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ABSTRACT

This thesi s presents methods to predict ray traced rendering times given scenes and rendering
options. In order to predict total rendering time, ray tracing is decomposed into a set of computation
segments and basic operations. For each piece of the ray tracing algorithm, atime per call is determined
for the function, as well as the number of calls during the desired segment of computation.

Predicting the recursive process is accomplished by modeling node generation as a branching
process of aMarkov chain for reflection and transmission rays. The results of the reflection/transmission
branching process are then used asiinitial valuesin a shadow ray branching process of a Markov chain.

The prediction model was applied to a sample set of scenes, resulting in predicted rendering time
errors ranging from 5.5% to 50.4%. The errors were aresult of avariety of approximations necessary in
the model. Error sources include object space bounding box error, screen space bounding box error, and
approximating surface areas with volumes. Determining ray-object intersection probabilities was the
greatest source for error as aresult of empirically determined constants of proportionality that varied
among scenes.

Thesis Supervisor: Seth Teller
Title: Associate Professor of Computer Science and Engineering
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1 | ntroduction

To introduce the topic of ray tracing prediction, we will first provide some background on ray
tracing in general. Then we will cite some previous work done on the subject of ray tracing prediction and
give motivation for our study. Finally, we will present an overview of the model we use to predict the time

to ray trace agiven scene.

1.1 Background

Ray tracing is one of the most popular techniques for rendering a 2D image from a 3D scene.
Based on the physics of light, it can accurately model reflections, refraction, soft shadows, caustics, and a
host of other effects. The most basic ray tracing algorithm is computationally intensive and each of these
effects adds even more to the task of rendering.

In order to improve rendering time, many acceleration techniques have been developed. These
techniques utilize data structures, numerical and statistical methods, and computational geometry, among
others. Many of these techniques can be employed together, but there are also competing techniques of
each type." When building a ray tracer, the programmer must pick and choose which effects and
optimizations will best suit the application to maximize image quality without taking too much time to
render.

How long istoo long? Because of its large rendering time for realistic scenes, ray tracing is often
used to render batches of frames off-line. This method is usually chosen for rendering animation sequences
where image quality isthe highest concern. The sceneis set up along with cameras, lighting, and
animation. Then the ray tracer is started and renders overnight or over the course of days. It is never clear
exactly how long it will take to render any given scene. Rendering time ranges literally from seconds to

days depending on the complexity of the scene and ray tracer. The only information that provides a clue

LArvoet. al., 203.



for how long it will take isthe time the ray tracer took to render similar scenes. Also, ray tracers will often

be benchmarked for comparison against each other.?

1.2 Previous Work

There has been substantial work done on giving theoretical orders of growth to acceleration
algorithms for ray tracing. James Arvo and David Kirk bring together a broad range in A Survey of Ray
Tracing Acceleration Techniques.® They compare and contrast the data structures and algorithms,
discussing when each is appropriate to use, and drawing on alarge body of work.

Fujimoto, Tanaka, and Iwata took actual time measurements of ray traced scenes with different
acceleration techniques implemented®. The ray tracer was run on aVAX 11/750. They compared these
times with estimates for a non-accelerated ray tracer.

Ray tracers as entire applications have been benchmarked against each other. Eric Hainesis
among the contributors to Ray Tracing News (he also happens to be the editor) who benchmarked a variety

of ray tracers®

1.3 A Prediction Modedl for Ray Tracing

1.3.1 Motivation

When a scene or animation is set to render off-line, artists have little more than a vague idea of
how long it will take. What's more, they do not know how long the ray tracer is spending in each section
of the computation. There could be a bottleneck in the ray-object intersection computation, or perhaps the
calculations for caustic effects are taking longer than they are worth. Maybe tweaking aspects of the scene

or ray tracer would drastically reduce rendering time without sacrificing image quality.

2 Haines, http://www.acm.org/tog/resources’RTNews/html/rtnv3n1.html#art10.
3
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To prevent going into off-line rendering blindly, we have created a prediction model for ray
tracing performance. The model is given information about the scene to be rendered as well as which
rendering effects and acceleration techniques will be used. The model uses this information to provide an
estimate on total rendering time, as well as estimates on the rendering time for each aspect of computation.

Users are able to use these estimates to determine what effects are worthwhile when weighing
image quality against rendering time. Also, users are able to determine which ray tracer acceleration

settings are most effective for the scene.

1.3.2 Overview of the Modd

To predict where the time is being spent in the ray tracer, we will break up the algorithm into ten
computation segments. We will also identify eighteen most time consuming operations out of the functions
implementing the algorithm as those functions. We will predict the time taken by each of these operations
in each of the computation segments, then add the times up to get the total time predicted for rendering.

To predict the time taken by each operation, we will predict the time taken per call to the
operation, as well as the number of calls to the operation in that computation segment. Predicting the time
per call, the baseTime, will be done for most operations by averaging baseTimes across a sample set of
renderings. For afew operations whose baseTime varies greatly from scene to scene, we will average the
time per call in 1000 iterations of calls.

To predict the number of callsto each segment-operation pair, we will first estimate the number of
rays from the camerainto the scene that intersect objects. We will aso need to model the number of
recursive rays generated. We will model the recursive ray generation as branching processes. Thiswill tell
us how many reflection, transmission, and shadow rays were cast, as well as which of those intersected

objectsin the scene.

® Haines, http://www.acm.org/tog/resources’RTNews/html/rtnv3n1.html#art10.




2 Dividing the Computation

Ray tracing as a whole encompasses a host of algorithms and operations. To be able to predict the
time a scene will take to ray trace, we must break down our ray tracer into manageable chunks. We will
break it down in two orthogonal ways, computation segments and basic operations. Each basic operation

takes place in one or more computation segment.

2.1 Computation Segments

To predict where the time is being spent in the ray tracer, we will break up the algorithm into ten

computation segments.

| nport

Loads the appropriate files for the scene and environment and sets up pointersto all objects, lights,

and camerasin the scene.

Bui |l d

Builds the associated data structures, e.g. octree, BSP tree, jitter coefficients.

Conput eEyeRay

Computes the direction of all rays from the camera through the image plane and into the scene.

Quer yEyeRay
Queries object data structures to determine if a given ray from the camera through the image plane

intersects an object.



Conmput eShadowRay

Computes the direction of shadow rays from the surface of an object hit by aray from the camera

through the image plane.

Quer yShadowRay

Queries object data structures to determine if a shadow ray arising from a cameraray hit intersects

an object.

Shadi nghodel
Computes Phong radiance at a point on the surface of an object hit by aray from the camera

through the image plane. This does not include shadow or recursive computations.

Ref |l ecti on
Computes radiance at a point on the surface of an object arising from all recursive reflection
computation. Thisincludesray generation, data structure queries, and shading model computation for al

recursive reflection rays.
Refraction

Computes radiance at a point on the surface of an object arising from all recursive reflection
computation. Thisincludes ray generation, data structure queries, and shading model computation for al

recursive reflection rays.

Di spl ay

Displays pixels on the screen.

These computation segments can be related as follows:

Trota = Tsetup + TRendering
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Tsetup = Timport + Teuild

Trendering = T Frame * (# frames)

Trrame = Trixe * (# PIXElS) + Tpigyiay

Teixd = Tsampie * (# samples/pixel)

Tsample = Teyeray + Tshade

Teyeray = T computetyeray + T QueryEyeray

Tshade = T shadowray + T shadingModel + T Reflection + T Refraction

TShadowRay = TComputeShadowRay + TQueryShadowRay

Figure 1 shows these relation as a hierarchical structure of computation segments. All computation takes

place in one of the ten leaf nodes of the tree.

Total
/\Rendering
L ﬂ\
Import model, environment  Build data structure Pixel 0 Pixel 1 ... Pixel_(w*h-1) Display
Sample_0 Sample_1 ... Sample_n
Object ray Shade
Compute ray Query data structure Shadow ray  Shading model Reflection Refraction
Compute ray Query data structure

Figure 1: Hierarchical breakdown of computation time segments

It could be argued that recursive calls to the Phong model or shadow ray computation arising from
reflection or refraction rays should be part of ShadingModel and ComputeShadowRay/QueryShadowRay
respectively. We have chosen to include this computation instead with Reflection and Refraction

computation. Thisis because a common application of the prediction model will be to decide whether or
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not to include reflection or refraction effectsin arendering. The user would want to know how much these
effects are costing in terms of total time. In addition, it is useful to know the breakdown of time spent by

depth of recursion.

2.2 Basic Operations

The mgjority of the work in the ray tracer we have devel oped takes place in one of eighteen
functions that we will refer to asthe basic operations. When we reconstruct the time spent in ray tracing,
all of it will be assumed to be in one of these operations. When we predict how much time a given scene
will take to render, we will predict how many calls are made to each of these operationsin each
computation segment, as well as how long each call will take. What we will be left with isthe ability to
determine in what functions the ray tracer spends itstime, aswell asin what segments of computation.

Figure 2 shows how the functions are called.

get Obj ect sAndLi ght s

Parses scene files and extracts information on objects, lights, cameras, and the environment.

Makeldi tter

Createsjitter coefficients for sample ray positions within a pixel.

Conput eEyeRay

Computes the direction of rays from the camera through the image plane.

Shade

Computes the radiance at a ray-object intersection.

Backgr oundMap

Computes the background radiance at a ray-object intersection.

12



Refl ectionDirection

Given an incoming ray and an intersecting object, computes the direction of the reflection ray.

Transni ssi onDi recti on

Given an incoming ray and an intersecting object, computes the direction of the transmission ray.

Ref | ecti onRadi ance

Computes the radiance at a ray-object intersection due to reflection.

Tr ansni ssi onRadi ance

Computes the radiance at a ray-object intersection due to reflection.

Shadowi ng
Determines visibility of point by repeatedly casting rays towards alight until we are past the light,

or we are occluded from the light.

Angul ar Att enuat i on
Calculates how much of the light coming from a spotlight (shining in its original direction) is till

visible at the angle the light is at (relative to a ray-object intersection point).

Di st anceAttenuati on

Calculates how much of the light coming from alocal light or a spotlight (shining inits original

direction) is still visible at the distance the light is at from a ray-object intersection point.

Specul ar Radi ance

Collects the specular radiance emanating from the surface at the point we are shading.

13



D f f useRadi ance

Collects the diffuse radiance emanating from the surface at the point we are shading.

Anmbi ent Radi ance

Collects the ambient radiance emanating from the surface at the point we are shading.

Enm ssi onRadi ance

Collects the emissive radiance emanating from the surface at the point we are shading.

set Pi xel | med

Displays a pixel on the screen.

Ray Trace

S S

getObjectsAndLights()  Makelitter() ~ ComputeEyeRay() RayCast() Shade() setPixel Immed()

BackgroundMap()  ReflectionRadiance() TransmissionRadiance()

Shadowing() AngularAttenuatior|) — Distancedttenuation() \ SpecularRadiance()

RayCas() DiffuseRadiance() AmbientRadiance() EmissionRadiance()

ReflectionDirection() RayCast() Shade()
(Recursive)

TransmissionDirection() RayCast()  Shade()
(Recursive)

Figure 2: Basic operation calling tree
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3 User I nterface

The user interface to our ray tracing predictor consists of two separate windows, the ray tracer and
the dataview. Theray tracer allows the user to load scenesinto a window where they can be viewed and
manipulated. The data view provides the user with commands to make predictions and record data, as well

asview the datain a variety of ways.

3.1 Ray Tracer

The ray tracer used was devel oped for 6.837: Introduction to Computer Graphics. It isbased on
the Open Inventor™ SoSceneViewer interface. Users can load and save scenes, manipulate the camera and
lights, and scale objects. When the render button is depressed, the rendered pixels are displayed over the
view of the scene asthey are computed. The scene is rendered with the camera, lights, and object positions

shown in the viewport.

3.2 Data View

3.21 Goals

The data view presents information on the collected and predicted data for the scene displayed in

the ray tracer view. The goals of the data view are:

e To present collected data so that user can determine the time spent in each segment-operation
pair, as well as the number of times the pair was called
e To present collected data so that user can relate the time spent in each segment-operation pair,

as well as the number of times the pairs was called, to values for other pairs

15



e To present comparison of total collected datato measured time to determine accuracy of
reconstructed time

e To present predicted data so that user can determine time spent in each segment-operation
pair, as well asthe number of times the pair was called

e To present predicted data so that user can relate time spent in each segment-operation pair, as
well as the number of times the pairs was called, to values for other pairs.

*  To present comparison of predicted data to collected data by segment-operation pair to
determine accuracy of predictions

* To havethe ability to search the predicted data for predictions on time or number of cals that

areinside or outside a given error bound from collected data

3.2.2 Views

There are anumber of different views the user can assign to the data view window, each allowing
the user to discern unique information from the data. The different views are the compare view, the cross-

reference view, the segment view, and the operation view.

3.2.21 Compare

The user can view the compare screen to compare the collected time to the measured time, as well
as the comparing the predicted data to the collected data. On the left of Figure 3, the total time the scene
actually took to render is displayed. Below that is a graph containing two percentage bars. Thefirst
compares total measured time to total reconstructed collected time. The second compares the total
predicted time to the total collected time.

The colors of the bars indicate which of the two valuesis greater. For the first bar, ared color

indicates the measured time is greater and so the bar represents the percentage of measured time the

16



collected timeis. A green color indicates the collected timeis bigger. For the second bar, a blue color

indicates the collected timeis greater, while ared color indicates the predicted timeis greater.

On theright of Figure 3, the user can choose from among segments and operations that have either

anon-zero time per call, anon-zero number of calls, or both, in either the collected or predicted data.

Below, a graph displays the percent comparison of the time per call and number of calls for the segment-

operation pair between the collected and predicted data. The color scheme is the same as for the second bar

on the left side of the screen.

—IRay Tracing Prediction Model =|Olx]
Data View Options
Total Time Comparisons Sg/Op Comparisons
Computation Segment: Total 1
Actual Measured Time: |54 70 sec
Basic Operation; RayCast() o |
100
0
Yo %
0
Collected Predicted Predicted Collected
of of of of
Measured Collected Collected Predicted
Time Time # Time
Calls Per

Figure 3: Data View of Ul —Compare View

The compare view allows the user to compare predicted with collected data quickly and easily.

17



3.2.2.2 By Cross-Reference

The user can view the cross-reference screen to view either predicted or collected data on a chosen
segment-operation pair. Asseen in Figure 4, the total time is displayed, along with the time for the selected
pair, the number of times the pair is called, and the average time spent for each call. Below, agraph
presents the percentage of total time that the selected segment-operation pair takes.

The user can choose to view the predicted data, the collected data, or both together.

5049 sec 46.30 sec
42.87 sec 38.39 sec
158555 137110

2.68E-004 sec 2.80E-004 sec

Figure 4: Data View of Ul — Cross-Reference View

The cross-reference view allows the user to determine all the information available on each

segment-operation pair for both the collected and predicted data.

18



3.2.2.3 By Segment

The user can view the segment screen to compare the percentage of total time spent among
segments of computation in either the predicted or collected data. The operation is selected and the datais
display in asorted bar graph. Each bar in Figure 5 represents the percentage of total time that the selected

operation takes in the given segment.

46.30 sec
’7,_

Figure5: Data View of Ul — Segment View

The segment view allows the user to determine in which segments for a given operation the

majority of the rendering time was spent.

3.2.24 By Operation

19



The user can view the operation screen to compare the percentage of total time spent among basic
operations in either the predicted or collected data. The computation segment is selected and the datais
display in a sorted bar graph. Each bar in Figure 6 represents the percentage of total time that the given

operation takes in the selected segment.

Figure 6: Data View of Ul —Operation View

The operation view allows the user to determine in which operations for a given segment most of

the rendering time was spent.

3.2.3 Search Data

20



The user can view the search screen to search the predicted data for segment-operations pairs that
have a certain error characteristic. The scroll box in Figure 7 will list segment-operation pairs that are

within or outside of a percent error of the corresponding collected data.

: SG: QueryEyeRay

: Shade SG: Total

: Shade SG: ShadingModel

: BackgroundMap SG: Total

: BackgroundMap SG: ShadingModel
: ReflectionRad SG: Total

: ReflectionRad SG: Reflection

: TransmissionRad SG: Total

: TransmissionRad SG: Refraction

Figure 7: Data View of Ul — Search View

The search view alows the user to quickly find segment-operation pairs of interest to investigate

using the other views.

3.24 Saving/L oading Data

The collected and predicted data can be saved into afile and then reloaded into the Ul at alater

time. In addition, the data can be added to a database for post-processing. The database is a collection of

21



20 files, one for each basic operation. Within each file, the time per call and number of callsislisted for

each segment in which the operation was called for each entry to the database.

3.25 Ray Tracing Options

Through the data view, the user can change a number of rendering options. Reflection and
refraction can be toggled on and off. The maximum ray depth and minimum ray weight for recursive rays

can be set. Shadows can be toggled on and off. The shading can be set to flat or Phong.

22



4 Collection

In order to determine the accuracy of our predictions, we must first develop away to break the time

measured to render a scene into computation segments and basic operations.

4.1 Timing the Ray Tracer

Each call to atimer to find the elapsed time is expensive enough that placing many of them in the
code significantly alters the time taken to render ascene. Asaresult, we cannot time every basic operation
individually. Instead, we increment counters every time a basic operation was called. Also, the total time
taken by the ray tracer is recorded.

The counters are part of a collection matrix. Elements are accessed by computation segment and
basic operation. Each time abasic operation is called in a given segment, the corresponding element in the
matrix isincremented. Inthisway, we record the number of calls to each basic operation in each
computation segment.

After the scene is rendered, we reconstruct the time spent in each operation-segment pair.
Operationsin a segment are called the recorded number of times with argument appropriate for the scene.
The arguments are, whenever possible, exactly what were used for the rendering of the scene. Thecalsare

timed together in these blocks and the timeis also recorded in the collection matrix.

4.2 Uses of the Collection M atrix

23



The collection matrix isfirst tested for accuracy. The total reconstructed time is compared with
the total measured time for renderings. Total reconstructed time is determined by summing time taken by
each operation-segment pair.

Once the validity of the collection mechanism was established, we were able to use it to collect
data on the average time taken for callsto each of the basic operations. These values are used in predicting
the time any scene will take.

When predictions are made for a scene, the predicted number of calls and time per call for each

operation-segment pair can be compared with the recorded counts and reconstructed times.

24



5 Prediction

The prediction for the time spent in a segment-operation pair is found by multiplying the time
spent per call for the operation with the number of calls to the operation in that segment. We will now

detail how to find those values.

5.1 Predictingthe Time

In order to simplify prediction, al calls to a basic operation, regardless of computation segment,
are assumed to take the same amount of time per call. We will refer to this value as the baseTime for that
operation. Thetotal time taken for a basic operation in a given segment is equal to the baseTime for that
operation multiplied by the number of callsto the operation in that segment.

The baseTime for a given operation is not constant across scenes. Some argument val ues or user
options change what the basic operations will do and how long they will take. Also, some operations have
loops that will execute a certain number of times based on the scene being rendered.

The baseTime for each basic operation is determined by averaging the values from a group of
rendered scenes. In the case where user options or argument val ues change baseTime values, one
baseTime is recorded for each possibility. When later predicting the time spent for another scene, the
appropriate baseTime isused. If more than one argument value may occur in the scene, the expected count
for each case is determined and multiplied by the respective baseTime. The results are then added together.

For operations comprised of one large loop, aloopTime isrecorded instead of a baseTime. When
predicting the baseTime for other scenes, the loopTime is then multiplied by the expected number of loops
to get the baseTime. No basic operation consists of more than one loop.

For certain operations, the baseTime varies greatly from scene to scene. For these operations, we
do not average values across a sample set of rendered scenes. Instead, for a given scene, we execute the
operations 1000 times using random arguments and find the average time per call.

Appendix section 9.1 details how the baseTime is reconstructed for each basic operation.
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5.2 Predicting The Count

5.2.1 Basic Operations

We will look at each basic operation in turn and develop a prediction model for the number of
timesit is called in each computation segment. Appendix section 9.2 details how the number of callsin

each computation segment is found for the eighteen basic operations.

5.2.2 Questions Raised

There are anumber of questions about the scene that are raised when trying to predict the number
of callsto the basic operations. How many of theinitial rays from the camerainto the scene hit objects?
How many reflection rays are recursively generated? Of those, how many hit objectsin the scene? How
many transmission rays are recursively generated? Of those, how many hit objectsin the scene? What is
the probability that a point on the surface of an object isin shadow? How many shadow rays are
generated? If we can answer these questions, we will have a good prediction for the number of callsto
each of the basic operations during rendering.

These questions will be answered by first detailing a model to find the expected number of nodes
in ashadow ray tree. We will relate this value to the number of reflection and transmission rays. A
branching process will be used to model reflection and transmission ray recursion. We will find the PMF
and expectation for the number of nodes in each generation of the tree. The model will then be expanded to
account for the user-set minimum ray weight and maximum ray depth values. Finally, we will review the

assumptions, strengths, and weaknesses of the model.

5.2.3 Eyeray Hits
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We will refer to the rays cast from the camera through the image plane and into the scene as
eyerays. Theray tracer provides for super-sampling eyerays within a pixel and averaging sample
contributionsto apixel. Samples can bejittered randomly within a pixel or non-randomly. Non-random
jittering positions pixelsin agrid such that not only are samples within a pixel equidistant from each other,
they are also equidistant from samplesin neighboring pixels. The number of samples generated per pixel
and their jittering type are options set by the user.

Estimating the number of eyeray hitsis central to the prediction of most of the basic operations.
When the shade function is called for every sample, al shading model and recursive routines are called
based on whether the sample intersected an object in the scene. Since raycasting is a computationally
intensive process, the prediction model must be capable of predicting the number of eyeray hits without
casting rays into the scene.

The predictor will estimate eyeray hits using the screen space bounding box of scene objects.
First, we compute the world space bounding boxes for each scene object. These bounding boxes are
transformed into eye space (see Figure 8). In eye space, the camerais the origin and the world orthobasisis
aligned with the direction of viewing and the axes of the image plane. To get the tightest screen space
bounding box fit, the corners of each eye space bounding box are projected into screen space. Then atwo-

dimensional screen space bounding box is constructed around the projected corners (see Figure 9).
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Object Bounding Box ; Eye Space Basis

Eye

Image Plane

World Space Basis

v

Figure 8: World space bounding boxes are transfor med to eye space

Screen Space Bounding Box

L, Image Plane

Eye Space Basis

Figure9: Screen space and object space bounding boxes
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If, instead, an eye space-aligned bounding box had first been constructed around the world space-
aligned bounding box, more empty space would result in the two-dimensional screen space bounding box.
Thisis because the projection of the eye space-aligned bounding box onto screen space would project, and
so increase the error between the eye space and world space bounding boxes as well.

The two-dimensional screen space bounding boxes that result are computed in terms of screen
space pixel integers. The error that results from not using floating point representation to capture
individual sample activity is far outweighed by the general error in using bounding boxes. In addition,
computing how random samples would jitter involves approximation even if floating point representation
was used for the screen space bounding boxes.

The screen space bounding boxes that are computed for scene objects may overlap. However, the
eyerays cast by the ray tracer will only intersect a single object in their path. Recursive rays will be treated
separately. The screen space bounding boxes must be clipped to one another to prevent double counting
pixel eyeray hits. Screen space bounding boxes are clipped into a variable number of boxes, all of which

remain screen space axis-aligned (see Figure 10).
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Screen Space Bounding Boxes

Image Plane
Eye Space Basis
Figure 10: Overlapping screen space bounding boxes ar e clipped

All pixels within the screen space bounding boxes are considered pixels that would generate
eyeray hits. The sum of the areasin pixels of al these boxesis divided by the total number of pixelsin
screen space. The resulting floating point number is referred to as the screen space density and represents
the fraction of eyerays that intersect with objectsin the scene.

The greatest contributor to error in the screen space density isthe error in the original world space
bounding boxes of each abject. This error isthen compounded when the bounding box is transformed into
eye space and bounded in two dimensions. We will later show how this error affects scene prediction as a
whole. It should also be pointed out that the screen space density does not distinguish between objectsin
the scene. It approximates the fraction of eyerays which hit any object, not objectsin particular.

If the bounding box an object occupies less than one pixel in areg, it isignored even though the
object may be hit by an eyeray. If a screen space bounding box reaches beyond the bounds of the image

plang, it is clipped to the image plane.
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5.24 Recursively Generated Rays

When an eyeray hits an object in the scene, the shading model may generate reflection and
transmission rays. Whether these rays are generated depends on user preferences and the properties of the
objects hit. When theseraysin turn hit other objects, more reflection and transmission rays are generated
in arecursive process. The user can set whether the rays are generated at all and, if so, what the maximum
depthisfor the recursive process. In addition, rayswill only be cast if the weight of the ray is above a user-
set minimum weight. Ray weight depends on the reflective and transmissive properties of the object
compounded with those of previous objects hit in the branch of recursion (see Figure 11).

When aray hits an object, if that object is reflective and its specularity constant, ks, multiplied by
the current recursion branch weight is above the user-set minimum, areflection ray iscast. If the object is
non-opaque and its transparency multiplied by the current recursion branch weight is above the user-set
minimum, atransmission ray is cast. Therefore, each ray-object intersection has the potential to recursively
cast both areflection and atransmission ray. Each intersection also casts one shadow ray tree for each
light. Shadow raysin the direction of alight source are recursively generated until either the light or an

opague object isintersected, or the ray does not intersect anything.
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6 Recursion Model

We will address our questions on the recursive process by first modeling the generation of shadow
rays as a branching process. Then we will model reflection and transmission ray generation as a separate
branching process. Finally, we will critique our models, exploring their assumptions, strengths, and

weaknesses.

6.1 Shadow Trees

We will begin with shadow trees since they are less complicated. If a shadow ray intersects a non-
opaque object, another shadow ray isrecursively generated in the same direction. The tree ends when aray

intersects the light at which it is aimed, an opague object, or nothing at all.

6.1.1 Probabilitiesand Assumptions

Let j = probability that a random ray, R, intersects a non-opaque object
Let s = probability that a random ray, R, intersects an opaque object

= fraction of ray-object intersection that are in shadow

The probability that a random ray, originating from the surface of one object, intersects a non-
opaque object is proportional to the density of non-opagque objectsin the scene. We model this probability
as the sum of volumes of non-opague objects divided by the volume of a bounding box of the scene. Since
aray isno more likely to intersect two overlapping objects than one object occupying the same volume of
space, the bounding boxes of all non-opaque objects are clipped in three dimensions against each other.
Thisresultsin a variable number of non-overlapping bounding boxes surrounding all non-opaque objectsin
the scene. The bounding box for the scene encloses all objects together, including the empty space between

them, and the light that corresponds to this shadow tree.
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j=A* (non-opaqgue object density) where A is a constant

Using the scenes given in appendix section 9.3, A was found empirically to be 3.93.

Using surface areas of objects to compute the density may be a more accurate approach.
However, we have chosen to use volumes because the bounding boxes must be clipped against each other.
The resulting variable number of bounding boxes will consist both of faces that represent part of the
exposed surface area, and part of the interior of an object or object group. In addition, some faces may be
only partially exposed (see Figure 12). Finding the appropriate surface area would be a non-trivial task.

We have chosen to use the volume instead.

Partially exposed
e T— — N\

/
\\\v
s \ \ v\

Figure 12: Clipped bounding boxes make surface area computation difficult



If there are closed objects in the scene, however, the situation is complicated. A ray-object
intersection with a non-opague object will spawn a shadow ray originating on the object’s surface and in
the direction of the object’ sinterior. If the object is closed, this shadow ray has a probability of 1 of
intersecting the same object again, aslong as the light is not inside the object.

Assuming all objects to be not only closed, but also convex, and no lights to be allowed inside of
objects, twice as many shadow rays will intersect non-opaque objects as predicted; one intersection isfor

exterior rays and oneisfor interior rays.

P =27
6.1.2 TheRecursive Branching Process

We will model the recursive process of shadow ray generation as a tree where each node
represents a ray-object intersection (see Figure 13). Let the random variable Y, ; represent the number of

children node k in generation g produces in generation g+1. VY,  isdefined as follows:

Prob(Y,, =0 =1-p forallk, g

Prob(Y,,=1) = p

Let, X, = Zkag
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Shadow ray reachesits light source, an opaque object, or misses

() Shadow ray intersects non-opaque object

() Shadow ray intersects non-opaque object

<> Shadow ray intersects non-opaque object

Q Eyeray, reflection ray, or transmission ray-object intersection

Figure 13: A sample shadow ray tree

6.1.3 PMF

We can find the probability the branching process will eventually die out.
Let u = Prob(Y, , =1
F,(n) = (F, ,(n))' = Prob(process will die out in n generations | E(X)) = 1)

F,o() = 9(F,,(n-1)

where g() = Z’ u, z“

>

Fw,o(]) = U,
F, (o) = the smallest root of the equation g(2) =z

9@ -z=u;+uz-z=0

uO
Z= :F_"O(Oo)z ]
1-u,
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We can find the probability mass function of our random variable X:

P(X,.,=0) = u,°= (1-p)*°

g+1

P(X5.,=1) = XU, 'u, = X,(1-p)“'p

g+1

6.1.4 Expectations

A more important value for our prediction, however, is the expected number of nodesin the

branching process. First, we will find the expected number of nodes in each generation, g.

Xg-1
E(Xg] = Z E[Yk,g—l]

=E(X,) " E(Y, 4 ) by the independence of X, Y

=E(Xy) * (E(V))®

For our random variable Y, E(Y) = p

E(X)) =E(Xo) ™ p°

Thesumof X; over al generationsi gives us the number of nodes in the branching process.

E®# nodes in shadow tree) = z E[X,]
9

Since at most one shadow ray could be generated for each non-opaque object in the scene, the number of
non-opague objects in the scene is the maximum depth of each shadow tree. Let d = the number of non-

opaque objectsin the scene.

d d
E# nodes in shadow tree) = ZE[XQ] = ZE[XO]* p?
GE GE
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The number of raysin generation 0 is 1 for each shadow tree.

d
E(# nodes in shadow tree) = Z pg
g:

Of course, p will be different for the shadow tree of each light source.
Let n = the number of shadow tree generated for agiven light source. Let | = the number of light sources.

Let p, = p for light source .

[ d
E(# nodes in all shadow trees) = Z[n* Z P, g]
|: g:

=n*Zgipig

Since one shadow tree is generated for each light source for every ray-object intersection resulting
from eyerays, reflection rays, or transmission rays. We have aready shown how to find the number of
eyeray-object intersections. Next we will find the number of reflection and transmission ray-object
intersections.

Before we do that, we will return to the question raised in section 6.3. When predicting how long
we expect a call to shadowing() to take, we must find the number of times the loop is run by estimating the
number of non-opague objects between the point we are shading and the light source given as an argument.
To do so, we will find the generation g in which the sum of all shadow treesto a given light have less than

1 node. Thevalueisthen averaged across light sources.

Let |

# of light given as an argunent to shadow ng

Let d = the nunber of non-opaque objects in the scene (sane as above)

Let n t he nunber of shadow tree generated for a given light source

(sanme as above)

i nt nunmNodes = 1;
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g =0;
i nt nurmLoops = O;
for (int |=0;I<nunLights;|++) {
while ((nunNodes=1) &&(g<d)) {
nunmNodes = n*p,9;
g++,
}
nurmLoops += g-1;

}

nurmLoops /= nuniLi ghts;

6.2 Reflection/Transmission Trees

The recursive process generates many calls to basic operations and greatly affects the rendering
time of the scene. For every reflection and transmission ray cast, several operations are called. Which
operations are called further depends on whether the recursive ray intersected an object in the scene.
Modeling the recursive reflection and transmission raysis crucial asaresult. We will model this recursion

as a branching process.

6.2.1 Probabilitiesand Assumptions

For a random ray, R, and a random object, O,
r = Prob(O is reflective)
t = Prob(O is non-opaque)

h = Prob(R hits an object)

Given that we have hit an object, O, and are computing the radiance at the point of

intersection:
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p = Prob(a reflection ray is cast and that ray hits an object)
=r*h
q = Prob(a transmission ray is cast and that ray hits an object)

=t*h

The probability that an object that is hit isreflective is proportional to the relative size of reflective
objects as compared to all objects. We model the probability that a given object is reflective by finding the
percentage contribution of reflective objectsto overall object volume. The volumes of objects are
approximated by the volumes of their bounding boxes. Although surface areas may again be more
appropriate, and bounding boxes are not clipped against each other this time, we will continue to use

volumes for consistency.

ks, = specularity constant of object i; 0<ks<1

vol, = volume of bounding box of object i

r=(z(voli * ceil (ks))) / zvoli

Similarly for fransmissive objects:
frans, = fransparencyof object i; 0<transparency <1

vol, = volume of bounding box of object i

t=C3 (vol, *ceil trans ))) /  vol,

The probability that arandom ray, originating from the surface of one object, intersects another
object is proportional to the density of objects in the scene, assuming that the camerais not completely
enclosed by objects or inside an object. We model this probability as the sum of volumes of all objects
divided by the volume of a bounding box of the scene. Whereasin the previous case for r and t we did not

careif object bounding boxes overlapped, we cannot allow that here. A ray is no more likely to intersect
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two overlapping objects than one object occupying the same volume of space. The bounding boxes of all
objects are clipped in three dimensions against each other, resulting in a variable number of non-
overlapping bounding boxes surrounding all objectsin the scene. The bounding box for the scene encloses

all objects together, including the empty space between them.

h =C * (object density)

If there are closed objects in the scene, however, the situation is complicated. A ray-object
intersection with a sufficiently transparent object will spawn atransmission ray originating on the object’s
surface and in the direction of the object’ sinterior. If the object is closed, thistransmission ray has a
probability of 1 of intersecting the same object again.

Furthermore, if the object is also reflective, then the next hit will spawn areflection ray pointed
toward the interior of the object. Reflection rays will bounce around the interior of the object with a
probability of 1, also generating more transmission rays, until the maximum recursion depth is reached. |
will use the fact that p is proportional to the density of objects that are both reflective and transmissive to
model this effect.

The object density constant, C, has been included in constants A and B.

p=A*r* (object density + density of reflective and transmissive objects)
Using the scenes given in appendix section 9.3, A was found empirically to be 0.75.
q=B"1" object density

Using the scenes given in appendix section 9.3, B was found empirically 1o be 2.74.

6.2.2 TheRecursive Branching Process

We will model this recursive process as a tree where each node represents a ray-object intersection
(see Figure 14). Let the random variable Y, ; represent the number of children node k in generation g

producesin generation g+1. Y, . is defined as follows:
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Prob(Y,, =0 =1-p-qg+pg forallk, g
Prob(Y,, =1 =p+qg- 2pqg

Prob(Y,,=2) =pqg

Here, p can be thought of as the probability of spawning a node reflectively, while g can be

thought of as the probability of spawning a node transmissively. Let,

X, = ZYk’g_l = # of nodes in generation g

We can find the probability the branching process will eventually die out.

Let u = Prob(Y, =1
F,(n) = (F, ,(n))' = Prob(process will die out in n generations | E(X)) =1)

F, oM = g(F,,(n-1)

where g() = z u, z“

>

Fw,o(]) = U,
F, (o) = the smalles root of the equation g(z) =z

g@-z=u,+uz+uZ-2z=0

Z= (] - uw i\/(:I'_ul)2 —4U2U0 ] /2U2:F1,0(°°)
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Maximum Ray Depth =3

X,=8
refl
X,=
X,=2
X,=1 transmission reflection
Figure 14: Therecursive branching process
6.2.3 PMF

We can find the probability mass function of our random variable X:

P(X_,,=0) = U,

gl

POC,,=1) = XU, 'y,

g+l

X!
P(Xg+1=2) =)(guo><g—wu2 g9 OX972 12
2A(X, - 2)
k
floor (<)
2 X A | |
P(X,..=k) = : 9 __u'u k=2 )Xok
g .; (k—|)!(xg_(k_|))! 2t 0

6.2.4 Expectations

refl
‘ = Ray-Obj Hit

— =Ray

A more important value for our prediction, however, is the expected number of nodesin the

branching process. First, we will find the expected number of nodes in each generation, Q.
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Xg-1
E(Xg] = Z E[Yk,g—l]

=E(X,) " E(Y,4) by the indepence of X, Y

=E(Xy) * (E(V))®

For our random variable Y, E(Y) =p + Q.

E(X)) = E(X) ™ (p+a)°

Thesumof X; over al generationsi gives us the number of nodes in the branching process.

E# nodes in process) = z E[X,]
¢}

6.2.5 Depth

The next question is how many generations will there be in our branching process?
6.25.1 User-set Maximum depth and Minimum ray weight

The user sets the maximum depth of the recursive ray generation process (MRD). This number is
the upper bound for the number of generations in the process. However, branches may die out sooner. As
reflection rays are bounced around the scene, they lose energy unless the objects hit are perfect reflectors.
As transmission rays pass through objects, they lose energy unless the objects are perfectly transparent.
The loss of energy is simulated by the lowering of the weight of the ray. When aray’s energy islow, it will
not contribute greatly to the radiance of the next object it hits. To prevent unnecessary computation, the
user can set the minimum value for arecursiveray’sweight. If theray’s weight is below the lower bound,

recursion is stopped.



6.2.5.2 Average Scene Weights

In order to predict at what depth aray will fall below the lower bound on its weight, we must
estimate the specularity constants and transparencies for objects the ray hits. We do so by finding a surface

area weighted average for the scene's specularity and transparency.

ks; = specularity constant of object i
vol; = volume of bounding lbox of object i

scene reflectivity = ( z (ks *vol.)) / Z vol.

frans; = transparency of object i

vol. = volume of bounding box of object i

scene transparency = ( Z (trans *vol.)) / z vol,
I 1

Objects with more volume will, on average, be hit more often than those with less, so their values
should contribute more to the scene’s average. All specularity constants and transparencies are between 0
and 1, inclusive so the scene averages are as well.

6.2.5.3 Finding a Minweight Bounded Depth

If the rays of arecursive branch all strike objects with ks = fransparency = w, we can

determine the depth at which the accumulated weight will fall below the minimum ray weight.

minweight bounded depth = log , (Minweight)
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The overall maximum ray depth is given by:
MRD = minimum(minweight bounded depth, user-set MRD preference)

We now have:

MRD

E®# nodes in process) = Z E[ X,]1* E[Y]°
g:

6.2.6 Relating the Branching Processto Our Questions

Since each node represents a ray-object intersection, the nodes in the 0" generation represent hits resulting

from eyerays. Therefore,

MRD MRD

E# nodes in process) = Z E[eyerayhits]* (p+0q)° = Z E[eyerayhits]* (r * h+t* h)¢
g= g=

Every node in the tree represents a ray-object intersection. Generations 1 through MRD represent

reflection and transmission ray hits.

Reflection ray hits = (E(# nodes in process) — E(X))) * P
p+q
Transmission ray hits = (E(# nodes in process) — E(X,)) * _a
+q

How many reflection and transmission rays were cast that did not intersect any objects? Since every node

has the potential to cast both areflection and transmission ray, if a node does not generate two children for
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the next generation, either one or more of the rays were not cast or they were cast and did not intersect any

objects. If we assume both types of rays are cast from every node,

1_
Reflection ray misses in generation g | all nodes cast both ray types = E(X_,) * +p
p+q
- o . . 1-q
Transmission ray misses in generation g | all nodes cast both ray types = E(X ) "
p+q

A node casts areflection ray if two conditions are true:

1. theobject hit represented by the node is reflective (ks > 0)

2. giventhe object isreflective, the ray weight will be above a minimum user-set preference
A node casts atransmission ray if two conditions are true:

1. theobject hit represented by the node is non-opaque (fransparency > 0)

2. given the object is non-opaque, the ray weight will be above a minimum user-set preference

For the moment, we will ignore the second condition for both ray types. Since we have already found the

probability arandom object is reflective, r, or non-opaque, 1,

Reflection ray misses in generation g = E(X_,) * —P. r
p+q
Transmission ray misses in generation g = E(X_,) * —9. t
p+q

Thisgives us:

MRD l_ p
Reflection ray misses = Z E[X,.]* *r
= p+q
MRD 1_ q . t

Transmission ray misses = Z E[Xy.]*
g:

+q

The total number of rays cast become:
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Reflection rays cast = Reflection ray hits + Reflection ray misses

Transmission rays cast = Transmission ray hits + Transmission ray misses

We will show, however, that thisis not the whole story.

6.2.7 Passing the minimum weight requirement for rays

In our branching process, however, ray branches may be made up of nodes generated from both
reflection and transmission rays, but the minweight bounded depths are different for each type of ray since
their average scene weights differ. At any depth in the recursion, the ray may accumulate reflectivity or
transparency. We cannot merely find an overall minweight-bounded depth by averaging the scene’s
reflectivity and transparency. If the reflectivity were high and the transparency were low, we would expect
arecursive process with a high depth, made up of both ray typesin the lower levels, but only reflection rays
in the higher levels. Averaging the scene’s reflectivity and transparency would result in a predicted process
of medium depth consisting of reflection and transmission rays equally throughout. Since reflection and
transmission rays call separate procedures, which take different amounts of time, predicting the type of ray
that generates each ray-object intersection isimportant.

To find the expected number of ray-object intersectionsin generation g, start with the number of
nodesin generation g-1. Find how many of these start from intersections with reflective and/or non-
opaque objects. Then find how many of those pass the minweight requirement. Finally, predict how many

cast rays will intersect other objects.

6.2.8 Assumerayspass minweight in pairs

For now, we will ignore branches where one type of ray passes and the other fails the minweight
test. Suppose we know, for any generation g, how many branches, S_, could survive the minweight test.

h Mg

We can find the fraction that survivein any generation Q:
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fraction of survivorsin g =

S, = E(X,) since all eyerays have weight 1 2 minimum ray weight

The expected number of ray-object intersectionsin any generation does not differentiate between those
whose rays pass the minweight test and those whose rays do not pass the minweight test. Therefore, we

can say:

E(X,) = E(eyeray hits)

S,
2*

E(X)) =E(X) ™ (p+a) ™

&

S,
2% S,

E(X) = E(X) ™ (p+a) ™

E(X) = E(X,) " f—
(X) = E0%,) " (P — 5.

6.2.9 Finding S;for all generationsg

If the minweight bounded depths using both scene averages are above the user-set MRD
preference, all rays that are attempted will pass the minweight test since the user-set bound will be reached
before the minweight bound. If not, some will fail the minweight test. We can find which process
branches survive and which die out due to the minweight bound using our average reflectivity and
transparency. Suppose that the scene reflectivity is greater than the transparency. Transparent rays will
then push the weight of a branch toward the minimum ray weight faster than reflective rays. Let k equal

the number of reflective rays that lower the branch weight as much as one transparent ray. Let r equal the
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number of nodes in the current branch generated by reflection rays and let t equal the number generated by
transmission rays, wherer + t = g, the current generation (see Figure 15). Let rIMRD be the maximum
number of reflection rays cast in arow before the minweight test fails. rMRD can be found by setting w =
avekKS and using the equationsin section 6.2.5.3 to find how many aveK S-weighted rays will be needed to

fall below the minweight. tMRD can be found similarly using w = aveTrans.

3
1
4

O

« =
[

Reflection ray

/

Reflection ray

Transmission ray

CY ()
NN

Reflection ray

O

Eyeray hit

Figure 15: Branch example; g=r +t

aveKS = scene average reflectivity
aveTrans = scene average transparency
i f (aveKS>aveTrans) { // case 1

kK = | 0gavexs( @aveTr ans)
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if ((r+(k*t)) > rMRD) then ray for generation r+t fails
m nwei ght test

}

el se {// case 2
kK = | 0Qaverrans( aveKs)
if ((t+(k*r)) > tMRD) then ray for generation r+t fails
nm nwei ght test

}

Incase1,if ((r + (k*t)) > r MRD) thentheray for the current generation will fail the
minweight test, whether that ray was reflection and contributing to r, or transmission and contributing to 1.
If k=1, both types will fail the minweight test at the same node and the branch will stop. When (k>1), if a
node’ s transmission ray fails the minweight test but the reflection ray passes, no further nodes in the branch

will be able to cast atransmission ray; they will al fail the test aswell. Therefore, the branch becomes a

simple tree with random variable Y, , , the number of offspring of node k in generation n: (assuming case

1 from the code above)

Prob(Y,,=0)=1-p

Prob(Y,, =1) =p

We will refer to thistype of tree as singly-recursive because each node can generate, at most, one child for
the next generation. The first node in the singly-recursive tree is what would have been the reflectively
generated node in generation g of our branching process (see Figure 16). The number of nodesin the

subtreeis:

depth

E# nodes in a singly-recursive tree) = Z X, = z E[X,]* E[Y]' = z E[X,]* p' = Z p'
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Figure 16: Exampleillustrating Sy and singly-recursive trees

How do we find the total number of branches in a generation that fail the minweight test? n, is
the number of rays cast from generation g-1 which fail the minweight test before being able to create nodes
in generation g. The branches which have died out due to the minweight test by generation g are those
whose most recent node was created by atransmission ray and who fail the test (r+kt > rMRD). If (r+kt
== MRD+1), no singly-recursive trees will be generated. If (r+(k-1)t <= rMRD) and (r+kt>rMRD), then
one transmission ray put the weight over the top and a singly-recursive tree will be generated.

When we encounter a singly-recursive tree, to what depth to we allow it to extend? The upper
bound would be the remainder of the user-set maximum ray depth. Note that the current generation will
become the 0™ generation of the singly-recursive tree. 1t may be forced to die out before the user-set
maximum depth by the minweight requirement. If one transmission ray pushed (r+kt) beyond MRD to
generate the singly-recursive tree, then r+(k-1)1 would be the current weight of the branch that becomes the
singly-recursive tree’ sinitial weight. The singly-recursive tree will fail the minweight test in (rMRD -
(r+(k-1)1) levels. Therefore, the singly-recursive tree's depth becomes the minimum of the user-set

maximum depth and (fMRD - (r+(k-1)1)).
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The number of nodes in the 0™ level of the singly-recursive tree is equal to the number of
combinations of r and t for which (r+kt > MRD) and r+t = g. When a branch fails the minweight test,
whether or not singly-recursive trees are generated, the number of branches that fail isrecorded inn, to

subtract from S, as defined above.

MRD = max(r MRD, t MRD)
k = max(l og ks (aveTrans), | 0Qaverrans(aveks))
ng = 0;
for (int i=0;i<=g;i++) {
failweight =i + k*(g-i);
if (failweight == MRD+1) {

9
Cil(g-i)

ng +

}
else if ((failweight - k) <= MRD) &&

(failweight > MRD)) {

S (Tt L
g - !
i'((g-2-1)!
(g-1!
E = ;
1%l i'((g-2-1)!
d = mni mum (MRD- (failweight-k)), (userset-
g+1));
d
Si ngl yRecur si veNodes += ZE[Xg_l]* maxP;
0=
}
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This method breaks down, however, when one or more of the scene averagesis zero. If aveks >
aveTrans, aveTrans would have to be zero for k to beinfinite, all the branches in the process would be
reflection subtrees, and n, = X,. If only aveKS were zero, all the branchesin the process would be
transmission trees. If both the scene averages were zero, there should be zero nodesin our branching

process. These cases are taken care of separately. For example, in the case when all branches are

reflection subtrees:

if (g < mnweight) {
Sy = 0 for all g =0 to user-set nmaxi num depth
d = m ni mun(rMRD, userset);

E[ Xo)] = eyeray hits;

d
Si ngl yRecur si veNodes = ZE[Xg_l]* maxP;
g:

6.2.10 Modeling branching depth more accurately

We have shown that not all of the expected nodes in our branching process will necessarily be
created. Some will fail the minweight test. The number that pass the minweight test in generation g is

given by:

X,=@"X.)-n,



We will handle the singly-recursive trees as processes separate from our branching process and
add them back in later. Using our definition before that S, gives the number of branches in generation g

that could have survived the minweight test,
S,=@2%S,.)-@"nY
where 5, = E(X)) and n, is found using the code segment above

user —setMRD

S
E# of nodes in doubly-recursive free) = Z E[ X, ]1*(p+a)* *—g
g= 2 Sg—l

where E(X,) is fixed at the numlber of eyeray hits

We have from above,

Reflection ray hits = (E(# nodes in process) — E(X))) * P
p+q
Transmission ray hits = (E# nodes in process) — E(X,)) * %
p+q

Since we have handled our singly recursive trees separately, these equations now become,

L] + E(# of nodes

pP+q

Reflection ray hits = ((E# nodes in doubly-recursive tree) — E(X))) *

in singly-recursive reflection trees)

MRD Sg
=S E[X,.]* p* +SR
g-1 '
QZI 2* S,
Transmission ray hits = ((E(# nodes in doubly-recursive tree) — E(X)) * i ) + E(# of nodes
p+q

in singly-recursive fransmission trees)
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MRD S

= ZE[Xg_ll* q*

—— SR,
g-1

2* S
Either al singly-recursive trees will be generated by reflection rays, or al will be generated by transmission
rays.

MRD
Either SR = an and SR, =0
g:

MRD
or SR =0 and SR, = an
g:

We also have from above:

MRD l_ p
Reflection ray misses = Z E[X,.]* *r
= p+q
MRD l_ q
Transmission ray misses = Z E[ X g_1] *——*t
&= p+q

We must also add in the misses from singly-recursive trees. For asingly-recursive tree with:
Prob(Y,,=0) = 1-p
Prob(Y,, =D =p
The number of misses for a given generation of the singly-recursive tree will be the number of nodes of the
previous generation multiplied by the probability that a node produces aray and the probability aray
produced will not generate another node:
depth-1

E(# misses in a singly-recursive free) = Z E[X.]*@-p)*r

Using the result to obtain reflection and transmission ray misses:
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Reflection ray misses = Z E[X 1%
g:

MRD 1_p*

I + (expected number of misses for singly-

recursive reflection trees)

MRD

1_
Transmission ray misses = Z E[ X g_1] * Tq*t + (expected number of misses for singly-
9= p+q

recursive transmission trees)

6.3 Assumptions, Strengths, and Weaknesses of the Modéel

Assumptions

Strengths

Weaknesses

All objectsareclosed

All objects ar e convex

No light sourcesreside within objects
Camera cannot reside within an object

Camer a cannot be completely enclosed by objects

Handles arbitrary scenes

Handles arbitrary maximum recursion depths

Large bounding box error is magnified through model

Relative object surface areas may not be well approximated by volumes

The model we have developed involves many averages and approximations. Values for the

probability of arandom ray hitting an object, or the probability of arandom object being reflective or

transmissive cannot be found with any real degree of accuracy. What we have hoped to capture through the
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model, however, is the relative proportions of these probabilities for different scenes. When ascene hasa
high density of objects, we expect it to have relatively more recursive ray-object intersections. Although
the number predicted may not be accurate, the number should be greater than for a scene that is less dense.

Averaging scene reflectivity and transparency is another large source for error. However, if the
scene contains enough objects, these values may be good approximations for general recursive behavior.

Using bounding boxes to represent objects creates error that depends on the “fit” of an object toits
bounding box. How much empty space is |eft between the two? We compound this error when using
volumes where surface areas may be more appropriate.

In addition, bounding boxes that have extremely small lengths along one axis with respect to the
other two will create large error in the model. The surface areas of such bounding boxes will not be well
approximated by their volumes. The recursion model does not work well for object groups whose relative
surface areas are not well approximated by volumes because we have used volumes in our model where
surface areas are more appropriate (e.g. densities of reflective, transmissive, or non-opaque objects).

The real strength to the model isits ability to handle a wide range of scenes. Although there are
certain restrictions to where cameras and lights may be placed, these restrictions are not very stringent.
Unless a closed room is being rendered, the restrictions will most likely not apply to the scene. Objects that
have large surface areas but small volumes can always be broken up into smaller objects with a more
desirableratio.

A comparison of collected results with modeled results at each depth for the recursion model is

given in section 9.5.
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7 Results

The model we have developed was used to predict rendering times for eleven scenes. A
description of each scene can be found in the appendix, section 9.3. Section 9.4 contains the baseTime
values used for the basic operations during data collection. Keep in mind that the baseTime values for
getObjectsAndLights, ComputeEyeRay, and RayCast were determined individually for each scene. All
error results in this section are the percentage error of the prediction value from the collected value during

rendering.

Total Time Error
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Figure 17: Prediction error of total time spent rendering by scene

Figure 17 displays the error of our prediction for the total time to render each scene. Scene 1
through 6 have large total time error because they suffer from high RayCast() baseTime error, as can be
seenin Figure 18. The RayCast() baseTime for these scenes was predicted to be zero because the timing

function used in not accurate enough to capture small timeintervals. Asaresult, the timing function itself
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takes up alarge percentage of the measured time, artificially raising the baseTime a significant amount.
Although the scenes were small enough that RayCast() did not account for the majority of the rendering
time, it did account for alarge percentage. Therefore, itstime per call had alarge effect on total rendering

time.

RayCast baseTime error
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Figure 18: Prediction error of RayCast() baseTime by scene

Scene 1 also had high setPixellmmed() baseTime error, shown in Figure 19. In small scenes, such
as scene 1, setPixelImmed() accounts for the majority of time spent in rendering, so itstime per call also
has alarge effect on total rendering time. The effects of this error can be seen in the total time error for

scene 1 in Figure 17, which is much higher than scenes 2 through 6.
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setPixellmmed baseTime Error
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Figure 19: Prediction error of setPixellmmed() baseTime by scene

Scene 11 also had a high total rendering time error. The scene, comprised of cylinders and cubes,
depicts a Greek temple. The cubes, making up the floor and roof, are large and flat. Due to their shape, the
cubes’ surface areas cannot be approximated well using their volumesin variable calculation. The cubesin
the scenes were transparent, while the cylinders were reflective. The transparent cubes’ inaccurate surface
area approximations created large error in density of non-opaque objectsin the scene, greatly affecting the
number of expected shadow rays cast. The result was a 100% error in shadow rays predicted, as can be
seen in Figure 23.

Scene 10 incurred high total rendering time error due to itslarge, highly reflective, highly
transparent sphere. The large amount of bounding box volume error for spheres created error in all density
calculations. This error had the greatest effect in calculating transmissive object density for transmission
ray regeneration probability. All other objectsin the scene are reflective, opaque cubes, which brought
down volume error for reflective object density calculation. The volume of transmissive objects, however,
was greatly overestimated since only the sphere contributed the to value. Figures 22, 25, and 27

demonstrate the high transmission ray prediction error for scene 10. The large reflection ray-object misses
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error for scene 10, shown in Figure 26, is mostly likely aresult of the layout of the scene. The cubes are
tiled as afloor and adjoining wall, creating a contiguous surface that reflects more rays than would be

expected simply by examining object density within the scene.

EyeRay Hits Error
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Figure 20: Prediction error of eyeray hitsby scene

Examining Figure 20, it can be seen that scenes containing more spheres and cones, and less cubes
and cylinders, incurred higher error in predicting eyeray hits. Thisis due to the fact that bounding box
approximations are less accurate for spheres and cones than they are for cubes and cylinders. Scene 2,
which consists entirely of spheres, incurred the greatest eyeray hit prediction error.

The error in eyeray hit prediction directly correlates with the error in reflection and transmission
ray predictions, as can be seen in Figures 21, 22, 24, 25, 26, and 27. Recall that the number of eyeray hits
is used to determine the number of nodesto start with in generation O of the reflection/transmission ray
tree. The number of reflection/transmission ray tree nodesis then used to determine the number of nodesin
generation O of the shadow trees. Similar relative error percentages between scenes can be seen for shadow

raysin Figure 23 asfor the reflection and transmission ray errors.
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Scenes 9, 10, and 11, however, had higher errors for transmission ray prediction than would be
expected form the eyeray hit prediction error, as seen in Figure 22. These scenes contained fewer
transparent objects and/or lower object transparencies. What resulted was higher numbers of predicted
transmission rays than were actually generated. The reason isthat the transmission ray regeneration
constant, empirically determined by the average constant found across the scenes on previous trial
renderings, was set higher than it should have been for these scenes. Other scenes required higher
transmission regeneration constants, pulling the average up. Scenes 9, 10, and 11, with fewer transparent
objects and/or lower object transparencies, were more affected by the error in this constant.

The error in the transmission ray generation constant affected the transmission ray misses
prediction for scene 9 very heavily, as can be seen in Figure 27. Far more misses were predicted than
occurred. Why the transmission ray misses were more heavily affected than the hitsis most likely due
simply to the layout of the scene.

In general, reflection ray predictions fared better than transmission ray predictions, and both fared
much better than shadow ray predictions. Asseen in Figure 23, shadow ray predictions suffered most
because the number of initial nodesin all shadow trees was based on the number of nodesin the
reflection/transmission ray tree. Therefore, error from the reflection/transmission ray tree was carried over
and compounded through the shadow ray tree model, adding to the unique error sources of shadow ray
trees.

The relative errors of reflection and transmission ray prediction were most likely due to differing
errorsin regeneration constants. The constants’ errors arose due to differing scene layouts and object
reflection and transmission properties. Examining the model, we would have expected higher error in the
reflection ray prediction because of reflection rays that bounce endlessly around inside of objects that are
both reflective and transparent. Apparently, the empirical reflection ray generation constant captured this

effect very well.
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Figure 22: Prediction error of transmission rays cast by scene
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Figure 23: Prediction error of shadow rays cast by scene
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Figure 24: Prediction error of reflection ray-object hits by scene
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Figure 27: Prediction error of transmission ray-object misses by scene
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8 Conclusions

The error in rendering time predictions for the sample set of scenes ranged from 5.5% to 50.4%.
Error sources included object space bounding box error, screen space bounding box error, and
approximating surface areas with volumes. Determining ray-object intersection probabilities was the
greatest source for error as aresult of the constants of proportionality.

One way to reduce error would be to collect many possible values for constants of proportionality
in ray-object intersection probabilities. Each value would be used for the scene whose characteristics most
closely matched those used to determine the constant empirically. Another way to reduce error would be to
pre-compute object surface areasto be used in place of object bounding box volumes. Screen space
bounding box error could be eliminated by casting all eyerays, then predicting recursive ray generation.
The number of nodesin the 0™ generation of the reflection/transmission branching process would be
accurate, although casting eyeraysis atime consuming procedure. This method would only be useful in
scenes that generate far more recursive rays than eyerays, making eyeray computation time small in
comparison to total rendering time.

Asit is enhanced, the prediction model will be avaluable tool in coordinating large rendering
projects, as well as designing scenes to maximize quality while minimizing rendering time. The latter
application is especially important for interactive ray traced applications which require a guaranteed frame
rate of at least 20 frames/sec. To guarantee this frame rate, image quality must be sacrificed. Special
rendering effects such as reflection and refraction may have to be cut out or fewer samples may have to be
computed per pixel. To choose which piece of the computation to truncate or which algorithms and data
structures to use, the application must have an idea not only of what the user values in image computation,
but also how much time each computation would take. That way, the application can decide which aspects
of computation are worth cutting out or changing slightly because they would save the most time while

maximizing user preference and image quality.
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9 Appendices

9.1 baseTime Reconstruction by Basic Oper ation

What followsisalist of how the baseTimeisfound for each of the eighteen basic operations.

get Obj ect sAndLi ght s

The time spent varies greatly from scene to scene.

Makeldi tter

The time spent is constant across calls.

Conput eEyeRay

The time spent varies greatly from scene to scene.

RayCast

The time spent varies greatly from scene to scene.

Shade

Callstake longer if the argument ray intersects an object.

Backgr oundMap

The time spent is constant across calls.

Refl ectionDirection

Thetime spent is constant across calls.
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Transni ssi onDi recti on

The time spent is constant across calls.

Ref | ecti onRadi ance

Callstake longer if the current weight of the ray is above the user-set minimum ray weight.

Tr ansni ssi onRadi ance

Callstake longer if the current weight of the ray is above the user-set minimum ray weight.

Shadowi ng
The function is mostly made up of aloop. The number of timesthe loop isrunisequal to the
number of non-opague objects between the point we are shadowing and the light given as an argument. We

will predict this number in the next section.

Angul ar Att enuat i on

The time spent is constant across calls.

Di st anceAtt enuati on

The time spent is constant across calls.

Specul ar Radi ance

The time spent is constant across calls.

D f f useRadi ance

The time spent is constant across calls.

Anmbi ent Radi ance

The time spent is constant across cals.
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Em ssi onRadi ance

Thetime spent is constant across calls.

set Pi xel | med

The time spent is constant across calls.
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9.2 Count Reconstruction by Basic Oper ation

What followsisalist of how the number of callsin each computation segment is found for the

eighteen basic operations.

get Obj ect sAndLi ght s
Thisfunction is called only once in the IMPORT segment of computation, regardless of the scene

being rendered.

Makelditter
If samples are jittered non-randomly, this function is called once for the scene to determine grid
pattern of samples within each pixel. Thiscall is considered part of the BUILD segment of computation.
If samples are jittered randomly, this function is called once for each pixel to determine sample

positions. These calls are considered part of the COMPUTEEY ERAY segment of computation.

Conput eEyeRay
Thisfunction is called once for each ray cast from the camera, through the image plane, into the

scene. Thereisone cal inthe COMPUTEEY ERAY segment of computation for each sample taken.

RayCast

Thisfunction is called once for each ray cast of every type. Itiscalled for every eyeray inthe
QUERYEYERAY segment of computation. It is called for every shadow ray in the
QUERY SHADOWRAY segment of computation. Itis called for every reflection ray in the REFLECTION
segment of computation. It iscalled for every transmission ray in the REFRACTION segment of

computation.
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Shade
Thisfunction is called once in the SHADINGMODEL segment of computation for each sample.
Shade is called oncein the REFLECTION segment of computation for each reflection ray cast,

and once in the REFRACTION segment of computation for each transmission ray cast.

Backgr oundMap
Thisfunction is called once for every call to shade whose ray argument has not intersected any
object. That meansit is called once for every ray from the camera through the image plane
without a hit. These are part of the SHADINGMODEL segment of computation.
BackgroundMap is aso called once in the REFLECTION segment of computation for every
reflection ray without a hit, and once in the REFRACTION segment of computation for every

transmission ray without a hit.

Ref |l ecti onDirecti on

Thisfunction iscalled once in the REFLECTION segment of computation for every reflection ray

cast.

Transm ssionDirection
Thisfunction is called once in the REFRACTION segment of computation for every transmission

ray cast.

Ref | ecti onRadi ance
Thisfunction is called oncein the REFLECTION segment of computation for every call to shade

whose ray argument has intersected an object.

Transni ssi onRadi ance

Thisfunction is called oncein the REFRACTION segment of computation for every call to shade

whose ray argument has intersected an object.
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Shadow ng

Inthe COMPUTEEY ERAY segment of computation, this function is called once for every light
when shade is called with a hit. Inthe REFLECTION segment of computation, this function is called once
for every light when areflection ray hits an object. Inthe REFRACTION segment of computation, this

function is called once for every light when atransmission ray hits an object.

Angul ar Att enuati on

Inthe COMPUTEEY ERAY segment of computation, this function is called once for every spot
light when shade is called with a hit that is not in shadow. Inthe REFLECTION segment of computation,
thisfunction is called once for every spot light when areflection ray hits an object and that hitisnotin
shadow. Inthe REFRACTION segment of computation, this function is called once for every spot light

when atransmission ray hits an object and that hit is not in shadow.

Di stanceAttenuation

Inthe COMPUTEEY ERAY segment of computation, this function is called once for every local
and spot light when shade is called with a hit that is not in shadow. Inthe REFLECTION segment of
computation, this function is called once for every local and spot light when areflection ray hits an object
and that hit is not in shadow. Inthe REFRACTION segment of computation, this function is called once

for every local and spot light when a transmission ray hits an object and that hit is not in shadow.

Di f f useRadi ance

Inthe COMPUTEEY ERAY segment of computation, this function is called once for every light
when shade is called with a hit that is not in shadow. Inthe REFLECTION segment of computation, this
function is called once for every light when areflection ray hits an object and that hit is not in shadow. In
the REFRACTION segment of computation, this function is called once for every light when a

transmission ray hits an object and that hit is not in shadow.
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Specul ar Radi ance

Inthe COMPUTEEY ERAY segment of computation, this function is called once for every light
when shade is called with a hit that is not in shadow. Inthe REFLECTION segment of computation, this
function is called once for every light when areflection ray hits an object and that hit is not in shadow. In
the REFRACTION segment of computation, this function is called once for every light when a

transmission ray hits an object and that hit is not in shadow.

Ambi ent Radi ance

Inthe COMPUTEEY ERAY segment of computation, this function is called once every time
shade is called with a hit. Inthe REFLECTION segment of computation, this function is called once every
time areflection ray hits an object. Inthe REFRACTION segment of computation, this functionis called

once every time atransmission ray hits an object.

Eni ssi onRadi ance

Inthe COMPUTEEY ERAY segment of computation, this function is called once every time
shadeis called with ahit. Inthe REFLECTION segment of computation, this function is called once every
time areflection ray hits an object. Inthe REFRACTION segment of computation, this functionis called

once every time atransmission ray hits an object.

set Pi xel | med

Thisfunction is called once for every pixel to be displayed.
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9.3 Scenes Used to Collect Data

All scenes were rendered with the following settings:
Number of Samples: 93564
Jittering: non-random grid
Maximum Ray Depth: 4

Minimum Ray Weight:  0.01

Scenel
The sceneis comprised of six cubes of varying reflectivity and transparency, and three light
sources. Objects are loosely distributed in space.

The total measured rendering time was 14.39 seconds.

Scene 2
The sceneis comprised of six spheres of varying reflectivity and transparency, and three light
sources. Objects are loosely distributed in space.

The total measured rendering time was 10.93 seconds.

Scene 3
The scene is comprised of two cubes, two spheres, and two cones of varying reflectivity and
transparency, and three light sources. Objects are distributed with low density.

The total measured rendering time was 11.21 seconds.

Scene 4
The sceneis comprised of six cubes and three light sources. The cubes had high reflectivity
values and low transparency values. Objects are loosely distributed in space.

The total measured rendering time was 11.31 seconds.
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Scene 5
The sceneis comprised of six cubes and three light sources. The cubes had low reflectivity values
and high transparency values. Objects are loosely distributed in space.

The total measured rendering time was 12.3 seconds.

Scene 6
The sceneis comprised of six cubes and three light sources. The cubes had high reflectivity
values and high transparency values. Objects loosely distributed in space.

The total measured rendering time was 12.41 seconds.

Scene 7

The sceneis comprised of 43 objects of varying reflectivity and transparency, and one light
source. Object types include spheres, cubes, cylinders, spheres, and face sets, and are closely packed in
space.

The total measured rendering time was 54.7 seconds.

Scene 8

The sceneis comprised of 29 objects of varying reflectivity and transparency, and one light
source. Object types include spheres, cubes, cones, cylinders, and face sets. Objects are loosely distributed
in space.

The total measured rendering time was 20.43 seconds.

Scene 9

The sceneis comprised of 14 objects of varying reflectivity and transparency, and one light
source. Object types include spheres, cubes, cones, and cylinders. Objects are closely packed and
transparencies of objects are generally low.

The total measured rendering time was 17.36 seconds.
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Scene 10

The sceneis comprised of 19 objects and one light source. One of the objectsis alarge sphere
that is both highly reflective and highly transparent. The other objects are opague, non-reflective cubes.
Objects are closely packed in space.

The total measured rendering time was 28.01 seconds.

Scene 11

The sceneis comprised of 26 objects and one light source. Most of the objects are opaque,
reflective cylinders. Three of the objects are transparent, reflective cubes. Objects are closely packed in
space.

The total measured rendering time was 30.48 seconds.
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9.4 baseTime Results

Here are the baseTimes for each basic operation. The times were found empirically using the
scenesin section 9.3. Time values are in seconds. Keep in mind that the baseTime values for

getObjectsAndLights, ComputeEyeRay, and RayCast were determined individually for each scene.

Makelditter _baseTi me_reg = 0. 000000
Makelditter baseTi ne_rand = 0. 000000
Shade_baseTi ne = 0. 000004

Backgr oundMap_baseTi ne = 0. 000003

Refl ectionDi rection_baseTi ne = 0. 000002
Transmi ssionDirection_baseTime = 0.000001
Ref | ecti onRadi ance_baseTi ne = 0. 000003
Transni ssi onRadi ance_baseTi ne = 0. 000001
Shadowi ng_| oopTi me = 0. 000001

Angul ar Att enuat i on_baseTi ne = 0. 000000
Di stanceAttenuati on_baseTi me = 0. 000000
Di f fuseRadi ance_baseTi ne = 0. 000004
Specul ar Radi ance_baseTi me = 0. 000007
Anbi ent Radi ance_baseTi ne = 0. 000001

Eni ssi onRadi ance_baseTi ne = 0. 000000

set Pi xel | nm _baseTi me = 0. 000069



9.5 Recursive Ray Cast Data by Depth

Figures 28 through 39 present data on collected and predicted recursive ray casts for each scene.
Each figure gives the numbers of reflection and transmission rays cast at each depth of the recursive
process. The predicted numbers are higher in general due to the screen space bounding box error, which

affects the 0™ generation of the recursive branching process.

Scene 1 Recursive Ray Casts by Depth
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Figure 28: Scene 1 reflection and transmission ray casts



Scene 2 Recursive Ray Casts by Depth

9000
8000

7000

6000
5000

4000
3000

# Ray Casts

2000

0

(Il

Coll Refl

Pred Refl

Coll Trans

Pred Trans

O Depth 1
m Depth 2
m Depth 3

Figure 29: Scene 2 reflection and transmission ray casts

Scene 3 Recursive Ray Casts by Depth
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Figure 30: Scene 3 reflection and transmission ray casts
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# Ray Casts

Scene 4 Recursive Ray Casts by Depth
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Figure 31: Scene 4 reflection and transmission ray casts

# Ray Casts

Scene 5 Recursive Ray Casts by Depth
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Figure 32: Scene 5 reflection and transmission ray casts
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# Ray Casts

Scene 6 Recursive Ray Casts by Depth
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Figure 33: Scene 6 reflection and transmission ray casts

# Ray Casts

Scene 7 Recursive Ray Casts by Depth
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Figure 34: Scene 7 reflection and transmission ray casts
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Scene 8 Recursive Ray Casts by Depth
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Figure 35: Scene 8 reflection and transmission ray casts
Scene 9 Recursive Ray Casts by Depth
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Figure 36: Scene 9 reflection and transmission ray casts



# Ray Casts

Scene 10 Recursive Ray Casts by Depth
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Figure 37: Scene 10 reflection and transmission ray casts

# Ray Casts

Scene 11 Recursive Ray Casts by Depth
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Figure 38: Scene 11 reflection and transmission ray casts
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