Reliable Multicast for Publish/Subscribe Systems
by
Qixiang Sun

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2000

(© Massachusetts Institute of Technology 2000. All rights reserved.

AL NOT .
Department of Electrical Engineering and Computer Science
May 19, 2000

Certified Dy . ..o
Nancy Lynch

Professor

Massachusetts Institute of Technology

Thesis Supervisor

Accepted Dy ..o
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Reliable Multicast for Publish/Subscribe Systems
by

Qixiang Sun

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2000, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Group-based reliable multicast is an important building block for distributed applications. For large systems,
however, traditional approaches do not scale well due to centralized recovery mechanisms and excessive
message overhead. In this paper, we present a reliable probabilistic multicast, rpbcast, that is a hybrid of
the centralized and gossip-based approaches. In particular, rpbcast extends previous work by supporting
high packet rates and many active senders. Rpbcast uses gossip as the primary retransmission mechanism
and only contacts loggers if gossips fail. Large groups of active senders are supported using negative gossip
which describes what a receiver lacks instead of what it has. Moreover, negative gossip allows pull based
recovery and converges faster than push based recovery. Rpbcast also applies hashing techniques to reduce
message overhead. Garbage collection in rpbcast is stability oriented. The approximate membership protocol
in rpbcast exploits some garbage collection flexibilities to avoid expensive join/leave operations.

Thesis Supervisor: Nancy Lynch
Title: Professor
Massachusetts Institute of Technology

Acknowledgments

First, I would like to thank Daniel Sturman and Professor Nancy Lynch for their guidance. Their emphasis
on both the theoretical aspect and the system aspect of my research helped me a great deal in understanding
and evaluating my work.

Second, I would like to thank Idit Keider and Mark Astley for their input on the design and testing of the
hybrid protocol. Discussions with them were very helpful in the development of the protocol. I would also
like to thank Professor Ken Birman and Oznur Ozkasap from Cornell for their assistance in understanding
pbcast.

Lastly, I would like to thank my parents Yufeng and Ying for their unwavering support throughout my

career at M.I.T. Without them, none of this would have been possible.

To My Parents

Contents

1 Introduction

1.1 Motivation e e e
1.2 Background e
1.3 Related Work L o e
1.4 Our Contributions e

2 Protocol Overview

2.1 Specification of Reliable Multicast
2.2 Hybrid Protocol Overview e e e
2.3 Specification of Unreliable Communication Channel

3 Logger Based Recovery

3.1 Sender Module e
3.2 Logger Module e
3.3 Receiver Module e
3.4 Safety e e
3.5 Liveness

4 Combining with Gossip Based Recovery

4.1 Generic Gossip Implementationo
4.2 Convergence Rate e
4.2.1 Markov Chain Approach
4.2.2 Recurrence Approach
4.3 Rpbcast - Integrating Logger/Gossip Based Recovery

5 Heartbeats, Membership, and Logger Garbage Collection

5.1 Gossiping and Hashing Heartbeats L .
5.2 Logger Garbage Collection e
5.3 Approximate Membership

11
11
12
14
15

17
17
19
20

22
23
25
26
28
30

32
32
35
37
38
40

6 Member Crashes

6.1 Specification with Crashes
6.2 Sender/Receiver Crashes

7 Simulation Results

7.1 Experimental setup

7.2 Retransmission load distribution and link utilization

7.3 Delivery Latency

7.4 Non-repair related overhead

7.5 Effects of different gossip selection distribution

8 Conclusion

Bibliography

55
95
56

58
58
60
61
62
65

66

68

List of Figures

1-1

2-1

3-1
3-2
3-3

4-2
4-3
4-4

5-1

5-3

7-1
7-2
7-3
7-4
7-5

-7
7-8

Multicast o e e e e 14
Reliable Multicast Specification o 17
Reliable probabilistic multicast L 19
Logger based recovery L e e 23
Data movement in the logger based recovery L oL 28
Where are the messages e e 29

Gossip recovery examples: In (a), gossiper A pushes out a missing packet X to B. In (b),

gossiper C' pulls in a missing packet Y from D. o0 33
Convergence rate for 100 members, with no message loss 36
Model as a Markov Chain e 37
GC notification and repair example L. L 41
Hashing and merging heartbeat information 45
Membership: Joining 50
Membership: High level state transitions oo 53
Test topology e 59
Load distribution 60
Link traffic o 61
Latency vs send rate e 62
Unreliable packets in pbeast Lo 63
Varying number of senders L L 64
Varying loss rate L e 64
Link utilization oL e 65

List of Tables

7.1 Protocol specific parameters L. L e e

7.2 Delivery latency e

10

Chapter 1

Introduction

Many applications today will benefit from a robust, scalable, and reliable multicast protocol. In this thesis,
we leverage existing research results and propose a new reliable multicast protocol that is more scalable.
Section 1.1 presents the motivation behind this work and the target application scenarios. Sections 1.2 and
1.3 give some background information related to our target application and previous work. We conclude in

Section 1.4 with an brief summary of the protocol and an outline for the rest of the thesis.

1.1 Motivation

Publish/subscribe systems (pub/sub) offer a data distribution service where new information, events, are
published into the system and routed to all interested subscribers. These systems provide a paradigm
for integrating applications in distributed environments. Reliable event delivery is an important property
in pub/sub systems. Traditionally, multicast based protocols are used for mass information distribution.
However, reliable multicasts in pub/sub systems differ from other settings, such as group communication
or multicast data transfer, in four distinct aspects. First, pub/sub systems must support intermittently
connected subscribers. Second, high availability to applications in terms of steady throughput and forward
progress is essential: stalling is consider a fault. Third, large numbers of subscribers with diverse interests
require a multicast protocol to be scalable in terms of size of the group and number of groups operating
simultaneously. And fourth, multicast must operate efficiently under changing membership.

Subscribers in pub/sub systems may have intermittent connectivity. Therefore a reliable multicast in this
context must also guarantee that events are delivered to disconnected subscribers when they reconnect. This
reliability criteria differs from group communication setting such as ISIS [8] in that disconnected members are
treated as faulty members in ISIS and are not covered under the “all or none” delivery semantics characterized
in [16]. Also, group communication services are designed for collaborative applications with strong state
consistency requirements. In contrast, subscribers in a pub/sub system are generally non-collaborative and

manipulate events independent of each other. Consequently, recovery through state transfer is not applicable.

11

1.2. BACKGROUND

The networking community treats disconnected members in a multicast data transfer in a similar manner
as ISIS. Disconnected members are simply excluded from the reliability guarantee. In short, many systems
do not extend reliable delivery guarantees to members with changing status. This type of guarantee is
insufficient for pub/sub systems with mobile agents. Hence a multicast protocol for pub/sub systems must
provide support for intermittently connected members.

Pub/sub systems also require continuous forward progress. Due to unstable events that has been received
by some but not all members, most reliable multicast protocols to date will stall progress via flow control
mechanisms when their buffers are full. Without using stable storage, stalling is necessary to enforce relia-
bility. Unlike pub/sub, in most systems stalling is not considered a fault for maintaining state consistency.
Practically speaking, stalling may not be a concern if the send rates in a system is sufficiently slow. Unfor-
tunately, pub/sub systems have fast send rates. Moreover the need for high availability precludes stalling as
an option. For pub/sub systems, having inconsistency among some subscribers is more desirable than lack
of progress in the entire system. For example, the latest stock quote should not be delayed simply because
one subscriber lags behind. This suggests that End-to-End reliability [33] is preferable.

Diverse subscriber interests, where each subscriber is only interested in a small subset of all events, com-
plicate the design of reliable multicast in pub/sub systems. One potential approach is to divide subscribers
dynamically into different multicast groups based on their interests, but this approach produces hundreds,
if not thousands, of multicast groups operating simultaneously. Thus any multicast protocols for such a
pub/sub system must also scale well with respect to the number of groups. Existing protocols are inefficient
in this aspect because of high protocol overhead associated with periodic updates within each group.

Large number of publishers and subscribers also presents a challenge for reducing protocol overhead,
maintaining membership information, and detecting failure. Due to the sheer size of the system, membership
changes occur often in pub/sub systems. The Virtual Synchrony model, used in group communication to
maintain precise membership and strict message ordering, will block sends while membership is changing.
This constraint can quickly stall a system, which is strongly undesirable. Pub/sub systems can operate on
a weaker model because a membership change implies that a subscriber has changed its interest in some
events. Since each subscriber has a filter for what they are interested in, an approximate membership that
includes everyone who might possibly want an event is sufficient. Extraneous and uninteresting events can
be filtered out at the receiver ends in accordance with the End-to-End argument. This approach is similar

to CONGRESS[4] and Maestro|7].

1.2 Background

Pub/sub systems are middleware for “gluing” together heterogeneous applications that operate on the same
information space. These system are divided into three broad classes, based on their information filtering
and routing mechanisms. The first class of pub/sub systems is channel-based. These systems have a number

of predefined channels. Each channel has a designated topic. Information publishers send new events to the

12

1.2. BACKGROUND

appropriate channels. All interested subscribers listen directly on each channel for new events. The CORBA
Event Service [15] is an example of a channel-based pub/sub system.

The second class of pub/sub systems is subject-based. Instead of predefined channels, events are published
into the system with specific topics in the subject field. Subscribers provide subscriptions that filter against
the subject field to extract interested events. A classic example is the newsgroup. Another example is TIBCO
Rendezvous [19] system. In TIBCO, the subject field consists of a string such as thesis.sun.qixiang. A
subscription filter is a regular expression. For example, the subscription filter thesis.*.* will select all
theses.

The third class of pub/sub systems is content-based. These systems not only allow filtering based on the
subject but also on the entire content of an event. The content of an event is specified with a collection
of attributes, e.g. {type=thesis, author=sun}. Through the introduction of attributes, content-based
pub/sub systems allow individual subscribers more expressiveness in selecting the type of events they are
interested in and migrate the burden of event matching to the underlying middleware. Examples of content-
based pub/sub systems include Elvin [34], SIENA [10], and Gryphon [2, 5].

A related field to pub/sub systems is group communication, pioneered by ISIS [8]. These systems focus
on providing a general distributed framework for processes to collaborate on a common task. To simplify
correctness analysis of a distributed algorithm or application, ISIS introduces the virtual synchrony (VS)
model. Under VS, group membership changes are ordered along with regular messages. Moreover, if two
processes proceed together from one view to another, then they deliver the same messages in the first view.
These constraints allow ISIS to enforce total and/or casual ordering of messages in faulty environments. In
the event of a network partitioning, ISIS allows only the primary partition to continue operating.

Transis [3] extends ISIS by supporting partitionable operations. Instead of only permitting the primary
partition to continue, Transis allows each partition to proceed together and “merge” the results when network
partition heals. The nature of the merge operation is obviously application dependent. In some cases, the
merge operation implies exchange missing messages. In others, merging might involve combining partial but
independent results. Transis also introduces the notion of hidden views to assist in merging and totally order
past view history. Totem [1] imposes an even stronger consistency model than Transis through extended
virtual synchrony (EVS) [27]. EVS guarantees that if messages are delivered to multiple components of a
partitioned network, then the message ordering is consistent in all of these components. The added constraint
simplifies the recovery process for maintaining exact replicas.

Though group communication’s emphasis on consistency and replicated data items is orthogonal to the
functions of pub/sub systems, there are many similarities in the underlying multicast transport protocols. For
instance, system scalability and low message delivery latencies are common concerns in designing multicast
protocols for group communications and publish/subscribe systems. Techniques such as vector timestamp

and randomized gossip are useful in both cases.

13

1.3. RELATED WORK

Figure 1-1: Multicast

1.3 Related Work

The primary goal of a reliable multicast protocol is to deliver a message from a sender to all receivers, see
figure 1. Typically, these protocols run on top of an unreliable communication service, such as the Internet
using IP multicast. Two general approaches exist for building reliable multicast. The first approach uses
loggers: centralized servers with stable storage that archive packets and handle retransmission requests. The
scalability of this approach depends on the availability of logger resources such as logger processing speed
and network link bandwidth. With large groups or high traffic multicast groups, logger resources are easily
exhausted.

One example of the centralized approach is Log-Based Receiver-reliable Multicast (LBRM) [18]. LBRM
is receiver-reliable because individual receivers are responsible for detecting missing packets and requesting
the appropriate retransmissions from dedicated loggers. In order to detect missing packets, senders include
a sequence number in each packet. Hence any gap in the sequence number implies that there are missing
packets. However, during idle periods, a receiver may not realize that it is missing the latest packet. Thus
receiver-reliable multicast also requires senders to periodically send heartbeat messages to notify receivers
of the latest sequence number. LBRM uses a variable heartbeat scheme to reduce heartbeat overhead.

An alternative to receiver-reliable protocols are sender-reliable protocols where senders require packet
arrival acknowledgments (ACK) from each receiver and retransmit any unacknowledged packets. Reliable
Multicast Transport Protocol (RMTP) [22] is a sender-reliable protocol. One drawback in sender-reliable
multicast is the ACK implosion problem, which occurs when many ACK messages converge on the sender site.
RMTP uses a hierarchical structure to reduce the number of ACKs at the sender site. For large groups,
receiver-reliable protocols introduce less network and processing overhead than sender-reliable protocols.
Furthermore, receiver-reliable protocols are ideal for enforcing application-level end-to-end reliability.

A second reliable multicast approach relies on peer-based recovery mechanisms. Instead of dedicated

loggers, peer-based mechanisms use all members in a multicast group, both senders and receivers, as retrans-

14

1.4. OUR CONTRIBUTIONS

mission sources. When a particular receiver is missing a packet, any group member may process and service
retransmission requests. An example of the peer-based approach is Scalable Reliable Multicast (SRM) [13].
Servicing rate is no longer a constraining factor in SRM because any member may handle a retransmis-
sion request. However, the message overhead introduced by peer-based requests and repairs is substantial.
In SRM, requests and repairs are multicast, making the protocol less scalable from a network bandwidth
perspective. Moreover, a retransmission request in SRM may cause redundant retransmissions from dif-
ferent members. SRM resolves this problem by randomizing the delays in retransmissions and suppressing
retransmissions when other members have already serviced them.

A more scalable peer-based protocol is Bimodal multicast (pbcast) [9]. Pbcast uses point-to-point gossip
to reduce excessive message traffic. In pbcast, each member in the multicast group periodically gossips to
other members. During each gossip round, each receiver selects a random target in the multicast group and
sends a digest of the current buffer to the gossip target. Upon receiving the digest, the target receiver can
determine if the gossiper has a packet which the target does not and request retransmission via point-to-point
channels. This approach avoids S RM’s redundant retransmission problem. Thus, pbcast is more stable than
SRM in terms of throughput under varying network conditions [30]. Other gossip style protocols include
replicated database maintenance [11], group membership [14], resource discovery [17], and failure detector
[35].

Without loggers to archive old packets, peer-based approaches usually do not guarantee reliable delivery.
For example, suppose some members disconnect for a long period. Then the entire multicast group has to
stall progress when each member’s message buffer is full, or exclude disconnected members from the multicast
group in order to release buffer space. In large-scale information dissemination applications, neither stalling
nor excluding members is desirable. Ozkasap et al. [29] proposes selectively archiving a packet for a longer
duration than the garbage collection limit. However, this approach does not fully guarantee reliable delivery
either since network congestion may cause a packet to be dropped before arriving at designated archiving

sites, even after many rounds of gossip.

1.4 Our Contributions

In this thesis, we build a hybrid multicast protocol that combines the logger-based recovery of LBRM and
gossip-based recovery of pbcast. In this hybrid protocol, instead of waiting for or excluding temporarily
disconnected members, we guarantee continuous forward progress for all connected members and allow dis-
connected members to recover using loggers’ stable storage. We also use gossip-based recovery for reducing
logger workload. Since we use stable storage, our protocol guarantees reliable event delivery to all subscribers
if an event arrives at a stable storage site. Moreover, if a publisher does not crash, we guarantee that each
event will eventually reach some logger’s stable storage. To efficiently manage rapidly changing member-
ship without sacrificing reliability guarantees or performance, our protocol also maintains an approximate

membership that introduces very little overhead.

15

1.4. OUR CONTRIBUTIONS

Besides strengthening delivery guarantees, we introduce several optimizations in the gossip messages to
make the protocol more scalable in terms of send rates and group size. We exploit situations where most
members in the gossip phase have the same information. In these situations, we first verify, using small hash
signatures, that two members indeed have different information before actually sending out large gossip
related messages. Our second optimization involves sending out only retransmission requests in the gossip
messages. This approach reduces the gossip message size compared to pbcast where a digest of a member’s
buffer is sent in each gossip message.

To verify our delivery guarantees, we give a detailed description of our protocol and its correctness
proof. We also present some theoretical models for analyzing gossip efficiency. To substantiate our perfor-
mance claims, we compare our simulation performance results with our two parent protocols: Log Based
Receiver-reliable Multicast (LBRM) [18], designed specifically for distributed interactive simulation (DIS),
and Bimodal Multicast (pbcast) [9], designed for group communication.

Though we have an implementation of our protocol, its prospects for deployment are still unclear for
two reasons. First, in the publisher/subscriber setting, we must find an efficient mapping between various
subscriber interests to a reasonable number of multicast groups. Second, our protocol relies on the existence
of a wide-spread unreliable multicast substrate such as IP Multicast. This assumption, however, is not true
at the current time. We will have to wait and see what kind of multicast capabilities will be available in
the future. Fortunately, the design of our hybrid protocol is extremely flexible and modular. We can swap
in and out different implementations for each individual hybrid protocol components without changing the
functionalities and the reliability guarantees. Performance, on the other hand, may change significantly
depending on which implementations are used.

The remainder of the thesis is organized as follows. Chapter 2 presents our desired specification for
a reliable multicast protocol and an overview of our hybrid protocol. Chapter 3 details the logger-based
recovery mechanism in the hybrid protocol and proves its correctness in implementing our specification.
Chapter 4 discusses the gossip-based recovery mechanism, its effectiveness through mathematical analysis,
and how we combine logger-based and gossip-based mechanisms in the hybrid protocol. Chapter 5 proposes
several optimizations in reducing protocol overhead, garbage collection, and membership. Chapter 6 briefly
outlines the necessary relaxations to the specification in order to deal with member crashes. Chapter 7 gives
a comprehensive performance comparison between our protocol, LBRM, and pbcast. Chapter 8 concludes
with a summary of the main contributions of this thesis and some interesting things we learned using
formal specifications and descriptions. Parts of this thesis will be presented in an upcoming publication in
International Conference on Dependable Systems and Networks (DSN 2000) titled “A gossip-based reliable

multicast for large-scale high-throughput applications.”

16

Chapter 2

Protocol Overview

In this chapter, we will give a simple specification for reliable multicast. Informally, the specification guar-
antees message delivery in an environment where messages can be dropped or duplicated. To simplify the
discussion of our protocol, the specification in this chapter does not deal with sender or receiver crashes. We
will amend this shortcoming in chapter 6 when we explore scenarios involving crashes. With the specification
in mind, we will then outline the key aspects of our three phase multicast protocol rpbcast. Rpbcast is a
hybrid protocol that uses both gossip-based recovery and logger-base recovery. We conclude the chapter

with a specification of the underlying unreliable transport layer that our protocol assumes.

2.1 Specification of Reliable Multicast

We model a reliable multicast with a set of buffers, one for each sender and receiver pair. Our specification
exports two external interfaces: user_send and user_receive. Figure 2-1 shows a graphical representation of
our specification. Notice that our specification does not impose any ordering constraints on message delivery.

Informally, when a user_send occurs, we add a message to every receiver’s buffer. When a user_receive

a
dC
e b

user_receive

Reliable Multicast

user_receive

Figure 2-1: Reliable Multicast Specification

17

2.1. SPECIFICATION OF RELIABLE MULTICAST

occurs, we remove any message from one of that receiver’s buffers. The following I/O automaton specification

[25, 24] captures this notion formally.

Reliable Multicast:

Signature:
Input: Output:
user_send(m);,m € M,1<i<n user_receive(m);;,m € M,1 <1i,j5<n
States:

forevery i,j |1 <4,57<n

buf fer(i, j), a multiset of elements of type M

Transitions:
user_send(m);: user_receive(m);;
Effect: Precondition:
forall 7,1 <j<mn m € buffer(j,1)
buffer(i,j) == buffer(i,j) U {m} Effect:
buffer(j,i) == buffer(j,i) — {m}
Tasks:
Arbitrary

The specification above is insufficient without any liveness conditions. For instance, an implementation

that delivers nothing satisfies the specification. Therefore, we impose the following liveness condition:

e If at any point there exists m € M such that m € buf fer(i,j) for some 4,7, 1 < i,7 < n, then there

exists a user_receive(m); ; event at a later point of the execution.

This liveness condition guarantees eventual message delivery. With the above specification and the
liveness condition, we have a formal notion of the desired behaviors of a reliable multicast. These behaviors

give us the following properties of an execution of reliable multicast:

1. For each user_send(m); event, there exists a user_receive(m), ; event at a later time for all j, 1 < j <mn.

2. For each j, there exists an one-to-one and onto causality mapping between user_send(m); events and

user_receive(m); ; events.

The first property, as a result of the liveness condition, states that every message is eventually delivered to
all receivers. The second property, from the specification, guarantees that each receive event must correspond
to a previous send event. Throughout this thesis, we will refer back to this specification when dealing with

correctness.

18

2.2. HYBRID PROTOCOL OVERVIEW

Ack to Sender

Rtx to Logger Receivers

Sender

Logger

rtx request

retrans repair

>)
/,/
| | | |
Phase 1: mass distribution Phase 2: Phase 3: Dedicated logger
Gossip peer- repairs

based repairs

Figure 2-2: Reliable probabilistic multicast

2.2 Hybrid Protocol Overview

To implement reliable multicast, we need some members to keep a copy of a message on stable storage until
everyone has received that message. Centralized approaches assign a dedicated member, either the sender
or a logger, for storing a copy of the message and service retransmission requests. As noted in Section
1.2, this approach is limited by the dedicated member(s)’s service capacity. Peer-based approaches alleviate
this service capacity limitation by allowing every participating member to act as a retransmission source.
However, peer-based protocols typically introduce more network traffic. Moreover, these protocols relax
message reliability guarantee to a probabilistic guarantee. In this thesis, we present a hybrid of these two
approaches to achieve the reliability guarantee as defined in Section 2.1 and leverage many performance
benefits of peer-based protocols.

Our hybrid approach, reliable probabilistic multicast (rpbcast), is a receiver-reliable [32] protocol. This
means that each receiver independently detects missing messages and requests retransmissions. This ap-
proach is better than sender-reliable because of less network traffic, less workload on the sender, and flexi-
bility for application End-to-End reliability. We achieve End-to-End reliability by allowing the application
layer to decide whether our protocol should ask for a missing message. Though we call our protocol a mul-
ticast protocol, we only provide broadcast capabilities, hence the name rpbcast. We rely on the underlying
unreliable multicast channel for sending messages to a subset of the entire group. Figure 2-2 shows how we
combine the centralized approach with the peer-based approach.

Reliable multicast in rpbcast is divided into three phases. The first phase mass distributes a packet
to all receivers through an unreliable multicast primitive such as IP multicast. The second phase repairs
lost packets in a distributed manner using periodic gossips. If the previous two phases fail, then the last

phase utilizes loggers for retransmission. Notice, phase 1 and phase 2 together are the building blocks of a

19

2.3. SPECIFICATION OF UNRELIABLE COMMUNICATION CHANNEL

peer-based recovery mechanism. Phase 1 and phase 3 together form a centralized recovery mechanism. By
combining them as shown in Figure 2-2, where we first try peer-based repairs in phase 2 and then fall back to
logger in phase 3, we migrate most of the logger service load in a centralized approach to the peer-based gossip
phase. Moreover, we solve the reliability weakness of a peer-based approach by using loggers as a failsafe
mechanism. Therefore, we get the best of both worlds: distributed recovery in peer-based approaches and
reliability in centralized approach. Gossip and loggers are two components we chose to combine. A protocol
designer can replace them with similar components. For instance, a designer might prefer using SRM instead
of gossip for the peer-based component. We will discuss the intricacy of how to swap in and out components
at the end of Chapter 4.

In designing our hybrid gossip and log-based multicast protocol, we emphasize

guaranteeing reliable packet delivery to all receivers
e maintaining low delivery latency,
e balancing retransmission service load, and

e reducing network traffic, both per link and per node.

Chapter 3 will prove the reliability guarantee using loggers. Chapters 4 and 5 will introduce various
techniques to achieve some of the above performance objectives. And Chapter 7 will give simulated per-
formance results to validate our claims. Before we dive into the details, let us first discuss the underlying

communication channel.

2.3 Specification of Unreliable Communication Channel

In our hybrid protocol, we rely on an unreliable communication channel for routing messages between senders

and receivers. Moreover, we assume that the channel has the following characteristics:

1. The channel has both multicast and unicast capability.
2. The channel may drop any message.
3. The channel may duplicate finite copies of a message.

4. The channel cannot create bogus messages.

Since our protocol cannot control the implementation of the underlying communication channel, we

assume the implementation satisfies the following specification of an unreliable channel.

Unreliable Communication Channel:

Signature:

20

2.3. SPECIFICATION OF UNRELIABLE COMMUNICATION CHANNEL

Input: Output:
multisend(m);,m € M,1<:<n receive(m);;,m € M,1 <i,5<n
unisend(m); j,m € M,1<i,57<mn

States:
forevery 4,5 |1 <4,5<n

buf fer(i,j), a multiset of elements of type M

Transitions:
multisend(m);: receive(m); i
Effect: Precondition:
forall jj1<j<n m € buf fer(j,1)
add a finite number (possibly 0) of m Effect:
to buf fer(i, j) buffer(j,i) = buf fer(j,i) — {m}

unisend(m); ;:
Effect:
add a finite number (possibly 0) of m
to buf fer(i,7)
Tasks:

Arbitrary

Characteristics 1, 2 and 3 are true by the construction of the specification. Characteristic 4 is an property

of the specification. Stating this more formally,

e Property 2.1 At any given point of the execution, for each m € buf fer(i,j) for some 1 < i,j < n,

sender ¢ must have invoked multisend(m), or unisend(m); ; at an earlier time.

This property is true because elements can only be added to the buffers through multisend or unisend.
Therefore, any message in the buffer must be a result of one of those actions. As in the case of Reliable
Multicast specification, we also require some liveness guarantees for the unreliable communication channel.
In this setting, we not only require that a message in the channel’s buffer is eventually delivered, but also
the condition that if there are infinitely many multisend or unisend events, then there will be infinitely
many receive events. Since our channel only allows finite duplication, this guarantees that with sufficient
retransmissions, some messages will get through. As we will see in the next chapter, the liveness property

of our hybrid protocol depends on the liveness property of the underlying unreliable channel.

21

Chapter 3

Logger Based Recovery

In this chapter, we will describe and show the correctness of the logger based recovery component in our
hybrid protocol rpbcast. Chapter 4 will build on top of this correctness proof to show that rpbcast, with its
gossip component, is still correct.

The logger based recovery considered in this chapter is a simplified version of LBRM, without its variable
heartbeats, statistical acknowledgments, or multicast retransmissions. Let us call this simplified version L. In
protocol L, we have one single dedicated logger that handles all retransmissions and sending acknowledgments
to the senders. Thus a sender is responsible only for initially multicasting a message, making sure the
logger gets the message, and sending out heartbeats to facilitate loss message detection. With End-to-End
reliability in mind, each individual receiver handles its own missing message detection, using feedback from
the application layer, and issues requests for retransmission. This external application layer interface is not
modeled here. Figure 3-1 shows the overall protocol setup and its relation to the specification in Section 2.1.

For clarity, we have separated sender modules and receiver modules in our discussion. In actual imple-
mentations, a node could have both sender and receiver modules. Moreover, we assume a fixed multicast
group membership with a known logger, with known id LOGGFERI D, for protocol L to simplify the presen-
tation and proof. We can extend L to include multiple loggers by using a set of logger ids instead of a single
id. We defer membership details to chapter 5. For now, assume membership consists of every member with
id between 1 and n.

Sections 3.1, 3.2, and 3.3 discuss sender, logger, and receiver implementations respectively. Useful in-
variants and properties that will assist in the correctness proof are also mentioned and argued in the three
sections. Section 3.4 will give a simulation relation between L and the specification and prove that L indeed
implements our desired specification. Section 3.5 argues about the liveness property of L. Parts of the work
in this chapter have also been used for a 6.826 final group project'. I acknowledge my collaboration with

Michael Feng and Victor Hernendez on those portions and would like to thank them for their contributions.

1Spring 2000, taught by Professor Bulter Lampson and Professor Martin Rinard

22

3.1. SENDER MODULE

Reliable Multicast .- "1
Receiver Node .

/] user_receive
Logger pmmr— .(_Recelver |
A I]

< H
unisend receive | 1 ------- I

receive

Unreliable Multicast
(Internet)

I unisend
_-"T - - -
1 multisend Y T
- user_send . .
‘ | \ - (_Recelver \
1\ : /‘ 1\ A] /‘
. T T T T T T T s T s s s s s B2 ettt

Figure 3-1: Logger based recovery

3.1 Sender Module

The main function of the sender module is to buffer messages until acknowledgments arrive from the logger.
A secondary function is to periodically multicast heartbeats, latest sequence numbers, when idle. The
heartbeats are necessary in order for the receivers to find out whether they are missing the last message

before the idle period. The following is an I/O automaton description of the sender module.

Sender;:

Types:
ID = {Int : senderid, Int: seqno}
PAYLOAD = MU{ACK,HEARTBEAT}

Signature:
Input: Output:
user_send(m);,m € M unisend({id,m}); j,id € ID,m € PAYLOAD,1<j<mn
receive({id, ACK});;,id € ID,1 < j<n multisend({id, m});,id € ID,m € PAYLOAD
tick;
States:

23

3.1. SENDER MODULE

seqno, integer sequence number for keeping track of the latest id, initially 0

sendbu f, a set of unacknowledged messages of type {id, M : m}, initially empty

unibu f, a set of outgoing messages of type {Int : to, {id, PAYLOAD : m}} through unisend, iniitally empty

multibuf, a set of outgoing messages of type {id, PAYLOAD : m} through multisend, initially empty

isidle, boolean flag for indicating idle status, initially TRUE

loggerid, identification of the dedicated logger. Set to default LOGGERID

Transitions:

tick;:
Effect:
if ¢stdle then
multibuf = multibuf U
{ID{i,seqno — 1}, HEART BEAT'}
isidle := TRUE
for each entry € sendbuf
unibu f := unibuf U {loggerid, entry}

user_send(m);:
Effect:
isidle := FALSE
newid := I D{i, seqno}
multibuf := multibuf U {newid, m}
sendbuf := sendbuf U {newid, m}

unisend({id, m}); ;:
Precondition:
{4, {id,m}} € unibuf
Effect:
unibuf := unibuf — {j, {id, m}}

multisend({id, m}); ;:
Precondition:
{id, m} € multibuf
Effect:
multibuf := multibuf — {id, m}

receive(id, ACK); ;:
Precondition:

j = loggerid

Effect:
seqno := seqno + 1
if 3 entry = {mid, m} € sendbuf
and mid = id then
sendbuf := sendbuf — entry

Tasks:

Arbitrary

user_send is called when the application wants to send a message m. The sender module assigns a unique
sender-based sequence number to the message m and adds it to the multicast outgoing buffer and its own
send buffer sendbu f. Message m will remain in sendbu f until the sender module receives an acknowledgment
through receive(id, ACK) where id matches the unique sequence number assigned to m, denote it by 1.D(m).

Thus, two properties for the sender module are

e Property 3.1 (Unique ID) If user_send(m); and user_send(m’) are two distinct send events, then

ID(m) # ID(m’).

e Property 3.2 (Garbage Collection) At any point, message m € sendbuf; if and only if there was a

user_send(m); event and that no corresponding receive(ID(m), ACK)ioggeria,i; €vent has arrived yet.

tick is our mechanism for doing periodic activities. In the case of the sender module, we will multicast a
heartbeat if the sender is idle. We will also retransmit messages to the logger if no AC K's have came back

yet.

24

3.2. LOGGER MODULE

3.2 Logger Module

The dedicated logger has two functions: 1) reply to senders after receiving their messages and 2) send repair
messages to other receivers. To perform these two tasks, the logger maintains a log buffer that contains all
known messages. Chapter 5 will discuss how we perform garbage collection on the log buffer. The following

I/O automaton description formalizes the logger behavior, without any garbage collection.

Logger;:

Types:
ID = {Int : senderid, Int: seqno}
PAYLOAD = M U {ACK, RTX}

Signature:
Input: Output:
receive({id, m});,id € ID,m e M,1<j<n unisend({id, P}); j,id € ID,P € PAYLOAD,1<j<n

receive({id, RT X});,id € ID,1 <j<n

States:

unibu f, a set of outgoing messages of type {Int : to, {id, PAYLOAD : m}} through unisend, initially empty
logbuf, a set of messages of type {id, M : m}, initially empty

Transitions:
unisend({id, P}); ;: receive(id, RT X); ;:
Precondition: Effect:
{4, {id, P}} € unibuf if 3{id,m} € logbuf then
Effect: unibuf := unibuf U {j, {id, m}}

unibuf := unibuf — {4, {id, P}}
receive(id, m); 1

Effect:
unibuf := unibuf U {4, {id, ACK}}
logbuf := logbuf U {id, m}
Tasks:

Arbitrary

The receive routines are event driven. If the logger receives a retransmission request (RTX), it looks up
the message id in its logbu f and sends a repair if the message is found. Notice that the logger does not queue
RT X requests when the requested message is not in logbuf. We rely on each receiver to continue sending
RT X requests periodically, as long as that receiver is interested in the message. This design decision gives
flexibility to the end application in determining its own reliability criteria. The trade-off is the extra RT X
requests.

The second type of messages a logger might receive are actual data messages from a sender. When a

data message arrives, the logger adds to its buffer and returns an acknowledgment (ACK). Since ACKs

25

3.3. RECEIVER MODULE

could be lost, the logger might receive the same message multiple times. In order for the sender to garbage
collect its sendbuf, the logger must generate an ACK each time, in this simple L protocol. Chapter 5 gives

an alternative to this resend/ack approach by deriving acknowledgments from gossip.

3.3 Receiver Module

The receiver module, in the simple logger-based recovery, is responsible for delivering messages to the end
application, detecting missing messages, and requesting retransmissions from the dedicated logger. We will
omit the external interface of soliciting application layer’s reliability criteria in the I/O automaton description

below. This external interface should be called before deciding to request retransmission.

Receiver;:

Types:
ID = {Int : senderid, Int: seqno}
PAYLOAD = MU{HEARTBEAT,RTX}

Signature:
Input: Output:
receive({id, m}); i, id € ID,m e M,1<j<n unisend({id, P}); j,id € ID,P € PAYLOAD,1<j<n
receive({id, HEARTBEATY});,id € ID,1<j<n user_receive(m);,m € M,1 <j<n
tick;
States:

unibu f, a set of outgoing messages of type {Int : to, {id, PAYLOAD : m}} through unisend, initially empty
deliverbuf, a set of messages of type {id, M : m}, waiting to be delivered to the application, initially empty
lastseen[j], an array of last seen sequence number for each sender j, initially all -1

missing, a set of IDs indicating all currently missing messages with no duplicates, initially empty

loggerid, identifies the dedicated logger. Initially set to default LOGGERID

Transitions:
user_receive(m); ;: receive(id, m)j ;:
Precondition: Effect:
{j,m} € deliverbuf if id € missing then
Effect: deliverbuf := deliverbuf U {id,m}
deliverbuf := deliverbuf — {j,m} missing := missing — {id}
else if id.seqno > lastseen[id.senderid] then
ticks: for each k, lastseen[id.senderid] < k < id.seqno
Effect:

missing := missing U {id.senderid, k}
for each entry € missing

unibu f := unibuf U {loggerid, {entry, RTX}}

lastseen[id.senderid] = id.seqno

deliverbuf := deliverbuf U {id,m}

26

3.3. RECEIVER MODULE

unisend({id, P}); ;: receive(id, HEART BEAT); ;:
Precondition: Effect:
{4, {id, P}} € unibuf for each k, lastseen[id.senderid] < k < id.segno
Effect: missing := missing U {id.senderid, k}
unibuf := unibuf — {4, {id, P}} lastseen[id.senderid] =

max{id.seqno, lastseenid.senderid]}

Tasks:

Arbitrary

user_receive is the external interface to the application. In each call, the application consumes one
message from the deliverbuf. If deliverbuf is empty, then no user_receive action is possible. In practice,
user_receive will block the application progress until something is available in deliverbuf.

The retransmission requests (RTX) are sent to the dedicated logger during periodic calls to tick. tick is
responsible for consulting application reliability criteria before issuing RT' X requests. In the above descrip-
tion, we have hidden this extra layer and forced the receiver module to always issue RT'X requests for all
known missing messages in the tick routine.

The main processing of the receiver module is done in receive. There are two kinds of possible messages
coming out the communication channel. The first kind is a heartbeat message from a sender j. In this
case, we use the heartbeat to detect new gaps in the sequence number for missing messages. Specifically, we
first classify all messages with sequence numbers between lastseen[j] and the heartbeat sequence number as
missing. We then update the lastseen[j]. The other possible message type is data message. To ensure that
we do not deliver a message multiple times, we only add the data to deliverbuf if the message was previous
missing or we are seeing this message for the first time. In the latter case, we perform missing message
detection similar to the heartbeat case.

There are one invariant and two properties that are useful for the correctness proof in the receiver module.
e Invariant 3.3 Let D be the set of message ids in deliverbuf, then D N'missing = ().
e Property 3.4 For each message m, receiver ¢ delivers m to the application at most once.

e Property 3.5 Given a sender j. For each sequence number k < lastseen|j], exactly one of the following

three conditions is true:

1. Receiver ¢ already delivered message k to the application.
2. Message k is in receiver i’s deliverbuf.

3. Id k is in receiver i’'s missing set.

Invariant 3.3 is true by construction. When a data message is added to deliverbuf, its id is always first

removed from the missing set. As discussed previously, Property 3.4 holds because we never add a message

27

3.4. SAFETY

user_send

**

sender retrans.

SendBuf LogBuf

logger ACK
sender logger
| multicast retrans. receiver
RTX request
| DeliverBuf |

Reliable Multicast user receive

Figure 3-2: Data movement in the logger based recovery

to deliverbuf unless it is missing or new. To show Property 3.5 holds during any execution, we must show
the three cases are disjoint and that the three cases cover all possible messages. We first apply Invariant 3.3
and Property 3.4 to show that the set of IDs in the three cases are indeed disjoint. Case 1 and 2 are disjoint
because Property 3.4 states any message can only be delivered at most once — an ID in both case 1 and
2 contradicts Property 3.4. By Invariant 3.3, we also know that the missing set in case 3 is a disjoint set
from both the delivered messages, case 1, and the waiting to be delivered messages, case 2. To show that
the three cases covers all possible messages, we will show that when lastseen[j] is updated, all the IDs in
between will fall in either case 2 or case 3. By construction, lastseen[j] is updated by either a heartbeat or
a data message. In the case of heartbeats, all ids in the gap plus lastseen[j] are added to missing, hence
case 3 holds. If it was a data message, ids in the gap are added to missing (case 3), and lastseen]j] is added
to deliverbuf (case 2). Therefore, each message ID is accounted for in one of the three cases. Properties 3.4

and 3.5 are used in the next two sections for proving the safety and liveness conditions.

3.4 Safety

In this section, we will prove that the composition of the sender modules, the logger module, the receiver
modules, and the unreliable communication channel satisfies the safety conditions of our specification of the
reliable multicast in Section 2.1. We provide the liveness arguments in the next section.

To simplify the proof, consider the abstraction of the composed system as depicted in Figure 3-2. In
this abstraction, senders collectively contribute to sendbuf. The dedicated logger maintains logbuf. And

all the receivers form deliverbuf. The arrows in the figure indicate data movements between the various

28

3.4. SAFETY

Sequence Numbers

Receiver's Sender j
Iastseen[i] segno

| ErR

‘) Missing

Already delivered
In deliverBuf Intransit
Figure 3-3: Where are the messages

components. This abstraction is valid because Property 2.1 ensures that there are no bogus messages in the
unreliable communication channel. Therefore, data movements between the various buffers correspond to
the composed transitions between different 1/O automata in the system. Consequently, the correctness of
this higher level abstraction is equivalent to the correctness of the actual implementation.

In this abstraction, messages are added to sendbuf via user_send events. Once in sendbuf, messages

are

‘moved” into receivers’ deliverbuf in two possible paths: directly through multicast or through logger
retransmissions. The first path corresponds to successful initial multicast. The second path is the logger
based recovery.

In order to formally define the simulation relation, we must find out where a message in the specification
is located in our buffer abstraction. We will consider this question for each sender ¢ and receiver j pair. From
Property 3.5, we know that messages with ID lower than lastseen;[i] are divided into 3 cases at receiver
j. However in the composed system, we have a fourth case: intransit — any messages with ID between
lastseen;[i] and seqno;. Let’s denote the set of message IDs in this fourth case by intransit(i, j). Figure
3-3 shows these four cases.

Since the logger module in Section 3.2 never garbage collects, we can always find a message either in
sendbuf or logbuf depending on whether the sender has received an ACK or not. Let us denote the union
of sendbuf and logbuf as AllBuf. Thus intuitively, we can always locate a copy of a missing message or a
message in transit in AllBuf.

Armed with this intuition, we can define a simulation relation f that relates sendbuf, logbuf, and
deliverbu f in our higher level abstraction of the composed system to buf fer in the specification. The use of
simulation relations for mapping between states in proving correctness is formally described in [25, 21, 28,
31, 20]. Let S be the state of the specification and I be the state of the implementation, then (S,I) € f if
the following holds,

e For all m, m € S.buffer(i,j) if and only if m € I.deliverbuf; or m € I.AlIBuf A (ID(m) €

I.missing; U Lintransit(i, j)).
This constraint essential states that for each undelivered message m in the specification’s bu f fer, we can

29

3.5. LIVENESS

find m in the corresponding deliverbuf or m is missing at the receiver and can be found in AllBuf. The
constraint also states that the converse must be true as well. To show f is indeed a simulation relation,
we need to show f maps initial states to initial states and all transitions preserve f (Theorem 8.12 in [24]).
Initially, all the buffers are empty, the same as the specification. Therefore, f holds trivially for the initial

case. Now let us consider individual transitions.

1. ™ = user_send(m);.
In the specification, one copy of m is added to each receiver’s buffer. In the implementation, m is added
to sendbuf; and seqno; is incremented. Since m has a new sequence number and no communication
has been made, m is, by construction, in intransit(i, j) for all receivers j. m is also in AllBuf because

sendbuf C AllBuf. Thus f still holds.

2. m = user_receive(m); ;.
In the implementation, message m is removed from deliverbu f;. This removal corresponds to removing

m from buf fer(i,j). Hence f also holds.

3. There are several internal actions in our composed implementation. These actions involve messages
moving between buffers in the implementation. These actions should correspond to 0 steps in the

specification and no changes in state. We need to consider three cases.

(a) Message m moves from sendbuf to logbuf.

This case happens when logger AC K's message m. Since AllBuf = sendbuf Ulogbuf, f holds.

(b) Message m arrives at deliver;.
This case happens when a missing or intransit message arrives at receiver j. After the arrival, the
set missing; U intransit(ID(m).senderid, j) will no longer contain the message ID of m. But

deliverbuf; will now include m. Thus f still holds.

(c) Heartbeat from sender ¢ arrives at receiver j.
This case will cause message IDs move from intransit(i,j) to missing;. Since f considers

intransit(i, j) Umissing;, the IDs movement does not effect f.

It follows then that our abstraction of the composed system satisfies the safety conditions of the specifi-

cation. Therefore, the actual implementation also satisfies the specification.

3.5 Liveness

The one remaining detail is the liveness property of our implementation. We will give an informal argument

here. There are two “eventual” properties that we must consider,

1. For each message m, each receiver will eventually learn the existence of 1D (m).

30

3.5. LIVENESS

2. For each missing message m at some receiver j, receiver j will eventually recover m from the dedicated

logger.

Property 1 essentially states that each receiver will eventually detect all the missing messages, either
through heartbeats or a later message. This is true because during any tick period, a sender will either send
a message or a heartbeat. Therefore, as long as the unreliable communication channel’s liveness property
guarantees some message will get through, we can detect all the missing messages.

Property 2 states that we will eventually recover all missing messages. This also holds by similar argument.
Sender periodically retransmits a message to the logger until the logger ACKs. Hence a message will
eventually arrive at logbuf. Now that each receiver also periodically solicits retransmission, logger’s repair
message will eventually get through and reach deliverbuf. Therefore, as long as we can detect missing
messages, we can also recover them.

The combination of these two liveness properties guarantees eventual delivery of every message to each
receiver. Using the at most once property (3.4), we get exactly once delivery and eventual delivery as required

by the specification’s safety and liveness properties.

31

Chapter 4

Combining with Gossip Based

Recovery

In our rpbcast, we use gossip based recovery to reduce logger service load, for performance and scalability
reasons. During each gossip round, a receiver, the gossiper, randomly selects a target member, the gossip
target, in the same multicast group and exchanges information. In these exchanges, missing messages are
repaired. There are two types of repairs: gossiper-pull and gossiper-push. Figure 4-1 illustrates the two
cases.

In the gossiper-push mechanism, the gossip target first finds out which messages are available at the
gossiper and then requests retransmission. In contrast, the gossiper-pull mechanism does exactly the opposite
— the gossiper asks the gossip target for retransmissions blindly. Our hybrid protocol rpbcast uses the
gossiper-pull mechanism because of lower network traffic, simpler gossip messages, and faster convergence.
Gossiper-pull has lower network traffic because it only sends out two messages instead of the three sent
in gossiper-push. Since gossiper is asking for retransmission, gossip messages only need to contain missing
message IDs instead of the description of the gossiper’s buffer. This results in simpler gossip messages. We
will defer the discussion of convergence rate to Section 4.2.

In the remaining of the chapter, we will first give an I/O automaton implementation of a gossip based
recovery using the gossiper-pull mechanism in Section 4.1. We then discuss probabilistic convergence issues
in Section 4.2. We conclude the chapter in Section 4.3 by showing how to combine the gossip based recovery

with the logger based recovery to create the hybrid protocol rpbcast.

4.1 Generic Gossip Implementation

In this section, we give a generic gossiper-pull based implementation. The receiver in the gossip based recov-

ery is similar to the receiver module for logger based recovery in Section 3.3. Instead of contacting the logger

32

4.1. GENERIC GOSSIP IMPLEMENTATION

Receivers
A B C D
Has: X,Y,z HasY.Z Has X, Z Has X, Y, Z
Missing: X Missing: Y

\ Gossip
X +Y +7 Messages XY 47

Time

Post- Packet(Y)
Retrans(X) gossip
Recovery
Packet(X) N
(@) Gossiper-push (b) Gossiper-pull

Figure 4-1: Gossip recovery examples: In (a), gossiper A pushes out a missing packet X to B. In (b),
gossiper C' pulls in a missing packet Y from D.

for retransmission during each tick, each individual receiver selects a random member and ask that mem-
ber for retransmissions. In this implementation, we use an additional buffer gossipbuf for buffering recent
messages and servicing retransmission requests. Messages in gossipbuf are garbage collected periodically,
without any restrictions. Consequently, a retransmission request for m may never succeed if all other mem-
bers have already garbage collected m. The I/O Automaton below describes the generic implementation.

We highlight the changes and additions to the receiver module in bold.

Recetver;:

Types:

ID = {Int : senderid, Int: seqno}
PAYLOAD = MU{HEARTBEAT,RTX}

Signature:

33

4.1. GENERIC GOSSIP IMPLEMENTATION

Input: Internal:
receive({id, RTX}),;,ide€ ID,1<j<n ge({id, m});,id € ID,m € M
receive({id, HEARTBEAT});,id € ID,1<j<mn
recetve({id,m}); ,id € ID,m e M,1<j<n
tick;
Output:
unisend({id, P}); j,id € ID,P € PAYLOAD,1<j<mn

user_recetve(m);,m € M,1<j<n

States:

unibu f, a set of outgoing messages of type {Int : to, {id, PAYLOAD : m}} through unisend, initially empty
deliverbuf, a set of messages of type {id, m}, waiting to be delivered to application, initially empty
lastseen[j], an array of last seen sequence number for each sender j, initially all -1

gmissing, a set of IDs indicating all currently missing messages, initially empty

gossipbuf, a set of messages of type {age, id, m}, initially empty

loggerid, identifies the dedicated logger. Defaults to LOGGERID

Transitions:
unisend({id, m}); ;: receive(id, HEART BEAT); ;:
Precondition: Effect:
{4, {id,m}} € unibuf for each lastseen[id.senderid] < k < id.segno
Effect: gmissing := gmissing U {id.senderid, k}
unibu f := unibuf — {7, {id,m}} lastseen[id.senderid] =

max{id.seqno, lastseenid.senderid]}
user_receive(m); ;:

Precondition: receive(id, m)j ;:
{j, m} € deliverbuf Effect:
Effect: if ¢d € gmissing then
deliverbu f := deliverbuf — {j,m} deliverbuf := deliverbuf U {j,m}
gossipbuf := gossipbuf U {0, id, m}
ticki: gmissing := gmissing —{id}
Effect:

else if id.seqno > lastseen[id.senderid] then

pick random member j | 1 < j < n according for each lastseen[id.senderid] < k < id.seqno

to application specified selection distribution gmissing := gmissing U {id.senderid, k}

for each entry € gmissing

unibuf := unibuf U {j, {entry, RTX}}

lastseen[id.senderid] = id.seqno
deliverbuf := deliverbuf U {j,m}
for each entry = {age,id,m} € gossipbuf gossipbuf := gossipbuf U {0, id, m}
increment age

receive(id, RTX); ;:

ge(id, m);: Effect:

Precondition: if {id’ m} € gossipbuf then

3 (age, id, m) € gossipbuf unibuf := unibuf U {j, {id, m}}

and age > GCLIMIT
Effect:
gossipbuf := gossipbuf - {age, id, m}

Tasks:

34

4.2. CONVERGENCE RATE

Arbitrary

There are two changes to the module aside from adding buffers. The first change is that receive now
expects and processes RT X requests. Specifically, receive looks up the requested message in gossipbuf and
sends the repair if the message is in the buffer. Note that deliverbuf and gossipbu f are managed separately.
The second change is the age based garbage collection of gossipbuf. During each tick, we increase the age
of each message in gossipbuf. The internal gc call then removes a message when its age exceeds some limit.

The implementation above uses gossiper-pull mechanism for recovering messages. Its gossip messages
are the individual RT X requests sent to a random member. These RTX messages can be bundled into
one single gossip message to reduce packet header overheads. We call these RT' X gossip messages negative
gossips, analogous to NACKs. The use of gossiper-pull and negative gossips distinguishes our gossip phase
from pbcast[9]. Pbcast rely on gossiper-push mechanism. Thus gossip messages in pbcast must reflect gos-
siper’s current buffer status. The use of negative gossip allows our hybrid protocol rpbcast to have smaller
gossip message size. A second benefit of gossiper-pull is lower delivery latency because we can request re-
transmissions immediately upon detection through negative gossips instead of waiting until the next gossip
round.

The effectiveness of a gossip based recovery is closely related to this garbage collection limit. For dis-
tributing retransmission service load, we would like to keep a message in gossipbuf for as long as possible.
The trade-off is the enormous memory requirements, especially at high send rates. Ozkasap et al. [29]
proposes one remedy by selectively archiving a message for a longer duration than the garbage collection

limit.

4.2 Convergence Rate

We measure the effectiveness of gossiping a message m by how many rounds of gossip are required until
every receiver has m. We call this quantitative measure the convergence rate. Since gossip is a randomized
process, convergence rate is probabilistic. Thus a convergence statement will have the form “message m
converges in k rounds with probability p.” In order for gossip based recovery to significantly reduce service
load at loggers, we must pick GCLIMIT such that after GCLIMIT rounds, a message m converges with
an extremely high probability. The particular values of GCLIMIT and p depend on four parameters:

1. Success of the initial multicast — This parameter measures how many members in the current group

received the initial multicast. This number may vary from 1 to n where n is the size of the group.

2. Message loss rate and distribution — This parameter characterizes message loss behaviors. For exam-
ple, we may use uniform message loss distribution with a fixed loss probability (or loss rate) of e for
each message. Another common setting is bursty message loss in that the probability of a message

being dropped is dependent upon the failures of previous messages.

35

4.2. CONVERGENCE RATE

Number of rounds to achieve <1E-6 probability of not receiving a packet

24 T T T T T T T T

] "push" —+—
20 L "pull" x|
20 s

18 .

16 .

Number of rounds needed
[EY
D

12 x h
10 o b
Rl
8 e .
\\‘\x\\

6 + [Xemmmmmmme X -
e SR

4 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 a0

% of the receivers receiving initial multicast

Figure 4-2: Convergence rate for 100 members, with no message loss

3. Gossiper-push or gossiper-pull mechanism — This parameter specifies which mechanism is used for

gossiping.

4. Random gossip target selection distribution — this parameter determines how each member chooses
whom to gossip to in the multicast group. Two examples are uniform selection distribution, where every
member in the group is equally likely to be selected, or a biased distribution in favor of neighboring

members, measured by the roundtrip latency delay.

Intuitively and qualitatively, if the initial multicast reaches most receivers, then the convergence rate will
be quick with very high probability. Also, lower message loss rate will result in faster convergence. The effects
of gossip mechanism and target selection is not immediately clear, even in the qualitative sense. Demers
et al in [11] gave an intuitive argument for why gossiper-pull converges faster in database replication. The
argument centers around the fact that when only a few receivers are without a message m, a pull recovery by
a receiver ¢ without m is more likely to succeed than other receivers with m pushing m out to receiver ¢. This
observation also holds for our multicast. For the simple case of no gossip/repair message loss and uniform
target selection (equally likely to pick any member), Figure 4-2 shows the number of rounds needed for 100
members to converge with error probability less than 1076, given that the initial multicast succeeds partially.
From the graph, we see pull converges faster than push. We will describe how the graph is generated later

in the section.

36

4.2. CONVERGENCE RATE

P(1,n)

P(2,2) P(n,n)=1
P(2,n)

Figure 4-3: Model as a Markov Chain

P(1,1)

The random gossip target selection is heavily dependent upon the network topology and the application
needs. Generally, uniform selection results in faster convergence than biased selection. The trade-off is the
extra network traffic. In practice, we observe that linear biasing in selection — probability of selecting the
member drops linearly with the increase in roundtrip time — results in a good balance of convergence rate
and network traffic. The simulation results in Section 7.5 suggest that latency grows with the increase in
selection bias. On the other hand, network traffic through the center of the network drops with increasing
bias.

As for many real world applications, simulation is the best method of isolating which parameters to adjust.
For the remainder of the section, we will present two analytical approaches in determining the convergence
probability. The first approach uses Markov chain to solve the simple case with uniform selection and
gossiper-pull. Markov chain does not generalize nicely for the more complicated cases with biased selection
or gossiper-push. For those cases, we use recurrence relation between successive rounds of gossip to calculate
the convergence probability. In these discussions, we assume that every receiver contacts exactly one member

during each round of gossip.

4.2.1 Markov Chain Approach

For a system with n receivers, we model it as an n states Markov chain. Let the k-th state of this n
states chain represent k out of the n members have received the message. Thus, the associated transition
probability p; ; is equivalent to one gossip round succeeding in increasing the total number of receivers with
the message from ¢ members to j members, for all ¢ < j. Figure 4-3 shows the setup. The success of the
initial multicast is model by the starting state of the Markov chain. For example starting in state 1 implies
total failure of multicast while starting in state n implies complete success. Gossip/repair message losses are
modeled by “adjusting” transition probabilities.

Given uniform target selection and gossiper-pull mechanism, we can compute individual transition prob-

37

4.2. CONVERGENCE RATE

ability p; ;. In a simpler case, suppose no gossip/repair message losses occur, we get

1 i=j=n
pij=14 0 1<y
() (54" ()" otherwise

In this Markov chain, we may transition from state i to j if and only if exactly j — ¢ members without
the message contacted someone who has the message. This probability, as shown above, follows a binomial
distribution.

Now that we have the transition probabilities, we can use existing tools for Markov chains to compute the
expected number of transitions to reach state n (expected absorption time) or the probability of moving from
state ¢ to state j in k transitions (the k steps transition probabilities). Let r; ;(k) be the k steps transition

probability from state i to state j, then the convergence statement, using this Markov chain model, says

e the message converges in k rounds with probability r; ,(k), where ¢ is the initial success rate of the

multicast.

We were not able to come up with a nice close form for r; (k) because the binomial distributions
are different for different states. However, the expected number of transitions to reach state n is easily
computed by solving a simultaneous system of n equations. With the help of a program for computing

various probabilities for Markov chains, these computations for r; ;(k) should be straightforward.

4.2.2 Recurrence Approach

Markov chains are less manageable for the general case with non-uniform selection distribution or gossiper-
push mechanism because we need 2™ states to denote exactly which members have a message. In the
recurrence approach, we define P;(k) be the probability of receiver ¢ have the message after k rounds of
gossip. The base case of the recurrence is round 0, right after the initial multicast. We set P;(0) to be the
success of the initial multicast. If the multicast completely failed, then P;(0) = 1 for some ¢ and P;(0) = 0
for all j # 1.

Once we have the base case of the recurrence, we compute P;(k) from P;(k—1). Informally, receiver ¢ has
the message after k rounds if receiver ¢ has the message after £ — 1 rounds or it got the message from some
other member during round k. Let us denote the probability of receiver i get the message during round k
by get;(k). Then,

Pik) = Pk — 1)+ (1 Po(k — 1)) - geta(k) ik > 1

The exact value of get;(k) depends on gossiper-pull or gossiper-push and the selection criteria. We
model the selection criteria by “contact probabilities.” Let C(, j) be the probability of receiver ¢ contacting

receiver j. Then C specifies a valid set of contact probabilities if for all 7, > j C(i,7) = 1. With these contact

38

4.2. CONVERGENCE RATE

probabilities, we compute get;(k) for the gossiper-pull as follows

geti(k) = > C(i,j)- Pi(k—1) Vik>1
J#i
Intuitively, get; succeeds if i contacts j and j already has the message. For gossiper-push, the computation
is slightly more complicated. Since multiple gossipers may contact the same target, we do not want to count
them multiple times. So we will compute the probability of receiver ¢ not getting the message during round
k instead and take the negation as get;(k). A receiver ¢ will not get the message in a round if other receivers

with the message all decided not to contact i. Thus, get;(k) for gossiper-push is

geti(k) =1— |[[(1 = Pi(k —1)-C(i))| Vi, k>1
J#i

With these P;(k) probabilities, the convergence statement says

e the message converges in k rounds with probability [[, P;(k), where P;(0) are the initial success prob-

ability of the multicast.

Note that the probabilities P;(k) are not probability mass functions (PMF). Instead, P;(k) for a fixed i
form a cumulative probability distribution functions (CDF) over the number of rounds k. Therefore, given
the gossip parameters and the initial condition, we can compute the CDF. From the CDFs, we can take
the derivative, with respect to k, to find out the exact PMF of receiver i. Once we have the PMF, we can
compute expected value, variance, or other useful numbers. However, the derived PMF is only valid for a
particular set of parameters and initial conditions. To include possible message losses, we need to tweak the
get;(k) probability appropriately. We used this recurrence formulation to generate Figure 4-2.

Using the recurrence approach, we can derive a crude lower bound on the number of rounds required to
achieve a certain convergence probability for the simple case with uniform selection, gossiper-pull, and initial
multicast reaching ny members. In this case, the approach gives us the following quadratic recurrence for

members who did not receive the message initially.

ng 2(n—ngp)

-1 n—n
Ph=—+———"7""PFP_1—
n

0 -1 2
— P
n k—1

where Py = 0. We do not know how to solve this quadratic recurrence. However, note that P, > 1 — e~k
if ng > $n. Therefore, the number of rounds for P, < ¢ is k > —log(6). The convergence probability for this
case is 1 — P "0, If P, < §, then 1 — P'"" "™ < (n —ng)d. Therefore, bounding 1 — P;'™™° < e is equivalent

to bounding P, < —5—. Thus to achieve convergence probability of € with ng > %n, we get

n—ng "’
k > —10g(¢)
n—mno

39

4.3. RPBCAST - INTEGRATING LOGGER/GOSSIP BASED RECOVERY

For the case with ng < %n, we can figure out how many rounds we need to reach half of the receivers. As
it turns out, P, > %ek’l while P, < % Thus it takes at most 1+log(ﬁ) rounds to reach half the receivers.

Combining these two halves, we arrive at the crude lower bound for achieving convergence probability of €

k21—10g(M)

n(n —ng)

for a given ng as

4.3 Rpbcast - Integrating Logger/Gossip Based Recovery

Our hybrid protocol, rpbcast, uses the same sender and logger modules as described in Section 3.1 and 3.2.
However, the receiver module in rpbcast is the combination in functionalities of the two receiver modules
described in Section 3.3 and 4.1. Luckily, the two receiver modules have very little overlap in their function-
alities. The only overlap is adding a newly arrived message to deliverbuf. Therefore, the receiver module
in rpbcast simply combines the two receiver modules into one big module. The only necessary addition to
the big module is a mechanism for moving missing message IDs from gmissing (missing ID set in the gossip
based recovery) to missing (missing ID set in the logger based recovery). when those messages can no longer
be recovered through gossip phase. There are two simple solutions. The first solution just moves message
IDs from gmissing to missing if the IDs have been in gmissing for a “long” time. This solution can be
implemented by a receiver without knowing anything about the rest of the system. The drawback is that we
always pay this time delay while an ID remains in gmissing, even though gossip phase might have already
failed to recover the message.

Our second solution uses more feedback from the gossip phase. Instead of using a timeout, we ask our
gossip target to generate a garbage collected notification whenever the target has already garbage collected
the message from its gossipbuf. This notification will alert the gossiper to move the missing message ID
from gmissing to missing — in effect, send all future requests directly to a logger. Figure 4-4 illustrates
the use of garbage collected notification.

When we gave an overview of our protocol in Section 2.2, we mentioned that a protocol designer can
“swap” in SRM for the gossip based recovery if he or she desires. This swapping is possible because of the lack
of overlap in functionality between the two types of receiver modules. Therefore, as long as missing message
IDs are eventually moved from the peer-based recovery to logger based recovery, the resulting protocol will
still function correctly. However, some of the optimizations in Chapter 5 are designed specifically for gossip
based recovery, thus may not be applicable if SRM is swapped in.

We now give the I/O automaton description of the combined receiver module in rpbeast that utilizes
both gossip and logger recovery with the garbage collection notification scheme. In this version, we grouped

individual RT Xs into one big message and send that message as our gossip.

Rpbcast_Receiver;:

Types:

40

4.3. RPBCAST - INTEGRATING LOGGER/GOSSIP BASED RECOVERY

Receivers

A B Logger
® ® ®

GC(X)
Retrans(X)

Time

Retrans(X)

Figure 4-4: GC notification and repair example

ID = {Int : senderid, Int: seqno}
IDList = array of IDs
PAYLOAD = MU{HEARTBEAT,RTX,{GOSSIP,IDList : rtzlist}, GeNOTE}

Signature:

Input: Internal:
receive({id, HEARTBEAT}Y);,id € ID,1 < j<n gc({id,m});,id € ID,m € M
receive({id,m}); ,id € ID,m e M,1<j<n
receive({id, GeNOTE}); ;,id € ID,1 < j<mn
receiwe({{—1, —1}, {GOSSIP,rtxlist}});:,1 <j<mn
tick;

Output:

unisend({id, P}); j,id € ID,P € PAYLOAD,1<j<mn

user_receive(m);,m € M,1<j<n

States:

unibu f, a set of outgoing messages of type {Int : to, {id, PAYLOAD : m}} through unisend, initially empty
deliverbuf, a set of messages of type {id, m}, waiting to be delivered to the application, initially empty
lastseen[j], an array of last seen sequence number for each sender j, initially all -1

missing, a set of IDs indicating missing messages in logger phase, initially empty

gmissing, a set of IDs indicating missing messages in gossip phase, initially empty

gossipbuf, a set of messages of type {age, id, m}, initially empty

loggerid, identifies the dedicated logger. Defaults to LOGGERID

Transitions:

41

4.3. RPBCAST - INTEGRATING LOGGER/GOSSIP BASED RECOVERY

unisend({id, m}); ;:
Precondition:
{4, {id,m}} € unibuf
Effect:
unibuf = unibuf — {j, {id, m}}

user_receive(m); ;:
Precondition:
{4, m} € deliverbuf
Effect:
deliverbuf := deliverbuf — {j,m}

tick;:
Effect:
for each entry € missing
unibu f := unibuf U {loggerid, {entry, RT X }}
pick random member j, 1 < j < n according
to application specified selection distribution
unibuf := unibu fU
{7, {{-1, -1}, {GOSSIP, gmissing}}}
for each entry = {age,id, m} € gossipbuf

increment age

ge(id, m);:
Precondition:
I(age, id,m) € gossipbuf
and age > GCLIMIT
Effect:
gossipbuf := gossipbuf — {age, id, m}

Tasks:

Arbitrary

receive(id, HEART BEAT); ;:
Effect:
for each lastseen|id.senderid] < k < id.seqno
gmissing := gmissing U {id.senderid, k}
lastseen[id.senderid] =

max{id.seqno, lastseenlid.senderid]}

receive(id, GeNOTE) ;:
Effect:
gmissing 1= gmissing — {id}

missing := missing + {id}

receive({—1, —1}, {GOSSIP, rtxlist}); ;:
Effect:
for each id € rtxlist
if {id, m} € gossipbuf then
unibuf := unibuf U {j, {id,m}}
else if {id, m} ¢ (gmissing Umissing)
and id.seqno < lastseen|id.senderid] then

unibu f := unibuf U {j, {id, GeNOTE}}

recetve(id, m)j ;:
Effect:
if id € (gmissing U missing) then
deliverbuf := deliverbuf U {id, m}
gossipbu f := gossipbuf U {0,id, m}
gmissing := gmissing — {id}
missing := missing — {id}
else if id.seqno > lastseen[id.senderid] then
for each lastseen[id.senderid] < k < id.seqno
gmissing := gmissing U {id.senderid, k}
lastseen[id.senderid] = id.seqno
deliverbuf := deliverbuf U {id, m}
gossipbuf := gossipbuf U {0, id, m}

In the combined implementation, whenever we detect a new missing message, we always add it to
gmissing — initiating gossip recovery for that message. Missing message ID will migrate from gmissing

to missing, ie. move from gossip phase to logger phase, after a garbage collection notification (GeNOTE).

42

4.3. RPBCAST - INTEGRATING LOGGER/GOSSIP BASED RECOVERY

We generate a GeNOTE if and only if the requested message is not in our gossipbuf and that we have
received the message before. This GeNOTE generation condition is true and sufficient for two reasons.
First. Property 3.5 implies that we have received the message before, i.e. added to gossipbuf. Second, gc
is the only call that removes messages from gossipbuf. Therefore, not in gossipbuf implies local garbage
collection has occurred.

To ensure that rpbcast still satisfies our specification and liveness, we need to augment our simulation
relation f to include gmissing as part of the missing message set. The remaining catch is to augment the

liveness condition such that a message ID is eventually removed from gmissing:

e Property 4.1 For each missing message m, m is either recovered during the gossip phase or eventually

passed on to the logger phase recovery.

The first half of the claim is obvious from construction. To show the second half of the claim, we note
that local garbage collection of m will eventually occur. In other words, there exists a time ¢ in the execution
such that m ¢ gossipbuf; for all ¢ and time after ¢. Therefore, after time ¢, periodic gossip messages for
retransmission of m will eventually result in the arrival of a corresponding GeNOT E message and removal
of the ID from gmissing as desired. Using Property 4.1 and the correctness of the logger based recovery
shown in Chapter 3, we conclude rpbcast satisfies our specification and liveness condition in Section 2.1. At
this point, we have completed the description of our hybrid protocol rpbcast. We will now procede to propose

several “optimizations” and resolve some of the nagging details.

43

Chapter 5

Heartbeats, Membership, and Logger
Garbage Collection

In this chapter, we cover details about logger garbage collection and two optimizations to our hybrid protocol
rpbcast. We discuss two strategies for garbage collection (GC): timeout based and stability oriented GC.
The two optimizations center around using gossip for distributing heartbeats and membership information.
In the case of membership, we will also give a simple membership protocol that is efficient and sufficient
for the purpose of logger GC. This chapter is organized in three sections. Section 5.1 talks about gossiping
heartbeats. Section 5.2 describes our logger GC schemes. Section 5.3 covers various membership related

issues.

5.1 Gossiping and Hashing Heartbeats

One drawback of all receiver-reliable protocols is the network traffic generated by the periodic heartbeat
messages to inform all receivers about the latest message id during an idle period. In the vanilla rpbcast
protocol described in the previous chapters, we multicast a heartbeat messages in each idle tick period.
LBRM improves upon this fixed heartbeat scheme by a variable heartbeat [18] scheme using exponential
back-off timer for generating heartbeats. The variable heartbeats work great when there are a few idle
senders. However, this scheme will induce considerable overhead if the number of idle senders is large.

In a publisher/subscriber environment, we expect many senders to have bursty send behaviors — that is a
sender outputs data in bursts and that there is a long idle period in between send bursts. Hence, these types
of environment will often have many idle senders. This is the key motivation for propagating heartbeats
through gossip. We will outline a naive approach first and then show how to optimize it.

In the naive approach, we include all the latest sequence numbers in every gossip message. Note that a

gossip message that contains both the latest sequence numbers and negative gossips is equivalent to listing

44

5.1. GOSSIPING AND HASHING HEARTBEATS

Receiver A Receiver B
Latest: . ‘ Latest:
A=24 HASH(A=24,B=13,C=14) A=23
B=13 B=14
C=14 C=14

Hash Signatures
Disagree

New latest:
A =24 A=23, B=14, C=14
B=14
C=14

Figure 5-1: Hashing and merging heartbeat information

all previously received messages. Thus we lose the reduced message size benefit from negative gossips as
claimed in Section 4.1. To improve upon the naive approach, we take advantage of that fact that we have N
heartbeats in one gossip message as opposed to N separate heartbeat multicast messages in LBRM’s variable
heartbeats scheme.

We realize this advantage by “compressing” N heartbeats into something smaller to reduce heartbeats
overhead, which is not possible if each heartbeat is in a different message. More specifically, rpbcast com-
presses the heartbeats through hashing. Let HB; be the last known sequence number from idle sender ¢,

then rpbcast computes

hsig = HASH(| | HB;)

using some collision-free hash function HASH. Instead of gossiping all N heartbeats, rpbcast gossips the
hash signature hsig. If the gossip target has the same signature, that is they agree on the latest sequence
number with very high probability, then no further information exchange is necessary. On the other hand,
if signatures differ, then the target will respond with a list of its heartbeats and let the gossiper merge the
difference. Figure 5-1 demonstrates the interaction. Note that sending a hash signature and then merging the
difference is essentially a gossiper-pull mechanism for finding out the latest sequence number. One additional
optimization is for the gossiper to also update the target if the target is behind in some heartbeat values.
This optimization is equivalent to having both pull and push in one gossip round.

Gossip with hashing as described above does not function well as the main heartbeat distribution mecha-

nism: when a new heartbeat value appears at a particular sender, every member will see a different signature

45

5.2. LOGGER GARBAGE COLLECTION

and cause a mass exchange of heartbeat values. To avoid this problem, rpbcast requires each sender to ini-
tially multicast its heartbeat value before entering an idle period. This initial multicast mass distributes the
new heartbeat value. Consequently, the hashing optimization will only handle minor corrections. Thus the
periodic heartbeat is replaced by one multicast and gossips. Another optimization is to use a variable gossip
rate for hash signatures. This optimization reduces message traffic, thus lowers overhead.

The effectiveness of gossip with hashing for distributing heartbeat information depends on how often hash
signatures disagree. Since a heartbeat value is unchanged during a particular idle period, disagreements can
only occur immediately following a sender’s transition from active to idle. If this active-to-idle transition rate
and loss rate on the initial heartbeat multicast are high, then the hashing scheme will behave like the naive
approach because disagreements result in full exchanges of heartbeat values. On the other hand, if these
rates are low compared to the gossip period and that the number of idle senders is reasonably large, then
the hashing optimization will result in significantly lower overhead than that incurred by LBRM’s variable
heartbeats.

Since gossiping and hashing heartbeats are straight forward, we will not give the I/O automaton descrip-
tion of the receiver module here with this optimization. The correctness of rpbcast with the optimization
still holds given that the liveness property guarantees eventually some of the heartbeats are delivered. This
liveness condition is necessary to ensure that each receiver eventually detects all missing messages, as claimed

and used in the liveness argument in Section 3.5.

5.2 Logger Garbage Collection

A simple GC mechanism uses timeouts. For example, one such scheme might be to garbage collect all
messages older than 2 days in logbu f. Timeout based GC methods provide a deterministic mean of limiting
logbu f size and do not depend on any membership information. However, such methods destroys the reliable
message delivery guarantee as specified in Section 2.1. For instance, the network might partition into multiple
segments and remain partitioned for more than 2 days. In that case, members will not recover the message
after the partitions heal because loggers have already performed garbaged collection. One remedy is to relax
our specification such that we are allowed to drop messages that has been “stuck” for a while.

A more sophisticated GC mechanism, often used in group communication systems, is stability-oriented
GC (Sge)- In Sge, a logger garbage collects a message if and only if every receiver in the group, at the
moment of the actual send, has acknowledged the message’s arrival. Let J; be the precise time when receiver

1 joined the group, then we define a garbage collection mechanism as stability-oriented if
e For all ¢, if m is sent after J;, then m cannot be garbage collected without ¢’s acknowledgment.

Many stability detection protocols exist in the research literature. However, they usually impose signif-

icant overhead in order to reduce detection time, especially with large groups and changing membership.

46

5.2. LOGGER GARBAGE COLLECTION

Sac is also “incompatible” with receiver-reliable protocols because Sgc requires positive acknowledgments
while receiver-reliable protocols use strictly negative acknowledgments.

In rpbcast, we amend this “incompatibility” between Sgc and receiver-reliability. Since all of our NACK's
are sent in one gossip message (receiver module in Section 4.3), we can take the complement of the NACKs
to derive the appropriate ACKs. However, we still have some ambiguities because we do not know the
latest sequence numbers that the receiver has seen. If gossip messages also contain heartbeat information,
as proposed in Section 5.1, then the ambiguities disappear. In practice, we may use the following simplified
version — find the smallest missing message ID for a sender in the gossip message and garbage collect
messages below that ID. If there are no missing messages for a particular sender, then we use the sequence
number in the gossip message, if it is available.

This notion of derived ACKs may also be useful in reducing senders to logger retransmission traffic.
Instead of constantly retransmitting a message until an ACK arrives, a sender can treat a logger as a
normal receiver and derive ACK's from logger’s gossip, if the initial ACK was lost. Under the assumption
that message loss is low, say 0.5%, this alternative should not cause sender’s buffer to fill up due to lost
ACKs.

With these derived ACKs, our GC policy can be extremely sloppy. Below we give an 1/O automaton

description of our logbu f garbage collection management.

LoggerGC;:

Types:
ID = {Int : senderid, Int: seqno}
SeqList = array of Ints
WaitList = array of Int

Signature:

Input: Output:
new-member(j);, 1 <j<n
remove_member(j)i, 1 < j<mn
add-message(id, m);,id € ID,m € M
ge(g, nackList, lastList);, j € ID,nackList € IDList,lastList € SeqList

States:

current_member, an array of Int that reflects the current membership, initially {i}

logbuf, a set of elements of type {id, m, WaitList : wait}, initially empty

Transitions:

47

5.2. LOGGER GARBAGE COLLECTION

new_memeber(j);: ge(j, nackList, lastList);:
Effect: Effect:
current_member := current_member U {j} for each entry = {id, m, wait} € logbu f
for each entry = {id, m,wait} € logbuf such that j € wait do
wait := wast U {j} if id ¢ nackList and

id.seqno < lastList[id.senderid] then
remove_member(j);:

Effect:

wait := wait — {5}
if wait = @ then

current_member := current-member — {5} logbuf := logbuf — entry

add_-message(id, m);:
Effect:
logbuf := logbuf U {id, m, current_-member}
Tasks:

Arbitrary

The LoggerGC' mechanism described above has the following behavior. When the logger learns about a
new member through new_member, the logger implicitly assumes that all messages currently in the buffer
also require the new member’s acknowledgment. Similarly, when a new message arrives, the logger assumes
the message needs acknowledgments from everyone in current-member. LoggerGC'is also sloppy in that
remove_member(j) does not remove j from every message’s wait list.

The interesting part of LoggerGC happens when there is a garbage collection gc call. In ge(j, nackList,
lastList), the logger finds all messages in logbu f that is waiting for acknowledgment from receiver j. For each
of those messages, the logger makes sure that receiver j is not currently missing the message (id ¢ nackList)
and that receiver j has seen the message id (id < lastList). Basically, this check derives an acknowledgment
from the NACKs and latest sequence numbers.

Note that new_member(j) is called when the logger learns about a new member j’s presence. In the
actual execution run, j might have joined the group at an earlier time. Let ¢;4;, be the moment j joins the
group and tjeqrn be the moment that the logger learns about j’s presence. Then, LoggerGC will correctly
implement a stability-oriented GC as defined earlier if for each message m sent after ¢4, , one of the following

two cases is true.
1. m arrives at the logger after time ¢;eqpn, OF

2. there exists another receiver h such that GC of m depends on h and h has not sent an acknowledgment

of m to the logger before time tjeqr .

If case 1 happens, then the new member j has already been added to the current_member list when m
arrives. Consequently, when add_message is called, member j will be added to m’s waiting for acknowledg-

ment list, as required by the definition of the stability-oriented GC. If case 2 happens, then m is already

48

5.3. APPROXIMATE MEMBERSHIP

in logbuf when the logger learns of member j’s presence. Hence new_member will append j to the waiting
for acknowledgment list of each message in logbuf, including m, which also satisfies the definition of the
stability-oriented GC.

To show that LoggerGC' is indeed a stability-oriented GC, we must show that either case 1 or case 2 is
true for all affected messages. Unfortunately, we cannot prove this without cooperation from the membership
protocol. Section 5.3 gives two “inexpensive” membership protocols that one can use to ensure case 2 always
holds when a message arrives before the logger learns about a new member.

Due to the possibility of a member crashing and never returning, a practical implementation of rpbcast
should have both timeout based and stability-oriented GC. One may argue that using a failure detector
and stability-oriented GC is sufficient. This argument is true if the application does not have intermittently
connected members. However, this assumption is not the case in publisher/subscriber systems. When there
are intermittently connected members, a failure detector cannot distinguish between a crashed member and

a temporarily disconnected member. Therefore, we will need a timeout based failsafe mechanism.

5.3 Approximate Membership

Rpbcast uses membership information for two purposes: selecting a gossip target and maintaining stability
oriented garbage collection at loggers. For selecting gossip target, we do not need a precise and up-to-date
membership all the time. As long as membership changes are eventually propagated to every member,
rpbcast will function correctly. This observation suggests that gossip is an appropriate tool for distributing
membership. In fact, an optimization, specific to rpbcast, may distribute membership information in the
same manner as heartbeats. Current membership information is hashed and sent with each gossip message.
When disagreements occur between hashed signatures, the full membership information is exchanged.

This lazy gossip approach to membership is not sufficient for logger garbage collection because loggers
need to know precisely when a new member has joined the group. A simple solution is to let loggers handle
all membership joins and leaves. As long as one logger knows about a join or a leave, the gossips will take
care of the propagation. Again, an initial multicast of the joins and leaves will improve the gossip efficiency.
This approach of using loggers as admittance control trivially satisfies case 2 set forth in Section 5.2 because
tjoin = tiearn for at least one logger. Therefore, the simple approach is sufficient for implementing stability
oriented garbage collection by the arguments in Section 5.2.

A weaker version of joins and leaves, partially based on [14], is also possible. Before we go into the
details of this weaker membership, let us first define the notion of time in a more concrete way. Using the
vector timestamp idea [12, 23, 26], we define time ¢ by a vector of sender sequence numbers. We denote the
sequence number for sender ¢ at time ¢ by ¢[7]]. With the vector time, we can formally define the notion of

before and after. We say

1. ¢y is b6f07’6 to if tl[l] < tQ[Z] for all i € t;.

49

5.3. APPROXIMATE MEMBERSHIP

Member 1 Q

Multicast Sponsored Sponsored Sponsored
Join Request by M2 at by M1 at by M3 at
[12, 7, 14] [15, 7, 12] [11, 4, 19]

\ \ Pid

\ N e

SN -

o~

The moment of join =[15, 7, 19]

Figure 5-2: Membership: Joining

2.ty is after to if tl[l] > tQ[’L] for all i € t,.
3. Message m with ID {senderid, seqno} is after t1 if seqno > t1[senderid).

Note that before and after form only a partial order (rather than a total order) using these vector times.
Fortunately, these vector times are sufficient for the purpose of determining when a new member has joined.
We now give an informal description of what happens during a join. We will give an I/O Automaton later
in the section.

During a join step, a new member W multicasts join messages periodically to the group until receiving
k distinct gossip messages from members already in the group, i.e. from k sponsors. Note that each gossip
message signifies that an existing member has accepted the join attempt and begun propagating the new
membership information. If we have heartbeat values in the gossip message, as suggested in Section 5.1,
then these sequence numbers in the gossip message define the precise moment in time when the sponsorship
is established. We denote the sponsorship time from member ¢ by T'S;. From the k sponsorship time, we
define t;,;, as the earliest time such that t;.,, is after T'S; for all i. Clearly, t;oin[j] = max{TS;[j]}5_,.
Figure 5-2 illustrates the process outlined above.

Intuitively, this join mechanism is correct because garbage collection of any message sent after a sponsor’s
acceptance of W will first require that sponsor’s acknowledgment. Since the acknowledgment is derived from
the sponsor’s gossips to the loggers and gossip messages contain membership information, the loggers will

learn about W’s existence before garbage collecting, as required by case 2 in Section 5.2. Therefore, no

50

5.3. APPROXIMATE MEMBERSHIP

messages after ¢;,;, will be garbage collected without W’s acknowledgments. We use k sponsors to tolerate
k —1 failures. Leave operations are identical to the join operations, except we do not have to compute ¢;oin-

We now give the formal I/O automaton description of the module that distributes membership informa-
tion through gossip and handles join/leaves. The hashing optimization can be applied to the distribution
of membership as well. In order for this implementation to function correctly, we assume each member has
access to a unique monotonic number generator. We use this unique number to differentiate between various
incarnations of a member. In practice, we use the local clock time as the monotonic number generator. In

the I/O Automaton, we model the number generator as a counter which increments before each join or leave

attempt.

Member;:

Types:

STATUS = {not_member, member, pending_join, pending_leave}
MemberElem = {Int : id, STATUS : status, Int : freshness,Int : lastseqno}
PAYLOAD = {GOSSIP,set of MemberElem : members} U {JOIN, Int : freshness, Int : segno}

U{LEAVE, Int: freshness}

Signature:
Input: Output:
join; multisend(P);, P € PAYLOAD
leave; unisend(j, P);, P € PAYLOAD
tick;

receive(JOIN, freshness, seqno);,;, freshness : Int, seqno : Int
receive(LEAV E, freshness, seqno);,;, freshness : Int, seqno : Int

receive(GOSSIP, members); ;, members : set of MemberElem

States:

cmembers, a set of MemberElem that keeps track of current membership, initially

{ {i, member, 0, —1}
0

. member if logger
state € STATUS, status of the member, initially {

tjoin[i], an array of sequence numbers, used for dctc?r?ltiﬁ%egmveﬁgn g}glg{l\;/i%eid join succeed.
fresh, integer counter for uniquely identify each attempt, initially O

sponsors, a set of Int, identifies all current sponsors

multibuf, a set of elements of type PAYLOAD, for outgoing messages

unibu f, a set of elements of type {to, PAYLOADY}, for outgoing messages

loggerid, the identifier of the logger, set to default LOGGERID

segnum, sequence number of type Int. Used in the vector time stamp, initially -1

Transitions:

o1

if logger

otherwise

5.3. APPROXIMATE MEMBERSHIP

unisend(j, P);:
Precondition:
{j, P} € unibuf
Effect:
unibuf := unibuf — {j, P}

join;:
Precondition:
status = not-member | pending_join
Effect:
fresh := fresh+1
status := pending_join
sponsors := 0, cmembers := ()

tjoin[.ﬂ =-1,Vli<j<n

leave;:
Precondition:
status = member | pending_leave
Effect:
fresh := fresh+1
status := pendingleave

sponsors = @

tick;:
Effect:
if status = pending_join then
multibuf := multibuf U {JOIN, fresh, seqnum}

else if status = pendingleave then

multibuf := multibuf U{LEAVE, fresh, segnum}

else if status = member then
pick random member j,j € cmembers and
that status of j is member

unibuf := unibuf U {j, {GOSSIP,cmembers}}

Tasks:

Arbitrary

multisend(P);:
Precondition:
P € multibuf
Effect:
multibuf := multibuf — {P}

receive(JOIN, freshness, seqno); ;:
Effect:
if status = member then
merge crmembers with

{j, member, freshness, seqno}

receive(LEAV E, freshness, seqno); ;:
Effect:
if status = member then
merge cmembers with

{4, not_member, freshness, seqno}

receive(GOSSIP, mem); ;:
Effect:
merge cmembers with mem
if status = pending_join and
{i, member, freshness, seqno} € mem and
freshness = fresh then
sponsors := sponsors U j
update tjoin 7] if tjoin is not after mem
if sizeof(sponsors) > k or j = loggerid then
status := member
else if status = pending_leave and
{i, not_member, freshness, seqno} € mem and
freshness = fresh then
sponsors := sponsors U j
if sizeof(sponsors) > k or j = loggerid then
status := not_member

cmembers 1= ()

Basically, the member ¢ enters a pending_join or pending_leave state through join and leave respectively.

These two routines increment the fresh counter so that old incarnations will not confuse us. tick generates

52

5.3. APPROXIMATE MEMBERSHIP

Less than k sponsors

join

Pending_join

found k-th
sponsor or

join logger responded
Not_member Member
found k-th
sponsor or leave

logger responded

Pending_leave

leave

Less than k sponsors

Figure 5-3: Membership: High level state transitions

periodic gossips and remulticast join/leave messages if in pending mode. The various receive routines are
for processing join/leave requests and gossip messages. Note that we only allow current group members to
process join/leave messages, i.e. pending members are not allowed to be sponsors. In receive, we merge
the current group membership cmembers with the newly arrived ones. We merge them according to their
freshness — honoring the most recently data (with largest freshness). When processing gossip, we also
update sponsor information as well if we are in pending mode. Note that we leave the pending states if we
get k sponsors or if we get a sponsorship from a logger. We use the shortcut from a logger for bootstrapping
when the group size is less than k. Figure 5-5 shows more clearly how the various status states relate to
each other and which actions are enabled at each state.

The property we need from this Member implementation is
o Property 5.2 If a “join” succeeds, then ¢4, is after T'S; for each sponsor .

This property holds trivially if we maintain that t;ei,[j] = max{TSi[j]}g?:l. By induction on k, we can
easily show that our incremental updates to ¢4, [j] is correct. With the assumption that garbage collection
derives acknowledgments from gossip messages that also contains membership information, we guarantee
that loggers will learn about the new member’s presence before garbage collecting any message m after T'S;

for some sponsor . By Property 5.2, t;0in is after all T'S;. Therefore, no messages after ¢4, will be garbage

53

5.3. APPROXIMATE MEMBERSHIP

collected before loggers learn about the new member (case 2 in Section 5.2). Hence, this membership protocol
is sufficient for implementing stability-oriented garbage collection as described in Section 5.2.

The above M ember implementation can be easily extended to include intermittently connected members.
We add one more possible state disconnected that a member can be in and two transitions disconnect and
reconnect. disconnect changes a member’s state from member to disconnected. reconnect does the opposite.

We omit this extension here.

54

Chapter 6

Member Crashes

So far we have assumed that members, both senders and receivers, do not crash, or they have stable storage
for keeping sequence numbers and buffers. In this chapter, we will show how to extend our specification
and implementation to include sender/receiver crashes. We will continue to assume that loggers have stable
storage for all its operations. Section 6.1 extends the specification in Section 2.1 to include sender/receiver
crashes. Section 6.2 suggests several approaches in modifying the hybrid protocol to deal with receiver

crashes and also explores situations with sender crashes.

6.1 Specification with Crashes

To allow member crashes, we will add two interface routines crash; and recover; in the specification. In-
formally, crash; will disable all user_send and user_receive events and enable recover;. recover; does the
opposite of crash;. Moreover, the crash and recover are allowed to drop some messages. This dropping
of messages is our relaxation of the specification for dealing with crashes. Below is the I/O automaton

specification.

Reliable Multicast with Crashes:

Signature:

Input: Internal:
user_send(m);,m € M,1<i<mn drop(m);,;
crash;

Output:

user_recetve(m);;,m € M,1<4i,j<n

TECOVET;

States:

status(i) for 1 < ¢ < n, array of crash/recovery bits. initially, status(i) := up for all ¢

for every 1,7,1 <1i,5<n

55

6.2. SENDER/RECEIVER CRASHES

buf fer(i,j), a multiset of elements of type {boolean, M}

Transitions:

user_send(m);:
Precondition:
status(i) = up
Effect:
forall 5,1 <j<n

buffer(i,j) :=buffer(i,j) U{FALSE, m}

crash;:
Precondition:
status(i) = up
Effect:
status(i) := down
foreach 1<j<n
mark some messages as {TRUE, m}

in buf fer(i, j)

user_receive(m); ;
Precondition:
{FALSE,m} € buffer(i,j)
and status(j) = up
Effect:
buffer(i,j) :=buffer(i,j) — {FALSE,m}

recover;:
Precondition:
status(i) = down
Effect:
foreach 1 <j<n
mark some messages as {TRUE, m}
in buffer(j,i)

status(i) = up

drop(m);,;:
Precondition:
{TRUE,m} € buffer(s, j)
Effect:
buf fer(i,j) :=buffer(i,j) — {TRUE, m}

Tasks:

Arbitrary

Essentially, all messages are initially marked as FFALSFE when there are no crashes. When crash and
recovery happen for member ¢, then some messages are marked as T RU E — specifically, messages destined
for receiver module i or messages sent by sender module ¢. Those messages marked as T RU E are eventually
dropped from the buffer by the internal action drop. This relaxation gives flexibility to the implementation for
designing its recovery strategy. One would use backward simulations to show that such an implementation
indeed satisfies the modified specification because the specification will usually make a nondeterministic

decision on which messages are dropped before the actual implementation does.

6.2 Sender/Receiver Crashes

There are two possible approaches for dealing with receiver crashes in our implementation: either guarantee
at most once delivery or at least once delivery. The specification in Section 6.1 is for an at most once
delivery guarantee. The simplest way for doing at most once delivery is to rejoin the group from scratch

and get a new starting point. Since our hybrid protocol is a receiver-reliable protocol, the protocol already

56

6.2. SENDER/RECEIVER CRASHES

implements at most once delivery in the event of a receiver crash. This approach is also flexible for application
specific recovery. The alternative is at least once delivery. Our hybrid protocol can be easily modified to
accommodate this approach as well. Instead of initiating a new join, the recovering member can contact a
logger and figure out which messages it may not have been delivered to the application yet.

Sender crashes are more complicated because the sender may have difficulty in recovering the old sequence
number, hence resulting in conflicting sequence numbers or a gap. Traditionally, protocols deal with this
problem by forcing the sender to check out a block of sequence numbers before sending messages. This
approach avoids conflicting sequence numbers when the sender crashes and recovers. However, it will result
in a sequence number gap and cause receivers to think they are missing some messages. To use this approach
in our hybrid protocol, we need to add extra logic into the data path for detecting gaps resulting from a
sender crash. The easiest solution is to have notifications from the sender to loggers whenever a logger
is requesting a message not in sendbuf. Loggers can then take over the responsibility of spreading that
information to other receivers. We can also multicast these notifications to speed up the process.

The aforementioned candidate solutions for addressing sender /receiver crashes have all been implemented
before, e.g. Belsnes’s FivePacket Handshake protocol [6]. We will skip their details in the interest of saving

trees and move onto simulation results in the next chapter.

o7

Chapter 7

Simulation Results

Our experiments focus on comparisons between gossip-based pbcast, log-base LBRM, and our hybrid protocol
rpbcast. We implemented these three protocols as agents in UC Berkeley’s Network Simulator NS2 using
C++ and conducted test runs using NS2.

7.1 Experimental setup

Our test topology is a thirty node tier-hierarchy topology generated by Georgia Tech’s Internetwork Topology
Models (GT-ITM). Figure 7-1 shows the topology layout. The numbers on each link are the latencies for
those links.

Of the thirty nodes, eighteen fringe nodes participate in our multicast experiments. Moreover, each
receiver can also be a sender in our experiment. Node 14 on the far left side of network is the designated
logger for both LBRM and rpbcast. Each link in the network is a 100Mb/sec bidirectional link.

Unfortunately, NS2 does not simulate packet servicing time at individual nodes. We approximate request
service time by imposing a fixed limit on how many recovery requests a node can process in a second. In our
experiments, we do not count multicast data packets toward this service limit because we are only interested
in bounding overhead processing time. The default service limit is 1000 repair retransmissions per second.
We also set the router queue limit to be 50 packets. In our test runs, we did not observe any packet loss due
to queue overflow. Other protocol specific parameters are summarized in table 7.1.

In our experiments, each test run consists of 10 seconds of multicast traffic plus some additional lingering
time to reliably deliver packets to every receiver. During this 10 seconds, each sender independently generates
1 kilobytes packets, with Poisson arrival rates. When we vary multicast rates in our experiments, we vary

the expected number of packets generated by each sender.

58

7.1.

EXPERIMENTAL SETUP

Figure 7-1: Test topology

Table 7.1: Protocol specific parameters

Parameter Value Protocols
Gossip period 0.25 sec r|pbcast
GC limit 10 rounds | [r]pbcast
Gossip selection linear bias | [r]pbcast
Min heartbeat rate 0.25 sec Ibrm
Max heartbeat rate 32 sec Ibrm
Back off factor 2 Ibrm
Retransmission rate 0.25 sec Ibrm

59

7.2. RETRANSMISSION LOAD DISTRIBUTION AND LINK UTILIZATION

Retransmission load distribution

300000
"Ibrmload" —
- "rpbcastload" --—--—----
250000 F -
m
=
& 200000 | -
0
[
S
@ 150000 | §
IS
C
©
£ 100000 - 1
1]
s
=
50000 F -
0 5 10 15 20 25 30

Node ID

Figure 7-2: Load distribution

7.2 Retransmission load distribution and link utilization

The key advantage of gossip-based multicast over log-based multicast is balanced distribution of retrans-
mission requests among all receivers. Figure 7-2 illustrates typical load distribution for LBRM and rpbcast
when the network is not congested. This particular load distribution is for 18 senders with 1% packet loss
and 360 packets per second overall.

As expected, the logger in LBRM, node 14, has significantly more retransmissions than any receivers
in rpbcast. The retransmission traffic from non-logger nodes in LBRM are packets that did not reach the
logger during the initial multicast, and are therefore retransmitted by the sender. Rpbcast’s balanced load
distribution also results in better link utilization. Figure 7-3 shows the overall traffic per link. Notice the
four peaks in the figure for LBRM. These four links are the bottleneck links from the logger to the hub in
the center of the network. In practice, we expect large link bandwidth between a logger and the network
backbone, thus higher link usage may not be as significant as logger service rate.

Balanced load distribution in rpbcast is not free. In order for every receiver to act as a retransmission
source, each receiver has to buffer a packet for some time. Thus a receiver in rpbcast has higher memory
requirements than LBRM. For our experiments, we buffer each packet for 10 gossip rounds. Thus each node
buffers all packets that arrived in the past 2.5 seconds. In practice, we suggest a fixed buffer size and garbage

collecting oldest packets when space is needed. This approach will affect convergence time. However, under

60

7.3. DELIVERY LATENCY

Link utilization
1e+06 T T T T T T
- Illbrmll I
"rpbcast" ------—-- i

900000 |
800000 |

700000

600000

500000 [B

400000 | b

300000 | T b

200000 [= — B

100000 == b

Total traffic in bytes (including multicasts)

0 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Link ID

Figure 7-3: Link traffic

average network conditions, two or three rounds of gossiping is usually sufficient for delivering a packet to
all receivers. In the worse case, receivers will resort back to contacting the logger. In particular rpbcast has

the same behavior as LBRM when the network saturates due to an extended period of external noise.

7.3 Delivery Latency

The motivation for distributing retransmission requests among all receivers is to maintain low delivery latency
under high send rates. We define delivery latency as the time between a sender multicasting a packet and
all receivers receiving the packet. With high send rates, the number of missing packets will also increase,
thus overloading dedicated loggers and introducing higher latency. Figure 7-4 illustrates this behavior.

In this experiment, we set packet size to 1 kilobyte, loss rate at 1%, and maximum retransmission limit at
1000 requests per second. The most interesting aspect of the latency figure is the cross-over point between
LBRM and rpbcast. Before the cross-over, the logger in LBRM is not overloaded. Hence LBRM is able
to provide timely retransmissions, whereas rpbcast is randomly selecting retransmission sources, some of
which do not succeed. After the cross-over point, the logger at node 14 cannot keep up with retransmission
requests, resulting in higher latency. This bottleneck does not exist in rpbcast until a much higher send rate,
when gossips fail to service all retransmissions before garbage collection. If we stretch the plot farther out

to the point where the network saturates, both LBRM and rpbcast will have large latencies. These latency

61

7.4. NON-REPAIR RELATED OVERHEAD

Delivery Latency

"pbclast" T T T T T T
45 L 'rpbcast’ - 4
"lorm" -

35 i
25 | -

15 o~ -

Average delivery latency (sec)

0 2000 4000 6000 8000 10000 12000 14000 16000
Send rate (packets/sec)

Figure 7-4: Latency vs send rate

results suggest that a further optimization would be to use LBRM for low send rate and switch to rpbcast
after detecting logger congestion.

One may also notice that rpbcast has lower latency than pbcast. The second cross over point is between
rpbecast and pbcast. This result supports our claim that pull-based recovery exhibits lower latency than
push-based recovery. Another point to mention is that, although pbcast has constant latency, it does not
deliver packets to all receivers at high send rates. Figure 7-5 shows the numbers of packets, sent during this

10 seconds trial, not received by all receivers.

7.4 Non-repair related overhead

Another important scalability factor is message overhead. Since each protocol must repair roughly equal
number of packets, we separate retransmission packets from other protocol-specific overhead. In non-repair
related overhead, we measure the amount of non-multicast and non-repair packets. This overhead for pbcast
includes gossip messages and retransmission requests. In our implementation of pbcast, we use an interval
representation for gossiping buffer content instead of listing each packet in the buffer. We chose the interval
representation because high multicast rates will result in very large gossip messages if we simply list indi-
vidual packets. In the worst case where we miss every other packet, an interval representation is twice as

large as explicitly listing packets. For LBRM, the overhead messages consist of acknowledgments, periodic

62

7.4. NON-REPAIR RELATED OVERHEAD

Number of packets not delivered to all receivers
12000

pbcas{ —

10000 [
8000
6000 -
4000

2000

Number of packets not delivered in a test run

0 I T 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000

Send rate (packets/sec)

Figure 7-5: Unreliable packets in pbcast

heartbeats, and retransmission requests. Rpbcast overhead consists of gossips, garbage collected notifications,
and acknowledgments.

Three variables contribute to the variations in protocol overhead: number of senders, packet loss rate,
and multicast rate. We present two sets of overhead measurements by varying the number of senders and
the packet loss rate. Since a higher multicast rate simply results in more dropped packets, we omit that
measurement here. Figure 7-6 shows changes in protocol overhead as we vary number of senders from a
single sender to all 18 senders. In these test runs, the loss rate is 1%, and multicast traffic rate is fixed at
approximately 360 total packets per second.

Note that because of the positive gossips, overhead for pbcast is approximately linear with the number
of senders. On the other hand, LBRM and our rpbcast are insensitive to the number of senders. The
constant difference in overhead between rpbcast and LBRM is due to additional information in rpbcast’s
gossip messages, such as hashing signatures. If an application also requires membership information, then
overhead for LBRM will increase due to an additional membership protocol while rpbcast overhead already
includes membership overhead. Observe that when every node is sending packets (18 senders), no idle
heartbeats are generated. Consequently, rpbcast overhead decreases by half because hash signatures for
heartbeats are no longer needed.

A similar experiment was conducted with loss rates ranging from 0.1% to 5%. Figure 7-7 shows the

increase in protocol overhead as loss rate increases. The growth in overhead in all three protocols is dominated

63

7.4. NON-REPAIR RELATED OVERHEAD

Non-repair related overhead

14000 T T T T T T T T
o "pbcast" —+—
g "rpbcast” =
& 12000 t “lorm e .
)
°
c
$ 10000 .
)
o
T 8000 f .
()
=
o
3 6000 .
S U
= 4000 X N
o
c
)
2 2000 .
§ y Koene % %***x%*ﬁé rrrrr Kem oo oo R IR
<
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Number of senders
Figure 7-6: Varying number of senders
Non-repair related overhead
30000 T T T T T T T T T T
"pbcast" —+—
"rpbcast” ---x---
"lorm" %o
25000 .

20000

Average nonrepair overhead per receiver (bytes)

15000 |
10000 | |
5000 |
o
0 Lieaex : I | | I I I I I

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
Loss rate (%)

Figure 7-7: Varying loss rate

64

7.5. EFFECTS OF DIFFERENT GOSSIP SELECTION DISTRIBUTION

Link utilization for various gossip distribution
120000

T
"uniform" ——
"linear" ---—-—
"quadratic" -

100000

80000

60000

40000

Total overhead traffic in bytes

20000

O 1 1 1
0 5 10 15 20

Link ID

Figure 7-8: Link utilization

Table 7.2: Delivery latency

Distribution | Average latency | Std. Dev.
uniform 0.069361 0.162196
linear 0.082338 0.187496
quadratic 0.135950 0.439507

by more retransmission requests. Pbcast has more overhead than the other two because of the positive gossips.

Again the difference between LBRM and rpbeast is the hash signature information in gossip messages.

7.5 Effects of different gossip selection distribution

In these test runs, we use linear biasing based on estimated round trip time in rpbcast for selecting gossip
target. We also explored using uniform selection and quadratic biasing where the selection probability
decreases quadratically with respect to the increase in round trip time. Figure 7-8 and table 7.2 summaries
link utilization and latency for each of the three distributions. The experiments have 1% loss rate and
approximately 360 packets per second.

Uniform selection has the lowest delivery latency. However, uniform gossips result in higher network
traffic than biased distributions. Since the difference in network traflic is insignificant between linear and

quadratic biasing, we chose linear biasing in the test runs because of the better latency.

65

Chapter 8

Conclusion

In this thesis, we have described our hybrid protocol rpbcast for high send rates and many senders. We
preserved performance advantages of gossip-based multicast while adding packet reliability guarantees using

loggers. The main contributions of our work are
e Integration of gossip based recovery mechanism with logger based recovery mechanism.

e Use negative gossips and gossiper-pull recovery mechanism to reduce overhead and improve delivery

latency.
e Use hashing to reduce overhead generated by gossiping heartbeats and membership.

e A weak membership that exploits the flexibility in the garbage collection criteria to avoid expensive

join/leave operations.

Our simulation performance results demonstrate that our hybrid protocol rpbcast improves upon previous
work in situations with high send rates and many senders. Under high send rates, our average delivery latency
result (Figure 7-4) shows that loggers in rpbcast overload at a much higher send rate than LBRM. Average
delivery latency is also better when compared to pbcast. But more importantly, rpbcast guarantees reliable
delivery under high send rates while pbcast does not. For situations with many senders, rpbcast imposes
much less overhead traffic than pbcast due to its use of negative gossip and hashing techniques. From Figures
7-6 and 7-7, we see that the overhead for LBRM is less than rpbcast. However, LBRM does not have
any membership or garbage collection mechanisms. Thus in a real world application setting, the combined
overhead for LBRM is probably equivalent to rpbcast overhead.

We recognize that our protocol is not an ideal solution for low send rates or few senders because of
higher ratio between gossip overhead and actual data traffic. Since delivery latency between LBRM and
rpbeast is indistinguishable at low send rates, we feel that LBRM should out-perform our rpbcast in those
cases. We emphasize applications of our protocol in large scale information distribution services, such as

publish/subscribe systems. For future work, we intend to explore the integration of variable gossip rates

66

to reduce overhead, sampling negative gossips for multicasting retransmissions, and dynamically switching
between LBRM and rpbcast based on logger congestion.

Throughout this thesis, we have used I/O automata as the tool for describing our protocol and proving
its correctness. The formal modeling of the environment and the protocol gave us several insights into the
working of the protocol. For example, by breaking up the formal description of the logger based recovery
phase and the gossip based recovery phase into two modules, we were able to clearly isolate the dependency
between the two. In this case, we learned that our protocol will function correctly as long as the missing
message IDs are moved from the gossip phase to the logger phase. Moreover, these two modules can be
replaced by protocols with similar functionalities if the dependency is preserved in the process. We feel this
is a great insight. Using the formal modeling also explicitly requires us to state our assumptions. For this
particular thesis, stating our assumptions allowed us to state precisely when the stability-oriented garbage
collection in Section 5.2 will work properly and what the membership protocol must provide. At an earlier
stage of this thesis, there was a bug in the garbage collection because the membership protocol did not
provide sufficient guarantees. However, breaking down the protocol into smaller components using I/0
automata was difficult, especially when there are many shared variables between modules. Although we
presented garbage collection and membership as two separate modules, the modules are tightly coupled. In
those cases, overall functionality is not easy to grasp. In conclusion, we had a pleasant experience using I/0
automata. Though the formal description and proof arguments took considerable time, we do have more

confidence in the functionality of the protocol.

67

Bibliography

[1]

[10]

D. A. Agarwal. Totem: A reliable ordered delivery protocol for interconnected local-area networks. PhD
thesis, University of California, Santa Barbara, Department of Electrical and Computer Engineering,

August 1994.

M. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. Chandra. Matching events in a content-
based subscription system. In Principle of Distributed Computing, 1999.

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-system for high availability.
In Proceedings of the 22nd Annual International Symposium on Fault- Tolerant Computing, pages 76—84,
July 1992.

T. Anker, D. Breitgand, D. Dolev, and Z. Levy. CONGRESS: Connection-oriented group-address reso-

lution service. In Proceedings of SPIE on Broadband Networking Technologies, November 2-3 1997.

G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman. An efficient
multicast protocol for content-based publish-subscribe systems. In Int’l Conference on Distributed

Computing Systems, 1999.

D. Belsnes. Single-message communication. IEEE Transactions on Communications, COM-24(2):190—

194, February 1976.

K. Birman, R. Friedman, M. Hayden, and I. Rhee. Middleware support for distributed multimedia and
collaborative computing. In Multimedia Computing and Networking (MMCN9S8), 1998.

K. Birman, A. Schiper, and P. Stephenson. Lightweight casual and atomic group multicast. ACM
Transactions on Computer Systems, 9(3):272-314, August 1991.

K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Transactions on Computer Systems, 17(2):41-88, May 1999.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design of a scalable event notification service: interface
and architecture. Technical Report CU-CS-863-98, Department of Computer Science, University of
Colorado, August 1998.

68

BIBLIOGRAPHY

[11]

18]

[19]

[20]

[21]

[22]

A. J. Demers, D. H. Greene, C. Hauser, W. Irish, and J. Larson. Epidemic algorithms for replicated
database maintenance. In Proceedings of the Sizth Annual ACM Symposium on Principles of Distributed
Computing, pages 1-12, Vancouver, British Columbia, Canada, August 1987.

C. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In Proceedings of

the 11th Australian Computer Science Conference, pages 56—66, Brisbane, Australia, February 1988.

S. Floyd, V. Jacobson, C.G. Liu, S. McCanne, and L. Zhang. A reliable multicast framework for light-
weight sessions and application level framing. IEEE/ACM Transactions on Networking, pages 784-803,
December 1997.

R. Golding and K. Taylor. Group membership in the epidemic style. Technical Report UCSC-CRL-92-
13, UC Santa Cruz, Dept. of Computer Science, 1992.

Object Management Group. Corba services: Common object service specification. Technical report,

Object Management Group, July 1998.

V. Hadzilacos and S. Toueg. a modular approach to the specification and implementation of fault-
tolerant broadcasts. Technical report, Department of Computer Science, Cornell University, 1994.

TR94-1425.

M. Harchol-Balter, T. Leighton, and D. Lewin. Resource discovery in distributed networks. In 18th
Annual ACM-SIGACT/SIGOPS Symposium on Principles of Distributed Computing, Atlanta, May
1999.

H. Holbrook, S. Singhal, and D. Cheriton. Log-based receiver-reliable multicast for distributed interac-
tive simulation. In Proceedings of ACM SIGCOMM ’95, 1995.

T. Inc. Rendezvous information bus. Technical report, TIBCO Inc., 1996.

http://www.rv.tibco.com/whitepaper.html.

B. Jonsson. Compositional specification and verification of distributed systems. ACM Transactions on

Programming Languages and Systems, 16(2):259-303, March 1994.

L. Lamport. Specifying concurrent program modules. ACM Transactions on Programming Languages

and Systems, 5(2):190-222, April 1983.

J.C. Lin and S. Paul. A reliable multicast transport protocol. In Proc. of IEEE INFOCOM’96, pages
1414-1424, March 1996.

B. Liskov and R. Ladin. Highly-available distributed services and fault-tolerant distributed garbage
collection. In Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed Computing,
pages 29-39, Calgary, Alberta, Canada, August 1986.

69

BIBLIOGRAPHY

[24]

[25]

[34]

[35]

N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. Master’s thesis,
Massachusetts Institute of Technology, April 1987. Abbreviated version in Proceedings of the Sizth
Annual ACM Symposium on Principles of Distributed Computing, pages 137-151, Vancouver, British
Columbia, Canada, August, 1987.

F. Mattern. Virtual time and global states of distributed systems. In Proceedings of the International

Workshop on Parallel and Distributed Algorithms, Chateau de Bonas, Gers, France, October 1988.

L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual synchrony. In
Proceedings of the 14th IEEE International Conference on Distributed Computing Systems, pages 56—
65, June 1994.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs, i. Acta Informatica,

6(4):319-340, 1976.

0. Ozkasap, R. van Renesse, K. Birman, and Z. Xiao. Efficient buffering in reliable multicast protocols.

In First International Workshop on Networked Group Communication, Pisa, November 1999.

0. Ozkasap, Z. Xiao, and K. P. Birman. Scalability of two reliable multicast protocols. Technical report,

Cornell University, Dept. of Computer Science, 1999.

D. Park. Concurrency and automata on infinite sequences. In Lecture Notes in Computer Science, pages

167-183, Springer-Verlag, New York, 1981.

S. Pingali, D. Towsley, and J. Kurose. A comparison of sender-initiated and receiver-initiated reliable

multicast protocols. IEEE JSAC, 15, April 1991.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end argument in system design. ACM Transactions
on Computer Systems, 2(4):277-288, November 1984.

B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service with
quencing. In Proceedings of AUUGY7, July 1998.

R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. In Proc. of
Middleware °98, pages 55-70, September 1998.

70

