
Robust Distributed Sensor Network Localization

with Noisy Range Measurements

by

David Christopher Moore

B.S., California Institute of Technology (2003)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 14, 2005

Certified by. .
Seth Teller

Associate Professor
Thesis Supervisor

Certified by. .
John J. Leonard

Associate Professor
Thesis Supervisor

Certified by. .
Daniela L. Rus

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Robust Distributed Sensor Network Localization

with Noisy Range Measurements

by

David Christopher Moore

Submitted to the Department of Electrical Engineering and Computer Science
on January 14, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

This thesis describes a distributed, linear-time algorithm for localizing sensor network nodes
in the presence of range measurement noise and demonstrates the algorithm on a physical
network. We introduce the probabilistic notion of robust quadrilaterals as a way to avoid
flip ambiguities that otherwise corrupt localization computations. We formulate the local-
ization problem as a two-dimensional graph realization problem: given a planar graph with
approximately known edge lengths, recover the Euclidean position of each vertex up to a
global rotation and translation. This formulation is applicable to the localization of sensor
networks in which each node can estimate the distance to each of its neighbors, but no
absolute position reference such as GPS or fixed anchor nodes is available.

We implemented the algorithm on a physical sensor network and empirically assessed its
accuracy and performance. Also, in simulation, we demonstrate that the algorithm scales
to large networks and handles real-world deployment geometries. Finally, we show how the
algorithm supports localization of mobile nodes.

Thesis Supervisor: Seth Teller
Title: Associate Professor

Thesis Supervisor: John J. Leonard
Title: Associate Professor

Thesis Supervisor: Daniela L. Rus
Title: Associate Professor

3

4

Acknowledgments

This work was funded by a grant from Project Oxygen and supported by a National Science

Foundation Graduate Research Fellowship. Additional funding was provided in part by

the Institute for Security Technology Studies (ISTS) at Dartmouth College, NSF award

0225446, ONR awards N00014-01-1-0675, N00014-02-C-0210, and N00014-03-1-0879, and

DARPA TASK program award F30602-00-2-0585.

I would like to thank the Cricket project, especially Michel Goraczko, Bodhi Priyantha,

and Hari Balakrishnan, for supplying hardware and programming assistance. Thanks also

goes to the BMG (Building Model Generation) project for floorplans. Patrick Nichols wrote

the constrained beacon graph generator. I am grateful to Erik Demaine for useful discussions

and pointers to literature.

Most of all, I’d like to thank my advisors Seth Teller, Daniela Rus, and John Leonard

for their invaluable guidance and support in producing this work.

5

6

Contents

1 Introduction 15
1.1 Algorithm Overview . 16
1.2 Related work . 17
1.3 Challenges of network localization . 20

2 Approach 23
2.1 Cluster Localization . 24
2.2 Computing Inter-Cluster Transformations 27
2.3 Node Mobility . 29

2.3.1 Kalman Filtering . 29
2.3.2 Outlier Rejection . 31
2.3.3 Optimization . 32

3 Analysis 33
3.1 Proof of Robustness . 33
3.2 Computational Complexity . 36

4 Experimental Results 39
4.1 Evaluation Criteria . 39
4.2 Accuracy Study: Hardware Deployment . 41
4.3 Scalability Study: Simulated Deployment 44
4.4 Error Propagation . 47
4.5 Localization of Mobile Nodes . 48

5 Conclusion 51

A Localization Code 53

B Filtering Code 67

7

8

List of Figures

1-1 An example of the localization problem. The input to the algorithm (left) is
a set of sensor network nodes with some set of known inter-node distances,
depicted as straight lines. The output after localization is an assignment of
Euclidean coordinates (2-dimensional in this case) to the network nodes. . . 16

1-2 An example run of our algorithm to estimate the relative positions of node
A’s neighbors. Nodes ABCD form a robust quad because their realization is
unambiguous even in the presence of noise. We select A as the origin of a
local coordinate system and choose positions for B, C, and D that satisfy the
six distance constraints. In the next step, node E is localized relative to the
known positions of ABD using trilateration. This localization is unambigu-
ous because ABDE also forms a robust quadrilateral. Continuing, the same
procedure is used to localize node F which is part of the robust quad ADFE. 18

1-3 Example graph showing (a) true vertex positions and (b) an alternate re-
alization of the graph in which inter-vertex distances, depicted as lines, are
preserved almost exactly. The error metric σerr is shown below each real-
ization, with inter-vertex distances generated from a Gaussian distribution
with a mean of the true distance and σ = 0.35. Thus, in this example, an
incorrect realization of the graph fits the constraints better than the ground
truth, showcasing why network localization is difficult. 20

1-4 (a) Flip ambiguity. Vertex A can be reflected across the line connecting B
and C with no change in the distance constraints. (b) Discontinuous flex
ambiguity. If edge AD is removed, then reinserted, the graph can flex in
the direction of the arrow, taking on a different configuration but exactly
preserving all distance constraints. 21

2-1 (a) The robust four-vertex quadrilateral. The characteristic features of this
subgraph are that each vertex is connected to every other by a distance
measurement and that knowing the locations of any three vertices is sufficient
to compute the location of the fourth using trilateration. (b) Decomposition
of the robust quadrilateral into four triangles. 25

2-2 An example of a flip ambiguity realized due to measurement noise. Node
D is trilaterated from the known positions of nodes A, B, and C. Measured
distances dBD and dCD constrain the position of D to the two intersections of
the dashed circles. Knowing dAD disambiguates between these two positions
for D, but a small error in dAD (shown as d′AD) selects the wrong location for
D. 25

9

2-3 The duality between a cluster rooted at A and a graph of robust quads,
which we call an overlap graph. In the overlap graph, each robust quadrilat-
eral is a vertex. Edges are present between two quads whenever they share
three nodes. Thus, if all four node positions are known for some quad, any
neighboring quad in the overlap graph can use the three common nodes to
trilaterate the position of the unknown node. A breadth-first search into the
overlap graph from some starting quad, trilaterating along the way, localizes
the cluster as described by Algorithm 2. Note that the overlap graph for a
cluster can have distinct, unconnected subgraphs as shown in this example.
Nodes that are unique to one subgraph cannot be localized with respect to
those of an unconnected subgraph. 26

3-1 A diagram of a quadrilateral for deriving the worst-case probability of flip
error. Vertex C is being trilaterated from the known positions of vertices A,
B, and D. Its distance to vertex D is used to disambiguate between the two
possible locations C and C′ by testing which of d̃CD and d̃C′D is closer to the
measured distance between C and D. 34

4-1 A photograph of a Cricket device. The hardware is compatible with a Berke-
ley Mica2 Mote with the addition of an ultrasonic transmitter and receiver,
the silver components on the right. The Cricket estimates distance by mea-
suring the time difference of arrival between an ultrasonic chirp which travels
at the speed of sound, and a radio packet which travels at the speed of light. 40

4-2 A comparison of node positions as localized by our algorithm to the true
positions of the nodes on a physical Cricket cluster. Positions are computed
by Phase I of the algorithm, cluster localization. The experiment involved
16 nodes, one of which could not localize; thus only 15 are shown. 41

4-3 (a) The separate clusters that combined to form the complete network local-
ization. (b) The localized positions of 40 Crickets in a physical network. The
two “holes” in the network are where two nodes could not localize, and thus
only 38 are shown. The coordinate transformations between each cluster were
computed and used to render the localized positions in the single coordinate
system seen here. Ground truth positions are overlaid, with lines showing
the amount of error for each node. The dotted line depicts the maximum
communications radius. 43

4-4 (a) One instance of the simulated sensor network. Each graph edge represents
a distance measurement that a node can perform. Different runs in the
results used the same node positions with varying maximum measurement
radius. (b) The cluster success rate R̄ versus the average node degree for
three different levels of measurement noise. Each data point shows the value
of these quantities for a single simulation run. A moving average of the data
points is overlaid on each plot. (c) The size of the largest forest R̃ versus
average node degree for three different levels of measurement noise. 45

10

4-5 (a) The office floorplan used for sensor network simulation. Dark lines are
the walls of the building and light-colored lines represent the graph edges
between nodes. Each edge represents a distance measurement that a node
can perform. Measurements cannot be taken through walls. (b) The cluster
success rate R̄ versus the average node degree for three different levels of
measurement noise. Each data point shows the value of these quantities for
a single simulation run. A moving average of the data points is overlaid on
each plot. (c) The size of the largest forest R̃ versus average node degree for
three different levels of measurement noise. 46

4-6 (a) Our algorithm’s localized positions for a simulated network compared to
ground truth. Lines show the amount of error for each node’s position. The
three nodes used to compute the transformation to the ground truth’s coordi-
nate system are shown with small circles. The large dotted circle depicts the
maximum ranging distance of a node. (b) Localization of the same network
using basic trilateration without checking for quad robustness. 47

4-7 The experimental setup for mobile robot localization, consisting of six sta-
tionary nodes and one mobile node. 49

4-8 (a) The path of a mobile node computed by our localization algorithm com-
pared to ground truth over a 3 minute period. A sensor node was attached
to a mobile robot (an autonomous floor vacuum) that randomly covered a
rectangular space. Six static nodes, depicted as circles, were used to localize
this mobile node over time. Ground truth (dashed) was obtained from cali-
brated video. (b) The Euclidean distance between the mobile node’s localized
position and ground truth over time. 50

11

12

List of Tables

4.1 Error metrics for the localization results of Figure 4-2. 42
4.2 Error metrics for the localization results of Figure 4-3. 42
4.3 Error metrics of four simulation runs of the network in Figure 4-6. 48

13

14

Chapter 1

Introduction

Localization in sensor networks is defined as an algorithm that finds the Euclidean position

for some or all of the nodes in the network. An example of the inputs and outputs to the

localization problem is shown in Figure 1-1. Localization is an essential tool for the devel-

opment of low-cost sensor networks for use in location-aware applications and ubiquitous

networking [5, 23]. For example, the Global Positioning System (GPS) is a reliable tech-

nology for discovering the location of portable devices, however, it does not work indoors

because a view of the sky is obstructed. Localization of sensor networks provides similar

functionality to GPS, but it works indoors as well. A full-range of location-aware applica-

tions such as autonomous navigation, environmental monitoring, and ”smart buildings” are

realizable given a robust algorithm for sensor network localization.

This thesis describes a distributed algorithm for a specific type of sensor network lo-

calization in which nodes have the ability to estimate distance to nearby nodes, but such

measurements are corrupted by noise. Distributed computation and robustness in the pres-

ence of measurement noise are key ingredients for a practical localization algorithm that

will give reliable results over a large scale network. We formulate the problem as the follow-

ing two-dimensional graph realization problem: given a planar graph with edges of known

length, recover the Euclidean position of each vertex up to a global rotation and transla-

tion. This is a difficult problem for several reasons. First, there is often insufficient data

to compute a unique position assignment for all nodes. Second, distance measurements

are noisy, compounding the effects of insufficient data and creating additional uncertainty.

Another problem is a lack of absolute reference points or anchor nodes1 which could provide

1We use the term anchor node to refer to a node that has prior knowledge of its absolute position, either

15

Before Localization After Localization

(−10,−2)

(−5,5)
(0,0)

(−1,−15) (18,−19)

(15,−3)

(30,3)
(16,12)

Figure 1-1: An example of the localization problem. The input to the algorithm (left)
is a set of sensor network nodes with some set of known inter-node distances, depicted
as straight lines. The output after localization is an assignment of Euclidean coordinates
(2-dimensional in this case) to the network nodes.

a starting point for localization. Finally, it is difficult to devise algorithms that scale lin-

early with the size of the network, especially if data must be broadcast through the limited

communications capacity of a wireless channel.

We present a distributed localization algorithm that gets around these difficulties by

localizing nodes in regions constructed from robust quadrilaterals, a term that we formally

define in Chapter 2. Localization based on robust quads attempts to prevent incorrect re-

alizations of flip ambiguities that would otherwise corrupt localization computations. Fur-

thermore, we show that the criteria for quadrilateral robustness can be adjusted to cope

with arbitrary amounts of measurement noise in the system. The drawback of our approach

is that under conditions of low node connectivity or high measurement noise, the algorithm

may be unable to localize a useful number of nodes. However, for many applications, miss-

ing localization information for a known set of nodes is preferential to incorrect information

for an unknown set.

A general result of our simulations is that even as noise goes to zero, nodes in large

networks must have degree 10 or more on average to achieve 100% localization.

1.1 Algorithm Overview

At a high level, our network localization algorithm works as follows. Each node measures

distances to neighboring nodes, then shares these measurements with the neighbors. This

by manual initialization or an outside reference such as GPS. This type of node is also called a beacon.

16

“one-hop” information is sufficient for each node to localize itself and its neighbors, which we

call a cluster, in some local coordinate system. Coordinate transforms can then be computed

between overlapping clusters to stitch them into a global coordinate system. Such stitching

can be done in an on-line fashion as messages are routed through the network rather than

attempting to solve for the full localization up front. Similar cluster-based approaches have

been proposed before, but often suffer from gross localization errors due to graph flips that

can compound over larger distances. Our novel use of robust quadrilaterals ensures that

cluster-based localization does not suffer from such errors.

Figure 1-2 depicts an illustrative run of our algorithm. We find all sets of four nodes

that are fully connected by distance measurements and are “well-spaced” such that even

in the presence of measurement noise, their relative positions are unambiguous. We adopt

this quadrilateral as the smallest subgraph that can be definitively realized, and define it as

a robust quad. Additional robust quads can be “chained” to the original quad if they have

3 nodes in common with it. This approach allows each chained quad to localize its fourth

node based on the 3 known positions common to the two quads using the standard technique

of trilateration [4, 12]. This use of robust quadrilaterals enables our algorithm to tolerate

noise by computing unique realizations for graphs that might otherwise be ambiguous.

Our algorithm has the following characteristics:

1. It supports noisy distance measurements, and is designed specifically to be robust

under such conditions.

2. It is fully distributed, requiring no beacons or anchors.

3. It localizes each node correctly with high probability, or not at all. Thus, rather than

produce a network with an incorrect layout, any nodes with ambiguous locations are

not used as building blocks for further localization.

4. Cluster-based localization supports dynamic node insertion and mobility.

1.2 Related work

Eren et al. in [4] provide a theoretical foundation for network localization in terms of graph

rigidity theory. They show that a network has a unique localization if and only if its

17

A

B

C
D

E

F
A

B

C

D

A

B

C

E

D

PSfrag replacements
⇒⇒

Figure 1-2: An example run of our algorithm to estimate the relative positions of node A’s
neighbors. Nodes ABCD form a robust quad because their realization is unambiguous even
in the presence of noise. We select A as the origin of a local coordinate system and choose
positions for B, C, and D that satisfy the six distance constraints. In the next step, node
E is localized relative to the known positions of ABD using trilateration. This localization
is unambiguous because ABDE also forms a robust quadrilateral. Continuing, the same
procedure is used to localize node F which is part of the robust quad ADFE.

underlying graph is generically globally rigid. In addition, they show that a certain subclass

of globally rigid graphs, trilateration graphs, can be constructed and localized in linear time.

We take global rigidity and trilateration graphs one step further with robust quadrilaterals

that provide unambiguous localizations and tolerate measurement noise.

In [18], Savvides et al. derive the Cramér-Rao lower bound (CRLB) for network local-

ization, expressing the expected error characteristics for an ideal algorithm, and compare

it to the actual error in an algorithm based on multilateration. They draw the important

conclusion that error introduced by the algorithm is just as important as measurement

error in assessing end-to-end localization accuracy. In [13] and [12], Niculescu and Nath

also apply the CRLB to a few general classes of localization algorithms. Their “Euclidean”

method is similar to our method of cluster localization in that it depends on the trilater-

ation primitive. They also state the relevance of four-node quadrilaterals. In their case,

the quads are constrained with five distance measurements — the sixth is computed based

on the first five. Flip ambiguities are resolved using additional information from neighbor-

ing nodes. Their “DV-coordinate” propagation method presented in [12] is similar to our

method in that clusters consisting of a node and its one-hop neighbors are first localized in

local coordinate systems. Registration is then used to compute the transformations between

neighboring coordinate systems. This idea of local clusters was also proposed by Čapkun et

al. in [2]. However, neither algorithm considers how measurement noise can cause incorrect

realization of a flip ambiguity.

A variety of other research attempts to solve the localization problem using some form

of global optimization. Doherty et al. described a method using connectivity constraints

18

and convex optimization when some number of beacon nodes are initialized with known

positions [3]. Ji and Zha use multidimensional scaling (MDS) to perform distributed op-

timization that is more tolerant of anisotropic network topology and complex terrain [9].

Priyantha et al. eliminate the dependence on anchor nodes by using communication hops

to estimate the network’s global layout, then using force-based relaxation to optimize this

layout [15].

Other previous work is based on propagation of location information from known refer-

ence nodes. Bulusu et al. and Simic et al. propose distributed algorithms for localization of

low power devices based on connectivity [1, 21]. Other techniques use distributed propaga-

tion of location information using multilateration [11, 19]. Savarese et al. use a two-phase

approach using connectivity for initial position estimates and trilateration for position re-

finement [17]. Patwari et al. use one-hop multilateration from reference nodes in a phys-

ical experiment using both received signal strength (RSS) and time of arrival (ToA) [14].

Grabowski and Khosla maximize a likelihood estimator to localize a small team of robots,

achieving some robustness by including a motion model in their optimization [6].

In this thesis we make several departures from previous research. Most importantly, no

previous algorithm considers the possibility of flip ambiguities during trilateration due to

measurement noise. Although the requirement of global rigidity as a means to avoid flips

has been well established [4], the effects of measurement noise on global rigidity are not well

understood. Our notion of robust quadrilaterals minimizes the probability of realizing a

flip ambiguity incorrectly due to measurement noise. Error propagation during trilateration

is derived in [13], but the potential for significant error due to flips is not considered.

Secondly, like [2] and [12], we do not require anchor nodes, enabling localization of networks

without absolute position information. This characteristic is important for localization in

homogeneous ad-hoc networks, where any node may become mobile. Furthermore, manual

beacon initialization can be error-prone or impossible, for example, in a sensor network

deployed by a mobile robot.

19

(a) Ground truth (b) Alternate realization

3.0

A
B

C

D

E

FG

HI

J
K

L

3.0

A

B

C

D

E

FG

H
I

J

K

L

σerr = 0.37 σerr = 0.34

Figure 1-3: Example graph showing (a) true vertex positions and (b) an alternate realization
of the graph in which inter-vertex distances, depicted as lines, are preserved almost exactly.
The error metric σerr is shown below each realization, with inter-vertex distances generated
from a Gaussian distribution with a mean of the true distance and σ = 0.35. Thus, in this
example, an incorrect realization of the graph fits the constraints better than the ground
truth, showcasing why network localization is difficult.

1.3 Challenges of network localization

The difficulties inherent in localization can be easily demonstrated with an example. Con-

sider the following metric that characterizes the error for a given localization,

σ2
err =

M
∑

i=1

(d̃i − d̂i)
2

M
(1.1)

where M is the number of distance measurements, d̃i is each distance computed from the

localized positions, and d̂i is each measured distance. Without ground truth, σerr tells us

how well a computed localization fits the constraints. Figure 1-3 shows why minimizing

this error metric is insufficient for localization. In this example, two possible realizations

shown for the network have similar values for σerr, but the ground truth actually has higher

error than an incorrect realization. This demonstrates the need for an algorithm that

appropriately handles nodes with ambiguous positions by refusing to assign a position to

any node that has more than one possible locus for its position. We now formally address

why an algorithm based primarily on numerical optimization of the distance constraints

fails.

In graph theory, the problem of finding Euclidean positions for the vertices of a graph is

known as the graph realization problem. Saxe showed that finding a realization is strongly

NP-hard for the two-dimensional case or higher [20]. However, knowing the length of each

graph edge does not guarantee a unique realization, because deformations can exist in the

20

(a) Flip ambiguity (b) Discontinuous flex ambiguity

A

D
C

B
E

A

C
E

F

A

C
E

D

DBB
F

PSfrag replacements

⇒

Figure 1-4: (a) Flip ambiguity. Vertex A can be reflected across the line connecting B and
C with no change in the distance constraints. (b) Discontinuous flex ambiguity. If edge AD
is removed, then reinserted, the graph can flex in the direction of the arrow, taking on a
different configuration but exactly preserving all distance constraints.

graph structure that preserve edge lengths but change vertex positions. Rigidity theory

distinguishes between non-rigid and rigid graphs. Non-rigid graphs can be continuously

deformed to produce an infinite number of different realizations, while rigid graphs cannot.

However, in rigid graphs, there are two types of discontinuous deformations that can prevent

a realization from being unique [7]:

1. Flip ambiguities (Figure 1-4a) occur for a graph in a d-dimensional space when the

positions of all neighbors of some vertex span a (d− 1)-dimensional subspace. In this

case, the neighbors create a mirror through which the vertex can be reflected.

2. Discontinuous flex ambiguities (Figure 1-4b) occur when the removal of one edge will

allow part of the graph to be flexed to a different configuration and the removed edge

reinserted with the same length. This type of deformation is distinct from continuous

flex ambiguities which are present only in non-rigid graphs. In the remainder of this

thesis, we use “flex ambiguity” to mean the discontinuous type.

Graph theory suggests ways of testing if a given graph has a unique realization by

determining whether or not flip or flex ambiguities are present in a specific graph. However,

neither these specific tests nor the general principles of graph theoretic rigidity apply to the

graph realization problem when distance measurements are noisy. Since realizations of the

graph will rarely satisfy the distance constraints exactly, alternative realizations can exist

that satisfy the constraints as well as or better than the correct realization, even when the

graph is rigid in the graph theoretic sense. In this situation, assuming one can model the

measurement noise as a random process, it is desirable to localize only those vertices that

21

have a small probability of being subject to flip or flex ambiguity.

Our algorithm uses robust quadrilaterals as a building block for localization, adding

an additional constraint beyond graph rigidity. This constraint permits localization of

only those nodes which have a high likelihood of unambiguous realization. We present the

algorithm itself in the next chapter, then justify it by deriving the worst-case error likelihood

in Chapter 3.

22

Chapter 2

Approach

We describe an approach for localization of a sensor network in two-dimensional space. We

define a node’s neighbors to be those nodes that have direct bidirectional communications

and ranging capability to it. Depending on the type of ranging mechanism used by the

network, these two conditions may always be satisfied together. A cluster is a node and its

set of neighbors.

The algorithm can be broken down into three main phases. The first phase localizes

clusters into local coordinate systems. The optional second phase refines the localization

of the clusters. The third phase computes coordinate transformations between these local

coordinate systems. When all three phases are complete, any local coordinate system can

be reconciled into a unique global coordinate system. Alternatively, the transformation

between any connected pair of clusters can be computed on-line by chaining the individual

cluster transformations as messages are passed through the network. The three phases of

the algorithm are as follows:

Phase I. Cluster Localization Each node becomes the center of a cluster and esti-

mates the relative location of its neighbors which can be unambiguously localized.

We call this process cluster localization. For each cluster, one identifies all robust

quadrilaterals and finds the largest subgraph composed solely of overlapping robust

quads. This subgraph is also a trilateration graph as in [4]; the restriction to robust

quads provides an additional constraint that minimizes the probability of realizing a

flip ambiguity. Position estimates within the cluster can then be computed incremen-

tally by following the chain of quadrilaterals and trilaterating along the way, as in

23

Figure 1-2.

Phase II. Cluster Optimization (optional) Refine the position estimates for each clus-

ter using numerical optimization such as spring relaxation or Newton-Raphson with

the full set of measured distance constraints. This phase reduces and redistributes any

accumulated error that results from the incremental approach used in the first phase.

It can be omitted when maximum efficiency is desired. Note that this optimization

imposes no communications overhead since it is performed per cluster and not the

network as a whole.

Phase III. Cluster Transformation Compute transformations between the local co-

ordinate systems of neighboring clusters by finding the set of nodes in common between

two clusters and solving for the rotation, translation, and possible reflection that best

aligns the clusters.

This cluster-based approach has the advantage that each node has a local coordinate

system with itself as the origin. The algorithm is easily distributed because clusters are

localized using only distance measurements to immediate neighbors and between neighbors.

Furthermore, if one node in the network moves, only the O(1) clusters containing that node

must update their position information. The following sections describe the phases of the

algorithm in more detail.

2.1 Cluster Localization

The goal of cluster localization is to compute the position of a cluster’s nodes in a local

coordinate system up to a global rotation and possible reflection. Any nodes that are not

part of the largest subgraph of robust quads in the cluster will not be localized. However,

after Phases I-III are complete, the positions of many of these unlocalized nodes can be

computed using more error prone methods that do not rely on robust quads. We do not use

such methods in this phase since inaccurate position estimates will be compounded by later

phases of the algorithm. Our cluster-based localization strategy is similar to that proposed

in [2] except that our use of robust quads specifically avoids flip ambiguities.

Quadrilaterals are relevant to localization because they are the smallest possible sub-

graph that can be unambiguously localized in isolation. Consider the 4 node subgraph

24

(a) (b)

D
C

BA

D
C

BA

D
C

BA

PSfrag replacements

θ1
θ2

θ3

Figure 2-1: (a) The robust four-vertex quadrilateral. The characteristic features of this
subgraph are that each vertex is connected to every other by a distance measurement and
that knowing the locations of any three vertices is sufficient to compute the location of the
fourth using trilateration. (b) Decomposition of the robust quadrilateral into four triangles.

B
A

D

B
A

C C

D’PSfrag replacements

dBDdBD

dCDdCD

dAD d′AD

Figure 2-2: An example of a flip ambiguity realized due to measurement noise. Node D is
trilaterated from the known positions of nodes A, B, and C. Measured distances dBD and
dCD constrain the position of D to the two intersections of the dashed circles. Knowing dAD

disambiguates between these two positions for D, but a small error in dAD (shown as d′AD)
selects the wrong location for D.

in Figure 2-1, fully-connected by 6 distance measurements. Assuming no three nodes are

collinear, these distance constraints give the quadrilateral the following properties:

1. The relative positions of the four nodes are unique up to a global rotation, translation,

and reflection. In graph theory terms, the quadrilateral is globally rigid.

2. Any two globally rigid quadrilaterals sharing three vertices form a 5-vertex subgraph

that is also globally rigid. By induction, any number of quadrilaterals chained in this

manner form a globally rigid graph.

Despite these two useful properties of the quadrilateral, global rigidity is not sufficient

to guarantee a unique graph realization when distance measurements are noisy. Thus,

we further restrict our quadrilateral to be robust as follows. The quadrilateral shown in

25

Node Graph Overlap Graph

E

A

B
DA

B

C
D

F

E

A

DE

H I

A

C

B

F

D

G

H I

G
A

E

H I

A

Figure 2-3: The duality between a cluster rooted at A and a graph of robust quads, which
we call an overlap graph. In the overlap graph, each robust quadrilateral is a vertex. Edges
are present between two quads whenever they share three nodes. Thus, if all four node
positions are known for some quad, any neighboring quad in the overlap graph can use the
three common nodes to trilaterate the position of the unknown node. A breadth-first search
into the overlap graph from some starting quad, trilaterating along the way, localizes the
cluster as described by Algorithm 2. Note that the overlap graph for a cluster can have
distinct, unconnected subgraphs as shown in this example. Nodes that are unique to one
subgraph cannot be localized with respect to those of an unconnected subgraph.

Figure 2-1a can be decomposed into four triangles: ∆ABC, ∆ABD, ∆ACD, and ∆BCD, as

shown in Figure 2-1b. If the smallest angle θi is near zero, there is a risk that measurement

error, say in edge AD, will cause vertex D to be reflected over this sliver of a triangle

as shown in Figure 2-2. Accordingly, our algorithm identifies only those triangles with a

sufficiently large minimum angle as robust. Specifically, we choose a threshold dmin based

on the measurement noise and identify those triangles that satisfy

b sin2 θ > dmin, (2.1)

where b is the length of the shortest side and θ is the smallest angle, as robust. This

equation bounds the worst-case probability of a flip error for each triangle. See Chapter 3

for a full derivation. We define a robust triangle to be a triangle that satisfies Equation 2.1.

Furthermore, we define a robust quadrilateral as a fully-connected quadrilateral whose four

sub-triangles are robust.

A key feature of our algorithm is that we use the robust quadrilateral as a starting point,

and localize additional nodes by chaining together connected robust quads. Whenever two

quads have three nodes in common and the first quad is fully localized, we can localize

26

the second quad by trilaterating from the three known positions. A natural representation

of the relationship between robust quads is the overlap graph, shown in Figure 2-3. Since

three vertices in common make it possible to localize two quads relative to each other, it

is natural to represent the space as a graph of robust quads. Localization then amounts to

traversing the overlap graph with a breadth-first search and trilaterating as we go, a linear

time operation as in [4].

The entire algorithm for Phase I, cluster localization, is as follows:

1. Distance measurements from each one-hop neighbor are broadcast to the origin node

so that it has knowledge of the between-neighbor distances.

2. The complete set of robust quadrilaterals in the cluster is computed (Algorithm 1)

and the overlap graph is generated.

3. Position estimates are computed for as many nodes as possible via a breadth-first

search in the overlap graph (Algorithm 2). At the start of the graph search, we

choose positions for the first three nodes to fix the arbitrary translation, rotation, and

reflection. We place the origin node at (0, 0) to specify the global translation, the

first neighbor on the x-axis to specify the global rotation, and the second neighbor

in the positive y direction to specify the global reflection. The remaining nodes are

trilaterated as they are encountered.

Appendix A contains an implementation of Algorithms 1 and 2 written in C that was

used for the hardware localization experiments presented in Chapter 4. The code combines

Algorithms 1 and 2 in such a way that the list of robust quads is generated simultaneously

with the breadth-first search so that the list does not need to be stored explicitly. This

space-saving optimization is important on board real sensor devices with limited memory.

2.2 Computing Inter-Cluster Transformations

In Phase III, the transformations between coordinate systems of connected clusters are

computed from the finished cluster localizations. This transformation is computed by find-

ing the rotation, translation, and possible reflection that bring the nodes of the two local

coordinate systems into best coincidence [8]. After Phase I is complete for the two clus-

ters, the positions of each node in each local coordinate system are shared. As long as

27

Algorithm 1 Finds the set of robust quadrilaterals that contain an origin node i. Each quad

is stored as a 4-tuple of its vertices and is returned in the set Quadsi. We assume that distance

measurements have already been gathered as follows: Measj is a set of ordered pairs (k, djk) that

represent the distance from node j to node k. dmin is the robustness threshold, computed from the

measurement noise as described in Chapter 3.

1: for all pairs (j, dij) in Measi do
2: for all pairs (k, djk) in Measj do
3: Remove (j, dkj) from Meask

4: for all pairs (l, dkl) in Meask do
5: for all pairs (m, dlm) in Measl do
6: if m 6= j then
7: continue
8: Retrieve (k, dik) from Measi

9: Retrieve (l, dil) from Measi

10: if IsRobust(djk, dkl, dlj , dmin) AND IsRobust(dij, dik, djk, dmin) AND
IsRobust(dij, dil, dlj , dmin) AND IsRobust(dik, dil, dkl, dmin) then

11: Add (i, j, k, l) to Quadsi

12: Remove (k, djk) from Measj

Algorithm 2 Computes position estimates for the cluster centered at node i. This algorithm does

a breadth-first search into each disconnected subgraph of the overlap graph created from Quadsi

and finds the most complete localization possible. At the end of this algorithm, Locsbest is a set

containing pairs (j,p) where p is the estimate for the x-y position of node j. Any neighbors of i not

present in Locsbest were not localizable.

1: Locsbest := ∅
2: for each disconnected subgraph of the overlap graph do
3: Locs:= ∅
4: Choose a quad from the overlap graph.
5: p0 := (0, 0) {Position of the origin node}
6: p1 := (dab, 0) {First neighbor sets x-axis}
7: α :=

d2
ab

+d2
ac−d2

bc

2dabdac

8: p2 := (dacα, dac

√
1 − α2) {Localize the second neighbor relative to the first}

9: Add (a,p0), (b,p1), and (c,p2) to Locs
10: for each vertex visited in a breadth-first search into the overlap graph do
11: if the current quadrilateral contains a node j that has not been localized yet then
12: Let pa,pb,pc be the x-y positions of the three previously localized nodes.
13: p′ :=Trilaterate(pa, daj ,pb, dbj ,pc, dcj)
14: Add (j,p′) to Locs
15: if length(Locs) >length(Locsbest) then
16: Locsbest :=Locs

28

there are at least three non-collinear nodes in common between the two localizations, the

transformation can be computed. By testing if these three nodes form a robust triangle,

we simultaneously guarantee non-collinearity and the same resistance to flip ambiguities as

Phase I of the algorithm.

2.3 Node Mobility

A key goal that motivates the design of our localization algorithm is the ability to handle

mobile nodes. The approach we have described is intrinsically static, that is, it assumes dis-

tance measurements are constant in time. However, with moving nodes, if we can guarantee

that the set of measurements was taken at a single instant, the algorithm still produces the

correct localization. If the measurements were taken at different times, the localization

result will be inaccurate because the graph realization they describe never existed at any

time. Thus, for accurate localization under mobility, each execution of the algorithm must

have all measurements to or from a mobile node measured at a single instant.

Another issue with mobility is that measurement noise and outliers can have a more

severe effect on localization accuracy than in the static case. For example, it is difficult

to detect whether changes in the measurement over time are due to the movement of the

node or measurement noise. Spurious outliers are equally difficult to disambiguate. Our

solution to this problem is to filter the measurements with a Kalman filter, which attempts

to probabilistically differentiate between noise and motion by knowing the characteristics

of each.

2.3.1 Kalman Filtering

The measurement Kalman filter has state si =
[

di vi

]>
at time i where di is the node-

to-node distance and vi is the rate of change of that distance. There is one such filter for

each pair of nodes. The basic assumption behind the Kalman filter is that, over time, the

state varies according to

si+1 = Hisi + ni (2.2)

29

where Hi is some matrix that expresses the time-dependence of the state and ni is noise.

Similarly, the dependence of measurements on the state can be described by

xi = Fisi + ηi (2.3)

where xi is the measured value, Fi expresses the dependence of the measurement on the

state, and ηi is noise. Since our state consists of distance and its rate of change, and

measurements estimate the distance, these matrices are

Hi =





1 ∆t

0 1



 (2.4)

Fi =
[

1 0
]

. (2.5)

The filtering process consists of three steps: prediction, gain, and update, which are

executed each time a measurement is made. These three steps are as follows to transition

from state i − 1 to state i:

Prediction:

ŝi|i−1 = Hi−1ŝi−1 (2.6)

Pi|i−1 = Hi−1Pi−1H
>
i−1 + Qi−1 (2.7)

Gain:

Ki = Pi|i−1F
>
i

(

FiPi|i−1F
>
i + Λi

)−1
(2.8)

Update:

ŝi = ŝi|i−1 + Ki

(

xi − Fiŝi|i−1

)

(2.9)

Pi = (I − KiFi) Pi|i−1 (2.10)

where ŝi is the current estimate of si, Pi is the covariance matrix of ŝi, and xi is the

new measurement. Matrix Qi is the process noise, describing how the state can vary over

time, and Λi is the measurement noise, describing the expected noise of each distance

30

measurement. Mathematically, Qi = E[nin
>
i] and Λi = E[ηiη

>
i]. For our case, we will

assume

Qi =





∆t2 ∆t

∆t 1



σ2
v (2.11)

where σ2
v is the variance of distance’s rate of change and we will assume Λi is equal to

the variance of the underlying measurement system, determined empirically. The value of

σv depends on the type of distance we are estimating. Between two nodes known to be

stationary, σv is set to nearly zero, allowing little to no motion. Furthermore, we restrict

the v̂i portion of the state estimate to be zero. These restrictions express our knowledge

that the distance estimate is not expected to change over time.

For distance measurements between a stationary node and a mobile node, or between

two mobile nodes, we use a much larger value of σv that expresses the large uncertainly

we have in how the distance estimate changes over time. The precise value depends on the

speed and unpredictability of the mechanism that is moving the node. For the experiments

in Chapter 4 the value of Λi is 2.0 cm and the value of σv is 20 cm/s for moving nodes and

0.33 cm/s for stationary nodes.

Phase I, cluster localization, of the algorithm is performed using the distance estimates

d̂i computed by this Kalman filter, not the distance measurements xi directly. Appendix B

contains C code that performs this filtering.

Other approaches to object tracking in a sensor network have been proposed in which

an Extended Kalman Filter is used to simultaneously filter noise and perform tracking, by

treating the node’s Euclidean position as the filter state [22]. Although this is a promising

approach, we do not consider it here because the amount of state and computation required

becomes infeasible on board low-power sensor networks.

2.3.2 Outlier Rejection

In our experiments presented in Chapter 4, time difference of arrival between ultrasound

and radio signals is the underlying distance measurement technology. These measurements

are subject to occasional outliers that do not fit the Gaussian noise assumption intrinsic to

the Kalman filter. We attempt to detect and eliminate such outliers using the Mahalanobis

distance computed from the current filter state and an incoming measurement. We define ei

as the difference between the predicted measurement and the actual measurement at time

31

step i. Thus, ei = xi − Fiŝi|i−1. The Mahalanobis distance is

M = e>i

(

FiPi|i−1F
>
i + Λi

)

ei. (2.12)

For any new measurement, M is computed and thresholded. If it is above the threshold,

the measurement is rejected as an outlier and the filter state is not updated. Otherwise, the

measurement is incorporated as usual. A common threshold for M is 3.0, which considers

any measurement outside the 1% likelihood of Gaussian noise to be an outlier.

In some situations, a series of measurements are detected as outliers even though they

are correct. This can occur due to an unexpected movement of the nodes or a change in

the environment. Thus, if we detect more than three sequential outliers, the Kalman filter

is reinitialized from scratch. This reset allows the network to adapt to unexpected changes

in node configuration without requiring manual intervention.

The code in Appendix B performs the outlier rejection and filter reinitialization as

described here.

2.3.3 Optimization

Localization using trilateration alone can be inaccurate since it uses exactly three distance

constraints when in fact many more constraints may be available. Using the maximum num-

ber of constraints is especially important in the presence of mobility due to its extra noise.

Thus, we have found it important to apply Phase II, the optimization step, to introduce

these extra constraints after Phase I computes an initial estimate using trilateration.

Applying nonlinear optimization to the entire cluster can be too computationally ex-

pensive on low-power sensor nodes. In this situation, good results can be obtained by

optimizing only the positions of mobile nodes, keeping the results of Phase I for the static

nodes. This reduction in the dimensionality of the optimization problem significantly re-

duces the amount of computation required.

32

Chapter 3

Analysis

3.1 Proof of Robustness

In order for Algorithm 2 to produce a correct graph realization, we must ensure that our

use of robust quads prevents both flip and flex ambiguities. Since distance measurements

may have arbitrary noise we cannot guarantee a correct realization in all cases — instead

we can only predict the probability of having no flips based on our definition of robustness.

It is difficult to quantify this probability for an entire graph, so instead we focus on the

probability of an individual error. That is, we define an “error” as the realization of a single

robust quad with one vertex flipped or flexed from its correct location. By deriving the

worst-case probability of error, we will prove our first theorem:

Theorem 1 For normally-distributed distance measurement noise with standard deviation

σ, we can construct a robustness test such that the worst-case probability of error is bounded.

First, we prove that the use of robust quadrilaterals rules out the possibility of flex

ambiguities as seen in Figure 1-4b. This kind of flex ambiguity occurs only when a rigid

graph becomes non-rigid by the removal of a single edge [7]. If the graph is such that

no single edge removal will make it non-rigid, the graph is redundantly rigid, and no flex

ambiguities are possible. The robust quad has six edges. By removing any edge, we are left

with a 5-edged graph, which must be rigid according to the following theorem [10]:

Theorem 2 (Laman’s Theorem) Let a graph G have exactly 2n − 3 edges where n is

the number of vertices. G is generically rigid in R
2 if and only if every subgraph G′ with n′

33

C’

A B

D C

PSfrag replacements

d̂BC d̂BC

d̂AB

d̃CD

d̃C′D

θθ

φφ

Figure 3-1: A diagram of a quadrilateral for deriving the worst-case probability of flip error.
Vertex C is being trilaterated from the known positions of vertices A, B, and D. Its distance
to vertex D is used to disambiguate between the two possible locations C and C ′ by testing
which of d̃CD and d̃C′D is closer to the measured distance between C and D.

vertices has 2n′ − 3 or fewer edges.

Our robust quad with its missing edge has 4 vertices and 5 edges, satisfying the condition in

Laman’s Theorem. Since every 3-vertex subgraph has 3 or fewer edges and every 2-vertex

subgraph has 1 or fewer edges, the 5-edged quad is rigid. Thus, the 6-edged robust quad

is redundantly rigid. Therefore, flex ambiguities are impossible for a graph constructed of

robust quads.

Unlike flex ambiguities, flips cannot be ruled out based on the graph structure alone.

Since distance measurements are noisy, they may cause a vertex to be incorrectly flipped

in a computed realization. Thus, we derive the worst-case probability of realizing a flipped

vertex. Figure 3-1 depicts the scenario in which a vertex could become incorrectly flipped.

In this example, vertex C is being trilaterated with respect to the known positions of vertices

A, B, and D. Temporarily ignoring vertex D, we can pinpoint C to two possible locations:

C and C′, the intersection points of two circles centered at A and B, of radius d̂AC and d̂BC.

To disambiguate this possible flip, we use the known distance to vertex D as follows. We

compute distances d̃CD and d̃C′D. Whichever distance is closer to the measured distance

d̂CD will determine whether C or C′ is selected during trilateration.

The probability of an incorrect flip is equal to the probability that the measured distance

d̂CD will be closer to the incorrect distance d̃C′D than to the correct distance d̃CD. Note that

the problem has an intrinsic symmetry: namely, disambiguating the position of C based

34

on D is equivalent to disambiguating D based on C. Assuming the random measurement

noise is zero-mean, there must be a measurement error of magnitude ≥ 1
2(d̃C′D − d̃CD) for

an incorrect flip to be realized. We can derive this value from the graph in Figure 3-1. For

simplicity, we constrain the figure to be left-right symmetric, although the probability of

error will only decrease by breaking this symmetry. In this problem, we take the values

of d̂AB, θ, and φ as given. We will later eliminate φ by maximizing the error with respect

to it. First, we compute the values of d̃CD and d̃C′D as: d̃CD = d̂AB sin φ
sin(2θ+φ) and d̃C′D =

d̂AB
sin(2θ+φ)

√

sin2 φ + 4 sin2(θ + φ) sin2 θ. Combining these yields

derr =
d̃C′D − d̃CD

2
(3.1)

= d̂AB

√

sin2 φ + 4 sin2(θ + φ) sin2 θ − sinφ

2 sin(2θ + φ)
. (3.2)

Since we are interested in the worst-case probability of error, we minimize derr with respect

to φ by taking the partial derivative of derr and setting it equal to zero. We find that derr

is minimized when φ = π
2 − 2θ. This can be substituted into Equation 3.2 and the resulting

equation simplified to yield

derr = d̂AB sin2 θ. (3.3)

Thus, if the true distance is d and the measured distance is a random variable X, then

the worst-case probability of error is P (X > d + derr). If measurement noise is zero-mean

Gaussian with standard deviation σ, the worst-case probability of error is

P (X > d + derr) = Φ

(

derr

σ

)

(3.4)

where Φ(x) connotes the integration of the unit normal probability density function from

x to infinity. This equation tells us that for arbitrary measurement noise with standard

deviation σ, we can choose a threshold dmin for the robustness test. Only those triangles for

which b sin2 θ > dmin, where b is the shortest side and θ is the smallest angle, will be treated

as robust. By choosing dmin to be some constant multiple of σ, we bound the probability

of error. This proves Theorem 1.

For the simulation results presented in this thesis, dmin was chosen to be 3σ. For

Gaussian noise, this bounds the probability of error for a given robust quadrilateral to be

35

less than 1%. However, for the typical case, the probability is significantly less than 1%,

thus posing minimal threat to the stability of the localization algorithm.

3.2 Computational Complexity

It is important that any distributed localization algorithm be scalable to large networks. In

this section we discuss the computational and communications efficiency of the algorithm

presented in Chapter 2. In general, finding a realization of a graph is NP-hard [20]. We

are able to do it in polynomial time because our algorithm purposefully avoids nodes that

may have position ambiguities (i.e., flips or flexes) at the cost of failing to find all possible

realizations. It is these ambiguities which cause the general case to blow up combinatorially.

Our algorithm grows linearly with respect to the number of nodes when there are O(1)

neighbors per node. Furthermore, since this computation is distributed across the network,

each node performs O(1) computation. If the node degree is not constant, each node’s

computation varies with the third power of the number of neighbors.

Algorithm 1, which finds the set of robust quadrilaterals in a local cluster, has worst-case

runtime O(m4) where m is the maximum node degree. It can be implemented with O(m3)

runtime using better data structures, as is done with the implementation in Appendix A.

In practice, the algorithm is much more efficient because each neighbor is generally not

connected to every other neighbor. In this algorithm, we simply enumerate the robust

quadrilaterals in the cluster, thus the worst-cast number of robust quadrilaterals is
(

m
3

)

,

which is O(1) for a graph of bounded degree.

Algorithm 2, which solves for position estimates for one cluster, has runtime O(q) where

q is the number of robust quadrilaterals. In the worst case, q =
(

m
3

)

.

Finding the inter-cluster transformations for one cluster has runtime O(m2). We are

finding m transformations, each of which may take O(m) time to compute because the

registration problem takes linear time in the number of overlapping vertices. Again, for a

graph of bounded degree, these computations take O(1) time.

The only stage of the algorithm that entails communication overhead is the initial step

where each node shares its measured distances with its neighbors. If we assume that non-

overlapping clusters do not share the same channel (due to range limitations), the commu-

nications overhead is O(m2) because m2 measurements are being shared. In practice, this

36

is implemented by each node sending one packet of constant size for distance measurement

and one packet of O(m) size to share other measurements.

37

38

Chapter 4

Experimental Results

In order to measure the effectiveness of our algorithm on real sensor networks, we imple-

mented it on-board a functioning sensor network. The network is constructed of Crick-

ets (Figure 4-1) a hardware platform developed and supplied by MIT [16]. Crickets are

hardware-compatible with the Mica2 Motes developed at Berkeley with the addition of an

Ultrasonic transmitter and receiver on each device. This hardware enables the sensor nodes

to measure inter-node ranges using the time difference of arrival (TDoA) between Ultrasonic

and RF signals. Although the Crickets can achieve ranging precision of around 1 cm on the

lab bench, in practice, the ranging error can be as large as 5 cm due to off-axis alignment

of the sending and receiving transducers.

4.1 Evaluation Criteria

One criteria by which we evaluate the performance of the algorithm is how the computed

localization differs from known ground truth. This error is expressed as

σ2
p =

N
∑

i=1

(x̂i − xi)
2 + (ŷi − yi)

2

N
(4.1)

where N is the number of nodes, x̂i and ŷi compose the localized position of node i, and xi

and yi compose the true position of node i. This metric is simply the mean-square error in

Euclidean 2D space.

It is useful to compare σ2
p to the mean-square error in the raw distance measurements,

since the error model of the measurements determines the minimum achievable σp of an

39

Figure 4-1: A photograph of a Cricket device. The hardware is compatible with a Berkeley
Mica2 Mote with the addition of an ultrasonic transmitter and receiver, the silver com-
ponents on the right. The Cricket estimates distance by measuring the time difference of
arrival between an ultrasonic chirp which travels at the speed of sound, and a radio packet
which travels at the speed of light.

ideal localization algorithm [18]. The mean-square error of the distance measurements is

σ2
d =

M
∑

i=1

(d̂i − di)
2

M
(4.2)

where M is the number of inter-node distances, d̂i is the measured value of distance i, and

di is the true value of distance i.

Another useful metric is the proportion of nodes successfully localized by the algorithm.

Let Li be the number of nodes successfully localized in the cluster centered at node i, and

ki be the total number of nodes in this cluster. In one cluster, the proportion of nodes

localized is Li/ki. For the entire network, we define the cluster success rate as

R̄ =
1

N

N
∑

i

Li

ki

. (4.3)

This metric tells us the average percentage of nodes that were localizable per cluster.

Our final metric conveys the proportion of nodes in the entire network that could be

localized into a single coordinate system. Since some clusters will have transformations

between them and others will not, the network may split into separate subgraphs, each of

which is localized with respect to all its nodes, but is not rigidly localized with respect to

the other subgraphs. We call these subgraphs forests. Naturally, it is desirable for there to

be only a single forest that contains every node in the network. Thus, another useful metric

40

Y
-P

os
it
io

n
(c

m
)

0 50 100 150 200
−20

0

20

40

60

80

100

120

140

160

180

200

Ground truth
Localized positions

X-Position (cm)

Figure 4-2: A comparison of node positions as localized by our algorithm to the true
positions of the nodes on a physical Cricket cluster. Positions are computed by Phase I of
the algorithm, cluster localization. The experiment involved 16 nodes, one of which could
not localize; thus only 15 are shown.

is the largest forest size, which is the number of nodes in the largest forest. This metric can

be expressed as a percentage R̃ by dividing by the total number of nodes in the network.

4.2 Accuracy Study: Hardware Deployment

Figure 4-2 shows the results of the first experiment. In this experiment, 16 crickets were

placed in a pseudo-random, 2-dimensional arrangement. Ground truth was measured manu-

ally with the aid of a grid on the surface. The small circles depict the positions of each node

as computed by the localization algorithm running on-board the cricket in the bottom-most

position of the figure. The positions shown are for Phase I of the algorithm, where positions

are trilaterated using robust quadrilaterals. No least-squares optimization was performed.

The true position of each node is shown with an “x.” A line between the two points shows

the amount of positioning error.

The error metrics for this experiment are shown in Table 4.1. The fact that σp (the

localization error) is only slightly larger than σd (the measurement error) tells us that our

41

metric value

σd 5.18 cm
σp 7.02 cm
R̄ 15/16 = 0.94

R̃ 15/16 = 0.94

Table 4.1: Error metrics for the localization results of Figure 4-2.

metric value

σd 4.38 cm
σp 6.82 cm
R̄ 0.97

R̃ 38/40 = 0.95

Table 4.2: Error metrics for the localization results of Figure 4-3.

algorithm performed well relative to the quality of the distance measurements available.

In addition, all nodes but one were successfully localized, indicating that the algorithm

provided good localization coverage of the cluster.

A second experiment, the results of which are shown in Figure 4-3, demonstrates both

Phase I and Phase III of the algorithm. Once again, for simplicity, the optional least-

squares relaxation phase is omitted. A total of 40 nodes were placed in a 5 × 6 meter

region. The RF and ultrasound ranges of each Cricket were arbitrarily restricted so that

only 12 neighbors were rangeable from each node. Then, cluster localization was performed

separately on five nodes, each being the origin of its own cluster as shown in Figure 4-3a.

Phase I of the algorithm, running on each of the five clusters, localized its nodes in a local

coordinate system. Transformations between each pair of coordinate systems with at least

three nodes in common were computed by Phase III of the algorithm. Figure 4-3b shows

the localized positions of each node as small circles, overlaid with the ground truth. The

localized positions of three nodes are used to bring the entire network into registration with

the global coordinate system used by ground truth.

The error metrics for the Figure 4-3 experiment are shown in Table 4.2. As in the first

experiment, these results show that localization error was not much greater than measure-

ment error.

42

(a) The five clusters present in the network

Y
-P

os
it
io

n
(c

m
)

−100 0 100 200 300 400
−150

−100

−50

0

50

100

150

200

250

300

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

X-Position (cm)

(b) Localized network versus ground truth

Y
-P

os
it
io

n
(c

m
)

−100 0 100 200 300 400
−150

−100

−50

0

50

100

150

200

250

300

Ground truth
Localized positions

X-Position (cm)

Figure 4-3: (a) The separate clusters that combined to form the complete network local-
ization. (b) The localized positions of 40 Crickets in a physical network. The two “holes”
in the network are where two nodes could not localize, and thus only 38 are shown. The
coordinate transformations between each cluster were computed and used to render the
localized positions in the single coordinate system seen here. Ground truth positions are
overlaid, with lines showing the amount of error for each node. The dotted line depicts the
maximum communications radius.

43

4.3 Scalability Study: Simulated Deployment

We have tested the three phases of our algorithm on a variety of simulated networks in order

to evaluate its scalability beyond the physical experiments performed in Section 4.2. In this

thesis, we present simulation results in two network environments: a square region without

obstructions, shown in Figure 4-4a, and an environment based on the actual floorplan of an

office building, shown in Figure 4-5a. The square environment places 100 nodes uniformly

and randomly in a two-dimensional region, where connectivity is only available between

nodes that are within a maximum ranging distance. The building environment randomly

places 183 nodes with the additional requirement that nodes obstructed by walls cannot

range to each other. This exercises the algorithm’s ability to deal with obstructions. The

floorplan has three rooms and one hallway, and is approximately square with each side 10 m

long.

When evaluating the algorithm’s performance, we are interested in how both node degree

and measurement noise affect the results. Node degree was varied by changing the maximum

ranging distance. We also consider three different degrees of measurement noise:

1. Zero noise, where all measurements are exact. Simulations without noise give an

upper bound on how much localization is possible for a network. Without noise,

any unlocalizable nodes must be due to disconnection or non-rigidity in the graph

structure.

2. Noise with σd = 1 cm, similar to that of a Cricket device in ideal circumstances.

3. Noise with σd = 10 cm. This figure is to designed to simulate sensor networks with

more imprecise ranging capability.

Figure 4-4 shows the simulation results for the square environment. Each data point on

the plots represent a single run of the simulation, which localizes as many nodes as possible.

As one would expect, the ability of the algorithm to localize goes down as the measurement

noise increases. Interestingly, the algorithm is nearly as effective with σd = 1 cm noise as

with zero noise. With more noise, the algorithm is still effective, but the requirements for

node degree are higher.

Figure 4-5 shows the simulation results for the building environment. Note that the

largest forest size R̃ rarely obtained 100% even with high node degree due to obstruction

44

(a)

(b) Plots of cluster success rate, R̄, versus node degree

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100PSfrag replacements σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

C
lu

st
e
r

su
c
c
e
ss

ra
te

R̄
(p

e
rc

e
n
t)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

(c) Plots of largest forest size, R̃, versus node degree

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

L
a
rg

e
st

fo
re

st
si

z
e

R̃
(p

e
rc

e
n
t)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Largest forest size R̃ (percent)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Largest forest size R̃ (percent)

Figure 4-4: (a) One instance of the simulated sensor network. Each graph edge represents a
distance measurement that a node can perform. Different runs in the results used the same
node positions with varying maximum measurement radius. (b) The cluster success rate R̄
versus the average node degree for three different levels of measurement noise. Each data
point shows the value of these quantities for a single simulation run. A moving average of
the data points is overlaid on each plot. (c) The size of the largest forest R̃ versus average
node degree for three different levels of measurement noise.

45

(a)

(b) Plots of cluster success rate, R̄, versus node degree

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100PSfrag replacements σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

C
lu

st
e
r

su
c
c
e
ss

ra
te

R̄
(p

e
rc

e
n
t)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

(c) Plots of largest forest size, R̃, versus node degree

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

L
a
rg

e
st

fo
re

st
si

z
e

R̃
(p

e
rc

e
n
t)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Largest forest size R̃ (percent)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

PSfrag replacements

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Cluster success rate R̄ (percent)

σd = 0 cm (no noise)

σd = 1 cm (Cricket noise)

σd = 10 cm

Avg. node degree

Avg. node degree

Avg. node degree

Largest forest size R̃ (percent)

Figure 4-5: (a) The office floorplan used for sensor network simulation. Dark lines are the
walls of the building and light-colored lines represent the graph edges between nodes. Each
edge represents a distance measurement that a node can perform. Measurements cannot be
taken through walls. (b) The cluster success rate R̄ versus the average node degree for three
different levels of measurement noise. Each data point shows the value of these quantities
for a single simulation run. A moving average of the data points is overlaid on each plot.
(c) The size of the largest forest R̃ versus average node degree for three different levels of
measurement noise.

46

(a) Our algorithm (b) Algorithm without robust quads

Y
-P

os
it
io

n
(c

m
)

0 500 1000 1500
0

500

1000

1500 Localized node position
Unlocalizable node
Anchor node

0 500 1000 1500
0

500

1000

1500 Localized node position
Unlocalizable node
Anchor node

X-Position (cm) X-Position (cm)

Figure 4-6: (a) Our algorithm’s localized positions for a simulated network compared to
ground truth. Lines show the amount of error for each node’s position. The three nodes
used to compute the transformation to the ground truth’s coordinate system are shown
with small circles. The large dotted circle depicts the maximum ranging distance of a node.
(b) Localization of the same network using basic trilateration without checking for quad
robustness.

by walls. In a practical deployment, nodes would have to be strategically placed around

doorways to achieve 100% forest size.

4.4 Error Propagation

Cluster-based localization algorithms generally suffer from poor error propagation charac-

teristics because they have no absolute reference points as constraints. We show that our

approach, using robust quads, significantly reduces the amount of error propagated over

approaches based on basic trilateration.

Figure 4-6a shows localization results of our algorithm after Phase I and III on a sim-

ulated network of 100 nodes. Nodes were randomly placed within the square region, each

with a maximum ranging distance of 350 cm. Distance measurements were corrupted by

Gaussian noise with σd = 5.0 cm. In order to compare to ground truth, we pick three nodes

as “anchors”. These nodes are used solely for transforming between the separate coordinate

47

metric Our algorithm
w/o
robust
quads

σd 1.0 cm 3.0 cm 5.0 cm 5.0 cm
σp 4.43 cm 14.39 cm 16.22 cm 54.87 cm
R̄ 0.91 0.85 0.79 0.95

R̃ 0.93 0.87 0.75 0.99

Shown in: Figure 4-6a Figure 4-6b

Table 4.3: Error metrics of four simulation runs of the network in Figure 4-6.

systems of the algorithm and ground truth, and are not used by the algorithm at run-time.

The anchor nodes are closely-spaced so that errors can accumulate towards the edges of the

network. In contrast, Figure 4-6b shows localization results for the same network, but with

an algorithm that uses trilateration alone and does not check for quad robustness.

Table 4.3 contains the error metrics of four simulation runs for the network in Figure 4-

6. Each was run with a different amount of measurement noise, σd. The error metrics for

the simulation without robust quads are also shown. This comparison demonstrates that

robust quads significantly reduce error propagation.

4.5 Localization of Mobile Nodes

An advantage of our algorithm is that it handles node mobility well because each cluster

localization can be recomputed quickly. Even on a low power device, the cluster localization

phase can take less than one second for 15–20 neighbors. Thus, as nodes move, Phase I

can simply be repeated to keep up. Furthermore, by excluding mobile nodes from the

transformation computation in Phase III, it does not need to be repeated.

In practice, recomputing the cluster localization repeatedly does not produce good re-

sults due to additional measurement noise introduced by motion. This degradation is espe-

cially apparent with the Cricket system because motion in the environment often introduces

extra sound which can interfere with acoustic ranging. In Section 2.3 we introduced several

techniques to deal with this extra noise. All three techniques: Kalman Filtering, outlier

rejection, and non-linear optimization were used in our experiments with mobility.

One of the requirements stressed in Section 2.3 was that distances measured to a mobile

node must be taken at a single instant. In our experiments with the Cricket platform, we

48

Figure 4-7: The experimental setup for mobile robot localization, consisting of six stationary
nodes and one mobile node.

achieve this by measuring the distance to moving nodes using only ultrasound pulses gener-

ated by the moving node itself. This way, all other nodes will sense the same physical pulse

and generate a measurement estimate for the same moment in time. These measurements

are then shared within each cluster.

Figure 4-7 shows our experimental setup for localizing a mobile node. Six stationary

nodes were deployed in a roughly circular configuration around the sides of a wooden frame.

A node was attached to an autonomous robot placed in the center of the frame. Once ac-

tivated, the robot randomly traversed the rectangular space. The localization as computed

by the sensor network was logged over time and manually synchronized with a calibrated

video camera. The video was post-processed to obtain the ground truth robot path with

sub-centimeter accuracy. This path is compared to the path computed by the localization

algorithm in Figure 4-8. The localization algorithm computed a position estimate for the

robot roughly once per second for 3 minutes. Since discrete computations were made, each

of these separate localizations could be compared to ground truth. The mean-square error,

σp, computed from these values is 2.59 cm. Thus, our localization algorithm is shown to be

successful at localizing networks with mobile nodes.

49

(a) Localized path of mobile node

Y
-P

os
it
io

n
(c

m
)

0 50 100 150 200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20
Localized path
True path

X-Position (cm)

(b) Magnitude of localization error vs. time

E
rr

or
,
E

u
cl

id
ea

n
d
is

ta
n
ce

(c
m

)

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

Time (s)

Figure 4-8: (a) The path of a mobile node computed by our localization algorithm compared
to ground truth over a 3 minute period. A sensor node was attached to a mobile robot (an
autonomous floor vacuum) that randomly covered a rectangular space. Six static nodes,
depicted as circles, were used to localize this mobile node over time. Ground truth (dashed)
was obtained from calibrated video. (b) The Euclidean distance between the mobile node’s
localized position and ground truth over time.

50

Chapter 5

Conclusion

We have demonstrated an algorithm that successfully localizes nodes in a sensor network

with noisy distance measurements, using no beacons or anchors. Simulations and exper-

iments showed the relationship between measurement noise and ability of a network to

localize itself. As long as the error model of the measurement noise is known, the algorithm

copes with this noise by refusing to localize those nodes which have ambiguous positions.

Furthermore, even with no noise, each node in the network must have approximately degree

10 or more before 100% node localization can be attained. As noise increases, so will the

connectivity requirements. The Cricket platform has a moderate amount of noise and thus

exercises our algorithm’s tolerance for noisy distance measurements. We have also shown

that the algorithm adapts to node mobility by filtering the underlying measurements.

For future work, we are interested in extending our physical experiments to even larger

node deployments that also include obstructions. Secondly, we would like to use the principle

of robust quads to compute the optimal placement of additional nodes so that a partially

localized graph becomes fully localizable. We would also like to extend the algorithm to the

three-dimensional case by deriving a test for 3D robustness analogous to the test described

herein for 2D robustness. Finally, it would be useful to further refine our approach to allow

“passive” mobile nodes to localize without transmitting.

51

52

Appendix A

Localization Code

The following code is a reference implementation of Phase I (cluster localization) of the

algorithm written in C. This code has been used as part of a TinyOS NesC module to

perform localization directly on board a Cricket node. The FindQuads() function is the

entry point for the algorithm.

/∗ Distances between each pair of nodes. This array does not

∗ need to be complete. Any element set to zero is assumed

∗ to be not present. Since each pair appears twice in this

∗ 2-D array, we use half for temporary storage and the other

∗ half for storage of the original values. The macros below

∗ make that convenient. ∗/
uint16 t d norm[MAX NEIGHBORS+1][MAX NEIGHBORS+1];

/∗ Data access macros to get distances from d norm ∗/
#define GET D(i,j) (((i)<(j))?d norm[i][j]:d norm[j][i]) 10

#define GET D ORIG(i,j) (((i)>(j))?d norm[i][j]:d norm[j][i])

#define CLEAR D(i,j) (((i)<(j))?(d norm[i][j]=0):(d norm[j][i]=0))

/∗ Number of nodes available for localization. ∗/
uint8 t norm count;

/∗ Maps node indices for our internal use to node indices used

∗ by external modules in the system. ∗/
uint8 t nodes[MAX NEIGHBORS+1];

20

/∗ Information about the nodes ∗/
struct NodeInfo {

uint8 t id[4]; /∗ Its 4-byte ID ∗/
uint8 t status; /∗ status of our distance cache ∗/
uint8 t next; /∗ pointer to next node for hash table collisions ∗/

} ∗ info;

53

/∗ Array of localized positions. There are two copies since we have
∗ to make several passes until the best set of localizations is
∗ found. ∗/ 30

struct node pos {
uint8 t set; // whether a position is set
double x, y; // the localized position

} pos[2][MAX NEIGHBORS];

/∗ Number of localized positions in pos[] ∗/
uint8 t pos num[2];

/∗ Types of errors encountered during trilateration ∗/
#define ERROR NONINTERSECT 0xfe 40

#define ERROR BASELINE 0xff

/∗ Since the origin of the cluster is always at (0,0) and we don’t
∗ want to waste storage for that, this macro provides a convenience
∗ for reading the coordinates of an arbitrary node. ∗/
#define GET POS(i, x, y) \

do { \
if ((i) == norm count) { \

x = 0; \
y = 0; \ 50

} else { \
x = pos[1][i].x; \
y = pos[1][i].y; \

} \
} while (0)

/∗ Quality of trilateration flags ∗/
#define LOC NONE 0
#define LOC ROBUST 1
#define LOC WEAK 2 60

/∗ The entry point of the localization algorithm. Picks a
∗ robust quad as a starting point and then continues the
∗ localization from there. Other starting points are also
∗ considered in case they yield more localizations. When
∗ this function is run, d norm[][], info[], norm count, and
∗ nodes[] must already be set. ∗/

void FindQuads()
{ 70

uint8 t j, k, l;
uint8 t i = norm count;

UARTOutput(OUT DEBUG, "Localizing.. .\n");

54

pos num[0] = 0;
ring init();

/∗ Loop through all neighboring nodes as a possible second node ∗/
for (j=0; j<norm count; j++) { 80

uint16 t dij = GET D(i,j);
/∗ Only consider nodes with a distance to the origin ∗/
if (dij == 0)

continue;
/∗ Only consider static nodes ∗/
if (info[nodes[j]].status & IS MOVING)

continue;
/∗ Loop through all nodes as a possible third node ∗/
for (k=0; k<norm count; k++) {

uint16 t djk = GET D(j,k); 90

uint16 t dik = GET D(i,k);
/∗ Only consider third nodes that form a fully-connected
∗ triangle with the origin and second node. ∗/

if (k==j | | djk==0 | | dik==0)
continue;

if (info[nodes[k]].status & IS MOVING)
continue;

/∗ The triangle must also be robust ∗/
if (!is robust(dij,dik,djk))

continue; 100

/∗ Three nodes are enough to define the coordinate system,
∗ so we do it. ∗/

init pos(i, j, k, dij, dik, djk);

/∗ Loop through all nodes as a possible fourth node ∗/
for (l=0; l<norm count; l++) {

uint16 t dkl = GET D(k,l);
uint16 t dlj, dil;
/∗ Only consider fourth nodes that form a fully-connected
∗ quad with the origin, first, and second nodes. ∗/ 110

if (l==k | | l==j | | dkl==0)
continue;

dlj = GET D(l,j);
if (dlj == 0)

continue;
dil = GET D(i,l);
if (dil == 0)

continue;
/∗ Check the quad for robustness, localize it, and
∗ enqueue if possible. ∗/ 120

check quad and enqueue(i, j, k, l,
djk, dij, dik, dkl, dlj, dil);

55

}
/∗ Since we’ve now enumerated all quads that contain
∗ edge j-k, we remove it from future consideration. ∗/

CLEAR D(j,k);

/∗ Do the breadth-first search, localizing as many
∗ nodes as possible with this starting point. ∗/

if (!ring empty()) 130

quad bfs(i);

/∗ Update the localization state and abort if we’ve
∗ localized all nodes. ∗/

update pos();
if (pos num[0] == norm count)

break;
}
if (pos num[0] == norm count)

break; 140

}

/∗ Print localization results ∗/
UARTOutput(OUT INFO, "Localized %d of %d neighbors:\n",

pos num[0], norm count);
if (pos num[0] > 0) {

for (l=0; l<norm count; l++) {
if (pos[0][l].set) {

UARTOutput(OUT INFO, " %02d: x=%5.1f y=%5.1f ",
nodes[l], pos[0][l].x/DISTANCE MULT US, 150

pos[0][l].y/DISTANCE MULT US);
if (pos[0][l].set == 2)

UARTOutput(OUT INFO, "*");
if (info[nodes[l]].status & IS MOVING) {

UARTOutput(OUT INFO, "m");
}
UARTOutput(OUT INFO, "\n");

}
}

} 160

UARTOutput(OUT INFO, "done\n");
}

/∗ The heart of the localization algorithm. This function does
∗ a breadth-first search into the graph by following robust
∗ quads that overlap by three nodes. Thus, by starting with
∗ known positions of three nodes in the quad, we are able to
∗ localize the fourth, and then continue the search until a
∗ maximum number of nodes have been localized. Calling
∗ this function assumes that the queue has already been 170

56

∗ initialized with at least one quad, and those quads in the
∗ queue have three nodes with known positions.
∗
∗ Arguments:
∗ i The origin node (present in all quads)
∗/

void quad bfs(uint8 t i)
{

uint8 t v[3];
uint8 t p, l; 180

uint16 t djk, dij, dik, dkl, dlj, dil;

/∗ Continue the search until no more quads are available ∗/
while (!ring empty()) {

ring dequeue(v);
/∗ Any quad we dequeue has already been localized when
∗ it was enqueued. Thus we immediately begin by
∗ enumerating all quads that border the dequeued quad.
∗ Consider the triangle composed of nodes in the quad
∗ that are not the origin node. This triangle has 190

∗ three edges. One edge has already has all its bordering
∗ quads fully enumerated in previous passes. The other
∗ two edges (adjacent to the most recently localized node)
∗ have not, so we enumerate all their bordering quads. ∗/

/∗ Loop through the two un-enumerated edges ∗/
for (p=0; p<2; p++) {

/∗ Get the first three edges of any bordering quad.
∗ These edges are present in all bordering quads. ∗/

djk = GET D ORIG(v[!p],v[2]); 200

dij = GET D(i,v[!p]);
dik = GET D(i,v[2]);
/∗ Loop through all nodes as the possible fourth node
∗ in the quad. ∗/

for (l=0; l<norm count; l++) {
/∗ Fourth node must be different than the first three ∗/
if (l==v[2] | | l==v[!p])

continue;
dkl = GET D(l,v[2]);
dlj = GET D(l,v[!p]); 210

/∗ Fourth node must form a fully-connected quad ∗/
if (dkl==0 | | dlj==0)

continue;
dil = GET D(i,l);
if (dil == 0)

continue;
/∗ Check the quad for robustness, localize the
∗ fourth node if possible, and enqueue it. ∗/

57

check quad and enqueue(i, v[!p], v[2], l,
djk, dij, dik, dkl, dlj, dil); 220

/∗ Let any pending tasks run ∗/
TOSH flush tasks();

}
/∗ Since we’ve enumerated all quads bordering this edge,
∗ we clear it to avoid searching the same edge in the
∗ future. ∗/

CLEAR D(v[!p],v[2]);
}
/∗ Abort the search early if all nodes have been localized ∗/ 230

if (pos num[1] == norm count)
break;

}
}

/∗ Given a new quad that we’ve encountered in the breadth-first
∗ search:
∗ 1) check if it’s robust
∗ 2) if so, trilaterate the unknown vertex and enqueue the
∗ quad for later use in the BFS. 240

∗ If the quad is not robust, we can still trilaterate the unknown
∗ vertex, but we don’t enqueue it.
∗ Also, if the trilateration is found to have a baseline ambiguity
∗ we don’t enqueue it.
∗
∗ Arguments:
∗ i,j,k,l The four vertices of the quad
∗ djk, dij, etc. The six distances of the quad
∗/

void check quad and enqueue(uint8 t i, uint8 t j, uint8 t k, uint8 t l, 250

uint16 t djk, uint16 t dij, uint16 t dik,
uint16 t dkl, uint16 t dlj, uint16 t dil)

{
double x, y;
uint8 t ret;

/∗ Check if three of the quads triangles are robust. The fourth
∗ triangle has already been checked in earlier stages of the
∗ algorithm. ∗/

if (is robust(dij,dil,dlj) && 260

is robust(dik,dil,dkl) && is robust(djk,dkl,dlj)) {
/∗ Only bother trilaterating if the node’s position isn’t
∗ already known. ∗/

if (pos[1][l].set != LOC ROBUST) {
ret = trilaterate(i, j, k, dil, dlj, dkl, &x, &y);
if (!ret) {

58

pos[1][l].set = LOC ROBUST;
pos[1][l].x = x;
pos[1][l].y = y;
pos num[1]++; 270

}
/∗ If there’s a baseline ambiguity, store the solved position
∗ but return immediately without enqueuing the quad. ∗/

else if (ret == ERROR BASELINE && pos[1][l].set == LOC NONE) {
pos[1][l].set = LOC WEAK;
pos[1][l].x = x;
pos[1][l].y = y;
UARTOutput(OUT DEBUG, "Weak trilat of %d\n", nodes[l]);
return;

} 280

else {
UARTOutput(OUT DEBUG, "Trilat of %d rejected\n",

nodes[l]);
return;

}
}
UARTOutput(OUT DEBUG, "RQ: %02d %02d %02d\n",

nodes[j], nodes[k], nodes[l]);

/∗ Only use for further trilateration if node is not moving ∗/ 290

if (!(info[nodes[l]].status & IS MOVING))
ring enqueue(j, k, l);

}
else if (pos[1][l].set == LOC NONE) {

/∗ If the quad is not robust, we can still trilaterate, but
∗ we don’t use it for further localization (by not enqueuing
∗ it). ∗/

ret = trilaterate(i, j, k, dil, dlj, dkl, &x, &y);
if (!ret) {

pos[1][l].set = LOC WEAK; 300

pos[1][l].x = x;
pos[1][l].y = y;
UARTOutput(OUT DEBUG, "Very weak trilat of %d\n", nodes[l]);

}
}

}

/∗ Initialize the first few three nodes of a localization. This
∗ assumes they have already been checked for robustness and
∗ connectivity. We merely solve for their underconstrained 310

∗ positions, thus defining a local coordinate system.
∗
∗ Arguments:
∗ i, j, k The indices of the origin and two other nodes

59

∗ dij, dik, djk Distances between nodes
∗/

void init pos(uint8 t i, uint8 t j, uint8 t k,
uint16 t dij, uint16 t dik, uint16 t djk)

{
double alpha; 320

uint8 t l;

/∗ Reset the position array ∗/
for (l=0; l<MAX NEIGHBORS; l++) {

pos[1][l].set = LOC NONE;
}

/∗ The first node defines (0,0) implicitly ∗/

/∗ The second node defines the x-axis ∗/ 330

pos[1][j].set = LOC ROBUST;
pos[1][j].x = dij;
pos[1][j].y = 0.0;

/∗ The third node defines the positive direction of the y-axis.
∗ Its position is computed using law of cosines. ∗/

alpha = (square(dij)+square(dik)−square(djk))/(2.0∗dij∗dik);
pos[1][k].set = LOC ROBUST;
pos[1][k].x = alpha∗dik; /∗ dik ∗ cos(th) ∗/
alpha = 1 − square(alpha); 340

if (alpha < 0)
UARTOutput(OUT WARNING, "Warning: negative square root\n");

pos[1][k].y = sqrt(alpha)∗dik; /∗ dik ∗ sin(th) ∗/

pos num[1] = 2;

}

/∗ Check the temporary list of positions with the best-so-far
∗ list of positions. If the temporary list is better, use it 350

∗ instead. ∗/
void update pos() {

if (pos num[1] > pos num[0]) {
/∗ If the temporary list has more localized positions,
∗ replace the best-so-far list. ∗/

pos num[0] = pos num[1];
memcpy(pos[0], pos[1], sizeof(pos[1]));
UARTOutput(OUT DEBUG, "Solved for %d (best)\n", pos num[1]);

}
else 360

UARTOutput(OUT DEBUG, "Solved for %d\n", pos num[1]);
}

60

/∗ The threshold for triangle robustness in units of length:
∗ sound-microseconds. Ideally, this value should be about three
∗ standard deviations of the measurement noise of the system. ∗/
#define ROBUST THRESH 90

/∗ Given the lengths of the three sides of a triangle, return 1
∗ if the triangle is robust. ∗/ 370

uint8 t is robust(uint16 t a, uint16 t b, uint16 t c)
{

double min, d, e;
double costh;

if (a <= b && a <= c)
min = a, d = b, e = c;

else if (b <= a && b <= c)
min = b, d = a, e = c;

else 380

min = c, d = a, e = b;

costh = (square(d)+square(e)−square(min))/(2.0∗d∗e);
if (min∗(1−square(costh)) < ROBUST THRESH)

return 0;
else

return 1;
}

/∗ Solves for the position of a node using the known positions 390

∗ of three nodes and three distances to those nodes. This
∗ function basically evaluates trilaterate1() thrice, finding
∗ the centroid of the three positions returned by trilaterate1().
∗
∗ Arguments:
∗ i1, i2, i3 Indices of the three known nodes
∗ r1, r2, r3 Distances to the three nodes
∗ x, y Return pointers for the solved position
∗/

uint8 t trilaterate(uint8 t i1, uint8 t i2, uint8 t i3, 400

uint16 t r1, uint16 t r2, uint16 t r3,
double ∗ x, double ∗ y)

{
double xt, yt;
uint8 t ret, bl, bad=0;
ret = trilaterate1(i1, i2, i3, r1, r2, r3, x, y);
if (ret == ERROR NONINTERSECT)

return ERROR NONINTERSECT;
if (ret == ERROR BASELINE)

bad = 1; 410

61

bl = ((ret >> 1) & 1) | ((ret << 1) & 2) | (˜ret & 4);
ret = trilaterate1(i1, i3, i2, r1, r3, r2, &xt, &yt);
if (ret == ERROR NONINTERSECT)

return ERROR NONINTERSECT;
/∗ In addition to checking for a baseline error, we make sure
∗ that each trilateration solves for a position in the same
∗ region as the last (see comments in trilaterate1() about the
∗ 7 possible regions). That’s what all this bitshifting
∗ nonsense is about. ∗/

if (ret == ERROR BASELINE | | ret != bl) 420

bad = 1;
∗x += xt;
∗y += yt;
bl = ((˜bl >> 2) & 1) | (˜bl & 2) | ((˜bl << 2) & 4);
ret = trilaterate1(i2, i3, i1, r2, r3, r1, &xt, &yt);
if (ret == ERROR NONINTERSECT)

return ERROR NONINTERSECT;
if (ret == ERROR BASELINE | | ret != bl)

bad = 1;
∗x += xt; 430

∗y += yt;
∗x /= 3.0;
∗y /= 3.0;
/∗ In the case of baseline errors, we still solve for the
∗ localization, but we note the error for higher-level
∗ processing. ∗/

if (bad)
return ERROR BASELINE;

return 0; 440

}

/∗ Solves for the position of a node using the known positions
∗ of three nodes and three distances to those nodes. The
∗ technique here is quite simplified – the distances and positions
∗ of the first two nodes define two circles that intersect (in
∗ the normal case) at two points. We choose one of these two
∗ points as the answer based on the distance to third node.
∗ This is just a helper function for trilaterate() which does
∗ it more accurately. 450

∗
∗ Arguments:
∗ i1, i2, i3 Indices of the three known nodes
∗ r1, r2, r3 Distances to the three nodes
∗ x, y Return pointers for the solved position
∗/

uint8 t trilaterate1(uint8 t i1, uint8 t i2, uint8 t i3,
uint16 t r1, uint16 t r2, uint16 t r3,

62

double ∗ x, double ∗ y)
{ 460

double dsq, gam, xa, ya, xb, yb, xt1, xt2, yt1, yt2, d1, d2;
double x 1, y 1, x 2, y 2, x 3, y 3;
uint8 t ret;

/∗ Get the positions of the three known nodes ∗/
GET POS(i1, x 1, y 1);
GET POS(i2, x 2, y 2);
GET POS(i3, x 3, y 3);

/∗ Find the two intersection points of the two circles. ∗/ 470

dsq = square(x 2−x 1) + square(y 2−y 1);
gam = (square((double)r2+r1) − dsq)∗(dsq − square((double)r2−r1));
if (gam < 0) {

UARTOutput(OUT DEBUG, "Nonintersecting circles\n");
return ERROR NONINTERSECT;

}
gam = sqrt(gam);
xa = −(square(r2)−square(r1))∗(x 2−x 1)/(2.0∗dsq) + (x 1+x 2)∗0.5;
ya = −(square(r2)−square(r1))∗(y 2−y 1)/(2.0∗dsq) + (y 1+y 2)∗0.5;
xb = (y 2−y 1)∗gam/(2.0∗dsq); 480

yb = (x 2−x 1)∗gam/(2.0∗dsq);
xt1 = xa − xb;
xt2 = xa + xb;
yt1 = ya + yb;
yt2 = ya − yb;

/∗ Disambiguate between the two points using the third node. ∗/
d1 = sqrt(square(xt1−x 3) + square(yt1−y 3));
d2 = sqrt(square(xt2−x 3) + square(yt2−y 3));
if (fabs(d1−r3) < fabs(d2−r3)) { 490

∗x = xt1;
∗y = yt1;

}
else {

∗x = xt2;
∗y = yt2;

}

/∗ The three nodes of known position define a triangle in 2-space.
∗ Consider the three sides of this triangle, and extend the 500

∗ length of each edge to infinity. This divides the plane
∗ into 7 distinct regions. The position we computed above is
∗ in one of these 7 regions. The point of all the computation
∗ below is to compute which region. We do this by finding
∗ “which side” we are on of each edge of the triangle. This is
∗ done for each of the three edges and the result is a 3-bit

63

∗ bitmask where each bit tells us which side we are on. This
∗ is the return value of the function.
∗
∗ We also check if the solved position is “close” to one of the 510

∗ edges (within 2 standard deviations of the measurement noise).
∗ If so, we return an error that indicates potential for
∗ localization ambiguity.
∗/

gam = (x 2−x 1)∗(∗y−y 1) − (y 2−y 1)∗(∗x−x 1);
if (fabs(gam)/sqrt(dsq) < 2∗ROBUST THRESH)

return ERROR BASELINE;
ret = (gam > 0);

gam = (x 3−x 1)∗(∗y−y 1) − (y 3−y 1)∗(∗x−x 1); 520

dsq = square(x 3−x 1) + square(y 3−y 1);
if (fabs(gam)/sqrt(dsq) < 2∗ROBUST THRESH)

return ERROR BASELINE;
ret |= (gam > 0) << 1;

gam = (x 3−x 2)∗(∗y−y 2) − (y 3−y 2)∗(∗x−x 2);
dsq = square(x 3−x 2) + square(y 3−y 2);
if (fabs(gam)/sqrt(dsq) < 2∗ROBUST THRESH)

return ERROR BASELINE;
ret |= (gam > 0) << 2; 530

return ret;
}

/∗ Head/tail pointers for the robust quad queue ∗/
uint16 t qhead, qtail;

/∗ The queue of robust quads ∗/
struct quad {

uint8 t v[3]; // 3 vertices of the quad (4th is always
// the cluster origin) 540

} q[800];

/∗ Initialize the ring-buffer holding a queue of robust quads ∗/
void ring init()
{

qhead = qtail = 0;
}

/∗ Return 1 if the queue is empty ∗/
uint8 t ring empty() 550

{
return (qhead == qtail);

}

64

/∗ Enqueue an element (3 vertices) onto the quad queue. ∗/
result t ring enqueue(uint8 t i, uint8 t j, uint8 t k)
{

if ((qhead+1) == qtail | | (qhead==(QUEUE LEN−1) && qtail==0)) {
UARTOutput(OUT ERROR, "ring_enqueue(): queue is full\n");
return FAIL; 560

}
q[qhead].v[0] = i;
q[qhead].v[1] = j;
q[qhead].v[2] = k;
qhead++;
if (qhead == QUEUE LEN)

qhead = 0;
return SUCCESS;

}
570

/∗ Dequeue an element (3 vertices) from the quad queue. ∗/
result t ring dequeue(uint8 t ∗ v)
{

if (ring empty())
return FAIL;

v[0] = q[qtail].v[0];
v[1] = q[qtail].v[1];
v[2] = q[qtail].v[2];
qtail++; 580

if (qtail == QUEUE LEN)
qtail = 0;

return SUCCESS;
}

65

66

Appendix B

Filtering Code

The following code is a reference implementation of the Kalman filtering step used to reduce

noise in node-to-node distance measurements. It is run prior to the localization code shown

in Appendix A. This code has been used as part of a TinyOS NesC module to perform

localization directly on board a Cricket node. The new measurement() function performs

the filtering.

/∗ Information about each neighboring node ∗/
struct NodeInfo {

uint8 t id[4]; /∗ Its 4-byte ID ∗/
uint8 t status; /∗ status of our distance cache ∗/
uint8 t next; /∗ pointer to next node for hash table collisions ∗/

} neighbors[MAX NEIGHBORS+1];

/∗ Values for the status field of neighbors[] ∗/
#define EMPTY 0xff

#define RELAY DATA 0x1 10

#define OLD MEAS 0x2

#define OLD RELAY 0x4

#define IS MOVING 0x8

#define IS NEW 0x10

/∗ dists[][] records pairwise distances between every pair of nodes ∗/
int16 t dists[MAX NEIGHBORS+1][MAX NEIGHBORS+1];

/∗ Macros for getting and setting the recorded distance. ∗/
#define SET DIST(a,b,x) dists[a][b] = (x) 20

#define GET DIST(a,b) dists[a][b]

/∗ Number of measurements recorded before the Kalman filter is started. ∗/
#define NUM INIT MEAS 5

67

/∗ Variance of rate of change of distance for filtering
∗ (in sound-microseconds per second squared) ∗/
#define VEL VARIANCE 100 // static case
#define VEL VARIANCE MOTION 360000 // mobile case
/∗ Variance of underlying measurements (in sound-microseconds squared) ∗/
#define MEAS VARIANCE 3600 30

/∗ Maximum measurable distance (in sound-microseconds) ∗/
#define MAX DIST 30000

/∗ Special value of distance we use to keep track of outliers so we
∗ can debug their effect on the system. ∗/
#define OUTLIER DIST 1

/∗ Clamps a value between two extremum ∗/
#define CLAMP(x,a,b) (((x)<(a))?(a):(((x)>(b))?(b):(x)))

40

/∗ Kalman filter state for each distance measured to a neighbor. ∗/
struct NodeFiltInfo {

union {
uint16 t meas time; // timestamp of last measurement
uint16 t n; // number of initial measurements

};
uint8 t bad count; // number of consecutive outliers
int16 t vel; // rate of change of distance
union { // used either for covariance or filter initialization

float P[4]; // current covariance matrix 50

uint16 t d[8]; // initial measurements
};

} filt[MAX NEIGHBORS];

/∗ Possible flags for the arguments to new measurement() ∗/
#define CR MOVING 1

/∗ Records a new distance measurement by doing any necessary
∗ Kalman filtering and then storing the value. 60

∗ Arguments:
∗ id Unique ID of the node to which we are measuring
∗ x Distance measured (in sound-microseconds)
∗ timestamp Value of the millisecond system clock
∗ flags Any relevant flags (either 0 or CR MOVING)
∗/

result t new measurement(uint8 t ∗ id, uint16 t x, uint16 t timestamp,
uint8 t flags)

{
uint8 t node; 70

float ∗ P;
float newP[4];

68

int16 t v;
float d, a, dt;
float K[2];
uint8 t moving = 0;
float mdist;

/∗ Obvious outliers are rejected. ∗/
if (x > MAX DIST) 80

return SUCCESS;

/∗ Find the ID in our list, or create a new entry if we haven’t
∗ seen this node before. ∗/

node = node find(id);
if (node == EMPTY) {

uint16 t ∗ sd;
node = node add(id);
if (node == EMPTY)

return FAIL; 90

/∗ The node is new to us, so we initialize the Kalman
∗ filter. We do this by taking the median of the first
∗ NUM INIT MEAS measurements as the initial state for
∗ the filter. Since we only have one measurement so far,
∗ we add it to the list. ∗/

/∗ Official distance and velocity are not known yet
∗ (so set them to zero). ∗/

SET DIST(SELF, node, 0); 100

filt[node].vel = 0;
/∗ Number of recorded distances is 1 ∗/
filt[node].n = 1;
sd = filt[node].d;
sd[1] = sd[2] = sd[3] = sd[4] = sd[5] = sd[6] = sd[7] = 0;
/∗ Known distance ∗/
sd[0] = x;

neighbors[node].status |= IS NEW;
filt[node].bad count = 0; 110

return SUCCESS;
}

/∗ Clear the aging flag ∗/
neighbors[node].status &= ˜OLD MEAS;

if (flags & CR MOVING)
neighbors[node].status |= IS MOVING;

else
neighbors[node].status &= ˜IS MOVING; 120

69

/∗ A convenience pointer ∗/
P = filt[node].P;

/∗ If the filter is still being initialized ∗/
if (neighbors[node].status & IS NEW) {

uint8 t n = filt[node].n;
uint16 t ∗ sd = filt[node].d;
/∗ Incorporate the new distance ∗/
sd[n] = x; 130

n++;

if (n == NUM INIT MEAS) {
/∗ Enough measurements are recorded to initialize the
∗ Kalman filter ∗/

uint8 t i, j;
uint16 t t;
/∗ Bubble sort the initial measurements ∗/
for (i=0; i<n; i++) {

for (j=i+1; j<n; j++) { 140

if (sd[j] < sd[i]) {
t = sd[i];
sd[i] = sd[j];
sd[j] = t;

}
}

}
/∗ Pick the median as the initial filter state ∗/
SET DIST(SELF, node, sd[(n−1)>>1]);

150

/∗ Initialize the covariance ∗/
P[0] = P[1] = P[2] = P[3] = 0;
neighbors[node].status &= ˜IS NEW;

/∗ Record the timestamp ∗/
filt[node].meas time = timestamp;

}
else {

filt[node].n = n;
} 160

return SUCCESS;
}

/∗ If there have been three outliers in a row, reset the filter. ∗/
if (filt[node].bad count == 3) {

P[0] = P[1] = P[2] = P[3] = 0;
filt[node].meas time = timestamp;
SET DIST(SELF, node, x);

70

filt[node].vel = 0;
filt[node].bad count = 0; 170

return SUCCESS;
}

/∗ Time since last measurement in seconds ∗/
dt = (float)(timestamp − filt[node].meas time)/1024.0;
v = filt[node].vel;

/∗ KALMAN FILTERING BEGINS HERE ∗/

/∗ Prediction step for the filter state ∗/ 180

d = (float)GET DIST(SELF, node) + v∗dt;

/∗ Moving distances get a much larger process noise than
∗ static distances. ∗/

if ((neighbors[node].status & IS MOVING) | |
(neighbors[SELF].status & IS MOVING)) {

moving = 1;
a = VEL VARIANCE MOTION;

}
else 190

a = VEL VARIANCE;

/∗ Prediction step for covariance. ∗/
newP[0] = P[0] + P[2]∗dt + P[1]∗dt + P[3]∗dt∗dt + a∗dt∗dt;
newP[1] = P[1] + P[3]∗dt + a∗dt;
newP[2] = P[2] + P[3]∗dt + a∗dt;
newP[3] = P[3] + a;

/∗ Gain step ∗/
a = newP[0] + MEAS VARIANCE; 200

K[0] = newP[0] / a;
K[1] = newP[2] / a;

/∗ Compute the Mahalanobis distance of the measurement ∗/
mdist = ((float)x − d)/sqrt(a);

if (fabs(mdist) <= 3.0) {
/∗ Incorporate the measurement into the filter if it is within
∗ a Mahalanobis distance of 3.0 ∗/

210

/∗ Update step for the filter state (distance) ∗/
a = CLAMP(d + K[0]∗((float)x − d), 0, MAX DIST);
SET DIST(SELF, node, a);

if (moving) {
/∗ Update step for the filter state (velocity) ∗/

71

v = CLAMP(v + K[1]∗((float)x − d), −MAX DIST, MAX DIST);
filt[node].vel = v;

/∗ Record the distance in the moving node tracker 220

∗ if necessary ∗/
if (neighbors[node].status & IS MOVING)

new tracked dist(timestamp, node, SELF, a);
}
else {

/∗ If the distance is static, force the velocity to zero. ∗/
filt[node].vel = 0;

}

/∗ Update step for the covariance ∗/ 230

P[0] = (1.0 − K[0])∗newP[0];
P[1] = (1.0 − K[0])∗newP[1];
P[2] = −K[1]∗newP[0] + newP[2];
P[3] = −K[1]∗newP[1] + newP[3];

filt[node].meas time = timestamp;
filt[node].bad count = 0;

}
else {

/∗ Reject the measurement as an outlier ∗/ 240

filt[node].bad count++;
/∗ Record the distance in the moving node tracker
∗ if necessary ∗/

if (neighbors[node].status & IS MOVING)
new tracked dist(timestamp, node, SELF, OUTLIER DIST);

}

return SUCCESS;
}

72

Bibliography

[1] Nirupama Bulusu, John Heidemann, and Deborah Estrin. GPS-less low cost outdoor
localization for very small devices. IEEE Personal Communications Magazine, 7(5):28–
34, October 2000.

[2] Srdan Capkun, Maher Hamdi, and Jean-Pierre Hubaux. GPS-free positioning in mobile
ad-hoc networks. In Proceedings of the 34th Hawaii International Conference on System
Sciences, 2001.

[3] Lance Doherty, Kristofer S. J. Pister, and Laurent El Ghaoui. Convex position esti-
mation in wireless sensor networks. In Proc. IEEE INFOCOM, Anchorage, AK, April
2001.

[4] T. Eren, D. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse, B. D. O. Anderson, and
P. N. Belhumeur. Rigidity, computation, and randomization in network localization.
In Proc. IEEE INFOCOM, March 2004.

[5] Deborah Estrin, Ramesh Govindan, and John Heidemann. Embedding the internet:
introduction. Commun. ACM, 43(5):38–41, 2000.

[6] Robert Grabowski and Pradeep Khosla. Localization techniques for a team of small
robots. In Proc. IEEE IROS, Maui, Hawaii, October 2001.

[7] Bruce Hendrickson. Conditions for unique graph realizations. SIAM J. Comput.,
21(1):65–84, 1992.

[8] B. K. P. Horn. Closed form solution of absolute orientation using unit quaternions.
Journal of the Optical Society A, 4(4):629–642, April 1987.

[9] Xiang Ji and Hongyuan Zha. Sensor positioning in wireless ad-hoc sensor networks
using multidimensional scaling. In Proc. IEEE INFOCOM, March 2004.

[10] G. Laman. On graphs and rigidity of plane skeletal structures. J. Engineering Math,
4:331–340, 1970.

[11] Radhika Nagpal, Howard Shrobe, and Jonathan Bachrach. Organizing a global coordi-
nate system from local information on an ad hoc sensor network. In Proc. IPSN, pages
333–348, Palo Alto, CA, April 2003.

[12] Dragos Niculescu and Badri Nath. DV based positioning in ad hoc networks. Kluwer
journal of Telecommunication Systems, pages 267–280, 2003.

[13] Dragos Niculescu and Badri Nath. Error characteristics of ad hoc positioning systems
(APS). In Proc. 5th ACM MobiHoc, Tokyo, May 2004.

73

[14] Neal Patwari, Alfred O. Hero III, Matt Perkins, Neiyer S. Correal, and Robert J.
O’Dea. Relative location estimation in wireless sensor networks. IEEE Trans. Signal
Process., 51(8):2137–2148, August 2003.

[15] Nissanka B. Priyantha, Hari Balakrishnan, Erik Demaine, and Seth Teller. Anchor-free
distributed localization in sensor networks. Technical Report 892, MIT Lab. for Comp.
Sci., April 2003.

[16] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The Cricket
location-support system. In Proc. 6th ACM MobiCom, Boston, MA, August 2000.

[17] Chris Savarese, Jan Rabaey, and Koen Langendoen. Robust positioning algorithms for
distributed ad-hoc wireless sensor networks. In USENIX Annual Tech. Conf., pages
317–327, Monterey, CA, June 2002.

[18] Andreas Savvides, Wendy Garber, Sachin Adlakha, Randolph Moses, and Mani B.
Srivastava. On the error characteristics of multihop node localization in ad-hoc sensor
networks. In Proc. IPSN, pages 317–332, Palo Alto, CA, April 2003.

[19] Andreas Savvides, Chih-Chieh Han, and Mani B. Srivastava. Dynamic fine-grained
localization in ad-hoc networks of sensors. In Proc. 7th ACM MobiCom, pages 166–
179, Rome, Italy, 2001.

[20] J. B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. In Proc.
17th Allerton Conf. Commun. Control Comput., pages 480–489, 1979.

[21] Slobodan N. Simic and Shankar Sastry. Distributed localization in wireless ad hoc
networks. Technical Report UCB/ERL M02/26, UC Berkeley, December 2001.

[22] Adam Smith, Hari Balakrishnan, Michel Goraczko, and Nissanka Priyantha. Tracking
moving devices with the cricket location system. In Proc. 2nd ACM MobiSys, pages
190–202, Boston, MA, June 2004.

[23] Seth Teller, Jiawen Chen, and Hari Balakrishnan. Pervasive pose-aware applica-
tions and infrastructure. IEEE Computer Graphics and Applications, pages 14–18,
July/August 2003.

74

