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Abstract

Three-dimensional route maps, which depict a path from one location to an-
other, can be powerful tools for visualizing and communicating dir ections. This
thesis presents a client-ser ver architectur e for generating and displaying accu-
rate, usable route maps between locations on MIT 's campus. Two exemplar y
clients of this architectur e – MITquest, a web based Java applet, and location-
aware active signage – demonstr ate the �exibility and power of this model for
route generation. Additionally , we provide a framework for displaying a set of
campus-wide , public events of inter est to an MIT visitor , including methods for
inferr ing events from public sources and automatically selecting events of inter -
est.

Thesis Supervisor: Seth Teller
Title: AssociateProfessor of Computer Science and Engineering
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Chapter 1

Intr oduction

Ascomputer resourcesbecome ubiquitous , inexpensive, and incr easingly power-

ful, computing in the futur e will be pervasive – computer software and hardware

will become an even greater part of our everyday lives, assisting in tasksboth sim-

ple and complex. A common task we are faced with every day is the problem of

route-�nding: “How do I get from point A to point B asquickly aspossible?” This

thesis presentsa client-ser ver architectur e for generating and displaying ef�cient

routes between locations on MIT 's campus, as well as techniques for visualizing

these routes in two and thr eedimensions . We fur ther provide two exemplar y ap-

plications of this architectur e – location-awar e active signage and MITquest, a

web-based Java applet.

1.1 Thesis Overview

This chapter discussesthe motiv ations for the creation of the location-awar e ac-

tive signage and MITquest, aswell as the contr ibutions these applications make.

This chapter then presentsan overview of these applications and motiv ating sce-

nar ios for their respective use. The second chapter presentsbackground mater ial

and related effor ts. The thir d chapter focuses on the software design and archi-

tectur e used in the creation of our client-ser ver model and exemplar y applica-

tions , discussing design choices and alternatives. The four th chapter is about the
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user inter face for both active signage and MITquest, and our methodology for

route presentation. The �fth chapter touches on the physical requir ements of ac-

tive signs, and the subsequent design chosen. Finally , the sixth chapter presents

conclusions and offers suggestions for futur e work.

1.2 Motiv ation

Pervasive, pose-aware applications (e.g. [8]) let users inter act with the real world

in new and inter esting ways. As we acquir e and develop mor e complete models

of physical spaces– which can be augmented with infor mation about fur nitur e,

people, and objects – we need mor e sophisticated ways of organizing and pre-

senting these models.

This thesis is motiv ated pr imar ily by a desire to provide useful methods of

route-�nding and map visualization for these pervasive applications . Extensive

related work done by MIT 'sBuilding Modeling Group (discussed at length in Sec-

tion 2.3) has produced accurate models of MIT 's campus, but without methods

for searching and displaying these models they are of limited use. We have thus

attempted to provide techniques and software which demonstr ate the substan-

tial effor ts of the BMG in a useful manner .

A second motiv ation for this work is to create a set of useful services for visi-

tors to MIT, who might wish to explore MIT in person thr ough a location-awar e

active sign, or via the Inter net using MITquest. This thesis has endeavored to

provide usable, simple applications that assist visitors in �nding out about inter -

esting events and how to �nd them.

Speci�cally , the work presented in this thesis enables the follo wing scenarios:

1. A visitor to MIT 's campus enters Lobby 7, looking for infor mation about a

public lectur e being given in a few minutes in building 38. She seesa wall-

mounted active sign, shown in Figure 1-1, cycling thr ough events on cam-

pus, and notices the infor mation about the lectur e on display. She walks up

14



Active Sign -- Text

Active Sign -- Map

Figure 1-1: Using Active Signage. The user is presented with community events,
which cycle thr ough the active sign display. Each time a new event is displayed,
a map to its location is presented on an adjacent sign.

to the sign and is presented with a 3D route map from her current location

to the lectur e.

2. A student needs dir ections to his advisor's of�ce . He points his web browser

to the MITquest website and enters his dorm as the start location, and his

advisor's building asthe destination. He also notes on the web form that he

would prefer a rolling route to accommodate his wheelchair . He submits

his query, and is presented with a route, asseen in Figure 1-2.

3. A visiting professor has an appointment with a Course VI faculty member

in her of�ce in building NE43. The professor parks on Main Street and

15



HTML Form

MITquest Applet

Figure 1-2: Using MITquest To Get Directions. To get dir ections between two
buildings , the user speci�es the start and end buildings in a web form, aswell as
the type of route. After enter ing the route query, the user is presented with a map
showing the quickest route between locations .
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enters NE43, but has forgotten the faculty member 's of�ce number in his

car. He walks up to a sign in the main elevator lobb y of the building, and

pressesthe “LCSDirectory” button. A list of faculty members and their re-

spective of�ces pops up. He selects an of�ce and is presented with a thr ee-

dimensional map of NE43, aswell asthe quickest route to the of�ce . Before

heading to his meeting, he pressesthe “Leave A Comment ” button on the

sign and offers some feedback on how to make the sign easier to use.

1.3 Contr ibutions

This thesis makes the follo wing contr ibutions:

� A client-ser ver architectur e for providing a useful, abstracted route-�nding

and map display service

� Methods for encapsulating a two- or thr ee-dimensional map asa Java class

that can intelligently visualize routes thr ough a standard inter face

� A framework for representing campus events, for inferr ing them from pub-

lic event calendars on the World Wide Web, and for sending them to a set of

distr ibuted clients .

� A framework for representing routes at differ ent levels of abstraction, con-

strained by tempor al and physical factors

� Substantial impr ovements to the Location-A ware API developed by Bell [2],

including performance optimizations , astreamlined approach to route gen-

eration, and the addition of inter -building route-�nding

� The hardware and software requir ed to construct and deploy a set of dis-

tr ibuted, networ ked active signs around MIT 's campus.

� MITquest, a web-based Java applet for performing constrained route and

map generation

17



1.4 Location Server Overview

The Location Server is a networ k-accessible Java RMI program which provides

raw campus geometry and route-�nding capabilities to client applications thr ough

a general API. The location server provides these services to active signs (seeSec-

tion 3.5) and MITquest (seeSection 3.6), aswell asother clients .

The location server obtains campus geometry thr ough the Building Modeling

Group (BMG) pipeline , a series of applications which convert a central corpus of

MIT �oor plans and a campus-wide 'basemap' into a collection of spaces with

known geometry and adjacencies. After this processing is complete , the location

server provides accessto this geometry infor mation, and can additionally gen-

erate constrained routes between spacesand locations when requested by client

applications .

1.5 Activ e Signage Overview

Active signs are inexpensive, por table wall-mounted computers that have been

endowed with thr ee pieces of infor mation: knowledge of surrounding geometry,

knowledge of the sign's physical location and orientation within that geometr ic

context, and knowledge of a set of public events happening on campus. Using

this infor mation, signs intelligently select and display events to show to passers-

by, and provide custom maps from their present location to the event in ques-

tion. The software infr astructur e suppor ting this project is designed to scale to

hundr eds of networ ked signs distr ibuted across campus, all accessing a central

source of geometry and event infor mation.

Knowledge of campus geometry is fur nished by a Location Server, a concept

�rst explored by [2] and substantially expanded in this work. Both pur e physical

geometry (e.g. the contours of a room) and routes between spaces(e.g. the path

between one room and another) are provided thr ough a networ k-tr ansparent

Java RMI inter face from a central Location Server to individual signs. The Lo-
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cation Server is discussed in greater detail in Section 3.3.

Knowledge of campus events is fur nished by an Event Server, which obtains

event data by crawling public MIT community websites and inferr ing events di-

rectly. Events are broadly construed to include occurr ences like lectur es, pre-

sentations, and emergencies, all of which have both a time and a location. The

central event server is accessedvia a networ k inter face, and distr ibutes events

as they are created to all registered active signs. More infor mation on the Event

Server and related components can be found in Section 3.5.3.

Finally , knowledge of location is fur nished either manually (it is entered into

a sign by a human), or is actively acquir ed from the envir onment from an exter-

nal source such as Cricket [7] or GPS.Signs that obtain their location in such a

manner can perform real-time , accurate mapping – allowing a traveling sign to

continuously display its location, bearing, and surroundings .

1.6 MITquest Overview

MITquest is a web-based Java applet that provides custom maps of and routes

on MIT 's campus, using the same data sources and algorithms found in active

signs. MITquest is designed to assistcampus visitors in the common task of �nd-

ing their way from one place to another , with the additional ability of specifying

route constraints. For example, a visitor might wish to only view routes that are

wheelchair -accessible, do not requir e an MIT ID card, or that minimiz e time or

path length outside of buildings . MITquest provides an inter face for specifying

the source and destination of routes, as well as a host of constraints upon route

generation.

MITquest uses a Location Server to obtain geometry and route infor mation,

using the same abstractions and methods as active signs. Providing a web inter -

face to the same infor mation serves to establish the �exibility of the underlying

software design powering the active signs, as well as serving a useful function

for members of the MIT community . MITquest 's features and design are fur ther
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explored in Section 3.6.
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Chapter 2

Background

This chapter explains background mater ial relevant to this thesis, including ef-

for ts by previous researchers and related work. In particular , this chapter dis-

cussesthe MIT Building Modeling Group (BMG) and the pipeline the BMG has

developed to provide accurate geometry data of MIT 's campus. The Location

Aware API and the initial implementation of this API is then discussed, asare im-

provements subsequently made to the API. The basis for 2D and 3D route-�nding

is presented, including a br ief discussion of tr iangulation, Dijkstr a's algorithm,

and iterative shortening.

2.1 Intr oduction and Related Work

This thesis links substantial work which has been done on two fronts: the con-

struction of inter esting pervasiveapplications , such asintelligent electronic kiosks,

and effor ts to create highly -usable route-maps .

2.1.1 The Ki/o Kiosk Platfor m

Both the physical design and the software of active signs has been in�uenced by

the work of Max Van Kleek [10] in his development of Ki/o , an inter active elec-

tronic kiosk. Ki/o shares design goals that are similar to active signage (such as
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educating visitors about events and locations), and correspondingly the lessons

learned in the development of Ki/o have not been lost in our design of active

signs.

2.1.2 LineD r ive and Usable Maps

Conveying infor mation thr ough route maps is a challenge. The visual cues peo-

ple �nd most effective in route maps vary from task to task, and the most usable

kinds of route maps are rarely those with the highest physical �delity . The work

done by ManeeshAgrawala [1] in developing systems like LineD rive has inspir ed

much of the route display work presented in this thesis. The observation that

routes and physical geometry can be effectively conveyed with less, rather than

mor e, infor mation is a point we have considered and tr ied to incorpor ate in our

presentation of routes in both active signage and MITquest.

2.2 Pr imar y Sourcesof Physical Campus Data

The methods for route-�nding we present would be of little value without a large,

complex data set to test them on. Obtaining a physically accurate, meaning-

ful model of MIT 's campus, however, is a challenging proposition. Although we

had the option of creating our own models of MIT 's campus using standard tools

such asAutoCAD, the task of creating physically accurate representations of over

10,000 rooms in over 150 buildings was intr actable. Rather, we have based our

effor ts on the work of others (namely the BMG pipeline) to extract meaningful

3D models of campus from existing data sources.

These data sourcesare pr imar ily a set of CAD DXF �oor plans maintained by

MIT 's Department of Facilities . There are two such sources:

1. Individual building �oor plans with known conventions , uniquely named

spaces, and implied adjacency infor mation. These �oor plans are publicly
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available on the web at http://�oorplans .mit.edu and are regularly updated

asMIT buildings change over time .

2. A campus basemap specifying global building position and orientation, as

well as physical campus layout, including the location of roads, sidewalks,

ramps, and other physical infr astructur e.

In practice, extracting a meaningful model of campus requir essubstantial ef-

for t due to inconsistency in the representation and layout of buildings in these

CAD �les , as well as errors in the �les themselves. Methods for extracting this

infor mation have been implemented as a non-inter active pipeline of programs,

explained in greater length in Section 2.3.

2.3 The Building Modeling Group

The Building Modeling Group (depicted in Figures2-1 and 2-2) is a research effor t

within the MIT Computer Graphics Group to extract 3D models of MIT 's campus

from a vast corpus of CAD DXF �les maintained by MIT 's Department of Facili-

ties. The BMG pipeline is a set of non-inter active applications which sequentially

extract infor mation from input DXF �les , processthe extracted infor mation to re-

move errors and inconsistencies , and output clean, well-for med data in known

�le formats.

Thus, the BMG pipeline servesasamechanism for acquir ing detailed, physically -

accurate geometry of MIT 's campus. The pipeline makes use of both a set of DXF

building �oor plans and a global campus basemap, which speci�es building po-

sition and general exterior campus geometry.

Each building 's geometry is contained in a set of CAD �les with a local coor-

dinate system. We processthe basemap to determine where buildings should be

located and aligned using the “state plane” coordinate system, a standard estab-

lished by the commonw ealth of Massachusetts.
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acad2ug

dejunk2

walls2

transform_ug.py

Converts CAD floorplans 
into Unigrafix file format

Removes errors and extraneous
geometry from .ug files

Extrudes 2D floorplans into 3D models
and generates contour data

.ug files

cleaned .ug files

3D building models

Transforms buildings from local to 
campus coordinate space

DLFiles
Downloads CAD DXF files from
http://floorplans.mit.edu

CAD files

Figure 2-1: Stagesof the Building Modeling Group (BMG) Pipeline . A set of non-
inter active programs download CAD DXF �les from �oorplans .mit.edu, remove
errors, extrude the �oor plans into 3D, and �nally transform each space from
local to global space.

Additionally , we extract infor mation about outdoor spaces (such as streets,

sidewalks, and outdoor ramps) so that inter -building routes can be generated.

The campus basemap hasa limited amount of infor mation, asit speci�es bound-

aries between differ ent kinds of campus space types, such as building/sidewalk

and sidewalk/str eet boundar ies. Like the campus �oor plan �les , the basemap is

replete with errors and inconsistencies . We have developed methods for dividing

the basemap into “patches” and color ing them as differ ent space types using a

randomiz ed approach [4].

The �nal product of the pipeline is a set of text �les which are read by a Loca-

tion Server and represented as a set of Java objects. The actual representation of

campus geometry and adjacency is discussed in greater length in Section 2.4.
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MIT CAD DXF Corpus
(floorplans.mit.edu)

Building Modeling Group Pipeline

Java Location Server
(Java RMI Server)

Location-Aware Active Sign
(Java RMI Client)

MITquest Web Interface
(Java RMI Client)

CAD floorplans in DXF format

3D Campus Models in UG format

Spaces and Portals
over Java RMI

Figure 2-2: The BMG Pipeline and Location Aware API. The BMG pipeline con-
verts MIT 's corpus of CAD DXF �les into a set of text �les which are read by a
location server, which fur nishes spacesand por tals over Java RMI.
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2.4 Location Aware API

Our representation of the physical world emphasizes geometry and adjacency

using Spacesand Portals. [9] Speci�cally , these objects are:

� Spaces - Closed locations bounded by an ordered polyline of 3D points .

Each space has a globally unique name, follo wing the convention: BUILD-

ING#FLOOR#ROOM#TYPE. For example, MIT room NE43-253 would be

named mit NE43#2#253#OFF. The Space naming convention is explored in

greater depth in Appendix C.1.

� Portals - Named entities representing an adjacency relationship between

two Spaces. Portals are dir ectional, indicating that one can physically move

from Space S1 to an adjacent Space S2, though not necessarily from S2 to

S1 This convention captur es the physical fact that security doors, for ex-

ample, only allow exit and not reentry. Like Spaces, Portals have a globally

unique name and an associated type. Portals are physically represented by

a quadr ilater al, which indicates the shape of the door or elevator shaft to

which the Portal corresponds. The Portal format and naming convention is

fur ther discussed in Appendix C.2.

The details of the location server �le format and API are discussed in greater

detail in Appendix C. This model of the world – as a set of Spaces connected by

Portals – is visually depicted in Figure 2-3. The Location Aware API represents

Spaces and Portals as Java objects of the same name, and makes these objects –

as well as the route-�nding methods discussed in Section 2.5 – available over a

networ k inter face via a Java Location Server.

Geometry and adjacency data is provided to the location server by the BMG

pipeline , with two text �les per building – one providing room geometry, and the

other por tal and adjacency infor mation.
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P1 P2

P3P4

P5P6

T1
T2

T3

T4Space
Adjacent

Portal

Figure 2-3: A Sample Space and Portal. Spacesare de�ned by a polyline of points
P1:::P6, which de�ne the outline of the space, and the set of tr iangles T1:::T4
which correspond to the space's Constrained Delaunay Triangulation.[5 ] Portals
are de�ned by a set of four points corresponding to their 2D footpr int, and the
two spacesthey connect.

2.5 Route-�nding Algor ithms

We have subdivided the problem of generating indoor routes into two distinct

sub-pr oblems: �nding the path between two arbitr ary positions within a space,

and �nding the collection of spaceswhich optimally connect the source and des-

tination spaces. The problem of general route-�nding is considered in Section

2.5.1, while our basic approach to �nding paths within spaces in the focus of

2.5.2.

The fundamental algorithm we have selected for graph searching is Dijkstr a's

algorithm, which can be applied to route-�nding over a collection of Spacesand

Portals. This algorithm is applied to two searching tasks: �nding a collection of

Spaces, connected by Portals, which link a named source and destination; and

�nding the actual path thr ough each Space in a known route. The �rst search is

done by consider ing Spaces to be “nodes” and Portals to be “edges” for the pur -

poses of graph construction and traversal. Generating paths between Spaces is

assimple asapplying standard graph searching techniques to a graph consisting
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of Space nodes linked by Portal edges. The second search, the subject of Section

2.5.2, is done by breaking each space into a set of adjacent tr iangles and consid-

ering each tr iangle asa node with known adjacencies.

2.5.1 Dijkstra 's Algor ithm

Dijkstr a'salgorithm obtains the shortest weigh path from a source node s to every

other node in a graph G, which consists of weighed edgesconnecting nodes. It

usesan initialization method, INITIALIZE-SINGLE-SOURCE, which maps an initial

distance of in�nity to each node, except for the source node, which has an initial

distance of 0 from itself. This method initializ es d, the lowest-cost distance esti-

mate from the source to any other node in the graph, and � , the previous node.

When the algorithm is complete , the shortest path from a source node s to any

other node n in the graph is obtained by recursively querying � [n] until s is ob-

tained.

INITIALIZE-SINGLE-SOURCE(G, S)

1 for each vertex v 2 G

2 do d[v]  1

3 � [d]  ;

4 d[s]  0

The algorithm updates the distance estimate d with the RELAX method, which

takes two nodes u and v, and a weight function w. If the distance estimate to v

from the source is reduced by �rst travelling thr ough u, the shorter distance value

is savedand � [v] is updated accordingly .

RELAX(U , V, W )

1 if d[v] > d[u] + w(u; v)

2 then d[v]  d[u] + w(u; v)

3 � [v]  u
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Finally , D I JKSTRA maintains a pr ior ity queue Q containing nodes to explore

and a set S of spacesfor which the minimum cost path has been computed. The

queue is ordered by the distance estimate of each node from the initial source,

and suppor ts an EXTRACT-M IN method which returns the least distant node. The

algorithm repeatedly relaxesedgesbetween neighbor ing nodes, buiding a set of

least-cost paths from the start node s to all other connected nodes.

D I JKSTRA(G, W, S)

1 INITIALIZE-SINGLE-SOURCE(G, S)

2 S  ;

3 Q  V[G]

4 while Q 6= ;

5 do u  EXTRACT-M IN (Q)

6 S  S [ f ug

7 for each vertex v adjacent to u

8 do RELAX(U , V, W )

2.5.2 Space Tr iangulation

To generate route maps we must determine the physical path taken thr ough a

discovered set of spacesfor several reasons. First, it is not always obvious when

moving between spaceswhich por tal should be used – for example, a long corr i-

dor with many doors could afford a traveler many ways to move from one space

to another , thus making a route which consisted only of spacesambiguous . Sec-

ond, when visualizing routes people often prefer a physical trail to follo w thr ough

twisty, winding corr idors. A street map which merely displayed adjacencies with-

out marking the actual physical path taken conveys much less infor mation than

its standard counterpar t to the confused traveler.

Additional work must be done to determine the physical path taken thr ough

a collection of spaces. For convex spaces, a simple straight line from an entr y

por tal to an exit por tal represents the shortest possible path thr ough the space.
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Figure 2-4: Route-�nding in a 2D space with and without tr iangulation. In the
�rst example, a straight line in the space results in an illegal path. In the second
example, searching thr ough the tr iangulated space yields a valid, if twisty path.
This can be compar ed to a mor e natur al path in the thir d example.

For concave spaces, such asthe one shown in Figure 2-4, a straight line can result

in an illegal path.

A solution to this problem is to tr iangulate concave spacesand to thus sub-

divide each space into a set of adjacent tr iangles, which are conveniently con-

vex shapes.[5] We can then consider the set of tr iangles as nodes in a graph with

known adjacency relationships and use the techniques mentioned in Section 2.5

to �nd the shortest path inside a space. Once a set of tr iangles is obtained, a valid

path can be constructed by connecting the centroids of each tr iangle in the path,

via the midpoint of the face shared by each pair of connected tr iangles.

It is impor tant to note that this method produces valid, if not optimal, routes

thr ough spaces. Figure 2-4 shows thr ee paths – an illegal straight line connecting

the entr y and exit por tals for an L-shaped space, a valid path found using tr iangu-

lation, and �nally a mor e “natur al” curved path. The second and thir d paths can

be contr asted; while the tr iangulated path doesn't clip any of the space's bound-

aries, it also looks unnatur al compar ed to the kind of path a person would likely

draw when producing a map by hand. A major challenge we examine in this work

is what kinds of routes look realistic, and what essential features paths should

contain to compactly expressthe most desirable path between locations . These

considerations are mor e deeply explored in Section 4.
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Chapter 3

Softwar e Architectur e

This chapter discussesthe software architectur e and design choices used to im-

plement location-awar e active signage and MITquest, and provides insight into

the route-�nding services offered by the location server. We present an imple-

mentation of an optimiz ed location server and a set of generic, �exible 2D and

3D graphical components which can connect to a location server for route and

map visualization. Then, we show how both active signage and MITquest have

been built using this client-ser ver architectur e.

3.1 Softwar e Architectur e Overview

Wehave designed and implemented aclient-ser ver architectur e for route-�nding

and display, building from the effor ts of others.[2] As shown in Figure 3-1, our

architectur e makes use of a networ k-available location server sharing geometry

and route data over the Java Remote Method Invocation (RMI) protocol.

This architectur e is motiv ated by a desire to make route-�nding a useful ser-

vice for awide rangeof target applications and devices. The computational power

and memor y requir ed to generate routes is beyond the current capabilities of

mobile devices like cellular phones and handheld computers , so we have cor-

respondingly pushed the effor t of generating routes from the client to the server,

a change from the model proposed by Jason Bell. [2] Fur ther, the implementa-
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tion effor t requir ed for a client application to make use of the services offered by

a location server is greatly reduced using our model, making it easy to rapidly

develop applications like MITquest.

Our goal is to enable route-�nding over the entir e MIT campus, which con-

sists of over 10,000rooms distr ibuted across 150 buildings , with routes returned

to client applications in a few seconds. Correspondingly , we have implemented a

number of performance optimizations in the Location Server, discussed in Sec-

tion 3.3.4, in order to enable searching across such a large data set as quickly as

possible. We have fur ther designed our event infer ence and distr ibution system,

the subject of Section 3.5.3, to distr ibute hundr eds of events to distr ibuted net-

works of dozens of signs spread thr oughout MIT 's campus.

3.2 Fundamental Data Str uctur es

We make use of several new data structur es, including:

� Portals – Physical connections (such as doors, elevator shafts, and stair-

wells) between Spaces. Each Portal has pointers to exactly two Spaces, rep-

resenting one dir ection of the physical connection between the two. Portals

also have a type (e.g. stair, elevator, door, windo w, ramp, etc) and a quadr i-

lateral representing its physical “footpr int ” in the xy plane.

� Spaces– Individual rooms on the MIT campus. Each Space contains an or-

dered, closed polyline de�ning its outer most boundar y, the CDT tr iangula-

tion of the space, a list of the Portals exiting the Space, and pre-computed

paths between the each pair of Portals in the Space. In addition to rep-

resenting number ed rooms in buildings , Spaces are also used to represent

sections of the campus basemap to enable route-�nding between build-

ings.

� Routes – Constrained routes between two Spaces. Routes can have con-

straints represented by the Route type, such as “rolling ” routes, which can-
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not use stairs. Routes also have a initial and destination space, aswell asthe

set of connected Spaces, Portals, and physical 3D positions which best con-

nect the source and destination spacesfollo wing constraints on the Route.

The Route data structur e, and its use, is explained in greater detail in Sec-

tion 3.3.3.

� Events – Detailed descriptions of events on the MIT campus. Event objects

contain the name of the Space where the event will occur, as well as a type

(such asa lectur e or emergency), a start time , a title , and a detailed descrip-

tion. Events are inferr ed from public MIT community event calender (see

Section 3.5.3 for mor e details), and are distr ibuted by a central event server

to a networ k of distr ibuted active signs.

� EventQueues – Data structur es that intelligently queue and deliver Events

to client applications . Each active signage client maintains a collection of

active Events, but must decide which Events to display based on the event

type, its physical proximity , and the current time . EventQueues, the sub-

ject of Section 3.5.4,place events into differ ent buckets and use a weighted

randomiz ed function to select appropr iate Events to display.

3.3 Location Server

We have chosen to provide a general route-�nding and geometry service thr ough

a location server, whose methods are discussed in Section 3.3.1, as a Java RMI

application running on a remote server. The location server reads in a set of text

�les provided by the BMG pipeline and instantiates Space and Portal objects cor-

responding to the physical rooms, doors, corr idors, etc. found on MIT 's campus.

After loading and pre-processing this data, the location server publishes itself on

the networ k and can be accessedover Java RMI by client applications .
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Location Server Raw Campus
Geometry Data

SERVER
CLIENT

RMI

Active Signage MITquest Applet

Spaces, Portals, Routes

Figure 3-1: Location Server Overview. A networ ked location server with local ac-
cess to raw geometry and adjacency infor mation serves this data, as well as re-
quested routes, to client applications over Java RMI.

1. public interface LocationServer {
2. public Space getSpace(Position position);
3. public Space getSpace(String name);
4. public Portal getPortal(Position position);
5. public Portal getPortal(String name);
6. public Route getRoute(Route route);
7. }

Figure 3-2: LocationServer Inter face

3.3.1 LocationSer ver Inter face

The location server inter face (shown in Figure 3-2) is designed to present the lo-

cation server as a geometry discovery resource which clients can query for dis-

tinct spaces, por tals, and routes. The model we present is that route generation

is done by a powerful server rather than a client, but this is not a strict requir e-

ment, as all of the methods presented in this inter face let a client implement its

own algorithms for route-�nding in lieu of prede�ned server methods .

We envision clients querying the location server an initial space, using either

a known space name or a physical position obtained from a service like Cricket.
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Start

End

Walking
Route

Rolling
Route

Figure 3-3: Constrained Inter -building Route Generation. We can constrain
routes by �lter ing the relaxation step in Dijkstr a's algorithm to accommodate dif-
ferent route types. In this example, the walking route (right) can cut thr ough
a grass �eld to reach the destination mor e quickly than the rolling route (left),
which is con�ned to sidewalks and roads.

Then, a client can build a local map by querying the location server for spacesad-

jacent to its current location, and thus use a breadth �rst search (BFS)to discover

its surrounding geometry.

3.3.2 Route-�nding Algor ithms

Route-�nding is implemented in location server using Dijkstr a's algorithm (dis-

cussed in Section 2.5), but can be reimplemented in a client application, asmen-

tioned in Section 3.3.1. Route constraints are represented as a �eld in a Route

object, and these constraints are used to alter path weights or selectively relax

the scenegraph.
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We implement route constraints by restricting the relaxation step in Dijkstr a's

algorithm, and by adding large weights to undesir able por tals and spaces. Fig-

ure 3-3 shows an example of an inter -building, constrained route, with a walking

route juxtaposed with a rolling route. The walking route cuts across the MIT ath-

letics �eld, and is consequently shorter than the rolling route, which is con�ned

to roads, sidewalks, and ramps.

3.3.3 Route Representation

We consider routes at many levels of abstraction. Figure 3-4 shows a route be-

tween two spaces, which we could describe in a number of ways, including:

� Assome known path de�ned by its source and destination

� Asa collection of Spaces traversed from start to �nish

� Asa collection of Portals passedthr ough while moving between spaces

� Asa collection of ordered, connected physical points in a polyline path

With the exception of the �rst item in the list above, any one of these descrip-

tions of a route could provide suf�cient infor mation for a person to follo w the

route. For a simple path, knowing which Spaces (rooms) to pass thr ough might

be suf�cient. For acomplex path, some combination of the data above is requir ed

to easily traversethe route.

We have explicitly chosen to represent routes as rich objects containing all of

the above infor mation so that as much infor mation as possible about a path is

preserved. Our architectur e delegates the task of route generation to a central

location server, and the task of route display to a client application. This method

of route representation lets differ ent kinds of client applications appropr iately

visualize routes based on need and desired functionality . Section 3.4 discusses

the use of the Java Route object in the task of map and route visualization.
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S2
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S4

Figure 3-4: Interpr etations of a Route. A route between two locations can be
viewed by its source and destination locations , or asthe collection of spaces, por-
tals, or points one passesthr ough while traveling between locations .

Client

Start, Finish, Constraints

{S1, S2, Route.WALKING_ROUTE}

Vector of Spaces

{S1, S2, ... SN}

Vector of Portals

{P(S1, S2), P(S2, S3), ... P(SN-1,SN)}

Polyline of Positions

{P1, P2, ... PN}

LocationServer

Java RMI

Figure 3-5: Route Passing Between Client and Server. A Route object, contain-
ing source and destination spacesand route constraints, is passed to the Loca-
tionServer over Java RMI. The Route is augmented with the Spaces, Portals, and
Positions a path between the source and destination would cross before being
returned to the Client.
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3.3.4 LocationSer ver Optimizations

One requir ement of the Location Server is the ability to quickly generate routes

between locations . In order to facilitate this objective , we have substantially al-

tered the Java RMI Location Server asinitially developed by Bell [2] with anumber

of optimizations . We have consciously chosen, when possible, to move as much

of the computational effor t of route-�nding aspossible into a set-up phase of the

location server. Correspondingly , although the location server hasamor e lengthy

start up time , the speed of route searching is generally impr oved and this com-

putational cost is amor tized acrossthe many routes requested by many attached

clients .

Accordingly , we have implemented a number of optimizations in the location

server which pre-compute useful inter mediate data that speedsup route gener-

ation. For example, when Spaces are instantiated the shortest length paths be-

tween each pair of the space's por tals is computed and stored. This allows for the

speedy generation of routes, which can be constructed by simply appending the

set of precomputed paths inside individual spacesonce a high level set of por tals

has been obtained.

We fur ther optimiz e this initialization by determining space convexity. If a

given space is convex, we skip tr iangulation and just connect por tal pairs using

straight lines. For concave spaces, we use the methods discussed in Section 2.5.2

to generate paths between pairs of por tals. This optimization is show in Figure

3-6, with the pre-computed paths for a convex and concave spaceshown.

A �nal optimization added to the location server is route memoization – af-

ter the location server is quer ied for a route, it is cached and quickly returned if

quer ied again. Although there are an extremely largenumber of routes that could

be potentially cached (for N spacesthere are at most N 2 pairs of spacesfor routes

to connect – and for MIT 's 10,000 spaces there are 10,000,000,000such routes),

even a relatively small cache is extremely useful. This is because the set of routes

requested is likely to be a very small subset of the set of all possible routes, which
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Figure 3-6: Portal-path Pre-computation With Convex Space Optimization. We
pre-compute paths between por tals for all spaces. Paths in the concave space
at left are found by searching thr ough the tr iangulated space, while paths in the
convex spaceat right are simply straight lines.

is true for two reasons.

First, clients are likely to request routes from a relatively small number of pub-

lic spaces. Most of the rooms on MIT 's campus are pr ivate of�ces and low-tr af�c

lobbies, and stationar y clients – such aslocation-awar e active signs – will only be

positioned in a small number of public spaces. Second, the bulk of spacedestina-

tions are likely, again, to be a small number of public spaces. There are a limited

number of public locations where large events can be held, so memoizing routes

to this reduced set of destination spaces fur ther reduces the number of routes

likely to be requested in practice.

These optimizations dramatically impr ove the average time requir ed to gen-

erate a route on campus. On a full campus model with 20,000Spacesand 80,000

Portals, we executed 1000 quer ies between randomly selected locations of the

MIT campus. We found that the average query time for an unoptimiz ed loca-

tion was 301.2seconds, while query time with all optimiz ed loaded was 950 mil-

liseconds. When looking up routes which have been previously computed and

cached, the average query time was only 20 milliseconds . These results show

that these optimizations and route memoization, in combination, substantially

reduce the averagetime requir ed to generate routes between locations .

39



1. public interface DisplayLayer {
2. public DisplayLayer(LocationSer ver ls, Space initial);
3. public boolean drawRoute(Route r);
4. public boolean markSpace(Spaces, String text);
5. public void clearAll();
6. }

Figure 3-7: DisplayLayer Inter face

3.4 A Generic Map Display Layer

Directions without a map are of little value. We have de�ned a high-level model

for route and map visualized using the DisplayLayer inter face, which is a client of

a location server. Objects implementing the DisplayLayer inter face are generic

Java components which can be used in a wide variety of applications . Here, we

present two such components , for 2D and 3D route display respectively.

3.4.1 DisplayLayer Inter face

The DisplayLayer inter face provides an abstract inter face for applications which

visualize routes and maps. The inter face, shown in Figure 3-7, provides basic

methods for creating a DisplayLayer object rooted in an initial space with an

associated LocationServer , aswell as for marking individual spacesand routes.

There are two canonical applications which implemented the DisplayLayer

inter face - Canvas2Dand Canvas3D, which display two- and thr ee-dimensional ge-

ometr y respectively.

3.4.2 2D Route Display

Wehave implemented a two-dimensional DisplayLayer in the Java Canvas2Dclass,

which itself extends the Java Canvas class. As shown in 3-8, Canvas2Dcan visu-

alize 2D maps and routes, using color, line thickness, and shading to indicate

geometry and route data. Canvas2Dis initializ ed with a single starting space, and

builds a complete map by querying its initial space for adjacent spaces, and re-
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cursively querying those spacesfor fur ther adjacencies. Canvas2Dis used by the

GraphicsSign application (seeSection 3.5.2) to display two-dimensional routes.

3.4.3 3D Route Display

In addition to the two-dimensional implementation discussed in Section 3.4.2,

wehave also implements a thr ee-dimensional DisplayLayer component: Canvas3D.

Canvas3Dbuilds its scenegraph using the sameapproach asCanvas2D, and is sim-

ilarly used by the GraphicsSign application (presented in Section 3.5.2 to display

thr ee-dimensional routes. More infor mation about the speci�c techniques used

to make maps visually accessibleand usable is presented in Section 4.1.2.

3.5 Location-A ware Activ e Signage

Location-awar e active signs are wall-mounted tablet PCswhich cycle thr ough a

set of events on campus and selectively display maps to those events. We have

implemented active signs using thr eeapplications: TextSign , which selectsevents

and displays then, GraphicsSign , which displays maps to events asdir ected by a

master TextSign , and EventServer , which createsand distr ibutes events to a net-

work of signs. We have chosen to implement active signs in pairs, with one sign

running TextSign , and a physically adjacent sign running GraphicsSign . Each

GraphicsSign is slaved to a single TextSign , which is in tur n connected to both

a location server and an event server. This architectur e is visually presented in

Figure 3-9.

3.5.1 TextSign

The TextSign application presentsevents and provides inter active sign function-

ality. The user inter face of the application, shown in Figure 3-10, has two main

components: a windo wing area where event infor mation is displayed, and a set
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Figure 3-8: 2D Route Display. The �gur esabove show routes and maps generated
by the location server and displayed in Canvas2D. The �gur e at left shows an un-
adorned route; the �gur e at right shows the same route with space tr iangulation
made visible .
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Graphics Sign

Route + Event to be displayed

Cricket / GPS

Physical position
in world space

Event Server
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times, locations

Location Server

Spatial geometry,
portals, spaces, routes

Figure 3-9: Active Signage Softwar e Overview. The TextSign component aggre-
gates event data, campus geometry, and the sign's physical location, passing
commands to a slaved GraphicsSign.
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of buttons which users can click to accessadditional features, such as an LCS

personnel dir ectory and a pop-up dialog to leave comments .

The TextSign application makes a connection to an event server, and obtains

a copy of the server's cached events. The TextSign also listens for connections

from GraphicsSigns, to which it delegatesmap display. The TextSign periodically

selects events to display, instr ucted attached clients to display routes from its

known location to the event currently on display. The TextSign user inter face is

discussed and explored in depth in Section 4.2.2.

3.5.2 GraphicsS ign

The GraphicsSign application presentsmaps asinstr ucted by a master TextSign ,

delegating map display to either a Canvas2Dor Canvas3Dcomponent embedded

in the main GraphicsSign frame. The display itself is extremely simple , asseen in

Figure 3-11.

3.5.3 EventServer

A set of campus “events” are inferr ed and maintained by a central event server,

implemented in the Java EventServer class. The event server maintains a collec-

tion of Java SignEvent objects, which correspond to public events such as lec-

tur es. Each event has an associated time , location, type, and an optional descrip-

tion. Events include mor e than just lectur es, however – we have additionally im-

plemented an “Emergency” event type, which corresponds to emergencies like

�r es or chemical spills. EventServer is accessedby clients over a networ k inter -

face, and also has an inter active graphical user inter face, shown in in Figure 3-12.

Events are inferr ed by acentral event server, which periodically probesknown,

public event calendars on the web. Speci�cally , we have implemented probes

which recover elements from the MIT community events calendar 1 and the MIT

1Available on-line at http://events .mit.edu .

44



Figure 3-10: TextSign Screenshot. Event infor mation, including the time , loca-
tion, and description, are displayed in a panel on the left side of the main win-
dow. Buttons revealing differ ent TextSign featuresare available in a panel on the
right side of the main windo w.
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Figure 3-11: Graphics Screenshot. The map displayed on the GraphicsSign is
contr olled by a master TextSign.
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Figure 3-12: The EventServer GUI. Using this graphical user inter face, public
event sources can be probed manually , event databases saved and loaded, and
events can be manually created.

Laboratory of Computer Science events page2. Although the general task of gen-

erating well-str uctur ed event descriptions from unfor matted text can be a very

challenging problem, it is thankfully one we did not face in our implementa-

tion. Rather, these two listed event sourcespublish events in regularly-for matted

HTML and XML feeds, which areeasily parsed and tur ned into SignEvent objects.

The event server thus maintains a set of events, obtained by probing and pars-

ing public event calendars. When a client application (such as the TextSign ap-

plication of Section 3.5.1) connects to the event server, the entir e set of the event

server's events are distr ibuted as serialized Java objects to the client application.

The client then decides locally which events to display, a task discussed at greater

length in Section 3.5.4. The event server maintains a reference to each client, so

that new events (which can be added thr ough the inter active event server inter -

face) can be distr ibuted to clients . Periodically , the event server also prunes its

2Available on-line at http://www .lcs.mit.edu/calendar .
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XML HTML

EventServer

Events

Client Application

Figure 3-13: EventServer Architectur e. The EventServer infers events from two
sources: an XML feed from the MIT community events calendar, and HTML web
pagesfrom the LCSevents calendar. The EventServer createsEvent objects from
these sourcesand distr ibutes them to client applications .

inter nal set of events to discard those which have expired.

3.5.4 Event Selection

A central event server creates and maintains a central repositor y of events, dis-

tr ibuting them to a networ k of client applications . Differ ent clients should dis-

play differ ent events, however, and thus make use of an event queue (imple-

mented in the Java EventQueueclass) to appropr iately select events for display.

Inferr ing event relevance is based on two pieces of knowledge: physical locality

(how close the client physically is to the event in question) and tempor al local-

ity (how close the starting time of the event is to the current time). Obviously,

clients should display events which are close and start soon mor e prominently

than events which are distant and start in many days. We have implemented an

event queue which assignsa weight to events based on this tempor al and phys-

ical locality to an event. Client applications such as active signs use this event

queue to manage events and extract the most relevant event for public display.

To implement this weight function, the event queue separatesevents into one
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Figure 3-14: Event Queue Buckets. A set of events A, B, C, D is inserted into the
event queue, with each event assigned to one of 16 buckets. Events are selected
using a randomiz ed nextEvent() method which is biased toward events which
are close in time and space.
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Figure 3-15: MITquest Applet Overview. Usersenter route parameters, such as a
start and end space, into an HTML form. The route constraints are passed over
HTTPPOSTto the MITquest Applet, which generates the route and map with the
assistanceof a Location Server.

of 16 buckets, as show in in Figure 3-14. Each bucket is assigned a probability ,

and events are selected at random from the queue for display, with the selec-

tion function biased toward elements which are close in both time and space.

This randomiz ed selection method has the convenient property of rarely select-

ing duplicate methods for display, keeping an active sign from getting “stuck” on

a single event for an extended period of time . At the sametime , this scheme tends

to present mor e relevant events mor e often.

3.6 MITquest

MITquest is implemented asa Java applet which is contr olled by an HTML form

embedded in aPHP script. Asshown in Figure3-15, usersenter map and route re-

quests into an HTML form, and submit the forms to the MITquest applet, which

in tur ns connects to a location server running locally to obtain route and map

data. The applet then constructs and displays the relevant image, displaying it in

a client browser. Map and route display is delegated to an embedded Canvas2D

or Canvas3dobject.
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3.7 Other Applications: GraphB uilder for Cr icket

The location server and client-ser ver approach we present in this thesis can be

easily extended for other uses. One application we have developed is Graph-

Builder , a location server client which is used to test Cricket self-con�gur ation

algorithms .

Cricket [7] is a location positioning system that uses a distr ibuted networ k

of beacons, and is designed to supplement systems like GPSfor indoor use. One

challenge in Cricket development is self-con�gur ation algorithms for a large, dis-

tr ibuted networ k of beacons. Ideally, once a networ k of beacons is seeded with

position data, a newly-placed beacon should be able to determine , by “listening ”

to other Crickets, its own location and con�gur e itself accordingly . As Cricket

is designed for use indoors , such algorithms should be tested against real-world

geometry, and GraphBuilder fur nishes this geometry and test data.

GraphBuilder generates�oor maps using the inter faceand methods presented

in Section B.1, recursively querying the location server for spacesadjacent to an

intial space. After generating a simple map, the application distr ibutes Cricket

beacons across the map according to a density parameter. Finally , the applica-

tion links each Cricket to every other Cricket within the ideal range of the Cricket

positioning system. This data is then saved to disk, where it can be viewed in In-

ventor format (sample output is shown in Figure 3-16) or used as input to test a

Cricket self-con�gur ation algorithm.
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Figure3-16: GraphBuilder Output. The GraphBuilder application distr ibutes ide-
alized Cricket beacons acrossa 2D map and then links beacons which are within
range of each other. Rooms are shown in green, while Cricket-Cricket links are
shown in red. A low-density Cricket distr ibution is show at left, amedium-density
distr ibution in the center, and a high-density distr ibution at right.
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Chapter 4

User Inter face Design

This chapter presentsour approach for making map and route display, aswell as

the TextSign application from Section 3.5.1, highly usable. We contr ast the dif-

�culties inher ent in visualizing two- and thr ee-dimensional routes, and present

methods for approaching these two modes of map display.

4.1 Route Visualization

Conveying map and route infor mation effectively is a challenging problem which

has been considered in great detail for dr iving dir ections, which are often ob-

tained thr ough web sites like Mapquest and MapBlast. [1]. The problem of vi-

sualizing routes inside buildings , however, presentsspeci�c challenges which we

have attempted to addressin the 2D and 3D cases.

4.1.1 Techniques for 2D Route Display

A general problem with route display is determining the appropr iate scope of the

route. To show a route between two spaces, at the very least one must display the

origin and destination spacesof the route, aswell asthe route path itself. Asseen

in Figure 4-1, showing too little infor mation (path one) or too much infor ma-

tion (path thr ee) reduces map usability . The tr ick is to display an “appropr iate”
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Figure 4-1: Three Paths in a Map. The �rst path, top left, shows very little ex-
traneous infor mation. The second path, top right, shows mor e infor mation, but
emphasizesmor e relevant spacesin the route. The thir d path, bottom, shows all
local geometry.

amount of infor mation.

We use several techniques to display two-dimensional route maps effectively.

First, we use the bounding box of the route itself to clip local geometry in order to

restrict the number of rooms shown on the map. Second, we use color and line

thickness to emphasize impor tant regions of a map. The contours of the path

itself, for example, are shown in a br ighter, thicker color than other lines. Spaces

which are part of the route are �lled, drawn with a thicker outline , and have dis-

tinctive colors relative to lessimpor tant geometry, which is still presented to give

the route context.

4.1.2 Techniques for 3D Route Display

The same challenges and techniques discussed in Section 4.1.1 apply to thr ee-

dimensional route maps, with one additional challenge: a thir d dimension. Tra-

ditional maps rarely make use of height infor mation, and when they do the result

is most often a projection of feature height onto (e.g. isoclines on a topology

map) a plane. Occasionally illustr ators use a 3/4 view of buildings with clipped

walls and separated �oors to show building inter iors, but such views are dif�cult
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and time-consuming to manually produce. Thus, in our everyday experiences

we rarely seeand use thr ee-dimensional maps.

The pr imar y challenge in displaying a thr ee-dimensional route map is occlu-

sion: thr ee-dimensional spacesoften block each other when a building is exter-

nally viewed. For a route between two spaces in the same building, it is usually

impossible to seemost of the route's length - especially given that vertical adja-

cency structur es in buildings (such as elevator shafts and staircases)are usually

in the center of a building, resulting in a necessarily occluded path.

We have devised several techniques to attempt to display thr ee-dimensional

paths. First, we selectively shade lines and spacesusing the techniques discussed

in Section 4.1.1. Fur ther, we selectively display spacesin a map using bounding

volumes to restrict the view of campus presented. Finally , we selectively display

inter mediate spaces to present a most-r elevant subset of a building in order to

show a route. For a route between two �oors of the same building, for example,

we only display rooms on the �oor of the source and destination space, and se-

lectively shade rooms the route passesthr ough. Transparency is fur ther used to

display the route path inside spaces. Thesetechniques can be seen in Figure 4-2,

where a the middle image uses the techniques described to mor e clearly display

a route in thr ee dimensions .

4.2 Location-A ware Activ e Signage User Inter face

This section discussesthe user inter face for the EventServer application in Sec-

tion 4.2.1and for the TextSign application in Section 4.2.2.

4.2.1 EventServer User Inter face

EventServer , the central application which acquir es and distr ibutes a collection

of campus events, is contr olled by the simple user inter face shown in Figure 4-

3. As shown in the �gur e, EventServer is contr olled by a set of buttons in the
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Figure 4-2: 3D Route Depiction. The map at top shows only the outlines of rooms
in gray and a marked route in red. The map in the middle colors inter mediate
route spaces, and highlights the start space (green) and end space (blue). The
map at bottom shows all spacesshaded, with the route partially occluded.
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Figure 4-3: EventServer User Inter face. Pressing the “Acquir e Events” button
probes the LCSevents calendar and events.mit.edu for community events, which
are displayed in the top half of the user inter face. Pressing “Load Events DB”
br ings up a dialog to load an events database from �le . Pressing “Save Events
DB” savesthe current set of events to a local �le .

bottom half of the user inter face, while the top half of the windo w is dedicated the

displaying sets of events. Using these buttons , the user can enter custom events

(specifying the event title , description, time , and type), dir ect the application to

acquir e events from known data sources, and load or saveevents to disk.

4.2.2 TextSign User Inter face

Usersinter act with location-awar e active signagepr imar ily thr ough the TextSign

user inter face, detailed in Figure 4-4. The inter face has been designed to ac-
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commodate the touch-scr een display found on tablet PCs (the physical design

of active signs is considered in Section 5.1); consequently users inter act with the

TextSign application by pressing large buttons or by leaving voice messages.

Through the TextSign userscan browse thr ough a list of campus events, leave

comments on the sign, and browse thr ough an MIT LCSdir ectory to obtain di-

rections to a professor's of�ce . If the sign is left unattended for a few minutes

it goes into a “cycle” mode, cycling thr ough its inter nal database of events and

selectively displaying them, using the EventQueue data structur e discussed in

Section 3.5.4. Userscan also dir ect the TextSign to enter cycle mode by pressing

the “Cycle Events” button, shown in Figure 4-4.

4.3 MITquest User Inter face

MITquest has thr ee major components: the HTML and PHP pages used to re-

quest routes and maps, map display mode, and route display mode. Here we

consider each of these user inter faces.

4.3.1 Route and Map Requests

Users request maps and routes thr ough an HTML/P HP web form, shown in Fig-

ure4-5. When requesting amap the user enters an MIT building and room thr ough

asimple drop down menu. When requesting a route, the user can specify the start

and end locations thr ough drop down menus, aswell as the type of route (rolling

or walking) requir ed.

4.3.2 Map Display

A typical map is shown in Figure 4-6. The selected feature is displayed on a cam-

pus map with its outline inked in red, with surrounding campus geometry dis-

played.
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Figure 4-4: TextSign User Inter face. Pressing the “ Where Am I” button displays
the sign's current location, and produces a map marking this location on an ad-
jacent GraphicsSign. Pressing the “Leave Comments ” button pops up a dialog
which the user can use to record comments or a br ief message. Pressing the “List
Events” button displays a list of all the events stored in the TextSign, formatted
into an HTML table. Finally , pressing the “LCSDirectory” button pops up a di-
alog with the entir e MIT Laboratory for Computer Science listed. Selected an
individual name displays the person's of�ce number , aswell asproducing a map
from the sign's current location to the of�ce on the adjacent GraphicsSign.
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Figure 4-5: MITquest User Inter face. Users can request either maps (centered
on one location) shown at left, or routes (between two locations), shown at right.
Map and route parameters are entered thr ough a simple web-based form.

4.3.3 Route Display

A typical route is shown in Figure 4-7. An overview of the entir e route is shown

at the top of the results page, which detailed views of the start and end of the

route are shown in smaller windo ws below. Fur ther, the start and end spacesare

labeled to incr easeusability . The path itself is shown asan overlaid thick red line ,

which contr asts with the campus basemap.
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Figure 4-6: MITquest Map Display. The requested building is shown in red, with
streets, sidewalks, grass, and other buildings in its vicinity displayed.
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Figure 4-7: MITquest Route Display. The whole route is shown at top, with de-
tailed views of the start and end of the route shown below.
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Chapter 5

Activ e Signage Physical Design

This chapter addressesthe physical design of location-awar e active signs. We

present the physical requir ements for the hardware and infr astructur e of active

signs, discuss the tablet PCplatfor m we chose, and explore alternative designs.

5.1 Design Requir ements

The task of designing a physical form for an active sign requir es the considera-

tion of aesthetic and sociological factors, aswell asmor e practical physical, bud-

getary, and technical constraints. [10] Our objective was to �nd a single universal

physical design which could be constructed at minimal cost and placed in many

location acrossMIT 'scampus. Correspondingly , weconsidered the follo wing fac-

tors when selecting a hardware platfor m for active signs:

� Cost – An obvious objective was to minimiz e the cost of platfor m, with a

target pr ice of under $1000per sign.

� Size – We wanted to select a platfor m with suf�cient screen resolution to

display detailed maps and routes, but was physically small enough to be

easily mounted on walls.

� Hardware – All of the route-�nding algorithms and methods discussed in
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this thesis requir e suf�cient RAM and CPU capacity to load and display

maps and routes.

� Connectivity – The client-ser ver architectur e we have chosen for route gen-

eration requir esat least an Ethernet networ k inter face, and preferably wir e-

lessEthernet connectivity .

� Interactivity – Usersneed a way of inter acting with the active sign, as show

in Section 4. Weconsidered many mode of inter action, including keyboards,

mice, and touch screens.

Basedon these requir ements, weevaluated a number of physical form factors,

including:

1. Wall-mounted laptops

2. Wall-mounted table PCs

3. Wall-mounted plasma/L CD displays, with an attached PC

4. Digital projectors with an attached PC

After consider ing these options , we selected the tablet PC form factor, pur -

chasing two ViewSonic ViewPad 1000 tablets [12] as initial sign prototypes. The

ViewPad combines a number of attr active features for use as an active sign, in-

cluding wir eless Ethernet, a 10.4” touch pad screen, on-boar d camera, micr o-

phone, and a small physical footpr int. We found the ViewPad to be a reasonably-

pr iced, fully functional hardware platfor m for location-awar e active signage.

5.2 Physical Design

Active signs are physically embodied in wall-mounted tablets PCs. As seen in

Figure 5-1, maps, routes and events are displayed on the 10.4 inch touchscreen

display. Userscan inter act with signs in a number of ways, pr imar ily by touching
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10.4" Touchpad Screen

Custom Aluminum Frame

Digital Camera

Figure 5-1: Front View of Active Sign. Note the custom aluminum frame, touch-
screen display, and embedded digital camera.

Wall Mounted, 
Double-Hinged Joint

Aluminum Frame

Figure 5-2: Pro�le View of Active Sign. Note the backside of the custom alu-
minum frame and the double-hinged joint mounted to the wall.
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buttons on the screen, which does not requir e a special stylus or other input de-

vice. Eachsign also has a set of speakers, micr ophone , and web cam asadditional

inter face mechanisms.

Signs are physically mounted on the wall with a custom aluminum frame

made in the MIT CSAIL machine shop. The frame serves a both a mounting

harness to physically attach the sign to the wall and a theft-pr evention device,

with signs secured between a set of screws.1 The frame is mounted to the wall

using a double-jointed housing as shown in Figure 5-2. The armatur e lets users

pivot the sign hor izontally and vertically , comfor tably accommodating those in

wheelchairs while maintaining a minimal hor izontal sign footpr int.

5.3 Softwar e Security

A �nal “physical ” consideration for sign design was locking down accessto the

software, �les , and operating system running on the sign. Unfor tunately , the only

operating suppor ted on the ViewPad 1000 is Microsoft Windo ws XP, which has

limited capabilities for totally securing the physical machine from a malicious

user. We found that by creating a custom user with limited �le and application

permissions we could suitably restrict most users from tamper ing with the soft-

ware running on the active signs. If a largenumber of signs were to be deployed in

a widespr ead physical networ k, however, mor e effor t would need to be invested

in totally locking down illicit, unintended use of the signs.

1A determined thief could, of course, either remove the screws or cut through the aluminum
frame with a saw. For mor e public installations of active signs (the models shown are in the MIT
Computer Graphics Group lab), we would use mor e secure methods of af�xing signs to the wall.
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Chapter 6

Futur e Work and Conclusion

This chapter presents areasof futur e work for this thesis, including suggestions

for enhanced route-�nding, event aggregation, map usability , and thoughts for

deploying a largenetwor k of distr ibuted active signs. This chapter and this thesis

are concluded with closing remarks.

6.1 Shor tcomings

Location-awar e active signs in their current form suffer from a number of short-

comings. Two major shortcomings – the problem of campus data generation and

position acquisition – are discussed below.

One problem area is the acquisition of physical campus data, which is man-

ually derived from a corpus of centrally-maintained MIT �oor plans. Obtaining

physically -accurate models of campus is a time-consuming, dif�cult task which

has requir ed the development of numer ous custom tools, and which has yielded

imper fect campus data. A fur ther complication is that although we can continu-

ously hone our automated tools, the real world is in constant �ux. The MIT De-

partment of Facilities updates a central corpus of �oor plans, and these changes

ultimately �lter down thr ough a pipeline of programs to update our vir tual repre-

sentation of the MIT campus. Unfor tunately , our approach (at best) lags behind

the real world by several weeks, as it takes time for these centrally-maintained
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CAD �les to be updated with new construction infor mation. Thus one major

shortcoming of our approach are the dif�culties inher ent in using a secondary

source of data (CAD �les) to generate models when they are not always up-to-

date and often contain �aws .

A second issue is that there is currently no way for a client application to auto-

matically obtain its position from the envir onment; at present this must be spec-

i�ed by user either per route query (as with MITquest), or at start-time (as with

a location-awar e active sign). In the futur e, position systems like Cricket [7] will

provide both position and orientation, but such capabilities have been deployed

only in limited por tions of campus.

6.2 Futur e Work

There are a number of fronts on which this thesis can be extended. Here, we

consider a few areasof such futur e work, including enhanced route-�nding, im-

proved map usability , and mor e extensive event aggregation.

6.2.1 Enhanced Route-�nding

There are a number of optimizations which could incr easethe speed and �delity

of route-�nding in the location server.

The fundamental algorithm used to �nd routes is Dijkstr a's algorithm (dis-

cussed in Section 2.5), which tends in practice to have poor performance when

searching for routes between distant spaces. New MIT students use a very simple

algorithm when divining routes between classrooms – if their destination is in a

differ ent building than their current location, they typically exit the building as

quickly aspossible and then locate the building of their destination.

The methods presented in Section 2.5 rely on brute-for ce searching of a cam-

pus graph to arr ive at the same result. One heur istic we could add to route gen-

eration in the location server is to break paths into distinct components , and ap-
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pend the results of searches on these smaller sub-quer ies. For example, consider

a route which goes between two buildings . We could break such a route into a

number of smaller routes:

� From the start space to the building exit

� From the start space's building exit to the destination space's building en-

trance

� From the destination space's building entrance to the destination building

A number of heur istics could speed up each of these smaller searches, en-

abling better route generation overall.

6.2.2 Map Usability

Wehave touched on the differ encesbetween merely valid routes and usable maps

in Sections 2.5.2 and 4.1, and there is much mor e work to be done on this front.

Research [1] shows that maps and routes with high �delity are often less usable

and useful than stylistic representations of the same data. We have presented

methods for extracting essential infor mation from routes, but many extensions

can be made to the simple techniques explored in this thesis.

In particular , selectively clipping walls in 3D route maps could greatly en-

hance usability . Magazines and newspapers often use a standard 3/4 cutaway

view of buildings to display both inter ior and exterior structur e – an approach

which could greatly enhance the usability of our 3D route-�nding techniques .

6.2.3 Event Aggregation

As discussed in Section 3.5.3, we currently infer events from two sources: the

MIT events calendar, and the LCSevents page. Although many public events are

published on convenient, well-for matted sources like the aforementioned two,

many campus events are distr ibuted thr ough another electronic medium: email.
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One viable extension to the event server is to set up an email account, subscribe

the account to a number of popular campus event mailing lists, and to thus infer

events from emailed event descriptions sent to the account. While addressingthe

challenges of inferr ing basic event data from emailed descriptions poses many

challenges, adding this feature would greatly expand the set of events available

to the EventServer, making active signs useful community tools.

6.3 Conclusion

We have presented an architectur e and methods for generating two- and thr ee-

dimensional route maps, a collection of general Java classesfor constructing such

maps, and provided exemplar y applications that provide useful services to the

MIT community .

We have implemented route-�nding in a client server architectur e, building a

Java location server with substantial performance optimizations , including route

memoization, space convexity checking, and por tal path pre-computation in-

side spaces. By using a rich route model, we fur ther enable constrained route

generation in Dijkstr a's algorithm, letting client applications specify constraints

to accommodate a variety of needs.

Map display is implemented in two Java classesthat make map and route dis-

play abstract for developers and accessible for end-users. We have built client

applications using our base classes, including location-awar e active signs and

MITquest, which provide maps and other services. Active signs have been fur -

ther endowed with knowledge of events around MIT 's campus, enabled thr ough

a central event server and methods for inferr ing events from MIT community

web pages.

We hope that the methods , applications , and impr ovements presented in this

thesis are of use to members of the MIT community and motiv ate the fur ther

development of location-awar e applications . This thesis stands asa useful proof-

of-concept for a set of location-awar e, active signs.

70



Appendix A

Project Build Instr uctions

This chapter describes how to checkout, build, and execute the applications we

discuss in this thesis, including the LocationServer, EventServer, TextSign, Graph-

icsSign, and MITquest applications . These instr uctions assume an account with

the MIT Computer Graphics Group, and membership in the graphics and city

groups. These instr uctions also assume a Linux command-line envir onment,

running under the tcsh shell.

A.1 Checkout and Build Instr uctions

First, check out the CVSsource tree of the walkthru/mit project. Do this with:

%setenv CVSROOT/d9/projects/

Make sure that this envir onment variable is set by checking the envir onment, do

this with:

%env | grep CVSROOT

and verify that the CVSROOT envir onment variable is properly set. Next, move

to the dir ectory where the walkthru source tree will be hosted. To checkout the

entir e dir ectory, type:

%cvs checkout -P walkthru/mit
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A.2 Invoking Applications

A.2.1 LocationSer ver

The location server is invoked with the follo wing command-line arguments:

%LocationServer modefile building1 ... buildingN

The modeparameter speci�es which mode the location server is run in; there are

either “batch processing mode” with the parameter BATCHOUTor “quick start”

mode, with the parameter QUICKSTART. In batch processing mode, the location

server load and pre-processesthe list of named buildings , and then outputs its

pre-processed state to the speci�ed file before binding to Java RMI por t. The

building parameter is simply the path to the root building name for one or mor e

building data �les . For example, /scratch/pnichols/bmg/mit 13is the root name

for mit 13.spaces and mit 13.portals , the two �les containing all room geome-

tr y for building 13. The actual format of these spaceand por tal �les is the subject

of Appendix C.

To actually compile and invoke the location server, �rst move to the root di-

rectory where the walkthru source tree has been installed. Then:

%cd walkthru/mit/src/LocationA ware/loc ati onserver

%rmiregistry &

%make; makefull

The location server will then load campus data from the local �le system, pro-

cess campus �oor plans, and then publish itself on por t 5432 (the default Java

RMI por t). The set of buildings to load, and their locations , is in the Make�le it-

self. Making the location server networ k-accessible may requir e that the server

hosting it explicitly open por t 1099 to the outside world depending on �r ewall

and other security settings. Compilation requir es that the Java programs javac

and rmic are both installed and accessible. To check whether these applications

are in the path, type:

72



%which javac

If javac is not found, tr y:

%locate javac | grep bin

This should locate the appropr iate dir ectory to add to the PATHenvir onment vari-

able.

A.2.2 EventServer

To invoke the event server, �rst move to the root dir ectory where the walkthru

source tree has been installed. Then:

%cd walkthru/mit/src/LocationA ware/

%setenv CLASSPATHf $PWDg

%javac eventserver/*.java

%java eventserver.EventServer INTERACTIVE

The event server will not compile or run without the Java CLASSPATHenvir onment

variable set to walkthru/mit/src/Location Aware.

These instr uctions run EventServer in “inter active” mode, which displays the

GUI referred to thr oughout this thesis. To run the EventServer as a background

process, replace INTERACTIVEwith SERVERwhen invoking the application from

the command line . Once the EventServer application is running, pressthe “Probe

Events Database” button to automatically acquir e a set of events from LCSevents

web page and the MIT community events calendar. Event databasescan also be

savedto disk and loaded using the corresponding GUI buttons .

A.2.3 TextSign

Invoking a TextSign requir es an available, accessible event server and location

server. The TextSign application must also have the physical location of the sign
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entered asan initial command-line parameter. This physical location is speci�ed

asa spacename, using the naming convention adopted in this thesis, discussion

in Section 2.4.

In the futur e, this will alternately be provided by a system like Cricket, and will

likely be speci�ed asa pose, including both position and orientation. Should this

change, the getPhysicalPosition() method should be modi�ed appropr iately.

TextSign is called with:

%TextSign location eventserver locationserver

To run the TextSign application (for example) with an event server running locally

and a location server running on graphics.csail.mit.edu:

%cd walkthru/mit/src/LocationA ware/

%setenv CLASSPATHf $PWDg

%javac textsign/*.java

%java textsign.TextSign mit 38#1#00LA#LOBBYlocalhost

graphics.csail.mit.edu

A.2.4 GraphicsS ign

The GraphicsSign component requir es that Java3D be locally installed and in the

PATHenvir onment variable. GraphicsSign takes thr ee command-line arguments

– the location of a master TextSign, and the LocationServer to provide geometry

infor mation.T o run GraphicsSign, type:

%cd walkthru/mit/src/LocationA ware/

%setenv CLASSPATHf $PWDg

%javac graphicssign/*.java

%java graphicssign.GraphicsSig n localhost graphics.csail.mit.edu

In this example, the application would run with a location server running on

graphics.csail.mit.edu and a textsign running locally.
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A.2.5 MITquest

Installing and running the MITquest applet requir esa web server such asApache

with PHP4 installed. To obtain and compile MITquest, type:

%cd walkthru/mit/src/LocationA ware/

%setenv CLASSPATHf $PWDg

%cd MITquest/

%javac *.java

To accessMITquest from the web, create a symbolic link to the MITquest dir ec-

tor y from a web accessible dir ectory. For example, on the graphics server one

would:

%cd /citypub/www/city/bmg/

%ln -s /walkthru/mit/src/Location Aware/MITquest mitquest

This would make MITquest available on the web at

http://city .csail.mit.edu/bmg/mitquest
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Appendix B

API Documentation

This chapter br ie�y discusses the LocationServer and DisplayLayer inter faces,

providing high-level insight into their use and purpose. It then provides the out-

line for a reference client which makes useof these components to provide route-

�nding services to an end user.

B.1 The LocationSer ver Inter face

The LocationServer inter face, shown in Figure B-1, exposeshigh-level geometry

and route-�nding capabilities to client applications .

This inter face is implemented by the JavaLocationServer application, which

is a Java RMI server. Any clients making use of a location server must instantiate

this class locally by using the Java lookup method to locate a networ k-accessible

1. public interface LocationServer {
2. public Space getSpace(Position position);
3. public Space getSpace(String name);
4. public Portal getPortal(Position position);
5. public Portal getPortal(String name);
6. public Route getRoute(Route route);
7. }

Figure B-1: LocationServer Inter face.
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LocationServer bound to the machine at server (such asgraphics.csail.mit.edu ).

1. try {

2. String name= "//" + server + "/LocationServer";

3. this.locationServer = (LocationServer) Naming.lookup(name);

4. } catch (Exception e) {

5. e.printStackTrace();

6. }

Once a client has instantiated a local copy of the LocationServer class, the

client then uses the API in Figure B-1 to build maps and display routes. Typi-

cally, a client must �rst build an inter nal map by specifying an initial space(using

the getSpace() method), then recursively query for spacesadjacent to the initial

space. Each spacemaintains a list of the names of its adjacent spaces, so a client

may obtain the actual adjacent spacesby recursively querying the LocationServer

with the getSpace() method. Clients can restrict maps by selectively adding new

spaces, such asby only adding spaceson a certain �oor of a certain building.

Once a client has built a map by collecting a set of spacesand por tals, it can

request routes from the LocationServer . This is done with the Routeclass, which

speci�es a set of constraints on a route, as well as various collections of points ,

spaces, and por tals which satisfy the route constraints. The Route constructor

takes:

1. public Route(Space source, Space dest, String type);

Where source is the starting Space, dest in the destination Space, and type spec-

i�es Route constraints, represented as a static Str ing in the Route class. To gen-

erate a valid route, clients must �rst create a local Route object, and then call

the getRoute() method, saving the returned route. For example, a client might

generate a route like this:

1. Space s1 = this.locationServer.getSpa ce(` `mi t_NE43@2@255@OFF'') ;
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2. Space s2 = this.locationServer.getSpa ce(` `mi t_NE43@5@501@OFF'') ;

3. Route myRoute= new Route(s1, s2, Route.ROLLING_ROUTE);

4. myRoute= this.locationServer.get Route(myRoute);

The returned object contains the collection of points , por tals, and spaceswhich

optimally satisfy the route constraints. If no valid route can be found by the

LocationServer , the returned object is null.

B.2 The DisplayLayer Inter face

The DisplayLayer inter face, shown in Figure B-2, is used to instantiate and con-

trol very general 2D and 3D map and route display objects, which themselves ex-

tend the Javax.Swing.JPanel class. Implementors of the DisplayLayer classpromise

basic map and route display functionality , and can be used inter changeably in

applications like MITquest and active signage.

1. public interface DisplayLayer {
2. public DisplayLayer(LocationSer ver ls, Space initial);
3. public boolean drawRoute(Route r);
4. public boolean markSpace(Spaces, String text);
5. public void clearAll();
6. }

Figure B-2: DisplayLayer Inter face.

DisplayLayer classesare instantiated with referencesto an initial space(which

servesas the initial space used to build an initial map, asdetailed in Section B.1)

and a LocationServer to provide geometry infor mation. Clients are must also

provide methods for displaying routes, marking spaces with optional text, and

for clearing all displayed routes and markings.
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Appendix C

LocationSer ver File For mat

This chapter documents the �le format used as input by the LocationServer ap-

plication, which is discussed at length in Section 3.3. The location server takes

a set of �le names, passed as command-line arguments, as arguments to load

and process rooms and por tals. The location server is passed the full path to a

root �lename for each room to be loaded; a sample set of this data is located on

the graphics �le system at /scratch/pnichols/bmg/ . Section A.2.1contains mor e

infor mation on invoking the LocationServer application.

Each building has two associated �les – a �le containing a room geometry

(which has the extension .spaces ) and a �le containing room connectivity in-

formation (which has the extension .portals ). For example, MIT building 13

would have all room data stored in mit 13.spaces and all room connectivity data

in mit 13.portals .

C.1 Room File For mat

Building room geometry is stored in a simple , plain text format. Each space is

represented asa single line in the �le , in the follo wing format:

SPACENAMECONTOURPOINTS| SPACETRIANGULATION

The SPACENAMEfollo ws the format:
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BUILDINGNAME#FLOORNUMBER#ROOMNUMBER

The CONTOURPOINTSfor a space represent the the 2d footpr int of the space, rep-

resented as an ordered list of 3d points . The list should close, e.g. the last point

of the ordered points should be the same as the �rst point. For a space with n

points , the format is:

f px1py1 pz1g:::f pxn pyn pzn g

The SPACETRIANGULATIONfor a space is the CDT tr iangulation of the space, rep-

resented as sets of points enclosed by braces. For a space with m tr iangles, the

format is:

ff t1x 1 t1y 1 t1z 1 g:::f t1x 3 t1y 3 t1z 3gg:::ff tmx 1 tmy 1 tmz 1 g:::f tmx 3 tmy 3 tmz 3 gg

C.2 Por tal File For mat

Space adjacency infor mation is also stored in a plain text �le . Each por tal is rep-

resented asa single line in the �le , in the follo wing format:

PORTALNAMEPORTALTYPESPACE1 SPACE2 PORTALSHAPE

The PORTALNAMEis simply a globally unique string identifying the por tal, which

in practice is usually a non-negative integer.

The PORTALTYPErepresentswhat type of spacepor tal connects the two named

Spaces. Legalpor tal types include STAIRUP, STAIRDOWN, ELEVUP, ELEVDOWN, OUTSIDE,

WINDOW. All por tal types are public, �nal member variables of the Portal class.

Each por tal connects two spaces, whose ids are listed asSPACE1 and SPACE2.

Theseadjacencies are one-way only, which means that most (but not all) por tals

have a twin which connects the two spaces in the other dir ection. This re�ects

the fact that some doors (such asemergency exit doors) are one-way only.

Each por tal also has a physical footpr int, as represented by the PORTALSHAPE,

which is a set of four points representing the quadr ilater al outline of the por tal.

This takes the form:
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f p1x p1y p1z g:::f p4x p4y p4z g
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