays are parallel at the epipole (the apparent
location of the light source on the screen). As a result, the rectifi-
cation mapping is singular, and derivative ds/dγ goes to infinity.
As a practical measure to avoid the SVD being thrown off by the
large values, we render results within a small ring (about two de-
grees) around the epipole using a ray marcher, and run our algo-
rithm on the remainder of the image. This makes the SVD more
well-behaved at a performance cost (see Sec. 10 for analysis).

We compute the SVD using a 64 × 64 subsampled matrix, and
linearly upsample the singular vectors Γi(γ) and Bi(β) to the res-
olution of the actual integration grid. The singular values from the

2 0 1 1
2

4

2

1 1 0 0 1 0 1 0

c)

2 0 1 1
2

4

2

1 1 0 0 1 0 1 0

b)

2 0 0 1
1

3

2

1 1 0 0 0 0 1 0

a)

Figure 5: Partial sum trees. a) Each tree node stores a sum of its child nodes. b) Update. When a leaf is updated, the nodes on the path to
the root need to be updated. c) Query. Querying the sum of an interval can be performed in O(logn) time. The sum over the green interval
is computed as the sum of the nodes marked in blue. Right child nodes (dashed) are not stored, because they are never needed.

mode 1

mode 2
mode 3

γ γ+1γ-1

Figure 7: Depth prefiltering. For each rectified γ coordinate, we
sample blocker depth at four sub-intervals, cluster nearby depths in
modes, and insert the modes into the termination depths structure
as fractional updates (Sec. 7).

SVD are multiplied into Bi. N = 4 singular values are sufficient
for high-quality results in a uniform medium. The magnitude of the
fourth singular value never exceeds 1/40th of the magnitude of the
first singular value, even under extreme view/light configurations.

Because the β axis is parametrized by angle, not pixel units, the
slices are symmetric around the light direction (this is the “key sym-
metry” mentioned in Section 3). Therefore, for a uniform scattering
phase function, I does not depend on α, and the same SVD may be
used for all slices (although using different bounds, i.e., accessing
a different subrectangle). Thus we only need to compute the SVD
once per frame, rather than once per slice, which would be pro-
hibitively expensive.

We have so far assumed that L̃in, the incident radiance without oc-
clusion, is constant, but for a textured light source (such as pro-
duced by stained glass), L̃in is a function of α and γ. We cannot
bake L̃in into I because it depends on α, but because it does not
depend on β, we can handle this case simply by initializing the
tree with the element-wise product L̃in(α, γ)Γi(γ) instead of just
Γi(γ).

7 Visibility Prefiltering

Our integration algorithm is based on computing Riemann sums.
As is well known, this leads to correlated artifacts unless a very
large number of samples is used. In contrast, Monte Carlo sam-
pling converts these correlated errors to less objectionable noise. In
practice, we observe that, in their basic form, our Riemann sums
require approximately 10x the number of samples for equal visual
quality when compared to Monte Carlo. To cut down on the number
of light rays required for integration, we prefilter the visibility by
not storing just a single blocker depth S[γ] in each entry along the
γ axis, but a distribution of depths as described below. Given such
a distribution, we can approximate the percentage of visibility that
changes along β for each integration sample instead of using a bi-

Epipole (origin)

θ

y=-1

ds

θ
(x, -1) (x+dx, -1)

Figure 9: Slice distribution. Note that we assume that ds and dx
are infinitesimal. The epipolar slices are distributed non-uniformly
in a way that guarantees a proper sampling over the image plane.

nary value. Note that the general idea is similar to shadow mapping
techniques that store depth distributions to enable linear filtering of
shadow maps [Donnelly and Lauritzen 2006].

More precisely, we sample the blocker depth four times along each
∆γ in the rectification loop. We approximate the depth distribution
using one or more modes by grouping the depth values together
that differ by at most a small constant (Fig. 7). For example, if
the entire segment hits a single surface, the depth values will all be
close to each other and there will be only one mode (this is the most
common case). Each mode has a weight—the fraction of samples
that comprise that mode. The modes are inserted into the termina-
tion depths structure; when there is more than one mode, the tree
node at the location of the segment gets updated once for every
mode (at different β coordinates), with a fraction of the light cor-
responding to the mode’s weight. This does not change the basic
algorithm but results in clear quality improvements, particularly in
animated sequences (cf. accompanying video); the differences are
hard to spot in still images. Note that only light rays that terminate
on depth discontinuities as seen from the light result in multiple
modes.

8 Slice Distribution

The final result needs to be sampled sufficiently densely in the im-
age plane after unrectification. We bound the maximum sampling
error by requiring that no screen pixel should be further than half a
pixel away from an epipolar line. The strategy of placing samples
around the image perimeter at one-pixel intervals leads to guaran-
teed sufficient sampling. Engelhardt and Dachsbacher [2010] take
this approach, although they relax the one-pixel criterion and com-
pensate by joint bilateral upsampling [Kopf et al. 2007]. We view
this relaxation as an orthogonal component to the scattering algo-
rithm and do not discuss it further.

We found that uniform spacing around the image perimeter leads
to unnecessary oversampling. A tighter distribution is obtained as
follows. Without loss of generality, let the epipole (the apparent
position of the light on the screen) be at the origin, and let an edge
of the screen be the horizontal line y = −1. Recall that α is
the coordinate that selects the epipolar slice and we now need to

Figure 8: Scenes used in our tests. Left: SIBENIK (80k triangles). Middle: TREES (382k triangles). Right: LANDSCAPE (2M triangles).

Figure 10: A spotlight rendered using our algorithm.

specify which slice corresponds to which α value so that uniformly
sampling α yields a good slice distribution. We are looking for a
function x(α) that gives the locations of the intersections of the
epipolar slices with the edge y = −1, such that the sample den-
sity at the edge is uniform (Fig. 9). The angle θ formed by the y
axis and the line segment from the origin to the point (x,−1) is
θ(α) = arctanx(α). The orthogonal distance of the point (x,−1)
to the ray that intersects the x axis at the point (x + dx,−1) is
cos(arctanx(α))dx = dx/

√
1 + x2 due to a trigonometric iden-

tity. We wish for this distance to always be one pixel when we
increment α by a small amount dα, i.e., P = dα where P is the
(resolution-dependent) pixel size in normalized screen coordinates.
We get the differential equation

dx√
1 + x(α)2

= dα, x(0) = 0. (5)

This equation integrates to x(α) = sinh(α). The desired slice
distribution is obtained by stepping along α in equal increments
of dα = P until the entire edge is sampled. Other screen edges
are treated analogously. The case where the epipole is not at the
origin is handled by scaling geometry down uniformly, applying
this formula, and scaling back.

Our slice distribution results in guaranteed sampling over the en-
tire screen while using fewer slices than regular sampling of the
perimeter. For example, when the epipole is on the screen near a
corner, we get by with half the number of slices. We get the least
savings when the epipole is in the center of the screen, resulting
in 15% fewer slices (in 1280 × 960 resolution) than uniform sam-
pling. The savings result from the fact that the spacing of the slices
increases towards the corners. Note that this happens while always
maintaining a half-pixel bound on sampling error.

9 Spot Lights

We can extend the preceding discussion on rectifying perspective
cameras and distant lights to perspective cameras and local spot
lights (Fig. 10). The rectification mapping becomes slightly more
complicated, but the main algorithm is unchanged.

The slices and rectified camera rays remain the same, but instead of
indexing the light rays within a slice by the distance to the camera,
we set the γ coordinate to be the angle the light ray makes with the
direction from the light to the camera. This results in a nonuniform
sampling density along the camera ray, and therefore the ds/dγ
term in I(γ, β) varies also with γ, not just β like in the case of
directional lights.

10 Results and Evaluation

Our implementation is a direct translation of the algorithm in Fig. 6.
The brute force comparison algorithm is a simple ray marcher that
uses shadow maps for visibility queries. We use a ray tracer to
compute the depth maps required by both algorithms, but do not
include the time taken by their construction in the results and only
report time required for computing the scattering integrals. As a
cache coherence optimization, the shadow map used for visibility
tests by the brute force ray marcher is laid out in 8× 8 blocks such
that the texels in each block are scanned in Z-order curve.

Methodology. We study the performance of our algorithm in
comparison to ray marching and epipolar sampling [Engelhardt and
Dachsbacher 2010] in two settings, equal time and equal quality, fo-
cusing on a CPU implementation. The running times and speedup
factors are computed only for the portion of the code related to the
volumetric scattering integration: ray marching for brute force and
epipolar sampling, and rectification, incremental hierarchical inte-
gration, unrectification, and the brute force around the epipole for
our algorithm, as other parts of the rendering loop are the same.
Although our algorithm supports variable lighting (Sec. 6), we use
a single-color light source in all tests to focus on the quality of the
scattering. The code is single-threaded. All tests are run on a PC
with an Intel Core i7 960 CPU at 3.2 GHz with 12GB of RAM.
All images are rendered at 1280 × 960 using 4 singular value co-
efficients. The number of epipolar slices chosen by the adaptive
distribution algorithm varies between 2116-2264. The γ resolution
of the integration grid (d, the number of light rays in each slice)
is 4096 for two of the scenes and 2048 for the third. All scenes
and both algorithms use a 4096 × 4096 shadow map for visibility
queries. The ray marcher is tuned to use the smallest number of
samples to give visually equal quality.

In addition to the CPU implementation, we have also implemented
a parallel version of our algorithm for the GPU using CUDA. Our
implementation is divided into three kernels: rectification, sorting,
and integration. Rectification is a straightforward data-parallel op-

Ep
ip

ol
ar

 S
am

pl
in

g
B

ru
te

 F
or

ce
O

ur
 M

et
ho

d
B

ru
te

 F
or

ce
Eq

ua
l T

im
e

Eq
ua

l Q
ua

lit
y

Ep
ip

ol
ar

 S
am

pl
in

g

10 sec.

9.9 sec. / 4.8 sec.

169 sec. (17.1x)

4.8 sec.

36 sec. (7.5x)

2.4 sec.

2.3 sec.

277 sec. (120.4x)

2.4 sec.

108 sec. (47.0x)

1.3 sec.

1.3 sec.

54 sec. (41.5x)

1.3 sec.

6.3 sec. (4.8x)

Figure 11: Quality/speed comparison. Our method (middle row) is compared to ray marching and Engelhardt & Dachsbacher’s epipolar
sampling at 1280 × 960 resolution, given equal time (top rows) and at equal quality (bottom rows). For fairness in comparison to epipolar
sampling, we used their method (instead of ray marching) for the region around the epipole on the SIBENIK scene where the epipole is on the
screen, making our method take 4.8 secs (vs. 9.9 secs with brute force around the epipole).

eration on the depth and shadow maps, using one thread for each
output pixel. We combine visibility prefiltering and sorting into a
single kernel that coalesces groups of 4 rays. We allocate one block
of 32 threads per slice, and use a modified GPU radix sort that co-
alesces rays with similar depths as it walks over the input shadow
map.

For integration, because slices are independent and the partial sum
trees are too large to fit into shared memory on current hardware,
we assign one thread per slice and store trees in global memory. Ob-
serve that the inner loop of the integration algorithm only performs
two operations: UPDATE-TREE and QUERY-TREE. Therefore, to re-
duce instruction divergence between threads, we use the while-if-if
strategy of Aila and Laine [2009], which guarantees that at least

half the threads in a warp are doing useful work.

Scenes. We test our algorithm on three scenes (Fig. 8). SIBENIK
is an indoor scene with directional sunlight shining through the win-
dows into hazy air. TREES is a smaller scene with complex visibil-
ity and many depth discontinuities. LANDSCAPE demonstrates our
ability to render large scenes.

10.1 CPU Results

Figure 11 shows renderings and timings measured from the CPU
implementation. It achieves high speeds in comparison to ray
marching (17.1x–120.4x for similar quality) and our implementa-

Slope = 2.83

Slope = 1.94

2

2.5

3

3.5

4

4.5

5

5.5

6

2.9 3 3.1 3.2 3.3 3.4 3.5

lo
g(
tim

e)
 in

 m
s

log(srd)/3

Brute Force

Incremental

Figure 12: This chart show the performance of brute force and our
method as resolution increases. It demonstrates cubic scaling of
brute force and essentially quadratic scaling of our method.

tion of epipolar sampling (4.8x–47.0x for similar quality), clearly
demonstrating the advantages of our algorithm’s lower complexity
and small working set. More precisely, the partial sum tree is so
compact that it fits entirely into caches and makes the frequent ac-
cesses cheap. As expected from the complexity, our algorithmic
advantages are particularly apparent in difficult shadowing condi-
tions that require many ray marching samples.

Rectification is about two times as costly as the hierarchical integra-
tor. In addition to rectification and integration, we also ray march in
a region around the epipole when it is on-screen. Although the re-
gion is small (≈ 2.5% of total screen area), the ray marching takes
about three quarters of the total rendering time because the rest of
the image is processed so quickly. Fortunately, this cost only has
to be paid when the epipole is on or close to the screen. For ex-
ample, when the camera is rotated slightly in the SIBENIK scene
so that the epipole moves away, the total speedup over ray march-
ing jumps from 17.1x to approximately 73x. For comparison with
epipolar sampling, we used epipolar sampling around the epipole
instead of ray marching, which allowed us to render the SIBENIK
scene in 4.8s instead of 9.9s.

The running time of epipolar sampling is bounded from below by
the number of depth discontinuities on the screen. In a complex im-
age like the TREES scene, the number of discontinuity pixels may
be as high as 20%. This limits the potential speedup that can be ob-
tained by epipolar sampling over brute force. Furthermore, while
depth discontinuities along epipolar lines provide a useful heuristic
for adaptive sampling, the interpolated results are still an approxi-
mation that can fail in some circumstances. Figure 13 illustrates a
planar surface lit by a tight light beam. Because there are no depth
discontinuities, the samples will not line up with the derivative dis-
continuities in the scattered illumination, leading to erroneous in-
terpolation. Due to the binary sample-or-interpolate decisions that
epipolar sampling makes, these artifacts are time-varying and result
in undesirable “popping” during animation.

To verify our asymptotic complexity, we ran our algorithm on the
Trees scene, scaling the resolution of both the screen (the number
of slices s and the rays per slice r) and the light (the effective num-
ber of depth samples d). The log-log plot in Figure 12 illustrates
our results. Brute force has a slope of 2.83 relative to log(srd)/3,
indicating roughly cubic scaling. Our algorithm has slope 1.94,
indicating that we scale approximately quadratically, an order of
magnitude better than ray marching.

10.2 GPU Results

Engelhardt and Dachsbacher kindly provided an executable of their
epipolar sampling implementation on the GPU, and to compare to

Camera Light beam

Sample point Sample point

Correct scattering
Interpolated scattering

Surface

Figure 13: A case where interpolating along depth discontinuities
on epipolar lines leads to erroneous results. Here a narrow beam of
scattered light illuminates a planar surface. Because there are no
depth discontinuities from the camera’s point of view, the sampling
does not capture the features in the result, leading to blurring.

Our GPU prototype, 33 fps Engelhardt and Dachsbacher, 24 fps

Figure 14: Results rendered using our GPU prototype compared to
epipolar sampling at 1280 × 960 resolution, using 1024 epipolar
slices for both algorithms. The difference in viewpoint and scat-
tering intensity are due to manual matching of parameters between
our codes (see text).

it, we have implemented a GPU version of our algorithm. We com-
pared the methods on the TREES and SIBENIK scenes at 1280×960
resolution (Fig. 14). The test was run on an NVIDIA GeForce GTX
480 GPU. Because the implementations are different and we do not
have access to their source code, we approximate the timing for
the scattering-only portion of the code by modifying the shaders
to disable direct illumination and colored lighting (we verified that
this results in expected performance increases for their code), and
report final frames per second (fps) numbers only. We matched
camera positions and scattering model parameters manually, and
adjusted their algorithm’s depth discontinuity threshold to not fire
on extraneous edges. Both algorithms compute results along epipo-
lar planes; we use the maximum number of slices (1024) supported
by their code to focus on the integration performance for both their
and our algorithm. (Our adaptive distribution algorithm would only
require 700 − 800 slices to obtain the same sampling density in
these scenes, resulting in another 15% speed improvement.) On the
SIBENIK scene, both implementations ran at approximately 37 fps.
On the TREES scene, epipolar sampling ran at 24 fps, while our
implementation ran at 33 fps, a 1.4x speedup. While we achieve
approximately equal quality on a static image, our quality is better
in animation because we compute results for every sample without
relying on interpolation. In particular, our video demonstrates the
temporal coherence artifacts that epipolar sampling exhibits. Com-
paring to our GPU ray marcher implementation at equal quality
(and using enough slices to get pixel-sized sampling), on SIBENIK
the ray marcher runs at 9 fps, while we run at 32 fps (3.6x). On
TREES the ray marcher runs at 5.6 fps, while we run at 23 fps (4.1x).

The speed of our CPU implementation relies on the fact that the
memory accesses made by the integrator are extremely localized.
While our GPU implementation performs on par with the state of
the art, we see room for improvement. The data caches even in cur-
rent high-end GPUs are insufficient to retain all the trees on-chip,
incurring a large bandwith penalty for the CUDA implementation
that keeps the trees in off-chip memory. While the depth prefilter-
ing technique drastically reduces bandwidth, the requirements are
still substantial. As future work, we aim to formulate a version of
the algorithm where the trees are kept in on-chip local memory, and
prefetcher threads load the streaming data onto the chip.

10.3 Limitations and Discussion

To enable the performance improvements, we make some assump-
tions about the scattering medium. The symmetry across slices that
enables us to only use a single SVD per frame precludes media
whose density varies spatially or that have anisotropic phase func-
tions. For smoothly varying media, however, we could sample the
SVD on a small number of slices and interpolate.

We also tested our algorithm with a textured light source with three
color channels, simulating a stained glass window effect on a scene
with the Sibenik cathedral with the epipole off the screen. Com-
pared to a uniform light source, our algorithm was 1.5x slower.
We did not test a textured light source on the GPU, but we expect
that our bandwidth-limited algorithm would take the full 3x perfor-
mance hit because it would need to integrate three color channels.

Like all algorithms based on shadow mapping, we are limited by
the resolution of the shadow map. Cascading shadow maps (e.g.,
[Lloyd et al. 2006]) are used in practice to increase the effective
resolution. Investigating how our algorithm can interact with such
optimizations is an interesting direction for future work. In its basic
form, our algorithm does not support translucent blockers that cast
semi-transparent shadows in the medium. However, we believe it is
possible to include multiplicatively transparent blockers as special
types of tree updates, similar in spirit to how our depth prefiltering
technique already treats blocker edges.

11 Conclusions

We have described an efficient algorithm for rendering shadowed
single scattering effects in a uniform participating medium. Our
main contributions are to perform scattering computations in a rec-
tified coordinate system that allows incremental evaluation of vis-
ibility, removing the need to densely sample visibility in the view
volume. In addition, combining incremental evaluation with a tree
structure yields a lower asymptotic complexity than ray marching
techniques. The advantages are particularly pronounced in difficult
shadowing situations that require large numbers of samples: our al-
gorithm performs significantly faster than brute force ray marching
at equal quality, and delivers a large increase in quality given equal
time. Furthermore, our preliminary GPU implementation delivers
improved quality at similar performance compared to the state-of-
the-art real-time technique.

Acknowledgements

We thank Timo Aila and Samuli Laine for invaluable assistance
with our GPU implementation. Thanks to Thomas Engelhardt and
Carsten Dachsbacher for giving us access to their prototype on very
short notice. Thanks to the anonymous reviewers for their helpful
feedback on improving the writing. We thank David Luebke and
NVIDIA for a hardware donation. Jonathan and Jiawen were sup-
ported by Intel PhD fellowships. This work was partially supported

by grants from Intel Corporation and the Singapore-MIT GAMBIT
Game Lab.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency
of ray traversal on gpus. In Proc. High-Performance Graphics
2009, 145–149.

BILLETER, M., SINTORN, E., AND ASSARSSON, U. 2010. Real
time volumetric shadows using polygonal light volumes. In
Proc. High Performance Graphics 2010.

DOBASHI, Y., YAMAMOTO, T., AND NISHITA, T. 2000. Interac-
tive rendering method for displaying shafts of light. In Proc. Pa-
cific Graphics, IEEE Computer Society, Washington, DC, USA,
31.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In Proc. 2006 symposium on Interactive 3D graphics and
games, ACM, New York, NY, USA, 161–165.

ENGELHARDT, T., AND DACHSBACHER, C. 2010. Epipolar sam-
pling for shadows and crepuscular rays in participating media
with single scattering. In Proc. 2010 ACM SIGGRAPH sympo-
sium on Interactive 3D Graphics and Games, ACM, 119–125.

FENWICK, P. M. 1994. A new data structure for cumulative fre-
quency tables. Software, practice & experience 24, 3, 327–336.

GOLUB, G. H., AND VAN LOAN, C. F. 1996. Matrix Computa-
tions, 3rd. ed. The Johns Hopkins University Press.

JAROSZ, W., ZWICKER, M., AND JENSEN, H. W. 2008. The
beam radiance estimate for volumetric photon mapping. Com-
puter Graphics Forum 27, 2 (Apr.), 557–566.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simu-
lation of light transport in scenes with participating media using
photon maps. In Proc. SIGGRAPH 98, 311–320.

KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE,
M. 2007. Joint bilateral upsampling. ACM Trans. Graph. 26, 3.

LLOYD, D. B., TUFT, D., YOON, S.-E., AND MANOCHA, D.
2006. Warping and partitioning for low error shadow maps. In
Proc. Eurographics Workshop on Rendering 2006, 215–226.

MAX, N. L. 1986. Atmospheric illumination and shadows. In
Computer Graphics (Proc. SIGGRAPH ’86), ACM, New York,
NY, USA, 117–124.

MITCHELL, K. 2008. Volumetric light scattering as a post-process.
In GPU Gems 3, Addison-Wesley.

PEGORARO, V., AND PARKER, S. 2009. An analytical solution to
single scattering in homogeneous participating media. Computer
Graphics Forum 28, 2.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann.

SUN, B., RAMAMOORTHI, R., NARASIMHAN, S., AND NAYAR,
S. 2005. A practical analytic single scattering model for real
time rendering. ACM Trans. Graph. 24, 3.

SUN, X., ZHOU, K., LIN, S., AND GUO, B. 2010. Line space
gathering for single scattering in large scenes. ACM Trans.
Graph. 29, 4.

WYMAN, C., AND RAMSEY, S. 2008. Interactive volumetric shad-
ows in participating media with single-scattering. In Proc. IEEE
Symposium on Interactive Ray Tracing, 87–92.

