
Analysis of Urban Morphology for Real Time

Visualization of Urban Scenes

by

Sami Mohammed Shalabi

Submitted to the Department of Electrical Engineering and Computer

Science

in partial ful�llment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 28, 1998

c
 Sami Mohammed Shalabi, MCMXCVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document

in whole or in part, and to grant others the right to do so.

Author .

Department of Electrical Engineering and Computer Science

May 18, 1998

Certi�ed by. .

Julie Dorsey

Associate Professor

Thesis Supervisor

Accepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Theses

Analysis of Urban Morphology for Real Time Visualization

of Urban Scenes

by

Sami Mohammed Shalabi

Submitted to the Department of Electrical Engineering and Computer Science

on May 18, 1998, in partial ful�llment of the

requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Much research in real-time visualization has been devoted to general techniques that
either simplify geometry or e�ectively extract the currently visible geometric dataset.

However, little work has been devoted to understanding the environments being vi-
sualized and using the information about their structure. We describe the design and
re-implementation of a system used to visualize urban environments based on the

notion of using the structure embedded in these environments. This methodology
is based on a hybrid approach that uses traditional 3D techniques to render geom-

etry near the viewer and pseudo-geometry generated from images to render the far
geometry[SDB97].

Designing a system for the visualization of urban scenery is challenging because of

the great complexity of these environments. Typical views of urban scenes contain rich
visual details at a fairly small scale, while the extent of the model is often large. To
address the complexity, we have introduced a new set of data structures, motivated by

urban morphology, to deal with and manage it. An expandable system was developed

to interactively analyze, build and modify the data structures associated with the

visualization.
Urban scenes are heavily structured [Lyn60]. To take advantage of the structure,

we perform an analysis of the urban environment, develop algorithms to extrapo-

late urban features, include an implementation that deals with a �xed set of urban

conditions, and �nally propose a treatment that uses the structure more concretely.

We have developed a system to generate synthetic urban environments and success-

fully used our system to visualize these synthetic environments, as well as a modeled

portion of Paris.

Thesis Supervisor: Julie Dorsey

Title: Associate Professor

Analysis of Urban Morphology for Real Time Visualization

of Urban Scenes

by

Sami Mohammed Shalabi

Submitted to the Department of Electrical Engineering and Computer Science

on May 18, 1998, in partial ful�llment of the

requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Much research in real-time visualization has been devoted to general techniques that
either simplify geometry or e�ectively extract the currently visible geometric dataset.

However, little work has been devoted to understanding the environments being vi-
sualized and using the information about their structure. We describe the design and
re-implementation of a system used to visualize urban environments based on the

notion of using the structure embedded in these environments. This methodology
is based on a hybrid approach that uses traditional 3D techniques to render geom-

etry near the viewer and pseudo-geometry generated from images to render the far
geometry[SDB97].

Designing a system for the visualization of urban scenery is challenging because of

the great complexity of these environments. Typical views of urban scenes contain rich
visual details at a fairly small scale, while the extent of the model is often large. To
address the complexity, we have introduced a new set of data structures, motivated by

urban morphology, to deal with and manage it. An expandable system was developed

to interactively analyze, build and modify the data structures associated with the

visualization.
Urban scenes are heavily structured [Lyn60]. To take advantage of the structure,

we perform an analysis of the urban environment, develop algorithms to extrapo-

late urban features, include an implementation that deals with a �xed set of urban

conditions, and �nally propose a treatment that uses the structure more concretely.

We have developed a system to generate synthetic urban environments and success-

fully used our system to visualize these synthetic environments, as well as a modeled

portion of Paris.

Thesis Supervisor: Julie Dorsey

Title: Associate Professor

Acknowledgments

This document is a product of over a year and a half of research. I have to thank

many people for their constant feedback and support. In particular, I would like to

thank Julie Dorsey and Fran�cois Sillion for their constant advice. Thanks also to

Hans Pedersen for many useful discussions during the development of the project and

Noshirwan Petigara for his help with the Paris model. Finally, I would like to thank

all my family and friends, whose support helped me stay focused and determined. It

is �nally over, everyone.

Contents

1 Introduction 13

1.1 Visualization of urban environments 13

1.2 Previous work . 15

1.2.1 Walkthrough systems, spatial partitioning 15

1.2.2 Level of detail modeling . 16

1.2.3 Image-based rendering . 17

1.2.4 Hybrid techniques . 18

1.2.5 Urban planning analysis . 22

1.3 Contribution . 23

1.4 Outline . 23

2 An Overview of the System 25

2.1 System pipeline . 25

2.2 Input data and generation . 26

2.3 Genesis . 26

2.4 Ville . 28

3 Data Structures 30

3.1 Urban data structures . 30

3.2 Winged edge data structure . 33

3.3 Linked objects . 35

3.4 Impostor parameters . 35

3.4.1 Impostor camera data structure 35

4

CONTENTS 5

3.4.2 Impostor local model data structure 36

4 Input Data and Generation 37

4.1 Input �les . 37

4.1.1 Texture generation . 38

4.2 City generator . 38

4.2.1 Results . 40

5 Genesis 43

5.1 Overview . 43

5.1.1 Process . 44

5.2 Default parameters . 46

5.2.1 Local model default de�nitions 46

5.2.2 Impostor camera default de�nitions 46

5.3 User interface . 47

5.3.1 Main window . 47

5.3.2 Information window . 48

5.3.3 Selection window . 49

5.3.4 Linking window . 50

5.3.5 Model window . 51

5.3.6 Impostor window . 51

5.4 Visualizations . 54

5.4.1 Impostor cameras . 54

5.4.2 Local model visualization . 54

5.4.3 Landmark visualization . 54

6 Ville: Visualization 57

6.1 System design and modules . 57

6.1.1 CIT reader . 57

6.1.2 City database . 59

6.1.3 Converter . 59

CONTENTS 6

6.1.4 Partitioner . 59

6.1.5 Draw . 59

6.1.6 Viewer . 59

6.1.7 Impostor . 60

6.2 Process . 60

6.3 Impostor generation . 60

7 Urban Morphology 62

7.1 Motivation . 62

7.2 De�nitions . 63

7.3 Analysis of Sillion et al.'s system . 65

7.4 Urban conditions . 73

7.5 Identi�cation . 73

7.5.1 Squares . 73

7.5.2 Intersections . 76

7.5.3 City edges . 78

7.5.4 Landmarks . 79

7.6 Exploiting urban morphology for improved visualization 81

7.6.1 Linking . 81

7.6.2 Squares . 81

7.6.3 Intersections . 84

7.6.4 City edges . 84

7.6.5 Proposals . 90

8 Results 93

8.1 Generalization and morphology . 93

8.2 Visualization results . 93

8.3 Visualization performance . 94

9 Conclusion and Future Work 101

9.1 New impostor types . 101

CONTENTS 7

9.2 Transitions . 102

9.3 Error analysis . 103

9.4 Cracking . 103

A Street File Format 104

B CIT File Format 105

B.1 Basic syntax . 105

B.2 Fundamental data types . 106

B.3 Overall �le structure . 106

B.3.1 File . 107

B.3.2 Map . 107

B.3.3 City . 107

B.3.4 Block . 108

B.3.5 Street . 108

B.3.6 Triangle . 109

B.3.7 Building . 109

B.3.8 TerrainGeometry . 110

B.3.9 BuildingGeometry . 110

B.3.10 StreetGeometry . 110

B.3.11 BuildingTriangles . 111

B.3.12 MaterialDefs . 111

B.3.13 Material . 111

B.3.14 EdgeData . 112

B.3.15 Links . 112

B.3.16 LinkedObjects . 112

B.3.17 ImpostorParams . 113

B.3.18 ImpostorCamera . 113

B.3.19 ImpostorLocalModel . 114

B.4 Separators . 115

B.5 Data type �eld values . 115

CONTENTS 8

B.6 Sample code . 117

B.6.1 Reading data . 117

B.6.2 Writing data . 120

List of Figures

1-1 Blocks represented in the model . 19

1-2 Impostor creation steps . 21

2-1 System pipeline. 25

2-2 Screen capture of city generator . 27

2-3 Screen capture of Genesis . 28

2-4 Screen capture of Ville . 29

3-1 Urban data structures . 31

3-2 Blocks represented in the model . 32

3-3 Blocks and edges represented on the Paris map 33

3-4 Winged edge data structure . 34

3-5 Complete, local and distant models 36

4-1 Sample view of the Paris model with textures. 39

4-2 City generator map data and corresponding triangulation. 40

4-3 Sample generated cities using a grid street map 41

4-4 Sample generated cities using the Paris street plan 42

5-1 Triangulation of map and placing the edges in 3D 45

5-2 Local model de�nition . 46

5-3 Genesis: main window . 47

5-4 Genesis: information window . 48

5-5 Genesis: selection window . 49

5-6 Genesis: linking window . 50

9

LIST OF FIGURES 10

5-7 Genesis: model window . 51

5-8 Genesis: impostor window . 52

5-9 Impostor camera visualization . 53

5-10 Local model visualization . 55

5-11 Landmark visualization . 56

6-1 Ville modules . 58

7-1 A comparison between the complete model view and geometry/impostor

representation of a square in the original Sillion et al. system. 66

7-2 A comparison between the complete model view and geometry/impostor

representation of an intersection in the original Sillion et al. system. . 67

7-3 A comparison between the complete model view and geometry/impostor

representation of a city edge in the original Sillion et al. system. . . . 68

7-4 A comparison between the complete model view and geometry/impostor

representation used to illustrate the problems of short street edges in

the model in the Sillion et al. system. 70

7-5 A comparison between the complete model view and geometry/impostor

representation used to illustrate the problems of seeing past short pe-

ripheral buildings in the Sillion et al. system. 71

7-6 A comparison between the complete model view and geometry/impostor

representation used to illustrate the problems of seeing landmarks past

short peripheral buildings in the Sillion et al. system. 72

7-7 An overhead view of the Paris model 74

7-8 Urban features identi�ed in the Paris model. 75

7-9 Squares in the Paris model . 76

7-10 Intersections in the Paris model . 77

7-11 Edges in the Paris model . 78

7-12 Landmarks in the Paris model. 80

7-13 A comparison, at a square, between views constructed using the com-

plete model and a geometry/impostor based representation. 82

LIST OF FIGURES 11

7-14 Square's local model. 82

7-15 A visualization of the square's local model and the associated cameras

used for the impostors. 83

7-16 A comparison, at an intersection, between views constructed using the

complete model and a geometry/impostor based representation. . . . 85

7-17 An intersection's local model. 85

7-18 A visualization of the intersection's local model and the associated

cameras used for the impostors. 86

7-19 A comparison, at a city edge, between views constructed using the

complete model and a geometry/impostor based representation. . . . 87

7-20 City Edges, and local models. 88

7-21 A visualization of the city edge's local model and the associated cam-

eras used for the impostors. 89

8-1 Images extracted from the Paris model 96

8-2 Images extracted from the generated model 97

8-3 Images extracted from the Paris model at a square. 98

8-4 Images extracted from the Paris model at an intersection. 99

8-5 Images extracted from the Paris model at a city edge. 100

List of Tables

B.1 File separators . 115

B.2 File separators . 116

B.3 Data type �eld values . 117

12

Chapter 1

Introduction

1.1 Visualization of urban environments

Urban scenes present themselves as good examples of some of the very complex en-

vironments that need to be visualized and simulated interactively. They contain a

wealth of information, both visually and structurally. We believe that they form an

interesting subset that warrants specialized research, because they contain a strong

underlying structure and challenging visual conditions.

A particularly interesting factor in this quest for real-time performance is that

the user expectations in terms of image detail and quality grow as more graphics

processing power becomes available. Thus an increase in raw graphics processing

power does not directly translate into a greater maximal size of the database that can

be visualized. Instead, some of this power is typically used to render more geometric

or lighting detail in \interesting" areas of the scene. In this respect, we anticipate

that high-performance visualization will not meet the user's expectations simply by

relying on hardware performance increases alone.

Much research in real-time visualization has been devoted to general techniques

that either simplify geometry or e�ectively extract the currently visible geometric

dataset. However, little work has been devoted to understanding the environments

being visualized and using the information about their structure. Understanding the

structure and coherence of organized geometric environments opens up large avenues

13

CHAPTER 1. INTRODUCTION 14

of exploitation, which have been inaccessible due to the limitations of existing tech-

niques and representations.

This thesis will consider the visual qualities of urban environments by studying

their morphology. It will concentrate on these qualities and their applications to

real-time visualization. Kevin Lynch, a well known scholar in urban planning, has

emphasized the importance of legibility of the cityscape [Lyn60, Lyn96]. By this he

means the ease with which its parts can be recognized and can be organized into

coherent components. A legible city would be one whose districts, landmarks or

pathways are easily identi�able and are easily grouped into an overall pattern.

Indeed, a distinctive and legible environment heightens the potential for applica-

tions in visualization. Potentially, the city is in itself a powerful symbol of organized

complexity. If well set forth, the identi�cation and use of structure during visualiza-

tion will improve the user's visual experience by providing better interactivity. The

simulation and visualization of urban environments are necessary for a number of

applications and pose a number of signi�cant challenges for the design and imple-

mentation of high-performance graphics tools. Typical applications include:

� city planning (A good example of this application is the model of South Central

Los Angeles built and visualized by the UCLA School of Architecture for city

planning purposes [JLF95]),

� construction and renovation in urban areas: visual impact studies,

� climate and environmental studies (plant growth in urban areas, detailed vi-

sualization of a number of simulations such as the di�usion of pollutants, et

cetera),

� virtual tourism and education,

� civil and military simulators (
ight, drive, combat), and

� navigation helpers for automobiles.

CHAPTER 1. INTRODUCTION 15

The structure of a city can be understood as the superposition of spatial, so-

cial, and historical relationships: any city has an obvious spatial structure consisting

of streets, parks, and built areas, but the history of the city development and its

economic/social organization also constitute key elements for the structure of urban

environments. There is a growing consciousness that we need to actively study and

monitor the way cities and urban environments develop. The recent U.N. conference

on human settlements (HABITAT-II), held in Istanbul in June 1996, identi�ed some

of the challenges faced by governments in organizing urban growth. These issues

can only become more pressing as by 2006 more than half the world's population is

estimated to live in cities.

All these factors could be used to evaluate the importance of various components of

the model for any particular visualization scenario. We exploit the notion of legibility

in the way we identify and construct a number of representations, and allow users to

manipulate the scene.

1.2 Previous work

The focus of most previous related work in computer graphics has been on the de-

velopment of algorithms for visualization of large scenes, notably based on spatial

partitioning and culling, level-of-detail approaches, image-based rendering, and hy-

brid approaches. Little work has attempted to use the structure inherent in the

models to increase visualization performance. The most thorough work that analyzes

the structure of urban environments is in the �eld of urban planning. We will brie
y

explore some of this work.

1.2.1 Walkthrough systems, spatial partitioning

In order to achieve interactive walkthroughs of large building models, a system must

store in memory and render only a small portion of the model in each frame; that

is, the portion seen by the observer. Research on increasing frame rates during inter-

active visualization of large architectural models has been underway for over twenty

CHAPTER 1. INTRODUCTION 16

years [Cla76, Jon71]. Pioneering work in spatial subdivision and visibility precom-

putation was done by Airey et al., Teller and S�equin, and Luebke and Georges et

al.[ARB90, TS91, LG95]. These methods for interactive walkthroughs of complex

buildings compute the potentially visible set of polygons for each room in a build-

ing, use real-time memory management algorithms to predict observer motion and

pre-fetch from disk objects that may become visible during upcoming frames. These

techniques determine a small portion of the model to store in memory and render

during each frame of a building walkthrough.

Other algorithms have been described for culling occluded polygons during inter-

active visualization. The hierarchical Z-bu�er algorithm [GK93], uses a pyramid of

Z-bu�ers to determine the cells of an octree (and the enclosed polygons) that are

potentially visible for a particular viewpoint.

The techniques described above gain much of their e�ectiveness from the signi�-

cant occlusion present in a building model. Outdoor urban environments are much

less occluded, especially for points of view high above ground level. Therefore, these

building walkthrough techniques do not scale to outdoor urban environments.

1.2.2 Level of detail modeling

A fruitful approach to high-performance visualization is to use the concept of \levels

of detail" (LOD): several descriptions of the objects in the scene are provided or

automatically computed, with di�erent levels of complexity [RB93, Kaj85, FS93]. One

of these representations is dynamically selected for rendering based on the viewing

conditions and other factors. For example, at large scales, geometric models are

necessary. At intermediate scales, texture mapping and similar techniques may su�ce.

Early
ight simulators were the �rst systems to exploit the LOD concept for in-

teractive visualization [Bla87]. More recently, Funkhouser and S�equin [FS93], Maciel

and Shirley [MS95], Chamberlain et al.[CDL+96], Shade et al. [SLS+96] and of Schau-

er et al.[SS96] have incorporated new LOD approaches into walkthrough systems for

complex environments. The work of Shade et al. and Schau
er et al. is the most rele-

vant. They dynamically and automatically create view-dependent, image-based LOD

CHAPTER 1. INTRODUCTION 17

models. They use a spatial hierarchy to divide the scene so that the LOD models

represent regions of the scene. This allows them to properly depth-sort the LOD

models for rendering.

1.2.3 Image-based rendering

Recently, image-based rendering has emerged as a new approach to rendering and

interacting with a scene. In this strategy, a 3D scene is supplanted by a set of images.

Interactive scene display is achieved through the process of view interpolation, in

which di�erent views of a scene are rendered as a pre-processing step, and intermediate

views are generated by morphing between the precomputed images in real time. This

approach has been employed in
ight simulators [Bla87], and has been applied to

more general graphics applications by Chen and Williams [CW93] and McMillan and

Bishop [MB95]. A major advantage of image-based rendering is that storing and

traversing the scene are only weakly dependent on object space complexity, which

makes it possible to tour complex scenes on machines that lack graphics hardware.

A common drawback of these approaches is the di�culty in synthesizing views from

arbitrary viewpoints. Recent results from Computer Vision can be adapted to help in

the creation of new views from points distinct from the original viewpoints [DTM96,

SD96].

Another new approach involves generating new views from arbitrary camera po-

sitions without depth information or feature matching, simply by combining and

resampling a set of images [GGSC96, LH96]. These techniques interpret input im-

ages as 2D slices of a 4D function called the light �eld and allow signi�cantly more

freedom of movement in the range of possible views that can be generated. The light

�eld represents the complete
ow of light in a region of the environment and does not

make assumptions about re
ectance properties. Because of its high dimensionality,

the light �eld requires a lot of memory and its e�ectiveness will be largely determined

by the availability of e�cient compression methods.

Regan and Pose [RP94] presented another image-based approach in which they

render a scene onto the faces of a cube centered around a viewer location. The work

CHAPTER 1. INTRODUCTION 18

of Shade et al., and Schau
er et al.[SLS+96, SS96] mentioned above is a hierarchical

extension of the Regan and Pose approach.

The work is related to the hierarchical image-cache concept outlined by Shade et

al. and Schau
er et al.Their methods build a BSP-tree that hierarchically partitions

the geometric objects in a 3D scene, with geometry stored only at the leaves of the

hierarchy. During a
y-through, images at various levels in the hierarchy are cached

for reuse in subsequent frames. A simple error metric provides automatic quality

control.

1.2.4 Hybrid techniques

Sillion et al.[SDB97] introduced a framework to visualize urban scenes using a hybrid

system. The framework combines both traditional 3D techniques and image based

rendering. The central concept proposed by Sillion et al. is that of a dynamic seg-

mentation of the dataset, into a local 3D model and a set of \impostors" used to

represent distant scenery (distant model). These impostors combine 3D geometry

to correctly model large depth discontinuities and parallax, and textures to rapidly

display visual detail. Thus, the impostors can be thought of as a 3D image, with

subparts appropriately placed in 3D.

Sillion et al. used a simple segmentation based on urban subdivisions (\blocks"

divided by streets). These blocks de�ne the units with which the complete model

(Figure 1-1a) is further divided into a \local model" (Figure 1-1b) and a \distant

model" (Figure 1-1c). The local model is the fraction of the 3D scene extracted from

the complete model using their segmentation technique. The distant model is the

remainder of the 3D scene, and an impostor is used to render this distant model.

Users walking or driving on the ground are constrained to a network of streets.

When users are at a given point on the network, typological information is used to

extract the local 3D model. The simplest de�nition of the local model is all the blocks

that touch the current street segment the user is on (Figure 1-1d).

The impostors used to represent the distant model are either created o�-line, as a

pre-process, or on demand when the user enters a new area in the model. Impostors

CHAPTER 1. INTRODUCTION 19

(a) (b) (c)

(d)

Figure 1-1: Blocks represented in the model

CHAPTER 1. INTRODUCTION 20

are associated with each street segment in the network of streets. Because visibility

of distant objects is in practice mostly limited to the directions of the streets ends,

associated to each street are two impostors. This implicitly assumes that the streets

are in a densely built environment, where visibility is blocked by buildings along each

side of the street.

The main stages of the impostor construction algorithm are listed below, and

illustrated by Figure 1-2. The steps of the creation algorithm are:

1. Create an image of the distant scenery (to be used as the impostor texture).

(Figure 1-2a).

2. Save the corresponding depth image (contents of the z-bu�er). (Figure 1-2b)

3. Extract the external contour of the image. (Figure 1-2c)

4. Identify the signi�cant depth disparity contours. (Figure 1-2d)

5. Perform a constrained triangulation of the impostor. (Figure 1-2e)

6. Store the list of 3D triangles along with the texture image.

The impostor used here produces some good results. Parallax e�ects, such as

those when the most distant buildings become obscured by nearby ones, are e�ectively

captured (Figure 1-2f). This approach enables the interactive visualization of these

urban environments on low end graphics hardware.

In this thesis, we describe an initial study that addresses these shortcomings. The

system, however, has several drawbacks. The segmentation is rather simplistic and

does not take full advantage of the structure existent in the urban environment. Their

system divides the model into blocks and streets. The de�nitions of where impostors

are used is only successful in one case, where where the viewer is on a densely occluded

street where the far geometry needs to be represented by one image. It fails in

situations such as squares and intersections where a large �eld of view needs to be

represented. Also, if the viewer strays from the �eld of view of where the imposter

was ordinarily created, the far �eld appears blank.

CHAPTER 1. INTRODUCTION 21

(a) - Impostor texture (b) - Depth image

(c) - External contour (d) - Depth disparity lines

(e) - Impostor Triangulation (f) - Other view

Figure 1-2: Impostor creation steps

CHAPTER 1. INTRODUCTION 22

1.2.5 Urban planning analysis

The urban planning discipline has provided many of the tools needed to analyze

urban environments. Understanding the methodology of urban planners enables us

to identify which urban characteristics (e.g. squares, landmarks) are relevant, how

they are categorized, and how they are de�ned.

Lynch [Lyn60, Lyn96], in his discussions of \legibility," classi�es cities to contain

the following primitives: paths, edges, districts, nodes and landmarks. Kostof [Kos91]

in his de�nition of a city identi�ed that it contains a \framework of monuments." A

framework of monuments means that reference points exist in the city and are used

by individuals as part of their urban experience. The reference points, discussed by

Kostof, are composed of the primitives de�ned by Lynch. However, Kostof stresses the

importance of landmarks as reference points, particularly those present in the sky line.

\Sky lines are an urban signature. They are the short hand of urban identity...Cities

raise distinctive landmarks to celebrate faith, power, and special achievement."

The crudest categorization of a city can be as: planned or spontaneous [Kos91].

Spontaneous cities have a very organic structure with random open spaces and curved

streets. Planned cities, however, have a more methodological structure such as grid-

like street patterns. City cores usually have an organic character and new additions

are usually planned [Kos91]. Cities can be further categorized into more speci�c

categories [Bur71]: concentric cities, cluster cities, linear cities, and grid cities. Con-

centric or peripheral cities are composed of one center, with radial routes, surrounded

by rings of development. Cluster cities can exist in three forms: The �rst appears

as more then one concentric city merged together. The second is a cluster of smaller

municipal cities with separate downtowns for each municipality (constellation). The

third is as as series of cities connected to each by radial transportation lines (satellite

city). Linear cities are built around lines of communication. Finally, grid cities are

constructed by having a grid-like road patterns. Grid or gridiron street patterns are

the most common pattern used for planned cities [Kos91].

Lynch [Lyn60, Lyn96], in addition to identifying urban primitives, de�nes each

CHAPTER 1. INTRODUCTION 23

primitive precisely. We use his de�nitions to construct algorithms to identify the

primitives. The de�nitions of physical forms are used as the primitives for analyz-

ing urban environments. We propose a treatment, geared to visualization, of the

information identi�ed by the analysis.

1.3 Contribution

This thesis is part of a larger system developed by Sillion et al.[SDB97]. The central

concept introduced by Sillion et al. is that of dynamically segmenting the dataset

into a local 3D geometric model and a set of image-based \impostors" used to rep-

resent distant scenery (distant model). The impostor structure was derived from the

level-of-detail approach, and combines 3D geometry (to correctly model large depth

discontinuities and parallax) and textures (to rapidly display visual detail).

Our main contribution involves the development of a new implementation of the

Sillion et al. system. This implementation introduces enhancements to the frame-

work necessary for the introduction of new and more sophisticated data structures.

A study of urban morphology is performed, which facilitates an additional set of as-

sociated data structures. We provide algorithms for the automatic extraction of the

morphological components and �nally propose a treatment of impostors, based on

this morphology.

The new implementation is centered around the idea of interactivity because the

data structures are motivated by urban morphology. The morphology is subjective

and in
uenced by spatial, social, and historical relations and, thus, human interaction

is necessary to insure the correctness of the data structures.

1.4 Outline

The remainder of the thesis is organized as follows. Chapter 2 presents an overview of

the system pipeline. In Chapter 3, we outline the most relevant data structures used.

Chapter 4 discusses the input data and its generation. Chapter 5 talks about the

CHAPTER 1. INTRODUCTION 24

sub-system responsible for data structure construction and visualization. Chapter 6

presents the visualization stage of the pipeline. In Chapter 7, we present an analysis of

urban morphology and its use for visualization. Chapter 8 discusses the performance

of the system with a series of results. Finally, Chapter 9 discusses some conclusions

and future directions.

Chapter 2

An Overview of the System

This chapter introduces our system for visualizing urban environments. We describe

the system pipeline as a whole and then de�ne the di�erent operations available to the

user at each stage. This chapter provides an overview of the system; implementation

details will be explained in later chapters.

2.1 System pipeline

steet
data

terrain
geometry (iv)

building
geometry (iv) genesis city

file ville

input data data structure generation visualization

Figure 2-1: System pipeline.

Figure 2-1 represents the system data pipeline for urban visualization. The

pipeline is composed of three stages: Input data and its construction, data struc-

tures generation, and visualization. The �rst part deals with the construction of the

25

CHAPTER 2. AN OVERVIEW OF THE SYSTEM 26

generic data �les needed as input to the pipeline. The second stage, which we call

Genesis, is where the generic data �les are used to create the data structures needed

for the visualization. Genesis creates a CIT �le (de�ned in Appendix B), which can

also be read by Genesis for incremental data structure modi�cations. Finally visu-

alization, called Ville, reads in all the data in the CIT �le and uses it to visualize

the urban environment using a hybrid model composed of both traditional 3D and

image-based techniques.

2.2 Input data and generation

The �rst stage of the system deals with input data de�nitions and their generation.

The input data is composed of a set of generic �les. The �les represent the geometry

of the urban environment as well as a street plan of the road network. These �les

are divided into three parts. The street data is a network of line segments and uses

the street �le format (de�ned in Appendix A). The next two �les use a well-known

�le format called the inventor �le format[Wer94]. One contains the terrain geometry,

while the other contains street geometry. The 3 �les are segmented because each �le

can come from a di�erent source. The street �le can be manually generated from the

terrain geometry, or alternatively from a map. The terrain �le can be acquired from

Geographic Information System (GIS)[GR91b]. The building geometry �le can either

be modeled, as was the case with the Paris model we are using, or synthesized using

our city generator, which will be discussed in chapter 4 (Figure 2-2 shows a screen

capture of the City Generator).

2.3 Genesis

The second phase of the pipeline is called Genesis (Figure 2-3 shows a screen capture

of Genesis). This subsystem reads in all the data, dividing and organizing it in the

appropriate urban data structures (Section 3.1). It then creates all the associated data

structures necessary to visualize the urban environment (to be described in Chapter 3)

CHAPTER 2. AN OVERVIEW OF THE SYSTEM 27

Figure 2-2: Screen capture of city generator

CHAPTER 2. AN OVERVIEW OF THE SYSTEM 28

and attempts to identify speci�c urban characteristics. Genesis is an interactive tool.

The data structures can be modi�ed, recomputed and visualized as needed. All the

data is then written to a CIT �le (described in Appendix B). Genesis is also capable

of reading CIT �les; thus, incremental updates of the data structures are possible.

Figure 2-3: Screen capture of Genesis

2.4 Ville

The last phase is \Ville," or visualization (Figure 2-4 shows a screen capture of

Ville). This module reads in the CIT �le and uses the information to reconstruct the

data structures. Ville uses these data structures to determine how to approach the

visualization of the di�erent parts of the model.

CHAPTER 2. AN OVERVIEW OF THE SYSTEM 29

Figure 2-4: Screen capture of Ville

Chapter 3

Data Structures

This chapter presents the data structures used throughout the system. There are

four sets of data structures that are worthy of in-depth discussion. The �rst set is the

urban data structure, which de�nes the hierarchy of a city. The second is the winged

edge data structure, which is used to navigate the urban environment. Third, the

linking data structure is the framework used to de�ne urban conditions (e.g., squares,

city edges, et cetera). Lastly, the impostor data structure, which is used to de�ne all

the data associated with creating an impostor.

3.1 Urban data structures

Figure 3-1 shows the internal urban hierarchy used to de�ne an urban environment.

From a high level a city is composed of a series of blocks, a map, and a linked object

manager. The map contains all the edges and vertices needed for the winged edge

data structure. Blocks are the units of urban organization used in the system. The

city also contains a set of linked objects (discussed in section 3.3). The linked objects

are managed by a linked object manager.

Each block de�nes a subset of buildings that contain no paths. Each block has

pointers to the edges that surround it and to its geometry. The geometry is divided

into terrain or building geometry. Building geometry is further divided into building

objects, where each building object is used to represent the usual notion of a building.

30

CHAPTER 3. DATA STRUCTURES 31

city

map block

edge edge

point point

edge

point

block block

edge

street
geometry

block
building

geometry

terrain
geometry

Impostor
Parameters

building building building

Linked Object
Manager

linked
object

linked
object

linked
object

Figure 3-1: Urban data structures

CHAPTER 3. DATA STRUCTURES 32

Terrain geometry is a series of triangles that are not streets. Figure 3-2 and �gure 3-3

show a number of blocks represented in the Paris model and map.

33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333

333333
333333
333333
333333
333333
333333
333333
333333
333333
333333
333333

33333333
33333333
33333333
33333333
33333333
33333333
33333333
33333333
33333333
33333333

33333
33333
33333

333333333
333333333
333333333
333333333
333333333
333333333
333333333
333333333
333333333

333333333
333333333
333333333
333333333
333333333
333333333
333333333
333333333

Blocks

Figure 3-2: Blocks represented in the model

The map is composed of edges. An edge is a straight street segment and several

edges may compose a street. Each point is a vertex, each block is a face, and each edge

is an edge in the winged edge data structure (discussed in section 3.2). In addition

to holding all the associated information of the winged edge data structure, edges

hold the geometry they represent as well as all the impostor related data (discussed

in section 3.4). Figure 3-3 shows a number of blocks and edges represented in the

Paris map.

The linked object manager is the access point to the linked objects (discussed in

Section 3.3). Brie
y, linked objects are used to de�ne urban characteristics, such as

squares, intersections, et cetera.

CHAPTER 3. DATA STRUCTURES 33

Block

Edge

Figure 3-3: Blocks and edges represented on the Paris map

3.2 Winged edge data structure

Figure 3-4 shows the winged edge data structure used to navigate the city map. The

map is composed of edges and vertices. Each edge is composed of two directed edges.

For example, edge e is composed of the directed edges e
0

1 and e
00

1 . The edge e
0

1 is

directed from vertices v2 to v1 while e
00

1 is directed from v1 to v2. Each directed edge

also knows its \twin" which is the same edge directed in the opposite direction. For

example e
0

1 has the twin e
00

1 , and e
00

1 has the twin e
0

1. The faces on the left and right

of an edge are stored with the edges; for example, e
0

1 has F1 to its left and F2 to its

right, while e
00

1 has F2 to its left and F1 to its right.

Vertices, on the other hand, store some geometric information, i.e. their position.

In addition they also store a list of edges that point out from the vertex. For example

vertex v2 has the list e
0

1, e
0

2, and e
0

3 in its list edges. The data structure makes it easy

to navigate the urban map and identify adjacent objects. The faces in this structure

are the urban notion of blocks. Thus when on edge e1, one can easily identify the

CHAPTER 3. DATA STRUCTURES 34

9999999999999999
9999999999999999
9999999999999999
9999999999999999
9999999999999999
9999999999999999
9999999999999999
9999999999999999

999999
999999
999999
999999
999999
999999

Vertex

Edge

F2
Face

F2
F1

e1e1

V2

V1

e1
e3

e2

V2

e1
V1

V2 99999999
99999999
99999999
99999999
99999999
99999999

e2

e3

e1

’ ’’

’

’’

’’

’

’
’’

e3

e2

Figure 3-4: Winged edge data structure

CHAPTER 3. DATA STRUCTURES 35

blocks that surround the edge. Faces also have a list of the edges that surround it.

The list of edges a face contains is only composed of one of the directed edges of each

edge surrounding it.

This representation is rather rich. There are, however, more compact representa-

tions [Bau74, GS85, Wei86, Eas82], but we used this amalgamate form of the winged

edge data structure because of its simplicity for debugging and development.

3.3 Linked objects

Linking is a concept used to group objects together. A linked object is composed of a

series of edges, blocks, and buildings, a type and a name. It is the methodology we use

to de�ne one urban characteristic. The lists contain only one pointer to each object

in question. The types are squares, intersections, edges, and landmarks. The details

of how they are used are explained in the chapter 7. Linked object are independent

units and contain objects that may be shared with other linked objects. A linked

objects contains a list of other linked objects. This list contains pointers to other

linked objects they share components with.

3.4 Impostor parameters

All the impostor parameter information is encapsulated in the edges. Imposter pa-

rameters are composed of two di�erent objects. The �rst are the impostor camera

objects. An impostor parameter object may contain one or more impostor cameras.

Each impostor camera is used to create an image. Each image is then used to create

an impostor. The second object is the impostor local model, this de�nes what blocks

are used for the local model and consequently used to identify the distant model.

3.4.1 Impostor camera data structure

The impostor camera data structure contains all the information needed to de�ne

a camera. These parameters include position, viewing direction, up direction, near

CHAPTER 3. DATA STRUCTURES 36

distance, far distance, height angle, width angle, and elevation. The elevation param-

eter is the distance the camera is raised in the up direction. During visualization the

system uses this object to know which impostor cameras to use and then creates the

images needed for impostor creation.

3.4.2 Impostor local model data structure

(a) (b) (c)

Figure 3-5: Complete, local and distant models

The impostor local model data structure is a list of edges and blocks. It contains

all the blocks that compose a local model and all the edges that share this local model.

Figure 3-5 shows a simple visualization of how the complete (Figure 3-5a) model is

segmented into a local (Figure 3-5b) and distant models (Figure 3-5c).

Chapter 4

Input Data and Generation

This chapter discusses the input data needed at the start of the pipeline. It de-

scribes the di�erent input �les, what they represent and how they are constructed.

We, in addition, describe a system we had developed to generate synthetic urban

environments.

4.1 Input �les

Before a model is fed into Genesis, three �les are needed to create the data structures.

A street map �le (�le format de�ned in Appendix A), and two inventor [Wer94] �les,

one for terrain and one for buildings. The street �le de�nes a series of 3D lines that

compose the city map. The coordinates of the street segments have to match the

original model since they de�ne where the viewer can travel. The line segments that

compose the streets have to connect, with the exception of intersections, which are

detected automatically. The inventor �le format [Wer94] is used to de�ne the terrain

geometry and building geometry. All the geometry in these �les will be converted

into triangles. An assumption is made that the geometry in these �les is complete.

This means that normals, materials, textures, et cetera are correctly assigned. The

building geometry �le requires further non-standard information. In the inventor �le,

objects need to be grouped together to form buildings and assigned an I.D. This is

achieved by adding a name �eld to the inventor Separator tag.

37

CHAPTER 4. INPUT DATA AND GENERATION 38

4.1.1 Texture generation

Initially, the Paris model did not have any textures; to give the model more realism

textures were generated. Before texture images were assigned to the model, texture

coordinates were computed at the vertices of each face. Using the following process,

texture coordinates were computed. Each face was projected onto a plane perpendic-

ular to the normal of the face, where the up direction was prede�ned in the model.

In our case positive z represented the up direction. This plane was, then, treated as

a 2D axis. The bounding box of the projected points was computed. Each point in

the projection was assigned a texture coordinate by interpolating the values de�ned

by the bounding box and then was normalized by its limits. A texture image, from a

database of scanned images, was randomly assigned to each building. The model was

then saved to two �les, one for terrain and another for building geometry. Figure 4-1

shows an image of the textured model.

4.2 City generator

The city generator is a tool used to construct speci�c urban conditions to test the

pipeline and its associated algorithms. The steps taken by the city generator are

detailed below:

1. The city generator reads in a street map. Figure 4-2a shows some sample street

maps used.

2. The street segments are, then, fed into a constrained 2D Delaunay triangulation

algorithm[DP92, Jun88, Sei88, GR91a, Slo91, KM92, WT92] where they are

treated as constrained edges. The reason Delaunay triangulation is used is

that intersections between street segments can then be identi�ed and split up.

The triangles created by the algorithm constitute the terrain geometry and,

eventually, the blocks. Adjacency information is constructed from the resulting

triangles. Figure 4-2b shows a triangulation of the map data.

CHAPTER 4. INPUT DATA AND GENERATION 39

Figure 4-1: Sample view of the Paris model with textures.

3. After the triangles and adjacency information are constructed, blocks are iden-

ti�ed and extracted. The algorithm chosen for this step marches around the

triangles and
ags visited triangles until a block is constructed. The algorithm

then moves on to the next un
agged triangle until all the triangles are
agged.

4. Each block is randomly assigned a property. Available properties include water,

park, residential, square, industrial, �nancial, and market. Each property has

associated with it a mean height, a mean width and a variance. Block properties

can then be interactively modi�ed.

5. The city is then generated. The city takes the form of scaled cubes that adhere

to their respective means and variances. To create an element of randomness.

CHAPTER 4. INPUT DATA AND GENERATION 40

(a)

(b)

Figure 4-2: City generator map data and corresponding triangulation.

the orientation of the buildings is de�ned by the orientation of the longest edge

in the block.

6. Users can then go back to step 4 or 5 if they do not like the results.

4.2.1 Results

Figure 4-3 and Figure 4-4 show four sample synthetic cities constructed from two

di�erent street maps.

CHAPTER 4. INPUT DATA AND GENERATION 41

Figure 4-3: Sample generated cities using a grid street map

CHAPTER 4. INPUT DATA AND GENERATION 42

Figure 4-4: Sample generated cities using the Paris street plan

Chapter 5

Genesis: Data Structure

Generation and Visualization

One of the most important features of our system is the ability to visualize and modify

the data structures interactively. In this chapter, we describe \Genesis", which is the

sub-system that performs all the data structure construction and modi�cation.

5.1 Overview

Genesis has the capacity to read in 3 data �les: street data, building geometry (in-

ventor �le), and terrain geometry (inventor �le). It then divides all the geometry

into coherent blocks and assigns each edge its geometry. All the impostor data is

created and assigned to the edges. The user automatically and interactively identi�es

city elements and has the system create default parameters for these elements. In

addition, the user can modify impostor data structures for any of the edges in the

system. This process can be incremental since Genesis can reload and modify any

previous work that has been saving in the form of a CIT �le (de�ned in Appendix B).

43

CHAPTER 5. GENESIS 44

5.1.1 Process

Genesis performs a series of intricate steps that lead to a set of data structures that

is necessary for visualization. Below is a description of these steps:

1. All data must be read in.

2. The line segments in the street �le are then fed into a constrained 2d Delaunay

triangulation algorithm[DP92, Jun88, Sei88, GR91a, Slo91, KM92, WT92], as

constrained edges. The reason this is used is that the triangulation splits up

intersecting edges. The triangulation, also, is used to construct a simpli�ed

version of the terrain. To create the simpli�ed terrain all the points in the tri-

angulation need to be reprojected back into 3D. This is done by keeping indices

to the original data in the triangulation and then computing, by interpolation,

the corresponding 3D points. The edges and vertices produced by the triangu-

lation are used to construct the winged edge data structure. In addition, the

triangles are modi�ed to include adjacency information.

3. After the triangles and adjacency information are constructed blocks are iden-

ti�ed and extracted. The algorithm chosen for this step marches around the

triangles and
ags visited triangles until a block is constructed. The algorithm

then moves on to the next un
agged triangle until all the triangles are
agged.

(Figure 5-1).

4. All the geometry is converted into triangles and then placed into the appropriate

block. This is done by a point intersection of the midpoints of the geometry

triangles with the simpli�ed terrain triangles that represent the blocks. The

assumption is that the geometry has the correct position, texture coordinates,

normals, and material properties.

5. Now that all the geometry is in the blocks. The next step is to extract all

the street geometry and associate it with the street segments. This is done by

�nding the closest edge to a street triangle.

CHAPTER 5. GENESIS 45

Figure 5-1: Triangulation of map and placing the edges in 3D

6. Here, the impostor data structures are constructed. Each street segment is

assigned an impostor local model object and two impostor camera objects. The

local model is de�ned as all the blocks that touch each end point of the street

segment. Each street has two impostor cameras, one positioned at the end

of the street and the other at the beginning. These parameters represent a

set of cameras used to construct impostors. The cameras are positioned at the

endpoints with a viewing direction de�ned in the direction of the street segment

elevated by some �xed value. This is explained in more detail in Section 5.2.2

and Section 5.2.1.

7. The �nal step is the automatic identi�cation of urban morphology. The algo-

rithms used are de�ned in Chapter 7.

8. The user is now able to modify the data structures using the user interface.

9. The user still has the ability to further modify these data structures and exper-

iment with some obscure cases the current model imposes.

CHAPTER 5. GENESIS 46

10. All the information is then saved to a CIT �le.

11. The process can start again at step 7.

5.2 Default parameters

5.2.1 Local model default de�nitions

Typological information is used to extract the default local 3D model around a point

(a street) as the set of blocks \near" that street. The simplest de�nition of near is

the blocks that touch the current street segment (Figure 5-2). Near encompasses all

the blocks that surround an endpoint. The blocks can be easily extracted from the

winged edge data structure.

Figure 5-2: Local model de�nition: blocks adjacent to the current street are selected
to compose the local model.

5.2.2 Impostor camera default de�nitions

The default impostor position assumes that streets are in densely built environments

where visibility is blocked by buildings along each side of the street. This is the

required behavior for most streets; otherwise, they would be identi�ed as an urban

CHAPTER 5. GENESIS 47

structure such as a city edge, square, et cetera. In this default case, the visibility

of distant objects is in practice mostly limited to the directions of the street ends.

Under this pretense, associated, with each street, are two impostors (one with each

directed edge). Each impostor is constructed from a camera position de�ned at the

beginning of the street (each directed edge) in the direction of the street.

5.3 User interface

Genesis's user interface can be divided into six components: the main window, the

information window, the selection window, the linking window, the model window,

and the impostor window. Each window has a speci�c job and is capable of a�ecting

other windows.

5.3.1 Main window

Main Viewing Window

Progress Bar

File Menu
(CIT File)

Window Menu

Inventor/Street
Data File

Triagulation
and Find Blocks
Button

Convert Geometry into
Triangles and place
into Blocks Button

Create Impostor and
Local Model Data Button

Find Urban Features Button

Figure 5-3: Genesis: main window

CHAPTER 5. GENESIS 48

Figure 5-3 shows the main Genesis window. It is divided into �ve parts. The

�rst is the progress bar which is a meter that oscillates to indicate the program

is processing. The second component is the main viewing window. This is a 3D

window that shows model geometry. The user controls what is being displayed in

this window using the selection window (section 5.3.3). The third component is the

menus. The �le menu is where the system loads and save CIT �les. The window

menu is used to open all other child windows used by Genesis. The fourth component

is the Input Data section which de�nes the �lenames of the street �le, terrain �le, and

the building �le. The last component encapsulates the controls provided by Genesis.

These include �nding the blocks (step 3), dividing the geometry (step 4), processing

the streets (step 5), creating the default impostors and local models (step 6) and

�nally �nding the urban features (step 7). These need to be used once for each CIT

�le. All other modi�cations are performed in the other windows. However the main

viewing window remains as the only place selected geometry can be viewed.

5.3.2 Information window

Figure 5-4: Genesis: information window

Figure 5-4 show the information window. It is a simple window used to send

progress messages to the user. For example, the bounding box for the map is currently

displayed in this screen capture.

CHAPTER 5. GENESIS 49

Unselected Block Selected Edge

Selected Block

Selection Mode

Reset Selection

View Selection
in Main View

Viewing Parameters

Unselected Edge

Selection View

Figure 5-5: Genesis: selection window

5.3.3 Selection window

The selection window (Figure 5-5) is where most of the data structure modi�cations

and visualizations take place. It is a cheap and simple method for selecting blocks

and edges for further modi�cation. The selection view is a 3D window that shows a

simpli�ed 3d map/terrain of the model. Unselected blocks appear with pastel colors,

while selected blocks are colored in dark grey. Unselected edges are colored in white,

while selected edges are colored in red. The user can select and deselect any of

blocks and edges while manipulating the map in 3D. The viewing parameters de�ne

what object pieces are viewed in the main window when a request is made. Possible

selections include terrain geometry, road geometry, building geometry and whether

or not texturing should be used. There is a toggle for selection mode and a user

can either select blocks or edges. The \view selection" button is used to show the

selected geometry in the main view. The \reset selection" button is used to reset all

the blocks and edges to unselected. The ability to select edges and blocks here is a

CHAPTER 5. GENESIS 50

critical component of the the system as it provides the framework to visualize any of

the data structures, as well as visually modify them.

5.3.4 Linking window

Link Types

Linking
Functions

Link Name

List of Defined
Links

Process Links

Figure 5-6: Genesis: linking window

The linking window (Figure 5-6) is where all the linking data structures are in-

teractively modi�ed deleted and created. There is a list of de�ned linked objects

with their corresponding names. Here links are selected for manipulation. The link

types shows the types associated with a selected link. The linking functions are the

tools used to manipulate these linked objects. A linked object may be deleted, which

involves removing its information from the system; viewed, which involves updating

the linking window with its properties and selecting the appropriate blocks and edges

in the selection window; updated, which uses the new information in the linking win-

dow and selection window to update the contents of the current link; and added,

CHAPTER 5. GENESIS 51

which involves creating a new linked object that contains all the information in the

linking window and selection window. Finally, process links uses the information in

the links to modify all the linked objects to adhere to the local model de�nitions and

imposter de�nitions de�ned in section 7.6. In addition this function also creates all

the cross links (de�ned in Chapter 7.6.5) between the linked objects for further use

during visualization.

5.3.5 Model window

Figure 5-7: Genesis: model window

The model window (Figure 5-7) is a very simple method to view and update the

local model associated with an edge or a set of edges. The \show local" button is

used to view the local model for a selected edge in the selection view. If the local

model contains more edges that share the local model, they too are highlighted in

the selection window. The \Update Local Model" button uses the currently selected

blocks and edges in the selection window to update the respective edges' local model

de�nition.

5.3.6 Impostor window

The impostor window is very similar to the linking window in that it provides visu-

alizations of impostor cameras in the model and provides users with the ability to

CHAPTER 5. GENESIS 52

Camera Parameters
Camera List

Camera Functions

Figure 5-8: Genesis: impostor window

modify this information. The camera list shows all the cameras used by the currently

selected edge. The user can select, modify, delete, and create new cameras for the

selected edge(s). Associated with each impostor camera are a set of parameters that

can also be modi�ed. The camera functions are used to make changes as well as

visualize impostor cameras as viewing frustums in the selection view.

CHAPTER 5. GENESIS 53

Default case: two impostors
per edge

Edge: eight
impostor pieces Intersection: eight

impostor pieces

Square: eight
impostor pieces

Figure 5-9: Impostor camera visualization

CHAPTER 5. GENESIS 54

5.4 Visualizations

5.4.1 Impostor cameras

Figure 5-9 and �gure 5-10 represent 2 very important visualizations in \Genesis".

Figure 5-9 shows a variety of impostor cameras for several urban conditions. Each

rotated pyramid looking object represents a camera. The peak of the pyramid repre-

sents the camera position, while the base of the pyramid represents the image plane

for that camera.

5.4.2 Local model visualization

Figure 5-10 shows a square's local model. All the dark blocks represent the blocks

that compose the local model. The red edges represent the edges that share this

local model. It should be noted that the same edges share the same impostor camera

parameters.

5.4.3 Landmark visualization

Figure 5-11 shows how a series of landmarks are visualized in the system. Initially,

the block containing the landmark is highlighted (in the selection window) to show

the position of the landmark. Then when the geometry is viewed in the main window,

landmarks are rendered in red. In the �gure there are two landmarks: the church and

tower. The church as you might notice is not completely red. This is a
aw in the

building de�nitions inputted into the system.

CHAPTER 5. GENESIS 55

Local model blocks

Red edges represent all
the edges that share this local model

Figure 5-10: Local model visualization

CHAPTER 5. GENESIS 56

Landmark Landmark

Figure 5-11: Landmark visualization

Chapter 6

Ville: Visualization

How are all the data structures used to visualize and navigate an urban scene? This

chapter will explore the operations needed for the visualization process. It will dis-

cuss all the di�erent modules, how they interact with each other, and how the data

structures are used.

6.1 System design and modules

Figure 6-1 shows a high level overview of the modules that comprise the visualization

program, \Ville". These modules can be grouped into two major parts: loading

and visualization. Loading deals with reading in the model and populating the city

database, while visualization deals with all the processes associated to render a frame.

6.1.1 CIT reader

This module is the system's interface to loading in the model and all its associated

data structures. It reads the CIT �le (appendix B), and constructs all the data

structures discussed in chapter 3. The reader also accounts for big and little endian

di�erences found between hardware architectures.

57

CHAPTER 6. VILLE: VISUALIZATION 58

City
Database

CIT
Reader

Converter

Partitioner Draw

Viewer

Impostor

Loading Visualization

Figure 6-1: Ville modules

CHAPTER 6. VILLE: VISUALIZATION 59

6.1.2 City database

This module contains all the data structures. It contains the segmentation infor-

mation, winged edge data structure, city geometry, linked objects, and impostor

parameters. All database queries are made to this module.

6.1.3 Converter

The converter deals with converting all the geometry into displayable objects. The

current implementation converts all the generic geometry representations into IRIS

Performer objects.

6.1.4 Partitioner

The partitioner is the heart of the system. It keeps track of which edge the user is

on, and the current local, far, and impostor models. This is where all the information

associated with visualization is updated. It deals with view location, updating im-

postors, traversing the winged edge data structure, and updating the models lists. It

can run in two modes:
ying and walking. Depending on the mode, data is updated

accordingly.

6.1.5 Draw

This module receives camera parameters and geometry to display. It applies tradi-

tional frustum culling techniques, and renders all the visible geometry to the display.

All the information it receives is updated by the partitioner.

6.1.6 Viewer

This module accounts for the callbacks associated with where the user wants to be

and how the user travels around the environment. It sends all its messages to the

partitioner. It work in two modes: \walking" and \
ying". Walking involves walking

around the environment along the edges de�ned in the map, while with
ying the

CHAPTER 6. VILLE: VISUALIZATION 60

user is able to travel anywhere in the scene. Mouse and key events are appropriately

sent depending on the mode.

6.1.7 Impostor

The Impostor module is responsible for o�-screen rendering, extracting the frame and

z bu�ers. It is also responsible for creating impostors from the images.

6.2 Process

At the start of visualization the partitioner is initialized with an edge. At this point

the user decides what visualization mode to use. Visualization modes include: local

model only, far model only, local mode and impostor, and impostor only. Regardless

of the mode, the partitioner constantly updates the local and far model lists, but

depending on the visualization mode the partitioner sends the appropriate list to the

draw process. When the user in using any of the impostor modes and if an impostor is

not cached with the current edge, the partitioner calls the impostor module requesting

it to create one or more impostors depending on the information contained in the

edge. The impostor module creates the impostor and returns it to the partitioner.

The partitioner updates its model lists and sends the draw list to the draw routine.

When the user moves around the scene, the partitioner updates where the user is

in the winged edge data structure (only in walking mode). In addition, the partitioner

queries the edges' local model and impostor parameters and then updates its lists of

local and far models. If needed, it will call the impostor module to create an impostor.

When in
ying model, only the camera location is updated.

6.3 Impostor generation

As discussed earlier, far geometry is represented by a series of impostor images, which

accordingly are used to construct the impostor. The impostor generation technique

we use is based on Sillion et al.'s work [SDB97], the details of which can be found

CHAPTER 6. VILLE: VISUALIZATION 61

in Section 1.2.4. Before the images of the impostor are constructed, camera param-

eters and the far model are sent to the impostor module. Using this, it determines

how many images to generate and which geometry, to use. After the images are

constructed, the impostors are created.

Chapter 7

Urban Morphology

In this chapter we explore issues related to urban morphology. We attempt to exploit

legibility by identifying and constructing a number of representations, and allow-

ing users to manipulate the scene. Algorithms for the identi�cation of the di�erent

morphological components are discussed. Data structures and techniques for using

morphology will be presented.

This chapter is organized as follows. Section 7.1 will motivate why urban mor-

phology is useful for the visualization of urban environments. Section 7.2 de�nes a

number terms used throughout the chapter. Section 7.3 identi�es the problems with

the Sillion et al. system that could potentially use urban morphology for a solution.

Section 7.4 will provide visualizations of the information used for the identi�cation of

morphology. Section 7.5 provides the identi�cation algorithms. Finally, in Section 7.6

will present a number of solutions based on urban morphology.

7.1 Motivation

Little research in computer graphics has attempted to use the morphology of 3D

environments to improve high-performance visualization. The majority of the work

develops techniques that ignore any speci�c structure inherent in the environment.

Understanding morphology introduces the potential to accomplish previously unex-

plored approaches.

62

CHAPTER 7. URBAN MORPHOLOGY 63

Of the diversity of environments used for high-performance visualization, cities

form a unique subset. They possess a very clear sense of structure [Lyn60, Lyn96,

Kos91, Bur71, Mum61], often called the \legibility of the cityscape", and their visual

experiences strongly depend on the city's morphology. The structure of a city can be

understood as the superposition of spatial, social, and historical relationships. The

obvious spatial structure consisting of streets, parks, and built areas is important,

but the history of the city development and its economic/social organization are also

important for understanding urban environments.

Given a visualization scenario, users' visual experiences strongly correlate to how

they interact with the environment. Knowing \important" features, for example,

enables visualization algorithms to devote more computational power to these features

as compared to structurally less important features. New representations may even

be introduced to deal with these features. Also, knowing how a user at a particular

location will probably behave, algorithms can predictively adapt.

7.2 De�nitions

Before we embark on our study of urban morphology, a number of terms used through-

out this chapter must be de�ned. Below are the terms used and their de�nitions:

End Point An end point is the point that starts or ends a street. Thus a street

segment is composed of two end points.

Paths Paths are the channels along which the observer moves. They may be streets,

walkways, transit lines, canals, railroads, et cetera. These are dominant ele-

ments in a city since observers use them to move around a city. A path is

composed of one or more street segments starting and ending with an end point

that has 1 or more than 2 street segments connected to it. All the in between

endpoints are shared by 2 street segments.

Street Segment Street Segments are portions of paths. They are straight lines and

can be of any length. A path is composed of one or more street segments. A

CHAPTER 7. URBAN MORPHOLOGY 64

street segment has two end points.

Block Blocks are the smallest unit of organization and de�ne the subset of buildings

that contains no paths. The buildings may be densely or sparsely packed in the

block.

City Edge City Edges are the linear elements not used or considered as paths by the

observer, e.g. shores, railroads cuts, edges of developments, walls, bridges. City

Edges are barriers between di�erent regions. They are important organizing

features, especially in the role of holding together generalized areas, as in the

surrounding of a city by water or walls.

Nodes Nodes are points -the strategic spots in a city into which an observer can

enter- that are the intensive foci to and from which he is traveling. These

may by primary junctions, places of a break in transportation, a crossing or

convergence of paths, airports, railway stations, moments of shift from one

structure to another, or concentrations. Nodes are found in almost every city

and may be the dominant feature.

Square A square is a type of node. Its underlying feature is that it is composed of

terrain and contains very few buildings. Squares can be in the form of a garden,

large gathering area, course yard, et cetera.

Intersection An intersection is a type of node. It is represented by a break in a

path. The break is in the form of a series of streets a observer can choose to

continue and travel in.

Landmarks Landmarks are point-references, which the observer does not enter; they

are external. They are a simply de�ned object: building, sign, store, or moun-

tain. Their use involves the singling out of one element from a host of possibil-

ities. Some landmarks are distinct ones, typically seen from many angles and

distances.

CHAPTER 7. URBAN MORPHOLOGY 65

7.3 Analysis of Sillion et al.'s system

The system described by Sillion et al. [SDB97] o�ers interactive visualization of ur-

ban scenes, demonstrating the e�ective use of a hybrid geometry and image based

approach. However, the approach breaks down in a number of cases. The funda-

mental problem is a result of the assumption that buildings occlude the viewer on

either side of the street. Thus, when a viewer decides to look at the side of the street,

the buildings occlude distant geometry. However, this does not occur in a number

of cases: squares, intersections, edges, short surrounding buildings, and short street

segments.

When a user is in a square, the block comprising the square contains very little

geometry occluding the viewer. If the user decides to look inside the square, distant

geometry is not occluded and not represented with an impostor. This results in the

user seeing empty spaces, as seen in Figure 7-1b. What the user should be seeing

is depicted in Figure 7-1a. The reason distant geometry is missing is that the local

model is de�ned to contain all the blocks on either side of the street and the impostors

are created in the direction of the street, as seen in Figure 7-1c. Since the user has

the option to take viewing directions perpendicular to the direction of the street, no

occlusion occurs in the square and empty spaces are seen.

The second case where this problem occurs is at an intersection. Here the problem

is similar to the square, but happens for a di�erent reason. It appears because the

viewer is able to see down multiple streets at the intersection. There is no building

geometry in the street; this enables the user to see far beyond the local model, in

viewing directions di�erent from the original street the user is on. Figure 7-2b shows

a view taken at an intersection. When this view is compared to one rendered using

the complete geometry (see Figure 7-2b), it is noticeable that a portion of the far

geometry is not represented. To illustrate this further Figure 7-2c shows an overhead

view of the local model and impostors.

The third case occurs at a city edge. The problem faced here is similar to the

square case. However, the di�erence is that no occlusion occurs on one or both sides

CHAPTER 7. URBAN MORPHOLOGY 66

(a) - street level view using the complete model

(b) - street level view using the Sillion et al.'s hybrid model

(c) - overhead view using the Sillion et al.'s hybrid model

Figure 7-1: A comparison between the complete model view and geometry/impostor
representation of a square in the original Sillion et al. system. Notice the di�erences

between the image (a) and (b). A large portion of the model is missing. Image (c)
shows an overhead view of the local model and the impostors used for the distant

geometry.

CHAPTER 7. URBAN MORPHOLOGY 67

(a) - street level view using the complete model

(b) - street level view using the Sillion et al.'s hybrid model

(c) - overhead view using the Sillion et al.'s hybrid model

Figure 7-2: A comparison between the complete model view and geometry/impostor

representation of an intersection in the original Sillion et al. system. Notice the
di�erences between image (a) and image (b) at the end of the street circled in yellow.

This portion of the model is missing because impostors are computed at this viewing
direction. Image (c) shows an overhead view of the local model and the impostors

used for the distant geometry.

CHAPTER 7. URBAN MORPHOLOGY 68

(a) - street level view using the complete model

(b) - street level view using the Sillion et al.'s hybrid model

(c) - overhead view using the Sillion et al.'s hybrid model

Figure 7-3: A comparison between the complete model view and geometry/impostor
representation of a city edge in the original Sillion et al. system. Notice the di�erences

between image (a) and image (b). A large portion of the model is missing. Image
(c) shows an overhead view of the local model and the impostors used for the distant

geometry.

CHAPTER 7. URBAN MORPHOLOGY 69

of the street. Figure 7-3b shows a view at a city edge. When compared to a rendering

using the complete model Figure 7-3a, it is apparent that a large portion of the model

is missing. To illustrate the problem further, Figure 7-3c shows an overhead view,

identifying the local model and the impostors.

A problem also exists in the case of very short street segments. For example, if

a short street segment is connected to two other streets directed almost orthogonally

to the short street, the impostor representation fails. It fails because impostors are

created in the direction of the short street, even though the travel time in these

short street segments is momentary. Thus, if the user wishes to travel in a direction

orthogonal to the short street, for a moment, there are no impostors representing

the distant geometry. Figure 7-4 shows comparative views (street level and overhead

views) of a location showing an occurrence of the problem.

The �nal failure point can be represented in cases where users are able to view

between and above peripheral buildings. The problem occurs in three cases. The �rst

occurs when buildings are not densely packed on the sides of the street. The second

case happens when builds are too short. Finally, the problem appears when the far

geometry is too tall. This enables the user to see beyond the block. Impostors do

not exist at these viewing directions, and consequently the distant geometry is not

represented. This problem, however, is more apparent with landmarks since users are

accustomed to seeing them from a number of locations. Figure 7-5 shows comparative

views (street level and overhead views) of a location showing the occurrence of the

problem with distant buildings. Figure 7-6 shows comparative views (street level

and overhead views) of the another location of an occurrence of the problem with a

landmark.

We attempt to address the cases de�ned above by introducing representations

that exploit the urban morphology. Accordingly, visualization will adapt depending

on where the user is located.

CHAPTER 7. URBAN MORPHOLOGY 70

(a) - street level view using the complete model

(b) - street level view using the Sillion et al.'s hybrid model

(c) - overhead view using the Sillion et al.'s hybrid model

Figure 7-4: A comparison between the complete model view and geometry/impostor

representation used to illustrate the problems of short street edges in the model in

the Sillion et al. system. Notice the di�erences between image (a) and image (b).
The circled portion in image (b) is missing because impostors are created using the

wrong viewing direction. Image (c) shows an overhead view of the local model and

the impostors used for the distant geometry.

CHAPTER 7. URBAN MORPHOLOGY 71

(a) - street level view using the complete model

(b) - street level view using the Sillion et al.'s hybrid model

(c) - overhead view using the Sillion et al.'s hybrid model

Figure 7-5: A comparison between the complete model view and geometry/impostor

representation used to illustrate the problems of seeing past short peripheral buildings
in the Sillion et al. system. Notice the di�erences between image (a) and image (b).

The circled portion in image (b) is missing because impostors are created using a

di�erent viewing direction. Image (c) shows an overhead view of the local model and
the impostors used for the distant geometry.

CHAPTER 7. URBAN MORPHOLOGY 72

(a) - street level view using the complete model

(b) - street level view using the Sillion et al.'s hybrid model

(c) - overhead view using the Sillion et al.'s hybrid model

Figure 7-6: A comparison between the complete model view and geometry/impostor
representation used to illustrate the problems of seeing landmarks past short periph-

eral buildings in the Sillion et al. system. Notice the di�erences between image (a)

and image (b). The circled portion in image (b) is missing because impostors are
created using a di�erent viewing direction. Image (c) shows an overhead view of the

local model and the impostors used for the distant geometry.

CHAPTER 7. URBAN MORPHOLOGY 73

7.4 Urban conditions

The city elements that are of interest are: squares, intersections, edges, and land-

marks. The urban planning de�nitions of each element are used for the identi�cation

algorithms.

In order to get a sense of how identi�cation is performed, Figure 7-7 shows a

visualization of the entire Paris model. The �gure is an overhead view of the model,

where each building is encoded with its relative height. By using heights and building

densities, represented by this visualization, the system can infer the locations of the

urban characteristics, shown in Figure 7-8.

7.5 Identi�cation

Urban characteristic identi�cation is an important component of Genesis (discussed

in Chapter 5). The algorithms used are derived from the urban planning de�nitions

of urban characteristics. All of the characteristics can be identi�ed manually by

inspection. However, we also describe techniques for identifying these characteristics

automatically. Each characteristic and its associated identi�cation techniques will be

discussed in the following sections.

7.5.1 Squares

In a model, a square is a viewer accessible block that internally contains no building

geometry. The observer should have the freedom to walk within the block. A square

can be in the form of a garden, a large gathering area, a court yard, et cetera.

Figures 7-9 show a series of squares in the Paris model and the blocks that surround

them.

Identi�cation

� A block is a square if its building density is concentrated around the periphery

of the block.

CHAPTER 7. URBAN MORPHOLOGY 74

Figure 7-7: An overhead view of the Paris model: encoded in the buildings are their

relative heights. Dark red buildings represent the lowest buildings while bright red

buildings represent the tallest buildings.

C
H
A
P
T
E
R
7
.
U
R
B
A
N
M
O
R
P
H
O
L
O
G
Y

7
5

BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB

BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB

BBB
BBB
BBB
BBB

BBB
BBB
BBB
BBB

BBB
BBB
BBB
BBB

BBBB
BBBB
BBBB
BBBB

BBB
BBB
BBB

Intersection

City Edge

Sqaure

Landmark

F
ig
u
re

7
-8
:
U
rb
a
n
fea

tu
res

id
en
ti�

ed
in

th
e
P
a
ris

m
o
d
el.

CHAPTER 7. URBAN MORPHOLOGY 76

Figure 7-9: Squares in the Paris model

� By using the names of areas in the city. For example, \Copley Square" is a

representative example. It can be identi�ed as a square if the model contains

this information.

Automated detection algorithm

� �pre-de�ned value�

foreach block 2 city.blocklist

bbox �block bounding box�

�shrink bbox by � �

if (�all buildings outside bbox�) then

AddSquare (block)

This algorithm is rather simple and computationally non-intensive. It is an ap-

proximate approach to computing the building density (using bounding boxes) in the

midst of the block.

7.5.2 Intersections

An intersection is a type of node and is represented by a break in a path. The break

is in the form of a series of streets an observer can choose to travel through. For our

CHAPTER 7. URBAN MORPHOLOGY 77

purposes, a break should be identi�ed as an intersection if it exhibits a very diverse

change in viewing conditions. Speci�cally, intersections have very variant viewing

geometry along the di�erent streets (viewing directions). Figure 7-10 shows a series

of intersections in the Paris model with the blocks that surround them.

Figure 7-10: Intersections in the Paris model

Identi�cation

� An intersection can be identi�ed by looking at the number of streets at an

intersection and the angles between them.

Automated detection algorithm

foreach point 2 map.pointlist

if (point.edgelist.count > 4) then
AddIntersection (point)

continue

if (point.edgelist.count == 4) then
if (�smallest angle between any pair of edges in point.edgelist� < �) then

AddIntersection (point)

CHAPTER 7. URBAN MORPHOLOGY 78

The above algorithm is computationally non-intensive and detects intersections

that fall into two categories. The �rst selects intersections with greater than four

streets. The second looks at intersections with exactly four streets and searches for

streets that are very close. The latter assumes that the subset of valid intersections

(composed of four streets) are those that contain non-orthogonal streets.

7.5.3 City edges

City edges are the linear elements not used or considered as paths by the observer,

e.g. shores, railroads cuts, edges of developments, walls, bridges, et cetera. City

edges are barriers between di�erent regions. They have important organizing features,

especially in the role of demarking speci�c areas. A city edge can be thought of as

being a street near a relatively large open space that overlooks portions of the urban

environment.

&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&

&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&
&&&&&&&

&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&

&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&
&&&&&&&&&&&&

Figure 7-11: Edges in the Paris model

Identi�cation

� A city edge can be identi�ed by looking at the surrounding building densities.

CHAPTER 7. URBAN MORPHOLOGY 79

Automated detection algorithm

` �per-de�ned value�

foreach edge 2 map.edgelist

bbox �create 2d bounding box oriented by edge with

bbox.width = ` and bbox.height = edge.length�

lblock edge.leftblock

rblock edge.rightblock

if (�all buildings in lblock outside 2d bbox�) then

AddEdge (edge)

else if (�all buildings in rblock outside 2d bbox�) then

AddEdge (edge)

The algorithm searches for buildings in an oriented bounding box. The bounding

box has the street as its central axis. Each building's bounding box is used to test

overlaps with the oriented bounding box. This, again, searches for buildings in the

left (lblock) and right blocks (rblock), in this oriented bounding box. If there are

none, then the edge is de�ned as a city edge.

7.5.4 Landmarks

Landmarks for our purposes are buildings that act as reference points with respect

to the environment that surrounds them.

Identi�cation

� A landmark can be identi�ed by examining the surrounding building densities

and building heights.

� It can be performed by using a guidebook and then manually identifying the

buildings.

CHAPTER 7. URBAN MORPHOLOGY 80

Figure 7-12: Landmarks in the Paris model.

Automated detection algorithm

� �pre-de�ned value�

� �pre-de�ned value�

foreach block 2 city.blocklist

foreach building 2 block.buildinglist

if (building.height > h) then

AddLandmark (block, building)
continue

bbox �get building bounding box�

�expand bbox by � �

SmallerBlocklist �all other buildings with
height > building.maxheight+� �

if (�all buildings in SmallerBlocklist outside bbox�) then

AddLandmark (block, building)

The above algorithm uses building densities and building heights to identify land-

marks that stand out from the surrounding cityscape. The algorithm looks for build-

ings that surround the current building. If there are none, then this building stands

out from its context and is visually a landmark. If all the surrounding buildings are

shorter than the building in question, then the building is identi�ed as a landmark.

CHAPTER 7. URBAN MORPHOLOGY 81

7.6 Exploiting urban morphology for improved vi-

sualization

How can morphology be used to increase the �delity of the user's visual experience?

In this section we present a preliminary analysis of several possibilities. Di�erent

treatments are introduced for di�erent urban conditions, de�ned under the framework

of linking (discussed in section 7.6.1). We will look at each individually, developing

and proposing solutions for each case (Section 7.3).

7.6.1 Linking

Linking is the framework needed to connect objects together under a de�ned property.

Linked objects are composed of streets, blocks and/or buildings. Each linked object

is given a property based on the contents of the link. The properties linked objects

can represent are: squares, intersections, edges, and landmarks.

7.6.2 Squares

To overcome the problems associated with visualizing squares (seen in Figure 7-1 and

discussed in Section 7.3), we use an alternate representation that uses the knowledge

provided by the morphology to segment the model and create the associated impos-

tors. Figure 7-13 shows a series of views of the alternate representation. Figure 7-13a

shows the view using the complete model. Figure 7-13c and Figure 7-13d show the

same view using our representation. Finally, Figure 7-13b shows an overhead view

of the geometry depicting both the impostor and local model. From the �gures, the

de�nitions of the local and far models are improved, and the view is a much closer

approximation of the complete model. Below are the details used to construct the

representation associated with a square.

CHAPTER 7. URBAN MORPHOLOGY 82

(a) - street level view (b) - overhead view using the morphology

using the complete model information concerning squares

(c) - street level view using the morphology (d) - same as (c) with the
information concerning squares impostor highlighted

Figure 7-13: A comparison, at a square, between views constructed using the com-
plete model (a) and a geometry/impostor based representation (b,c,d). The geome-

try/impostor based representation was constructing using the morphology informa-

tion concerning squares.

::::
::::
::::

:::::::::::
:::::::::::
:::::::::::
:::::::::::

::
::
::
::
::
::
::
::
::

:::::::
:::::::
:::::::

:::::::::
:::::::::
:::::::::
:::::::::::::::
::::::
::::::
::::::
::::::
::::::

A

F

B

C D

E
1

2

3 4

5X

local model

Figure 7-14: Square's local model.

CHAPTER 7. URBAN MORPHOLOGY 83

Representation

A square de�ned as a linked object is composed of a block and the edges that surround

it. In Figure 7-14, edges 1-5, and block A are linked together to de�ne a square.

Impostor

Figure 7-15: A visualization of the square's local model and the associated cameras

used for the impostors.

In Figure 7-14, edges 1-5, and block A are linked together to de�ne a square.

Blocks A-F de�ne the local model. Images used to create the imposter are generated

by a series of cameras positioned in the center of the block and cover the entire 360

degrees. Figure 7-15 shows how 8 cameras where used to partition the entire 360

degrees. Each camera had a �eld of view of 45 degrees.

CHAPTER 7. URBAN MORPHOLOGY 84

7.6.3 Intersections

To overcome the problems associated with visualizing intersections (seen in Figure 7-2

and discussed in section 7.3), we provide an alternate representation that uses the

knowledge of being in an intersection to segment the model and create the associ-

ated impostors. Figure 7-16 shows a series of views of the alternate representation.

Figure 7-16a shows the view using the complete model. Figure 7-16c and Figure 7-

16d show the same view using our representation. Finally, Figure 7-13b shows an

overhead view of the geometry depicting both the impostor and local model. The

de�nition of the local and far models have improved, and the view is a much closer

approximation of the complete model. Below are the details used to construct the

representation associated with an intersection.

Representation

An intersection is represented in a linked object as the set of streets that compose

the intersection. In Figure 7-17, edges 1-7 represent an intersection.

Impostor

In Figure 7-17, edges 1-7 are linked together to de�ne an intersection. The local

model is de�ned by the blue outline and is represented by the blocks that surround

the linked edges. Impostors are generated with cameras positioned at node A, i.e. the

center of the intersection. The images should cover the entire 360 degrees. Figure 7-

18 shows how 8 cameras where used to partition the entire 360 degrees. Each camera

had a �eld of view of 45 degrees.

7.6.4 City edges

To overcome the problems associated with visualizing city edges (seen in Figure 7-3

and discussed in Section 7.3), we use an alternate representation that uses the knowl-

edge of being in a city edge to segment the model and create the associated impostors.

Figure 7-19 shows a series of views of the alternate representation. Figure 7-19a shows

CHAPTER 7. URBAN MORPHOLOGY 85

(a) - street level view (b) - overhead view using the morphology

using the complete model information concerning intersections

(c) - street level view using the morphology (d) - same as (c) with the

information concerning intersections impostor highlighted

Figure 7-16: A comparison, at an intersection, between views constructed using the
complete model (a) and a geometry/impostor based representation (b,c,d). The ge-

ometry/impostor based representation was constructing using the morphology infor-

mation concerning intersections.

:::::::
:::::::
:::::::
:::::::
:::::::
:::::::
:::::::

::::::
::::::
::::::
::::::
::::::

:::::
:::::
:::::
:::::
:::::
:::::
:::::
:::::

:::::
:::::
:::::
:::::
:::::
:::::
:::::
:::::
:::::

::::
::::
::::
::::
::::

:::::::
:::::::
:::::::
:::::::
:::::::
:::::::
:::::::
:::::::
:::::::
:::::::

:::::::
:::::::
:::::::
:::::::
:::::::
:::::::
:::::::

:::::
:::::
:::::
:::::
:::::

1 2
3

4

56

7
A

local model

x

Figure 7-17: An intersection's local model.

CHAPTER 7. URBAN MORPHOLOGY 86

Figure 7-18: A visualization of the intersection's local model and the associated

cameras used for the impostors.

CHAPTER 7. URBAN MORPHOLOGY 87

the view using the complete model. Figures 7-19c and 7-19d show the same view us-

ing our representation. Finally, Figure 7-13b shows an overhead view of the geometry

depicting both the impostor and local model. From the �gures, the de�nitions of

the local and far models are improved and the view is a much closer approximation

of the complete model. Below are the details used to construct the representation

associated with a city edge.

(a) - street level view (b) - overhead view using the morphology
using the complete model information concerning city edges

(c) - street level view using the morphology (d) - same as (c) with the

information concerning city edges impostor highlighted

Figure 7-19: A comparison, at a city edge, between views constructed using the

complete model (a) and a geometry/impostor based representation (b,c,d). The ge-

ometry/impostor based representation was constructing using the morphology infor-

mation concerning city edges.

CHAPTER 7. URBAN MORPHOLOGY 88

:::
:::
:::

:::
:::
:::
:::
:::
:::
:::
:::
:::

::::
::::
::::

::::::
::::::
::::::
::::::

::::
::::
::::
::::

::::
::::
::::
::::
::::
::::

::::
::::
::::
::::
::::
::::
::::

:::::
:::::
:::::
:::::
:::::
:::::

x

local model

1

A

B

A

B

local model

2 Cx

(a) (b)

Figure 7-20: City Edges, and local models.

Representation

A City Edge is represented as a linked object composed of one or more streets. In

Figure 7-20a, edge 1 is a city edge, and in Figure 7-20b, edge 2 is another city edge.

Imposter

In Figure 7-20a, edge 1 is added to a linked object to de�ne a city edge. Blocks A,

B de�ne the local model. Impostors are generated at the center of edge 1, i.e. the

center of the bridge.

In Figure 7-20b, edge 2 is added to a linked object to de�ne a city edge. Blocks

B and C de�ne the local model. Impostors are generated at the center of edge 2, i.e.

the center of the street.

Images used to create the imposter are generated by a series of cameras that are

positioned at the center of the edge and cover the entire 360 degrees. Figure 7-21

shows how 8 cameras where used to partition the entire 360 degrees at a city edge.

Each camera had a �eld of view of 45 degrees.

CHAPTER 7. URBAN MORPHOLOGY 89

Figure 7-21: A visualization of the city edge's local model and the associated cameras

used for the impostors.

CHAPTER 7. URBAN MORPHOLOGY 90

7.6.5 Proposals

Connecting the linked objects (cross-linking)

Linked objects have to know about other linked objects with which they share objects.

We call this cross-linking. Linked objects contains pointers to other linked objects

they share overlaps with. Thus, after links are constructed, overlaps between links

are identi�ed and the information is stored in each of the overlapping linked objects.

For example, when a square is connected to an intersection. In this case, both the

square and the intersection have overlapping edges. Each linked object representing

the square and intersection contains a pointer to the other, and thus each would know

about the existence of the other.

Cross-links would be very useful during visualizations because of the varying visual

conditions they introduce. Special treatments may be introduced when moving from

a square to an intersection, or if a square is near a landmark. Also, transitioning

between two or more characteristics is easier to perform when this information is

easily at hand.

Landmarks

A landmark is an association of a building and the block with which the building is

a member. The linked object, thus, contains a block (that the landmark is a part

of) and the building identi�ed as a landmark. The block containing the landmark is

necessary for the construction of cross links.

Currently, the system does not use the landmark information for visualization,

but its potential uses would improve visualization. The underlying idea is that during

impostor creation, the knowledge that a building, in an image, is a landmark enables

the impostor creation algorithm to adapt and try to do a better job of representing

the landmark as compared to the other parts of the image. This potentially can be

achieved by using several images to construct the landmark part of the imposter,

and/or using a denser mesh for the landmark part of the impostor.

CHAPTER 7. URBAN MORPHOLOGY 91

Connectivity

In the case of the existence of cross links, connectivity between the urban conditions

may be used to reduce the large memory swaps that occur when a user jumps from

one urban condition to another. These swaps cause the local model to change and a

large impostor is either computed or swapped in. To reduce this, the local model may

be represented as the union of the local models that compose the cross links. Also,

the �eld of view of both impostor representations may be merged and used to de�ne

a new �eld of view for further impostor creation. Care must be taken, however, when

using this approach. The local model may end up being too large, and the size of the

local model must be controlled. Distance from the current position should play a role

when new blocks are added to the local model. If this distance is greater than some

threshold, the local model should stop growing. Accordingly, all the visualization

data structures need to be updated so that the system is able to know when to make

the next impostor and local model switch.

To reduce the number of impostor computations, connectivity between linked

objects may be used to reduce the number of images used. If two or more images

share similar camera parameters, it should be possible to combine the two into one

impostor computation.

Short orthogonal streets

The problem associated with short orthogonal streets (discussed in Section 7.3) can

be approached in two di�erent ways. The �rst can be done by eliminating the problem

completely, and removing all occurrences of short streets that are orthogonally sur-

rounded by other streets and reconnecting the resultant streets. The other approach

is to detect their occurrence and use the surrounding street directions as viewing

directions, de�ning where impostors are generated. Care must be taken, however,

with overlapping impostors. Thus, combination algorithms should be constructed to

combine images for further triangulation.

CHAPTER 7. URBAN MORPHOLOGY 92

Views between and above peripheral buildings

The problem of not seeing any far geometry in views between and above peripheral

buildings (discussed in Section 7.3) is rather complex because of its detection di�culty.

In general, this issue is not too noticeable. However, the problem is more apparent

with tall landmarks that are visible frommost of the city. A possible solution is to keep

track of where the landmarks are located relative to the user and to show them when

they fall into the current viewing frustum. Multiple representations, composed from

di�erent viewpoints, should ideally be used for the landmarks. The representation

chosen should be based on the viewing direction and the distance of the landmark

from the user. For example, a textured quadrilateral is su�cient when the landmark

is very far, and the impostor representation is more e�ective when the landmark is

closer. This would result in giving the user the points of reference needed to navigate

the urban environment as well as improving the user's visual experience.

Chapter 8

Results

The pipeline for the visualization of urban environments was described in the previous

chapters. We will elaborate on our methods and report the performance of the system.

We will present some examples in this section to demonstrate the generality of the

system and how the current implementation deals with the di�erent urban conditions.

8.1 Generalization and morphology

We present in Figure 8-1 and Figure 8-2 the current pipeline being used to visualize

several models. The di�erent stages in the system correctly construct all the data

structures for their respective visualization. The modi�cations made to the data

structures can be incrementally changed and thus modi�ed to perfection.

The initial identi�cation of the blocks, segmentation of the model, and identi�ca-

tion of the urban structures takes approximately 15 minutes, while all other functions

performed are interactive. The time taken to �nalize the data structures is a function

of the user's comfort with the system.

8.2 Visualization results

We present in Figure 8-1 and Figure 8-2 comparative images of di�erent viewer po-

sitions in the same area, in the Paris model and a generated model. The images

93

CHAPTER 8. RESULTS 94

in the center column are produced by the combination of the local 3D model and

the impostor, while the images in the right column are produced using the complete

model). The images in the central column are produced at a sustained rate of between

11 to 20 frames per second, while a complete 3D rendering only achieves between 1

to 2 frames per second (using traditional frustum culling techniques provided by the

Performer high-performance graphics library).

Second, the three dimensional model impostors succeed in providing an accurate

view of distance landscapes, taking into account some parallax changes.

Third, a small amount of cracking is visible when the user comes very close to the

boundary between the local model and the impostor. Also, the life time of impostors

corresponds to the time the user spends in a given street; the impostor remains active

for periods whose size exceed several meters.

Finally, di�erent impostors are automatically created in regions of the model that

require more comprehensive treatment. These regions are automatically and inter-

actively de�ned and modi�ed from a general set of input �les. Figure 8-5 shows

di�erent viewer positions at a square. Figure 8-4 shows di�erent viewer positions at

an intersection. Figure 8-5 shows di�erent viewer positions at a city edge. In all the

�gures, the images in the center column are produced by the combination of the local

3D model and the impostor, while the images in the right column are produced using

the complete model. The images in the left column are the same as the images in the

center column with the impostors emphasized.

8.3 Visualization performance

The results of this implementation are quite satisfactory. The techniques achieve and

average of 15 frames per second. The Paris model is composed of 140,000 polygons.

All timings are computed on an SGI O2 150 Mhz R10000 computer. The speed up

achieved is very dependent on the complexity of the model used. A more complex

model containing more detail in the facades, for example, would not a�ect the com-

plexity of the impostors and thus may produce an even greater speed up.

CHAPTER 8. RESULTS 95

In terms of space, a typical impostor piece, starting with a texture of 512x512,

results in about 1,000 polygons. This is much less the than the visible distant model.

The average size of the local model is approximately 4,000 polygons, therefore the

total 3D geometry being drawn is reduced to 5,000 polygons.

The creation of the impostor takes about 4 seconds. All the operations needed to

create the impostors can be thought of as a pre-process and accordingly stored with

the model.

The model is composed of 1160 edges. Recomputing and storing all the impostors

images clearly is signi�cant and memory requirements can be excessive.

CHAPTER 8. RESULTS 96

Local Model and Local Model Complete

Impostor (colored) and Impostor Model

Figure 8-1: Images extracted from the Paris model.

CHAPTER 8. RESULTS 97

Local Model and Local Model Complete

Impostor (colored) and Impostor Model

Figure 8-2: Images extracted from the generated model.

CHAPTER 8. RESULTS 98

Local Model and Local Model Complete

Impostor (colored) and Impostor Model

Figure 8-3: Images extracted from the Paris model at a square.

CHAPTER 8. RESULTS 99

Local Model and Local Model Complete

Impostor (colored) and Impostor Model

Figure 8-4: Images extracted from the Paris model at an intersection.

CHAPTER 8. RESULTS 100

Local Model and Local Model Complete

Impostor (colored) and Impostor Model

Figure 8-5: Images extracted from the Paris model at a city edge.

Chapter 9

Conclusion and Future Work

This thesis introduces a pipeline for the de�nition, segmentation and visualization of

urban environments. The central idea is the development of a generalized model for

the segmentation of the urban environment and the introduction of data structures

that capture urban morphology. This results in morphological information usable

during visualization. Algorithms for the identi�cation of urban morphology are de-

�ned and a treatment using the morphology is used and proposed. The framework is

based on Sillion et al.'s work [SDB97] of dividing the model into two distinct sub-sets

at each frame: the local neighborhood and distant scenery. The local neighborhood

is rendered using the full 3D model to provide detailed geometric information to the

viewer. For the distant scenery, an \impostor" constructed from images is used. This

impostor can then be used for a large number of frames.

9.1 New impostor types

In the current implementation impostor pieces are constructed using the approach

developed by [SDB97]. These impostors, however, have problems associated with

them. They were originally developed for an environment that assumes that streets

are densely surrounded by buildings. Here, the visibility is blocked by the buildings

along each side of the street. The impostor model they use works well for most streets.

We have extended this implementation to deal with other urban conditions, namely

101

CHAPTER 9. CONCLUSION AND FUTURE WORK 102

squares, city edges, and intersections. However, there are other conditions (discussed

in section 7.3) that are not addressed. To solve these problems alternate impostor

representations should be investigated.

A possible representation to investigate is a layered and hierarchical impostor,

coupled with a notion of importance. A layered and hierarchical representation can be

similar to the representation proposed by Shade et al.[SLS+96]. The work of Shade et

al. dynamically and automatically creates view-dependent, image-based LOD models.

They use a spatial hierarchy to divide the scene so that the LOD models represent

regions of the scene. This allows them to properly depth-sort the LOD models for

rendering. Using a similar hierarchy, based on our impostor representation, would

probably provide some good results.

To use importance in the impostor representation, several LODs need to be used to

render the far geometry. The LOD representation allows the �delity of the geometry

being viewed to change depending on the object's importance, and distance from the

camera. LODmodels could take the form of actual geometry, followed by an impostor,

and �nally by a textured quadrilateral. Each LOD is selected appropriately depending

on the environment and what is being viewed.

9.2 Transitions

Transitions are another important issue needing to be addressed. In the current imple-

mentation, impostors are correct at the viewpoint from which they were generated.

When the user changes streets or comes to the end of a street, a new impostor is

constructed and used. Combination algorithms, which deal with transitions between

impostors and new impostors constructed at other positions, could be a possible ap-

proach. Also, when the local model changes as the user moves from one street segment

to another, parts of the previous impostor turn into 3D geometry. This transition

needs to be addressed and made smoother. One approach is to 3D morph the parts

of the impostor geometry that are going to turn into 3D geometry.

Another issue is when new impostor representations are introduced, how can they

CHAPTER 9. CONCLUSION AND FUTURE WORK 103

smoothly transition from one representation to another. For example, when moving

from a square to an intersection, what is the smoothest technique with which these

two representations can transition.

9.3 Error analysis

An error measure needs to be used to determine the valid range for impostors. The

impostor images contain 3D information and analyzing this 3D information would

enable the system to compute the validity of the impostor for a new viewing position.

To compute error, ones needs to look at the di�erence in appearance between the

actual geometry and that of the impostor. If the di�erence is smaller than some user-

speci�ed threshold, the impostor representation is deemed acceptable. One point

to consider is that this error metric must be fast to compute. A possible analysis

technique would be to use angular disparity to measure the maximum di�erence

between a point in the impostor and the same point in the real geometry.

9.4 Cracking

Finally, with the impostor representation, the problem of cracking is signi�cantly

reduced. It is not completely diminished. Further research needs to address the

problem. Possible solutions include: sharing boundaries or vertices between the model

and the impostor; and de�ning better heuristics that extract relevant data in the

impostors.

Appendix A

Street File Format

It is an ASCII �le with the following properties :

Vx1 Vy1 Vz1 Vx2 Vy2 Vz2

Vx1 Vy1 Vz1 Vx2 Vy2 Vz2

Vx1 Vy1 Vz1 Vx2 Vy2 Vz2

Vx1 Vy1 Vz1 Vx2 Vy2 Vz2

.

.

.

where (Vx1, Vy1 , Vz1) is the position of the start of a street segment and (Vx2, Vy2 ,

Vz2) is the end of a street segment. There are no restrictions on the length of the

streets. It is assumed that a single path may be composed of several street segments.

104

Appendix B

CIT File Format

B.1 Basic syntax

CIT is a binary �le with the following format. Support for ASCII will come later.

Thus it has the disadvantage of platform-dependence; concerns about word lengths,

byte-ordering,
oating-point formats and so on.

The �le consists simply of a series of records consisting of the following �elds:

Separator Datatype NumberOfObjects Data

(int) (int) (int) (Datatype*NumberOfObjects)

The representation of data in this binary �le can be thought of as being represented

by a hierarchy of the �elds de�ned above:

top-level-record (start)

second-level-record (start)

third-level-record (start)

...

third-level-record (end)

another-third-level-record (start)

...

another-third-level-record (end)

second-level-record (end)

105

APPENDIX B. CIT FILE FORMAT 106

another-second-level record (start)

...

another-second-level record (end)

top-level-record (end)

Any unrecognized separators in the records are simply ignored; this ensures that

the format is extensible and that old parsers are still able to read newer versions of the

format. Ignoring a tag consists of simply skipping unknown markers. The ordering

of tags is generally unimportant, except as speci�cally noted below.

B.2 Fundamental data types

Separator This is has datatype int and represents what the data in the �eld repre-

sents. The values and corresponding �elds are shown in Appendix B.4.

Datatype This is has datatype int and represents the data type of the data stored in

the �eld. The values and their corresponding data types as shown in Table B.5.

NumberOfObjects This is has datatype int and represents the number of data

elements stored in the �eld Data.

Data (Datatype) The Data of type \Datatype" is stored here. There are \Num-

berOfObjects" to read.

B.3 Overall �le structure

The �le is made up of a number of sections. More sections may be de�ned later, but

those that are currently de�ned are File, Map, City, Block, Street, Triangle, Building,

TerrainGeometry, BuildingGeometry, StreetGeometry, MaterialDefs, Material, Edge-

Data, Links, and LinkedObjects. A hierarchy exists as to where all these objects

should be de�ned, but everything is de�ned in a File. Each object may contain other

APPENDIX B. CIT FILE FORMAT 107

pre-speci�ed objects in addition to attributes. We will use braces \f" \g" to de�ne

the start and end of objects.

B.3.1 File

File

f

FileVersion XXX

City f ... g

Map f ... g

MaterialDefs f ... g

Links f ... g

g

B.3.2 Map

Map

f

Street f ... g

Street f ... g

Street f ... g

....

g

B.3.3 City

City

f

Block f ... g

Block f ... g

APPENDIX B. CIT FILE FORMAT 108

Block f ... g

....

ImpostorParams f ... g

ImpostorParams f ... g

ImpostorParams f ... g

....

ImpostorLocalModel f ... g

ImpostorLocalModel f ... g

ImpostorLocalModel f ... g

....

g

B.3.4 Block

Block

f

BlockID XXX

EdgeData f ... g

BuildingGeometry f ... g

TerrainGeometry f ... g

g

B.3.5 Street

Street

f

StreetStart XX XX XX

StreetEnd XX XX XX

StreetEdgeID XX

APPENDIX B. CIT FILE FORMAT 109

StreetRightBlockID XX

StreetLeftBlockID XX

StreetLeftBlockID XX

StreetImpostorParamsID XX

g

B.3.6 Triangle

Triangle

f

TriangleMaterialID XX

TriangleVertex XX XX XX

TriangleNormal XX XX XX

TriangleTexture XX XX

TriangleVertex XX XX XX

TriangleNormal XX XX XX

TriangleTexture XX XX

TriangleVertex XX XX XX

TriangleNormal XX XX XX

TriangleTexture XX XX

g

B.3.7 Building

Building

f

BuildingID XX

BuildingTriangles f ... g

g

APPENDIX B. CIT FILE FORMAT 110

B.3.8 TerrainGeometry

TerrainGeometry

f

Triangle f ... g

Triangle f ... g

...

g

B.3.9 BuildingGeometry

BuildingGeometry

f

Triangle f ... g

Triangle f ... g

...

g

B.3.10 StreetGeometry

StreetGeometry

f

Triangle f ... g

Triangle f ... g

...

g

APPENDIX B. CIT FILE FORMAT 111

B.3.11 BuildingTriangles

BuildingTriangles

f

Triangle f ... g

Triangle f ... g

...

g

B.3.12 MaterialDefs

MaterialDefs

f

Material f ... g

Material f ... g

...

g

B.3.13 Material

Material

f

MaterialID XX

MaterialTextureName XXXXXXXXXXX

MaterialAmbient XX XX XX

MaterialDi�use XX XX XX

MaterialSpecular XX XX XX

g

APPENDIX B. CIT FILE FORMAT 112

B.3.14 EdgeData

EdgeData

f

BlockEdgeID XX

BlockEdgeID XX

...

g

B.3.15 Links

Links

f

LinkedObjects f ... g

LinkedObjects f ... g

...

g

B.3.16 LinkedObjects

LinkedObjects

f

LinkedObjectID XX

LinkedObjectLinkType XX

LinkedObjectLinkName XXXXXXXX

LinkedObjectBlockID XX

LinkedObjectBlockID XX

...

LinkedObjectEdgeID XX

LinkedObjectEdgeID XX

APPENDIX B. CIT FILE FORMAT 113

...

LinkedObjectBuildingID XX

LinkedObjectBuildingID XX

...

LinkedObjectLinkedObjectsID XX

LinkedObjectLinkedObjectsID XX

...

g

B.3.17 ImpostorParams

ImpostorParams

f

ImpostorParamsID XX

ImpostorCamera f ... g

ImpostorCamera f ... g

...

g

B.3.18 ImpostorCamera

ImpostorCamera

f

ImpostorCameraName XXXXXX

ImpostorCameraPosition XX XX XX

ImpostorCameraViewingDirection XX XX XX

ImpostorCameraUpDirection XX XX XX

ImpostorCameraElevation XX

APPENDIX B. CIT FILE FORMAT 114

ImpostorCameraNearDistance XX

ImpostorCameraFarDistance XX

ImpostorCameraAspectRatio XX

ImpostorCameraWidthAngle XX

ImpostorCameraHeightAngle XX

g

B.3.19 ImpostorLocalModel

ImpostorLocalModel

f

ImpostorLocalModelID XX

ImpostorLocalModelBlockID XX

ImpostorLocalModelEdgeID XX

...

g

APPENDIX B. CIT FILE FORMAT 115

B.4 Separators

Table B.1 and table B.2 are a quick reference to all the �elds and where they are in

the heiarchy.

Tag Name Value Data Type Size Parent Compliment

StartOfFile 0 None 0 None EndOfFile

EndOfFile 1 None 0 None StartOfFile

StartOfMap 2 None 0 File EndOfMap

EndOfMap 3 None 0 File StartOfMap

StartOfStreet 4 None 0 Map EndOfStreet

EndOfStreet 5 None 0 Map StartOfStreet

StartOfCity 6 None 0 File EndOfCity

EndOfCity 7 None 0 None StartOfCity

StartOfBlock 8 None 0 City EndOfBlock

EndOfBlock 9 None 0 City StartOfBlock

StartOfTriangle 10 None 0 TerrainGeometry EndOfTriangle

BuildingGeometry

StreetGeometry

BuildingTriangles

EndOfTriangle 11 None 0 TerrainGeometry StartOfTriangle

BuildingGeometry

StreetGeometry

BuildingTriangles

StartOfBuilding 12 None 0 BuildingGeometry EndOfBuilding

EndOfBuilding 13 None 0 BuildingGeometry StartOfBuilding

StartOfTerrainGeometry 14 None 0 Block EndOfTerrainGeometry

EndOfTerrainGeometry 15 None 0 Block StartOfTerrainGeometry

StartOfBuildingGeometry 16 None 0 Block EndOfBuildingGeometry

EndOfBuildingGeometry 17 None 0 Block StartOfBuildingGeometry

StartOfStreetGeometry 18 None 0 Street EndOfStreetGeometry

EndOfStreetGeometry 19 None 0 Street StartOfStreetGeometry

StartOfMaterial 20 None 0 MaterialDefs EndOfMaterial

EndOfMaterial 21 None 0 MaterialDefs StartOfMaterial

StartOfMaterialDefs 22 None 0 File EndOfMaterialDefs

EndOfMaterialDefs 23 None 0 File StartOfMaterialDefs

StartOfEdgeData 24 None 0 Block EndOfEdgeData

EndOfEdgeData 25 None 0 Block StartOfEdgeData

Table B.1: File separators

B.5 Data type �eld values

Table B.3 shows the values used for each data type in the �le format.

APPENDIX B. CIT FILE FORMAT 116

Tag Name Value Data Type Size Parent Compliment

FileVersion 26
oat 1 File None

StreetStart 27 double 3 Street None

StreetEnd 28 double 3 Street None

StreetEdgeID 29 int 1 Street None

StreetLeftBlockID 30 int 1 Street None

StreetRightBlockID 31 int 1 Street None

StreetType 32 int 1 Street None

TriangleVertex 33 double 3 Triangle None

TriangleTexture 34 double 2 Triangle None

TriangleNormal 35 double 3 Triangle None

TriangleMaterialID 36 int 1 Triangle None

BlockID 37 int 1 Block None

BlockEdgeID 38 int 1 Block None

MaterialID 39 int 1 Material None

MaterialTextureName 40 char variable Material None

MaterialAmbient 41
oat 3 Material None

MaterialDi�use 42
oat 3 Material None

MaterialSpecular 43
oat 3 Material None

StartOfLinks 44 None 0 File EndOfLinks

EndOfLinks 45 None 0 File StartOfLinks

StartOfLinkedObject 46 None 0 Links None

EndOfLinkedObject 47 None 0 Links None

LinkedObjectID 48 int 1 LinkedObject None

LinkedObjectEdgeID 49 int 1 LinkedObject None

LinkedObjectBlockID 50 int 1 LinkedObject None

LinkedObjectLinkType 51 int 1 LinkedObject None

LinkedObjectLinkName 52 char variable LinkedObject None

StreetImpostorLocalModeID 53 int 1 Street None

StreetImpostorParamsID 54 int 1 Street None

StartOfImpostorParams 55 None 0 City EndOfImpostorParams

EndOfImpostorParams 56 None 0 City StartOfImpostorParams

StartOfImpostorLocalModel 57 None 0 City EndOfImpostorLocalModel

EndOfImpostorLocalModel 58 None 0 City StartOfImpostorLocalModel

StartOfImpostorCamera 59 None 0 ImpostorParams EndOfImpostorCamera

EndOfImpostorCamera 60 None 0 ImpostorParams StartOfImpostorCamera

ImpostorLocalModelID 61 int 1 ImpostorLocalModel None

ImpostorLocalModelBlockID 62 int 1 ImpostorLocalModel None

ImpostorLocalModelEdgeID 63 int 1 ImpostorLocalModel None

ImpostorParamsID 64 int 1 ImpostorParams None

ImpostorCameraPosition 65 double 3 ImpostorCamera None

ImpostorCameraViewingDirection 66 double 3 ImpostorCamera None

ImpostorCameraUpDirection 67 double 3 ImpostorCamera None

ImpostorCameraElevation 68
oat 1 ImpostorCamera None

ImpostorCameraNearDistance 69
oat 1 ImpostorCamera None

ImpostorCameraFarDistance 70
oat 1 ImpostorCamera None

ImpostorCameraAspectRatio 71
oat 1 ImpostorCamera None

ImpostorCameraWidthAngle 72
oat 1 ImpostorCamera None

ImpostorCameraHeightAngle 73
oat 1 ImpostorCamera None

BuildingID 74 int 1 Building None

StartOfBuildingTriangles 75 None 0 Building EndOfBuildingTriangles

EndOfBuildingTriangles 76 None 0 Building StartOfBuildingTriangles

LinkedObjectBuildingID 77 int 1 LinkedObject None

LinkedObjectLinkedObjectsID 78 int 1 LinkedObject None

ImpostorCameraName 79 char variable ImpostorCamera None

Table B.2: File separators

APPENDIX B. CIT FILE FORMAT 117

Separator Value

oatType 0

doubleType 1

intType 2

longType 3

charType 4

noneType 5

Table B.3: Data type �eld values

B.6 Sample code

B.6.1 Reading data

int ReadObject (int *pType,

int *pDataType,

int *pNumberOfObjects,

void **ppData)

{

if (!i_pfFilePointer)

return TRUE;

if (feof (i_pfFilePointer))

return TRUE;

if (!fread (pType, sizeof(int), 1, i_pfFilePointer))

return TRUE;

if (!fread (pDataType, sizeof (int), 1, i_pfFilePointer))

return TRUE;

if (!fread (pNumberOfObjects, sizeof(int), 1, i_pfFilePointer))

return TRUE;

#ifdef _M_IX86 /* PC SPECIFIC BYTE CONVERSION */

ConvertByteOrdering (1, DataType::intType,

pType, pType);

ConvertByteOrdering (1, DataType::intType,

pDataType, pDataType);

ConvertByteOrdering (1, DataType::intType,

pNumberOfObjects, pNumberOfObjects);

#endif

APPENDIX B. CIT FILE FORMAT 118

if (*pNumberOfObjects == 0)

return FALSE;

(*ppData) = (void *) malloc (DataType::GetSize (pDataType)

*(*pNumberOfObjects));

assert (*ppData);

if (!fread ((*ppData), DataType::GetSize (pDataType),

(*pNumberOfObjects), i_pfFilePointer))

return TRUE;

#ifdef _M_IX86 /* PC SPECIFIC BYTE CONVERSION */

ConvertByteOrdering ((*pNumberOfObjects), (*pDataType),

(*ppData), (*ppData));

#endif

return FALSE;

}

/* PC byte ordering code */

Bool

File:: ConvertByteOrdering (int Size,

int dataType,

void *fromData,

void *toData)

{

for (int CurrentByte=0; CurrentByte < Size; CurrentByte++) {

switch (dataType) {

case DataType::floatType: {

union FloatConvert {

float i;

char c[4];

} fromConvert, toConvert;

fromConvert.i = ((float *)fromData)[CurrentByte];

for (int i=0; i < 4; i++)

toConvert.c[i] = fromConvert.c[3-i];

((float *)toData)[CurrentByte] = toConvert.i;

break;

}

case DataType::doubleType: {

union DoubleConvert {

double i;

char c[8];

} fromConvert, toConvert;

fromConvert.i = ((double *)fromData)[CurrentByte];

APPENDIX B. CIT FILE FORMAT 119

for (int i=0; i < 4; i++)

toConvert.c[i+4] = fromConvert.c[3-i];

for (i=4; i < 8; i++)

toConvert.c[i-4] = fromConvert.c[7-i+4];

((double *) toData)[CurrentByte] = toConvert.i;

break;

}

case DataType::intType: {

union FloatConvert {

int i;

char c[4];

} fromConvert, toConvert;

fromConvert.i = ((int *)fromData)[CurrentByte];

for (int i=0; i < 4; i++)

toConvert.c[i] = fromConvert.c[3-i];

((int *)toData)[CurrentByte] = toConvert.i;

break;

}

case DataType::longType: {

union LongConvert {

long i;

char c[4];

} fromConvert, toConvert;

fromConvert.i = ((long *)fromData)[CurrentByte];

for (int i=0; i < 4; i++)

toConvert.c[i] = fromConvert.c[3-i];

((long *)toData)[CurrentByte] = toConvert.i;

break;

}

case DataType::charType:

((char *)toData)[CurrentByte] = ((char *)fromData)[CurrentByte];

break;

case DataType::noneType:

default:

Warning ("Unknown Data Type, skipping");

break;

}

}

return FALSE;

}

APPENDIX B. CIT FILE FORMAT 120

B.6.2 Writing data

int

File:: WriteSeperator (int Seperator)

{

fwrite (&Seperator, sizeof (int), 1, i_pfFilePointer);

int dummy = DataType:: noneType;

fwrite (&dummy, sizeof (int), 1, i_pfFilePointer);

dummy = 0;

fwrite (&dummy, sizeof(int), 1, i_pfFilePointer);

return FALSE;

}

int WriteData (int DataSeperator,

int Size,

int dataType,

void *pData)

{

fwrite (&DataSeperator, sizeof (int), 1, i_pfFilePointer);

fwrite (&dataType, sizeof (int), 1, i_pfFilePointer);

fwrite (&Size, sizeof (int), 1, i_pfFilePointer);

switch (dataType) {

case DataType::floatType:

fwrite ((float *) pData, DataType::GetSize (dataType),

Size, i_pfFilePointer);

break;

case DataType::doubleType:

fwrite ((double *) pData, DataType::GetSize (dataType),

Size, i_pfFilePointer);

break;

case DataType::intType:

fwrite ((int *) pData, DataType::GetSize (dataType),

Size, i_pfFilePointer);

break;

case DataType::longType:

fwrite ((long *) pData, DataType::GetSize (dataType),

Size, i_pfFilePointer);

break;

case DataType::charType:

fwrite ((char *) pData, DataType::GetSize (dataType),

Size, i_pfFilePointer);

APPENDIX B. CIT FILE FORMAT 121

break;

case DataType::noneType:

default:

Warning ("Unknown Data Type, skipping");

break;

}

return FALSE;

}

Bibliography

[Ale77] Christopher Alexander. A Pattern Language: Towns, Buildings, Construc-

tion. Oxford University Press, New York, NY, 1977.

[Ale87] Christopher Alexander. A New Theory of Urban Design. Oxford University

Press, New York, NY, 1987.

[ARB90] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. Towards

image realism with interactive update rates in complex virtual building

environments. Computer Graphics (1990 Symposium on Interactive 3D

Graphics), 24(2):41{50, March 1990.

[Bau74] Bruce G. Baumgart. Geometric modeling for computer vision. AIM-249,

STA -CS-74-463, CS Dept, Stanford U., October 1974.

[Bla87] K. Blanton. A new approach for
ight simulator visual systems. In Simu-

lators IV, Proceedings of the SCCS Simulators Conference, pages 229{233,

1987.

[Bur71] B C Burnaby. Urban Structure. The Planning Department of the District

of Burnaby B.C. Canada, B.C., Canada, 1971.

[CDL+96] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David Salesin, and

John Snyder. Fast rendering of complex environments using a spatial

hierarchy. In Proceedings of Graphics Interface '96, pages 365{371, 1996.

[Cla76] J. H. Clark. Hierarchical geometric models for visible surface algorithms.

Communications of the ACM, 19(10):547{554, October 1976.

122

BIBLIOGRAPHY 123

[CW93] Shenchang Eric Chen and Lance Williams. View interpolation for image

synthesis. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH

'93 Proceedings), volume 27, pages 279{288, August 1993.

[DP92] L. De Floriani and E. Puppo. An on-line algorithm for constrained de-

launey triangulations. CVGIP: Graphical Models and Image Processing,

54(4):290{300, July 1992.

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and

rendering architecture from photographs: A hybrid geometry- and image-

based approach. In Holly Rushmeier, editor, SIGGRAPH 96 Conference

Proceedings, Annual Conference Series, pages 11{20. ACM SIGGRAPH,

Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09

August 1996.

[Eas82] C. M. Eastman. Introducation to computer aided design. In Course Notes.

Carnegie-Mellon University, Pittsburg, PA, 1982.

[FS93] Thomas A. Funkhouser and Carlo H. S�equin. Adaptive display algorithm

for interactive frame rates during visualization of complex virtual environ-

ments. In James T. Kajiya, editor, Computer Graphics (SIGGRAPH '93

Proceedings), volume 27, pages 247{254, August 1993.

[GGSC96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.

Cohen. The lumigraph. In Holly Rushmeier, editor, SIGGRAPH 96 Con-

ference Proceedings, Annual Conference Series, pages 43{54. ACM SIG-

GRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana,

04-09 August 1996.

[GK93] Ned Greene and M. Kass. Hierarchical Z-bu�er visibility. In Computer

Graphics Proceedings, Annual Conference Series, 1993, pages 231{240,

1993.

BIBLIOGRAPHY 124

[GR91a] T. Gonzalez and M. Razzazi. Properties and algorithms for constrained

Delaunay triangulations. In Proc. 3rd Canad. Conf. Comput. Geom., pages

114{117, 1991.

[GR91b] F. Goodchild and David W. Rhind, editors. Geographical Information

Systems: Principles and Applications. John Wiley & Sons, Inc., New

York, NY, 1991.

[GS85] Leonidas Guibas and Jorge Stol�. Primitives for the manipulation of gen-

eral subdivisions and computation of voronoi diagrams. ACM Transactions

on Graphics, 4(2):74{123, April 1985.

[JLF95] William Jepson, Robin Liggett, and Scott Friedman. An environment for

real-time urban simulation. In Pat Hanrahan and Jim Winget, editors,

1995 Symposium on Interactive 3D Graphics, pages 165{166. ACM SIG-

GRAPH, April 1995. ISBN 0-89791-736-7.

[Jon71] C. B. Jones. A new approach to the `hidden line' problem. Computer

Journal, 14(3):232{237, August 1971.

[Jun88] Dz-Mou Jung. An optimal algorithm for constrained Delaunay triangu-

lation. In Proc. 26th Allerton Conf. Commun. Control Comput., pages

85{86, Urbana, IL, 1988. Univ. Illinois.

[Kaj85] James T. Kajiya. Anisotropic re
ection models. In B. A. Barsky, editor,

Computer Graphics (SIGGRAPH '85 Proceedings), volume 19, pages 15{

21, July 1985.

[KM92] T. C. Kao and D. M. Mount. Incremental construction and dynamic main-

tenance of constrained Delaunay triangulations. In Proc. 4th Canad. Conf.

Comput. Geom., pages 170{175, 1992.

[Kos91] Spiro Kostof. The City Shaped: Urban Patterns and the Meanings Through

History. Little, Brown and Co., Boston, MA, 1991.

BIBLIOGRAPHY 125

[LG95] David Luebke and Chris Georges. Portals and mirrors: Simple, fast evalu-

ation of potentially visible sets. In Pat Hanrahan and Jim Winget, editors,

1995 Symposium on Interactive 3D Graphics, pages 105{106. ACM SIG-

GRAPH, April 1995. ISBN 0-89791-736-7.

[LH96] Marc Levoy and Pat Hanrahan. Light �eld rendering. In Holly Rushmeier,

editor, SIGGRAPH 96 Conference Proceedings, Annual Conference Series,

pages 31{42. ACM SIGGRAPH, Addison Wesley, August 1996. held in

New Orleans, Louisiana, 04-09 August 1996.

[Lyn60] Kevin Lynch. The Image of the City. MIT Press, Cambridge, MA, 1960.

[Lyn96] Kevin Lynch. Good City Form. MIT Press, Cambridge, MA, tenth edition,

1996.

[MB95] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based

rendering system. In Robert Cook, editor, SIGGRAPH 95 Conference

Proceedings, Annual Conference Series, pages 39{46. ACM SIGGRAPH,

Addison Wesley, August 1995. held in Los Angeles, California, 06-11 Au-

gust 1995.

[MS95] Paulo W. C. Maciel and Peter Shirley. Visual navigation of large environ-

ments using textured clusters. In Pat Hanrahan and Jim Winget, editors,

1995 Symposium on Interactive 3D Graphics, pages 95{102. ACM SIG-

GRAPH, April 1995. ISBN 0-89791-736-7.

[Mum61] Lewis Mumford. The City in History. Harcourt: Brace and World, New

York, NY, 1961.

[RB93] J. Rossignac and P. Borrel. Multi-resolution 3D approximation for ren-

dering complex scenes. In Second Conference on Geometric Modelling in

Computer Graphics, pages 453{465, June 1993. Genova, Italy.

[RP94] Matthew Regan and Ronald Pose. Priority rendering with a virtual re-

ality address recalculation pipeline. In Andrew Glassner, editor, Proceed-

BIBLIOGRAPHY 126

ings of SIGGRAPH '94 (Orlando, Florida, July 24{29, 1994), Computer

Graphics Proceedings, Annual Conference Series, pages 155{162. ACM

SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[SBJ97] Michael Southworth and Eran Ben-Joseph. Streets and the Shaping of

Towns and Cities. McGraw Hill, New York, NY, 1997.

[SD96] Steven M. Seitz and Charles R. Dyer. View morphing: Synthesizing 3D

metamorphoses using image transforms. In Holly Rushmeier, editor, SIG-

GRAPH 96 Conference Proceedings, Annual Conference Series, pages 21{

30. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans,

Louisiana, 04-09 August 1996.

[SDB97] Fran�cois Sillion, George Drettakis, and Benoit Bodelet. E�cient impos-

tor manipulation for real-time visualization of urban scenery. Computer

Graphics Forum (Proc. of Eurographics '97), 16(3):207{218, September

1997.

[Sei88] R. Seidel. Constrained Delaunay triangulations and Voronoi diagrams. In

Report 260, pages 178{191. IIG-TU, Graz, Austria, 1988.

[Slo91] S. W. Sloan. A fast algorithm for generating constrained Delaunay tri-

angulations. Research Report 065.07.1991, The University of Newcastle

Department of Civil Engineering and Surveying, New South Wales, 1991.

[SLS+96] Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and John

Snyder. Hierarchical image caching for accelerated walkthroughs of com-

plex environments. In Holly Rushmeier, editor, SIGGRAPH 96 Conference

Proceedings, Annual Conference Series, pages 75{82. ACM SIGGRAPH,

Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09

August 1996.

BIBLIOGRAPHY 127

[SS96] Gernot Schau
er and Wolfgang Sturzlinger. A three dimensional image

cache for virtual reality. Computer Graphics Forum, 15(3):227{235, Au-

gust 1996.

[TS91] Seth J. Teller and Carlo H. S�equin. Visibility preprocessing for interac-

tive walkthroughs. In Thomas W. Sederberg, editor, Computer Graphics

(SIGGRAPH '91 Proceedings), volume 25, pages 61{69, July 1991.

[Wei86] Kevin J. Weiler. Topological structures for geometric modeling. Ph.d.

thesis, Rensselaer Polytechnic Institute, August 1986.

[Wer94] Josie Wernecke. The Inventor Mentor. Addison-Wesley, Reading, MA,

1994.

[WT92] C. A. Wang and Y. H. Tsin. E�ciently updating constrained Delaunay

triangulations. In Proc. 4th Canad. Conf. Comput. Geom., pages 176{181,

1992.

